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ABSTRACT

Low Light Image Enhancement and Saliency Object Detection

by

Yuanfang Zhang

Low light images represent a series of image types with great potential. Their re-

search focuses on images and videos of the environment at dusk and near darkness. It

can be widely used in night safety monitoring, license plate recognition, night scene

shot, special target recognition at dusk, and other emergency events that occur under

light scenes. After the environment is enhanced and combined with other tasks in

computer vision and pattern recognition, it can bring many results, such as saliency

detection and object detection under low illumination, and abnormal detection in

crowded places under low-light environment. For the enhancement of low light and

low light scenes, using traditional methods often results in over-exposure and halo

conditions. Therefore, using deep learning network technology can fix and improve

these specific shortcomings. To achieve this goal, we have done several investigations

about the current state-of-art researches on low-light enhancement and the relevant

computer vision tasks. For low light image enhancement, a series of qualitative and

quantitative experimental comparisons conducted on a benchmark dataset demon-

strate the superiority of our approach, which overcomes the drawbacks of white and

colour distortion. At present, most of the research works on visual saliency have

concentrated on the field of visible light, and there are few studies on night scenes.

Due to insufficient lighting conditions in night scenes, and relatively lower contrasts

and signal-to-noise ratios, the effectiveness of available visual features is greatly re-

duced. Moreover, without sufficient depth information, many features and clues are

lost in the original images. Therefore, the detection of salient targets in night scenes

is also difficult and it is a focus of current research in the field of computer vision.

The performance leads to vague effects when the existing methods are directly con-



ducted, so we adopt a new “enhance firstly detection secondly” mechanism that

firstly enhances the low-light images in order to improve the contrast and visibility,

and then combines it with relevant saliency detection methods with depth infor-

mation. Furthermore, we concern about the feature aggregation schemes for deep

RGB-D saliency object detection and propose novel feature aggregation methods.

Meanwhile, for the monocular vision, of which the depth information is hard to

acquire, a novel RGB-D image saliency detection method is proposed to leverage

depth cues for enhancing the saliency detection performance but without actually

using depth data. Both of the extra depth cues and the proposed “enhance firstly

detection secondly” mechanism can improve saliency detection abilities, according

to the experimental results. The model not only outperforms the state-of-the-art

RGB saliency models, but also achieves comparable or even better results compared

with the state-of-the-art RGB-D saliency models

Dissertation directed by Professor Xiangjian He, Professor Michael Blumenstein and

Doctor Wenjing Jia

Faculty of Engineering and Information Technology
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Chapter 1

Introduction

Low light images have an important impact on daily life and production. For exam-

ple, in traffic safety, when vehicle cameras or surveillance equipment cannot detect

inconspicuous objects at night, they pose a threat because the low visibility environ-

ment can largely mislead drivers, making them unable to understand road conditions

and prone to accidents. In addition, the core components of most current imaging

devices have little ability to process ambient lighting in dark environments and can-

not accurately distinguish images due to noise. All of these disadvantages can be

attributed to the interference of various conditions in low light environments. Some

scientists and researchers have proposed a number of enhancement solutions based

on traditional digital image processing in the study of low light images.

We can process low light images by a contextual correspondence learning the-

ory approach. All of these phenomena require a complete framework of computer

vision process to accomplish the task. Among them, the processing of low light

environments is one of the most difficult problems. Low light scenes represent a

range of image types such as images and videos of environments at dusk and near

darkness, which may be seen in many applications. I including night-time security

surveillance, license plate recognition, special target recognition at dusk, and recog-

nition of other emergencies in low light scenes. The combination of environmental

enhancement with other aspects of computer vision and pattern recognition can lead

to many results, such as object detection and face detection in low light levels, and

anomaly detection in crowded places in low light environments. For the enhance-
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ment of low light and low light scenes, the use of traditional methods often results

in overexposure and halo conditions, so these specific drawbacks can be fixed and

improved using deep learning network techniques.

Compared to the daytime scene reconstruction, the night reconstruction is more

difficult. The main challenges faced mainly include inadequate lighting and the low

image contrast. Because of low brightness, image details are not visible, image qual-

ity decreases, the scene cannot be seen clearly, and the amount of visual information

is low. Due to the impact of insufficient light at night for the visual field of view,

it will cause the phenomenon of information loss in the process of light propaga-

tion, affecting the final imaging and resulting in the distortion of target boundaries,

blurred boundaries between adjacent target objects and other problems. The imag-

ing ability of the light-sensing device cannot contain more effective information in

its limited working range under the dual effect of its own performance and external

environment.

Above all, low light imaging technology has several major difficulties. The first

one is that the traditional algorithms and technologies in enhancing low light images

may appear with the halo effect, scene blur, and a series of defect problems. The

second is that, the original image acquisition is always a pending problem. There

is always the problem of obtaining a large amount of data and maintaining the

stability of the image features. Third, for the objects that need to be detected and

identified in low light environment, how to identify them based on a more refined

approach, i.e., an approach for saliency detection.

Although research on image saliency is in full swing, its application is mainly for

high-contrast environments such as daylight, and few research has been conducted

on low light environments with insufficient light. In conditions such as darkness,

both human visual recognition and machine recognition are difficult and cannot
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accurately locate salient targets. This is also the current problem of salient target

detection in night scenes. This problem can be solved by using the “enhance first,

detect later” model.

1.1 Related Works

Humans can quickly perceive visually saliency targets from complex scenes such

as night images, according to the visual attention mechanism. In practical ap-

plications, limited computing resources can be prioritized for processing the scene

using this selective visual attention mechanism. The scene’s saliency information

is focused, and the scene’s non-saliency information is selectively ignored. The vi-

sual saliency object detection model is now widely used in image segmentation,

object recognition, image retrieval, and other applications. However, the majority

of existing visual saliency object detection models are only suitable for visible light

environments, which will present significant challenges at night. Because of the low

signal-to-noise ratio and low contrast characteristics of the night-time images, the

feature contrast measurement will be easily disturbed by noise, weak texture blur,

and other factors. It is difficult to detect salient objects in night images due to the

influence of various factors such as scene background changes and camera movement.

It is difficult to accurately describe the salient information in night images using the

visual saliency model proposed in recent years. Using preprocessing methods such

as a self-square image transformation to improve image contrast and obtain a rich

gray-value image can achieve a certain effect. However, self-square image equaliza-

tion transforms all pixels in the image, including the image’s edge pixels, smooth

and non-noise pixels, noisy pixels, and so on, and they can easily lead to problems

such as false edges and overexposed pixels. In this section, we try to give an overall

view of the current research progress on Low Light Image Enhancement, Saliency

Object Detection and Low light Saliency Object Detection.
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1.1.1 Introduction to Low Light Image Enhancement

Many traditional methods have been proposed for enhancing low light images. A

fast image enhancement method combined with a color space fusion was proposed by

Xiao et.al. [115]. Zhu et al. [140] developed a method of cloud removal while local

contrast is preserved. A method for the correction of colors and over-spectral images

was developed by Artem et al. [75]. Although these traditional methods may achieve

good results under certain conditions, they are not generally sufficiently robust. For

reflection and light decomposition, no effective dependence mapping is established.

Researchers have developed a number of methods for improving the image quality

and visibility based on cognitive perception principles of humans. The benefits of

guided filtering and adaptive histogram equalization (e.g., Wang [110]) significantly

improved scenic visibility and colored contrast. A tone mapping function in the

images was learned to deal with the low light scenario in [56].

Unlike traditional linear and non-linear methods that only enhance specific image

types, Retinex can balance compression, edges improvement, and color constancy

with dynamic range. The results show that different types of images can be ad-

justed. Among the existing low light image enhancement methods, one group of

works are built on cognitive perception theory, and they include MSR [39], LIME

[27] and LECARM [124], which assume that the observed color image can be de-

composed into reflectance and illumination. The initial Retinex model as a low

light image supervision method has been determined in [44] to be equivalent to an

advanced neural network with several Gaussian convolution kernels. The authors of

[27] proposed a method to preserve the naturalness of illumination with lightness-

order-error measure. Jiang et al. [39]proposed to use all useful information of the

down-sampled paths to produce high-resolution enhancement results.
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1.1.2 Introduction to Saliency Object Detection

The existing RGB saliency detection models usually extract low-level image fea-

tures and then leverage the contrast mechanism [63, 11], background prior [121, 91],

or objectness prior [30, 3] to detect salient objects. Recently, numerous investigating

works have presented CNNs into the saliency detection field and have accomplished

exceptionally promising outcomes. Most of these strategies straightforwardly fathom

the saliency detection issue utilizing end-to-end CNNs. For instance, early models

[96, 49, 135] generally use multi-scale CNNs, to extract Multiple Scalability fea-

tures from the multiple local and global patches for each pixel and superpixel. The

full convolutionary network (FCN) architecture [70] is used for all individual pix-

els simultaneously. For all individual pixels, simultaneously, subsequent models are

implemented in the full convolutionary network (FCN) [70] architecture. Typically,

an encoder and decoder model was a trend, to initially extract multi-level deep fea-

tures with pretrained parameters like VGG or ResNet, to build a decoder that fuses

those multi-level detection features. A certain set of projects is to progressively fuse

multi-level features by using the [61, 72, 132] architecture, and another set of works

[55, 33] adopt the HED network architecture [117] to fuse the features simultane-

ously. These methods all derive directly from the image output extracted from deep

characteristics, without taking other knowledge into account.

A certain information can be added to improve the accuracy of saliency detection.

Li et al. [52] introduced the semantic segmentation task to enhance the feature

capability for object perception. Wang et al. [104] used eye fixation to guide the

detection of salient objects. In [130], Zhang et al. leveraged image captioning to

help capture semantic information of salient objects in visual scenes. Recently, many

deep saliency models [53, 106, 25, 60, 134] have been proposed to simultaneously

predict object contours and use the contour prior to enhance the object boundaries

for salient objects. Neither of these works, however, has explored the possibility to
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improve the output detection with depth awareness. In this paper, we propose to

estimate the depth of each image and use the depth characteristics to add the RGB

functions for the identification of salient.

In [116], Xiao et al. proposed to derive pseudo depths from the RGB images,

and then leveraged the pseudo depths to boost the performance of RGB saliency

models by computing depth-driven background priors and depth contrast features.

In two respects, our approach varies greatly from theirs. Firstly, their model relies on

conventional saliency features and structures, while our model is a profound saliency

model that is much more efficient and speedy. Second, its model should first draw

the pseudo-depth map and use this to calculate the depth-based function and the

previous map, while it should be more efficient and effective to use intermediate

depth features to enhance the RGB properties before the depth map is produced.

Based on the night vision enhancement technique, saliency object detection has

also investigated a new way to explore the state-of-the-art performance without using

depth. The identification of important objectives in night scenes is also the problem

and subject of current vision science. If the previous approach is executed directly,

the output results in the blurring effect. Therefore, we are taking a new mechanism

that first enhances the picture of low light to increase contrast and visibility and

then uses the object detection saliency method.

Most SOD models [11, 96, 61, 104, 134, 106, 65] typically detect salient objects

from RGB images. In a pioneer work of [77], Ouerhani and Hugli have shown

that depth can also provide a valuable evidence and increase the saliency detection

efficiency in a large part. This is intuitive since humans reside in a genuine 3D

world and have a significant influence on our sensory experience. Many subsequent

models for output, like those in [45, 13, 12, 100], began to take RGB-D images

for the detection of output. Recently, Convolutionary Neural networks (CNNs),
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which also showed outstanding results in numerous computer vision activities, have

been commonly seen in the computer vision community. Many works have also

implemented two-stream CNNs for RGB-D SOD in order to leverage their efficient

functionality in learning.

Besides SOD methods without using depth information, another UNet model

principle gives a unique way to combine more information to get much more precise

results.

Most of the other projects [5, 6, 98, 138], considering the multi-level function

maps randomly acquired by CNNs, have taken on the two-way UNet [85] architecture

to add multi-level features to RGB-D SOD. The two-stream UNet uses first two

encoder networks to collect images from multi-levels in a bottom-up way. Then,

one or two decoder networks are installed in the top-down processing and at the

same time combining high level features with low-level ones. The characteristics of

its symmetrical encoder module appears in any decoder module. As such, the top-

down proliferation of discriminative semantic data in deep layers allows the precise

localization and results in precision shapes and boundary segmentation with local

structures in smaller layers.

UNet only aggregates top-down features once. Low-level details can only be

added to enhance the depictive ability in the decoder, while the high-level func-

tionality cannot be changed themselves. In this thesis, we suggest adding another

bottom-up aggregation path to solve the problem by propagating enhanced low-

level features from the top-down path to high-level layers again. If the combined

functionality of both top-down and bottom-up is cascaded, the functions can be

enhanced progressively at all stages.

Another challenge is to add functions on all two-neighboring levels over networks

only progressively. Although it prevents big changes and is commonly used in previ-
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ous articles, this feature aggregation system reduces the direct connections between

multi-level features. We suggest systematic paths to aggregate multi-level features

holistically after the bottom-up and top-down processing in order to mitigate this is-

sue. The network will then benefit from them all at once, providing a rich cross-level

functional convergence mechanism for SOD.

Given the two-stream architecture, it is typical that the writers of current work

adopt only two-stream encoders independently and aggregate the function only in a

[29, 138, 17] decoding method. It may otherwise reuse crossmodal encoder function-

alities [137, 48] in decoders, without enhancing any other encoder feature. They use

pretrained CNN models as encoders, requiring their configurations and pre-trained

parameters to be maintained. In this study, we present the crucial parts, including

the encoding process, the aggregation and propagation of cross-modal functions. We

use a residual learning aggregation system to add cross-modal encoder features and

propagate them back to the encoder’s original route, improving the functionality

right from the start.

1.1.3 Introduction to Low light Saliency Object Detection

Although research on image saliency is in full swing, its application is mainly for

high-contrast environments such as daytime, and few research has been conducted

on image saliency detection in narrow dynamic regions represented by low light

environments with insufficient light.

There are some studies [118] trying to solve the low-illumination problem of

saliency detection by doing low-illumination SOD directly on the original degraded

images, and hence turning out to be inefficient. Researchers [118] also propose

to extract non-local features in low-illumination images for SOD, since the low-

illumination effect of images taken in uniformly illuminated environments tends to

degrade with changes in the scene depth and the associated ambient lighting. Due
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to this degradation, a large amount of object information is lost, making saliency

detection in such scenes more challenging.

The deep learning-based methods trained using the dataset day-time images do

not work properly under the night-time environments. This is because low light

images contain flares, dense noise, glow/glare, etc., which are not present in the

daytime training data. A possible solution is to train the network on low light

images in a fully supervised manner. However, it is not easy to obtain disparity

base data for low light images.

In conditions such as darkness, both human visual recognition and machine

recognition struggle to accurately locate salient targets. This is the current problem

of salient target detection in night scenes. This problem can be solvable by using

the ”enhance first, detect later” model.

1.2 Research Objectives

Low light situations provide a diverse range of image types with enormous poten-

tials. Their investigation is centered on photographs and recordings of the outdoors

around dusk and near night. It has a wide range of applications, including night

safety monitoring, licence plate identification, night scene photography, unique tar-

get recognition at dusk, and recognition of other emergency occurrences in low light

situations. When the environment is upgraded and integrated with other tasks in

computer vision and pattern recognition, it may provide a variety of outcomes, in-

cluding saliency detection and object detection in low light environments, as well as

anomalous detection in crowded areas. Due to the rising needs of severe visual tasks

in many applications, low light image enhancement is quickly attracting interest

from research community.

The comprehensive perceptual processing of low light images represented by



10

night-time is primarily concerned with accurate target detection and recognition.

However, since low illumination results in sparse visual information, the visual range

of night-time images is significantly reduced compared to those captured in daytime

with ambient natural light. The lack of illumination can result in that the recog-

nition person and recognition systems have a natural blind area (area of interest).

Using some anti-interference technology and enhancement technology can effectively

suppress the interference of background noise.

When high light images produce degradation, it can damage the statistic proper-

ties and structural information of image pixels, and the dynamic range will become

narrow, leading to feature drift of the network. By superimposing them together,

the errors caused by feature drift may slow down the vision system. Using ac-

tual degraded datasets with manual annotations is a straightforward approach to

improving the robustness and accuracy of computer vision systems in real-world

applications. As a result, it is difficult to collect large-scale degraded datasets with

semantic annotations, and it is more challenging to comprehensively cover all forms

of degradation. Annotating corrupted images is also very costly, making it difficult

to for this approach to be scaled up and adopted practically.

In addition, human can quickly perceive visually salient targets from complex

scenes, according to the visual attention mechanism. In practical applications, this

selective visual attention mechanism allows us to prioritize limited computational

resources for processing the salient information of the scene and then selectively

ignore the non-salient information of the scene. Visual saliency object detection

models are now widely used for image segmentation, object recognition, image re-

trieval and other applications. However, saliency detection in extreme environments,

such as low light scenes at night, is still a challenging topic.

As a result of night pictures’ poor signal-to-noise ratio and low contrast, feature
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contrast measurements are required to be performed. However, it is sensitive to

noise interference, poor texture blurry backdrop and camera movement, among other

variables, which makes it difficult to discern prominent items in night-time images.

However, it is challenging for the visual saliency model that has been developed

in the last several years to correctly characterize the saliency in night images. For

example, histogram equalization transforms all pixels in an image, including edge

pixels and noisy pixels, and hence can easily cause issues such as false edges and

overexposure.

The aims of the research are to:

1) conduct research on low light image enhancement using CNN-based methods and

2) conduct research on saliency object detection from the enhanced low light images

using estimated depth information and UNet-based feature aggregation.

1.3 Main Contributions

Aiming to accomplish the above objectives, in this project the following four algo-

rithms are developed for low light image enhancement and saliency object detection

from the enhanced low light images.

1) We proposed a deep learning dedarking network based on the cognitive per-

ception model of Retinex theory, which effectively combines the inception network

with high-level semantic information of the foreground and the background of the

images.

2) Towards saliency object detection on the enhanced low light images, we pro-

pose to simultaneously estimate the depth and detect saliency for RGB images in

a unified deep CNN. Intermediate depth features can be fused with RGB saliency

features to supply complementary information for improving the saliency detection

performance. We further propose to fuse multiscale depth and RGB features and
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also introduced global contexts.

3) Last but not the least, we reconsider the feature aggregation schemes for deep

RGB-D SOD and propose novel feature aggregation methods. Based on the widely

used two-stream UNet architecture, we first propose to add early aggregation and

holistic aggregation paths to propagate cross-modal information in an early stage

and learn abundant feature interactions among all multi-level features. Then, we

propose to cascade the top-down decoder network in UNet with a bottom-up decoder

network, thus enabling to improve the high-level features with the already improved

low-level features. Furthermore, we propose a factorized gated attention model

to modulate the feature aggregation actions for each feature node with reduced

computational costs and boosted model performance.

Qualitative and quantitative experimental comparisons conducted on the bench-

mark ExDARK dataset [69] demonstrate that our approaches have improved the

quality of the dedarking images and overcome the drawbacks of white and color

distortion that are shown in current state-of-the-art techniques.

1.4 Thesis Organization

This rest of the thesis is organized as follows in the following sub-sections:

1.4.1 Chapter 2

As our first attempt, in this chapter, we propose a deep semantic brightening

network based on the cognitive perception model of Retinex theory to combine the

inception network with the high-level semantic information about foreground and

background effectively. In order to train a model towards this goal, we introduce

the structure loss and perceptual loss so as to integrate the high-level semantic

information to improve the enhancement result. Qualitative and quantitative com-

parison experiments conducted on benchmark datasets demonstrate the superior
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performance of our approach, which overcomes the drawbacks of white and color

distortion with existing techniques.

1.4.2 Chapter 3

For the low light image enhancement, we can use the UNet based architecture

for this research with multiple input information.

UNet based architectures are widely used in deep RGB-D salient object detection

models. However, UNet only adopts a top-down decoder network to progressively

aggregate high-level features with low-level ones. In this chapter, we propose to

enrich feature aggregation via holistic aggregation paths and an extra bottom-up

decoder network. The former aggregates multi-level features holistically to learn

abundant feature interactions while the latter aggregates improved low-level fea-

tures with high-level features, thus promoting their representation ability. We also

propose a factorized attention module to efficiently modulate the feature aggregation

action for each feature node with multiple learned attention factors. Experimental

results on seven widely used benchmark datasets demonstrate that all of the pro-

posed components can gradually improve RGB-D salient object detection results.

Consequently, our final saliency model performs favorably against other state-of-

the-art methods.

1.4.3 Chapter 4

Although many RGB-D saliency models have been proposed, they require to get

depth data, which is expensive and not easy to get. For instance, it is very practical

for the dealing of the low light images with less depth information.

In this chapter, we propose to estimate depth information from monocular RGB

images and leverage the intermediate depth features to enhance the saliency detec-

tion performance in a deep neural network framework. Specifically, we first use an
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encoder network to extract common features from each RGB image and then build

two decoder networks for depth estimation and saliency detection, respectively.

The depth decoder features can be fused with the RGB saliency features to

enhance their capability. Furthermore, we also propose a novel dense multiscale

fusion model to densely fuse multiscale depth and RGB features based on the dense

ASPP model.

A new global context branch is also added to boost the multiscale features. Ex-

perimental results demonstrate that the added depth cues and the proposed fusion

model can both improve the saliency detection performance. Finally, our model not

only outperforms state-of-the-art RGB saliency models, but also achieves compara-

ble results compared with state-of-the-art RGB-D saliency models.
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Chapter 2

Low Light Image Enhancement via CNN-based
Models

Although there are various ways for improving low light image quality, it is still

unclear how to balance human observation perception with computer vision pro-

cessing. The existing solutions can result in over-exposure and a halo effect. As

our first attempt, in this chapter, we propose a deep semantic brightening network

based on the cognitive perception model of Retinex theory to combine the inception

network with the high-level semantic information about foreground and background

effectively.

2.1 Introduction

Many traditional methods have been proposed for enhancing low light images.

Xiao et. al. [115] put forward a rapid image enhancement approach combining the

space fusion of color. Zhu et al. [140] developed a method for removing cloud while

preserving local contrast. Li et al. [50] developed an on-line detection method based

on a single scale retinex. Lee et al. [47] proposed a new method to satisfy the

multi-scale morphology. Artem et al. [75] designed a method to correct color and

hyper-spectral images. Zohair et al. [1] developed a new method to use a single-scale

method to meet the needs of the image enhancement. Although these traditional

methods can produce some good results under specific conditions, they are gener-

ally not robust enough. For the decomposition of reflectance and illumination, no

effective dependence diagram was established.
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Based on the cognitive perception principles of humans, researchers have devel-

oped a series of methods to enhance the image quality and visibility. For instance,

Wang [110] took the advantages of guided filtering and adaptive histogram equaliza-

tion, and greatly enhanced the visibility and color contrast of the scenes. In [56], a

tone mapping function of the images was learned to deal with the low light scenario.

Michael [90] created a model, which could effectively conduct object detection and

recognition, especially in dark scenes using low light enhancement methods. In [124]

and [123], fusion networks, which represented the light reflection model principles,

were proposed.

Different from the traditional linear and nonlinear methods that only enhance

specific types of images, the Retinex model can balance dynamic range compression,

edge enhancement, and color constancy. The results show that it can be adapted to

enhance different types of images. In [44], it was concluded that the Retinex model

as a low light image supervision method was equivalent to a feed-forward neural

network with different Gaussian convolution kernels.

However, the basic Retinex model cannot establish an effective mapping between

the R, G, and B channels in the RGB color space. As a result, the enhancement

level of each color channel is inconsistent, resulting in color distortion and loss of

edge information. This problem is more pronounced when the image is rich in

depth-of-field information, and is especially prominent in low light images.

Concerned with low light image enhancement, conventional methods such as

MSR [40], LECARM [126] and LIME [28] have been proposed, but they can result

in over-exposure and halo effects.

With the development of deep neural networks, researchers have applied convo-

lutional neural networks to many areas of image processing, including image restora-

tion, image super-resolution, and image denoising. Some of the methods have been
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proposed for low light image enhancement. These methods can help with the infor-

mation loss during the imaging process, preserve edge information and enhance color

channels while reducing color distortion. For example, LLnet [71] used a stacked

sparse denoising auto-encoder for simultaneous low light enhancement and noise

reduction. Tao et al. [93] proposed an MSR-based image enhancement approach

with modified luminance for fast and efficient processing. Lore et al. [71] put for-

ward a deep auto-encoder approach for natural low light image enhancement. Lv

et al. [73] proposed MBLLEN for low light image/video enhancement using CNNs.

Experiments show that these methods towards the de-darking problems have better

performance than the traditional methods.

Unlike the existing de-darking methods based on convolutional neural networks,

which often use pooling operations, our method uses an efficient method to extract

high-level and low-level multi-scale semantic information about objects and back-

grounds from the scene. With this information, our method is more adaptive to the

brightening sub-tasks, i.e., feature extraction, inception and feature fusion. More-

over, different from the existing widely used loss functions, we introduce three loss

functions to achieve the above goal and design a joint loss to focus on the seman-

tic information. Last but not the least, when it comes to performance evaluation,

existing research works mostly use PSNR and MMSE (Minimum Mean Square Er-

ror), which require paired images of both the dark images and their ground truth.

However, for many real-world applications, the ground truth images are not easy

to acquire. Thus, Naturalness Image Quality Evaluator (NIQE), which does not

require paired daytime images, becomes a more objective evaluation metric and can

produce more convincing results for low light image enhancement tasks.

The main contributions made in this chapter are as follows. 1) We introduce

the Perceptual Loss function into the joint loss function to effectively fuse high-

level semantic information and low-level image information, and adding perceptual
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constraints to reduce the training time. 2) We propose a new method that treats

the front and back scenes at different processing levels, so that it can eliminate

background interference and focus on enhancing the region-of-interests areas of the

foreground. 3) We adopt the NIQE metric to evaluate the algorithm performance

and compare it with the state-of-the-arts. Our proposed approach has achieved

better performance on the ExDARK datasets [69] tested.

2.2 Cognitive Perception Retinex Theory

In this section, we present the related Retinex theory and its mathematical

relation with CNN.

The Retinex theory was proposed by Land in the 20th century and it has been

widely applied in the image processing field. The Retinex theory states that people

can perceive the color component that reflects the incident component.

Figure 2.1 : The Retinex model

The Retinex model is based on the consistency of color perception (color con-

stancy). Its basic theory is that the color of an object is not affected by the illu-

mination’s non-uniformity, but is determined by the ability of the object to reflect

light from long waves (red), medium waves (green) and short waves (blue), rather
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than the absolute value of the intensity of the reflected light.

Researchers have taken several different image estimation methods to develop

various Retinex based algorithms, such as Single Scale Retinex (SSR), Multi-Scale

Retinex (MSR), and Multi-Scale Retinex using Color Restoration (MSRCR). SSR

constrains the illumination map to be smooth by a Gaussian filter. MSRCR extends

SSR with multi-scale Gaussian filters and color restoration. The main idea of MSR

is to choose different Gaussian surrounding scales to calculate based on the SSR

algorithm [101][93], and then generate the output results. MSR can be described

as:

logRi(x, y) =
k∑

i=1

wk{log Si(x, y)− log[Fk(x, y) ∗ Si(x, y)]}, (2.1)

where (x, y) is the coordinate of the pixel, i is the color channel, i ∈ {R,G,B},

S(x, y) is the original image, R(x, y) is the reflection component, Fk(x, y) is the

Gaussian surround function, k is the number of scales, and wk is the value of the

Gaussian surround function such that
∑K

k=1wk = 1 and K is the number of the

scales.

A large number of experimental tests show that there is a standard to set the

number of the scales K, from a small, middle to a large range, dependent on the

results that the actual application needs.

Multi-scale Retinex usually acts as the traditional method towards the low light

images [86], but it usually has the weakness of color halos and over enhancement in

local areas. With the specialty of the neural networks that can simulate the working

procedure, this process can be more efficient. According to [86], the multi-scale

Retinex algorithm can be regarded as a feedforward convolutional neural network

with a residual structure. Therefore, our method can be regarded as a new CNN

based method from this perspective.

The multi-scale Retinex model reveals that images have the potential to be
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further improved, for the physical structure of the retina can be considered as a

residual convolutional neural network. With the improvement of neural networks,

researchers have discovered that the calculation in cognitive recognition can perform

better than the previous algorithms.

The input of the network is a low light color image, and the output is the

enhanced image of the same size.

Figure 2.2 : The overall view of our proposed network architecture.

As is shown, the proposed network consists of three modules, i.e., the feature

extraction module, the inception module and the feature fusion module. Each of

the three modules plays a different role, detailed as below.

Feature Extraction Module. This module contains 10 convolutional layers,

each of which using kernels of size 3 × 3, a stride of 1, a padding of 1 and ReLU

nonlinearity. The output of each layer is the input to both the next convolutional

layer and the corresponding inception module.

Inception Module. The module is inspired by the inception module and resid-

ual learning [32]. The left is two 3 × 3 convolutional layers and the right one is a
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1× 1 convolutional layer. The function of this module is to reconstruct the features

and form the enhanced image that matches the size of input image. In addition, we

obtain features from each feature extractor module at various positions, which con-

tain image information of different scales at both low and high levels, and combine

such information to produce the final result.

Figure 2.3 : The Inception Module in our proposed network

Feature Fusion Module. The input of this module is the combined features

from each inception module. In this chapter, we concatenate all of the outputs

from the inception module and use a 1× 1 convolution kernel to reduce the feature

dimension from w × h× 3× n to w × h× 3 and obtain the enhanced color image.
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2.3 Loss Functions

In order to guide the model, instead of using the common error metrics such

as MSE as the loss functions, we introduce the Structure Loss and Perceptual Loss

so as to combine the high-level semantic information to improve the enhancement

result.

Our joint loss contains three types of loss functions in total, i.e., Similar Structure

Loss (SSIM) (denoted as LSSIM), Region Loss (denoted as Lreg) and Perceptual Loss

(denoted as Lper), each focusing on a different aspect, as detailed below.

Similar Structure Loss. This loss function is designed to facilitate the quality

of the image enhancement through the network processing. This chapter aims at

choosing SSIM loss to compute the model loss as well as the final evaluation metric.

Low light images with structure distortion tend to yield color blur, color distortion,

and foreground and background mixture. We can directly minimize these drawbacks

through SSIM loss.

In this chapter, we introduce a structure loss to measure the difference between

the enhanced image and the ground-truth image. A simplified form of SSIM is used

to compute for a pixel p by:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)2 + (σ2
x + σ2

y + C2)2
, (2.2)

where µ and σ represent the mean and variance of the input image, C1 and C2 are

two constants used to avoid division by zero, and the subscripts x and y represent

input images.

Thus, the SSIM Loss can be defined by:

LSSIM = − 1

N

∑
p

SSIM(x, y), (2.3)

where p is the pixels.
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Region Loss. As shown in [47], the low light enhancement has been regarded as

a significant issue, which needs to be dealt with in computer vision field. In human’s

usual cognitive processes, human tends to pay much more attention to the brighter

regions and often ignore, or pay less attention, to the low light regions. This chapter

introduces the region loss, which pays attention to the MSE of the low light areas

so as to improve the enhancement of low light regions.

The region loss function is extended from MSE and is defined by:

Lreg = βl
1

wlhl
MSE(RLl, RGl) +

1

wallhall
MSE(RLall, RGall), (2.4)

where βl is the parameter assigned to the low light region, and w and h represent the

width and height of the features, respectively. In Eq. 2.4, the subscript l means the

low light area and all means all-pixel regions while RL and RG mean the recovered

images and ground truth, respectively. RLl and RGl describe the low light part

of the image being processed and RLall and RGall represent all-pixel regions of the

reference sample. Note that the latter part of the region loss is the standard MSE.

Perceptual Loss. Similar to those low-level vision approaches, such as im-

age denoising and image reconstruction [41], researchers always adopt MSE and

SSIM [109] as the metrics to measure the quality of the output results. Besides,

there are many relevant articles [71, 73, 18, 69] about combining different levels of

information to improve the performance of their approaches for image denoising and

super reconstruction. It is also essential to combine high-level information to solve

this issue.

In this chapter, we adopt the Perceptual Loss [41], which employs a content

extractor. In other words, if the enhanced image is the output, the features extracted

should be similar to those of the ground truth. In particular, this chapter considers

the perceptual loss based on the output of the different ReLU layers of the VGG-16



24

network as:

Lper =
1

CjHjWj

||φj(x
′)− φj(x)||22, (2.5)

where Cj is a constant, Wj and Hj represent the width and height of the feature

vector, φj represents the j-th convolutional layer, and φj(x
′) and φj(x) are the

features generated from the j-th layer.

Without loss of generality, the final loss can be computed by:

Loss = LSSIM + Lper + Lreg. (2.6)

Figure 2.4 : Example indoor and outdoor images of the ExDARK dataset [69]

2.4 Experiments

In this section, we report the experimental results on benchmark datasets to

validate the effectiveness of our proposed model.
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2.4.1 Dataset

In order to establish a baseline performance and facilitate the new direction

of research for object detection and image enhancement, we evaluate our proposed

method on the newly published Exclusively Dark (ExDARK) dataset [18, 69]. Previ-

ously, there are several small datasets including LIME [28], NPE [99] and DCIM [46]

in the de-darking field. The sizes of these datasets are not appropriate for further

research. Compared with these datasets, ExDARK [69] has advantages in both the

quantity and quality of the data in the dataset.

The ExDARK dataset [69] is the largest collection of natural low light images

taken in visible light to date, and it contains object level annotations. It has a

collection of 7,363 low light images from very low light environments to twilight

with 12 object classes (similar to PASCAL VOC) annotated at both image class

level and local object bounding box level.

2.4.2 Implementation Details

Training of the Model. During the training stage, all convolutional layers

are initialized randomly using the Gaussian distribution, which is provided from the

framework, and the biases are set false. First, the initial learning rate is 0.0001 and

our strategy of lowering the learning rate depends on the loss results of the current

model. If the loss continues decreasing, it means that the current learning rate is

appropriate and will remain unchanged in the next epoch. Otherwise, if the loss

remains stable or starts increasing, we should reduce the current learning rate by

half until it reaches 0.00001. In our work, the model training is completed on a PC

with two NVIDIA 1080Ti GPU cards.

Data Collection. In previous work, we also test our approach on synthe-

sized low light images so as to evaluate the PSNR results. Each artificial low-light

image is randomly generated by the original image and non-linear degradation func-
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tion. They are processed by the controlled and added gamma noise method. Note

that, in most real-world de-darking applications, low light images often do not come

with ground truth and it is difficult to obtain the corresponding ground truth. To

overcome the difficulties in gathering paired data, we use the same approach as in

previous research [71, 73] and synthesized low light images from the MS COCO

and Pascal VOC image datasets [18, 69] for this research. As described in [28], we

compare the similarities between the de-darking algorithm based on atmospheric

physical scattering model and the enhanced algorithm based on Retinex theory, and

make a series of transformations towards the original images. Then, we apply a

random gamma adjustment to each channel of the common images to produce the

low light images. Moreover, in order to simulate low light images in the real scenes

and improve the model’s robustness, we add random level Gaussian noise to low

light images.

2.4.3 Results and Analysis

Our proposed method is evaluated and compared quantitatively and qualitatively

with several existing methods, including MSR [40], LIME [28] and LECARM [126],

where the published codes are used for these comparative methods. Moreover, for

datasets where there is no ground truth available, we adopt NIQE for evaluation.

Note that, higher values of PSNR and SSIM indicate better quality of the de-darking

images, whereas for NIQE, the lower the better.

Comparing the enhancement results obtained using MSR [40], LIME [28] and

LECARM [126] and the results using our proposed method, similar conclusions can

be drawn. For the dark regions in testing images, the results of LIME and LECARM

are still not clear enough for recognition. Apart from dark regions and highlighted

areas, the most significant point that matters is the color distortion shown from the

results obtained with the other three methods. Hence, enhancement results obtained
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Figure 2.5 : Examples of image enhancement results obtained on the synthetic

dataset with benchmark approaches and our proposed approach. (a) Ground truth.

(b) low light images. (c) MSR [40] results. (d) LIME [28] results. (e) LECARM [126]

results. (f) Our results.

using our approach have boosted the best rehabilitation from low light images to

ground truth.

In addition to the drawbacks with the MSR approach when dealing with low light

images, the results obtained using LIME and LECARM present an overall reddish

background.

Figure 2.6 visually compares the image enhancement results with the results

of non-reference image enhancement approaches, which operate without the need

of the referential image. Comparing the results obtained using the four methods

comprising MSR [40], LIME [28], LECARM [126] and our proposed de-darking

method, it is obvious that the MSR results shown in Figure 2.6(b) show a general

enhancement to the whole image but still have a weakness in color space distortion.

The LIME results are shown in Figure 2.6(c) improve the general recovery effect

during the processing procedure but still exhibit certain weaknesses. The LECARM

results shown in Figure 2.6(d) achieve a good enhancement result in general but still
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Figure 2.6 : Examples of image enhancement results obtained on natural low light

dataset. (a) low light images. (b) MSR [40] results. (c) LIME [28] results. (d)

LECARM [126] results. (e) Our results

have the difficulties similar to those in Figure 2.6(c). The results obtained using our

proposed method (displayed in Figure 2.6(e)) show a better performance both in

detail and in general.

2.4.4 Object Theme Enhancement Analysis

In contrast to other research works on image enhancement [43, 69, 57, 39] and

those approaches using different channel algorithms and learning techniques [107, 94,

92], in this section, we discuss this issue from both pixel and object levels, and design

several experiments to demonstrate the effectiveness of our approach for enhancing

object themes. The results are shown as both a comparison chart in Figure 2.7 and

visualisation results in Figure 2.9.

In this discussion, we use 12 object themes, including Bicycle, Boat, Bottle, Bus,
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Figure 2.7 : Comparison of the NIQE results of the enhanced images obtained with

benchmark and our approaches.

Chair, Cup, etc, from the ExDARK dataset [69], which are naturally dark scenes

and have no references, to conduct the analysis. Since the ground truth daytime

images are not available for these datasets, we use NIQE as the metric to evaluate

the enhancement performance, the same as the above-published works. Figure 2.8

shows the results of two exemplar images from the dataset.

Please notice the difference in these results for the regions in the red bounding

boxes. Row 1 shows the results of comparing the scene depth and enhancement

details. Row 2 shows that the details of the background and foreground are mixed.

We can clearly see that the details including the scene depth in Row 1 and the tire

detail of the bike in Row 2 are clearer in our results.

Figure 2.7 shows the NIQE results obtained using the benchmark approaches

and our approaches for the 12 classes. Some classes, such as Cat, Dog or People,

appear in the foreground, while other classes appear in the background. As it can
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Figure 2.8 : Image enhancement results of the two example images from the Ex-

DARK Dataset[69] obtained with the comparison methods. Note the details shown

in the red bounding boxes. The first column represents the source images without

enhancement. The second to fifth columns represent the image enhancement results

obtained with MSR [40], LIME [28], LECARM [126] and our approach, respectively.

be seen from the chart that, our proposed de-darking algorithm prevails on eight

classes (Bicycle, Boat, Bottle, Car, Chair, Motorbike, People, and Table) and the

average NIQE score is lower than those obtained using other comparison methods.

If we further investigate the results, the eight classes considered in the comparison

obviously exist in the foreground and many of them have been enhanced by our

method. From these results, we can conclude that, although the enhancement varies

for different object classes, using the combination of pixel and object information to

guide the model training is effective.

The comparable NIQE results of the 12 classes in Figure 2.9 demonstrate the

advantages of our proposed method.
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Figure 2.9 : Comparison of the dedarking results of the 12-object themes from the

ExDARK Dataset [69] obtained with the four comparison benchmark methods. (a)

Original images. (b) MSR [40] results. (c) LIME [28] results. (d) LECARM [126]

results. (e) Our results.

2.4.5 Comparison on Other Datasets

The other approaches that we have compared with, including LIME [28], MSR [40]

and LECARM [126], reported their results on other datasets in their publications.
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However, the sizes of these datasets, containing less than 100 or hundreds of images

in each dataset, are much smaller compared to that of ExDARK [69]. Hence, the

statistical results tend to be affected by individual, extreme samples.

2.4.6 Ablation study

To understand why our model has performed so well, we conduct ablation studies

to show the impact of using our proposed Perceptual Loss and SSIM Loss on the

quality of the dedarked images. The ablation study was conducted on the ExDARK

dataset[69] and we compared the NIQE results of the resultant images enhanced by

models when different loss functions were considered in training. The results are

presented in Table 2.1.

In this table, the 2nd column lists the NIQE results of the 12 classes without

using our proposed Perceptual Loss Lper and SSIM Loss LSSIM , the 3rd column lists

the NIQE results without using our Perceptual Loss Lper, and the last column shows

the results using all three losses as we proposed.

As it can be seen from this comparison, adding the SSIM Loss LSSIM as we

proposed has reduced the NIQE figures for all categories, and adding the Perceptual

Loss Lper has further reduced the NIQE results for all but two categories (Car and

People). This shows the effectiveness of considering our proposed loss functions for

dedarking.
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Table 2.1 : The NIQE results obtained on the ExDARK dataset [69] using and

without using our proposed Perceptual Loss and SSIM Loss.

Items w/o Lper & LSSIM w/o Lper w all losses

Bicycle 3.714251 3.677626 3.616516

Boat 4.037668 3.959704 3.901504

Bottle 4.13207 4.085261 4.077717

Bus 3.746283 3.690841 3.67074

Car 3.830932 3.756289 3.770743

Cat 4.486879 4.464398 4.407415

Chair 4.006253 3.960921 3.919645

Cup 4.328764 4.262844 4.229619

Dog 4.294867 4.251049 4.240586

Motorbike 3.903596 3.883475 3.791888

People 4.12894 4.084356 4.090785

Table 3.898326 3.848223 3.812703

AVERAGE 4.042402 3.993748 3.960821

2.5 Summary

In this chapter, aiming to address the limitations of the existing dedarking solu-

tions, we have proposed a deep learning dedarking network based on the cognitive

perception model of Retinex theory. Our model effectively combines the inception

network with high-level semantic information of the foreground and the background.

Qualitative and quantitative experimental comparisons conducted on the benchmark

ExDARK dataset [69] have demonstrated that our approach has improved the qual-
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ity of the dedarked images and overcome the drawbacks of white and color distortion

that are shown in the current state-of-the-art techniques.
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Chapter 3

Saliency Detection from Low Light RGB-D
Images

In the previous chapters, we have investigated for low-light image enhancement.

Salient object detection (SOD) focuses on localizing and segmenting the most dis-

tinctive object(s) in a visual scene. It mimics the human visual attention mechanism

to efficiently allocate visual processing resources on informative visual elements.

Thus, SOD has been used as a pre-processing technique to supply informative cues

for many other computer vision tasks, such as object detection [127], video object

segmentation [81], semantic segmentation [111, 4], image editing [105] and intelli-

gent vision surveillance in smart city applications [24]. Although the research on

SOD is in full swing, the scope of its applications is mainly for the environment with

relatively high contrast like in the daytime, and there is less research on the low light

environment with poor lighting conditions like a dark night. In night scenes, human

visual discrimination and machine recognition are difficult, and salient targets can-

not be accurately located. This is also a problem faced by salient target detection

in current night scenes. Figure 3.1 shows that if we directly conduct the saliency

detection methods on the original low light images, there are lots of drawbacks,

including low visibility, as well as the poor acquisition of the detailed information.

The consequence of the enhanced low light image can lead to better effect of saliency

dectection.

Therefore, in this research, as an important extension of low-light image analysis,

we investigate low-light SOD. Experimental results show the universality of the

model towards the high light images and low light images.
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Figure 3.1 : Comparison of the performance of different SOD methods on low-light

images.

3.1 Introduction

Video surveillance is an important area for operations such as analysis, detection

or segmentation of targets based on images or videos. Intelligent video surveillance

has an urgent need for transportation, finance, communities, shopping malls and

other fields. It is also the gradual shift of security strategy from passive defense, a

key element of active defense. At present, most of the analysis and processing of

night video surveillance use manual observation. The visual attention mechanism

of the human eye ensures that humans can still quickly pay attention to objects of

visual interest when facing complex perceptual environments such as night. How

to extend this characteristic of human vision to surveillance cameras and give full

play to its active monitoring function of night scenes is an important task of current

intelligent visual surveillance systems. It is important to improve the visibility of

night surveillance video, give the computer the ability to accurately understand and

perceive scene information in the night environment, and improve the security of

sensitive occasions in social life (such as banks, shops, residential areas, parking lots,

etc.) at night. Security has great practical significance.

Most SOD models [11, 96, 61, 104, 134, 106, 65] typically detect salient objects

from RGB images. In a pioneer work [77], Ouerhani and Hugli showed that depth

could also supply useful cues and largely boost the performance for saliency detec-

tion. This is also intuitive since human beings live in a real 3D environment and
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depth largely impacts our perception of visual scenes. Many subsequent saliency

models, e.g., those in [45, 13, 12, 100], have started to leverage RGB-D images

for saliency detection. Recently, Convolutional Neural Networks (CNNs) have been

widely seen in the computer vision community and have also shown excellent perfor-

mance on various computer vision tasks. Hence, many works have also introduced

two-stream CNNs for RGB-D SOD to exploit their powerful feature learning capa-

bility.

Some deep models [29, 23] applied the two-stream Fully Convolutional Network

(FCN) [70] architecture to feedforward each input RGB-D image pair into two CNN

streams and directly obtained the saliency map by fusing their final feature maps,

as shown in Figure 3.2(a). FCN processes the input image pair in a bottom-up

manner, progressively extracting low-level features in shallow layers and high-level

features in deep layers. Although it is simple and straightforward, the single path of

the bottom-up information flow heavily limits the model’s performance since usually

the final feature map of a CNN is very coarse, thus the obtained saliency map lacks

object details.

Considering the multi-level feature maps spontaneously obtained by each CNN,

most of other works [5, 6, 98, 138] have adopted the two-stream UNet [85] architec-

ture to aggregate multi-level features for RGB-D SOD. As shown in Figure 3.2(b),

the two-stream UNet first uses two encoder networks to extract multi-level image

features in a bottom-up manner. Then, there are one or two decoder networks to suc-

cessively aggregate high-level features with low-level ones in a top-down processing

and simultaneously fuse cross-modal features. In each decoder module, the features

of its symmetric encoder module at the same level are reused through a skip con-

nection and fused with previous decoder features. As such, discriminative semantic

information in deep layers can be effectively integrated with local structures in shal-

low layers through the top-down propagation, thus enabling both accurate object
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localization and precise shape and boundary segmentation.

(a) (b)

(c)

Encoder Feature

RGB Image Saliency MapDepth Map

Decoder Feature

Figure 3.2 : Comparison of different network architectures. (a) Two-stream FCN

[70]. (b) Two-stream UNet [85]. (c) Our proposed network. We cascade both top-

down and bottom-up feature aggregation for deep RGB-D SOD to further leverage

improved low-level features for promoting high-level features. We also propose to

holistically aggregate features across all levels to learn plentiful multi-level feature

interactions. Early aggregation paths are also presented to aggregate and propagate

cross-modal encoder features.

However, UNet carries out top-down feature aggregation only once. Only high-

level information can be aggregated with low-level features to improve their repre-
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sentation ability in the decoder, while the high-level features themselves cannot be

improved. To solve this problem, in this thesis, we propose to add an additional

bottom-up aggregation path, in which the improved low-level features from the top-

down path are propagated again to high-level layers, as shown in Figure 3.2(c). As

we cascade both bottom-up and top-down feature aggregation, the features across

all levels can be gradually improved.

Another problem is that the above networks only gradually aggregate features

at every two adjacent levels. Although this feature aggregation scheme avoids large

scale changes and is widely used in existing works, we argue that it limits the direct

feature interactions among multi-level features. To alleviate this issue, we further

propose holistic aggregation paths to holistically aggregate multi-level features after

the bottom-up and top-down processing. Thus, the network can learn abundant

cross-level feature fusion mechanism for SOD by considering them all at the same

time.

Considering the two-stream architecture, the existing works usually simply adopt

the two-stream encoders independently and only conduct feature aggregation in the

decoding phase [29, 138, 17], or they fuse cross-modal encoder features to reuse

them in decoders [59, 137, 48], without improving other encoder features. This

is because they use pretrained CNN models as encoders, which require preserving

their network structures and pretrained parameters. In this thesis, we present to

aggregate and propagate cross-modal features at the early stage, i.e., in the encoding

phase. We adopt a residual-learning based aggregation scheme to aggregate cross-

modal encoder features and propagate them back to the original encoder paths,

hence enhancing the feature capability from the very beginning.

Furthermore, the previous work usually aggregates features by directly concate-

nating [5, 6] or adding [81] them together. However, not all aggregated features
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are helpful for the final SOD task. We propose to generate a gated attention for

all of the involved features to modulate the aggregation flow at every node. To re-

duce the amount of the required gated attention weights and the computation and

memory costs, we propose to factorize the gate matrix into the multiplication of

channel-wise and spatial gates with multiple factors. This proposed multi-factored

gated attention mechanism learns different gates in different factors and thus can

ensemble multiple attention models to make a better decision.

To summarize, the main contributions of this chapter are as follows.

1) We propose a novel feature aggregation architecture for RGB-D SOD. We

cascade both bottom-up and top-down feature aggregation paths and also introduce

holistic aggregation paths, so we promotes both low-level and high-level features

and boosts multi-level feature interactions. An early aggregation scheme is also

presented to enhance the two-stream encoders.

2) We propose a novel factorized gated attention model for modulating the fea-

ture aggregation actions. We factorize the gated attention weight matrix of each

feature map as the multiplication of two multi-factored channel-wise and spatial gate

matrices. As such, both computational costs and model effectiveness are improved.

3) We conduct experiments on eight widely used RGB-D SOD benchmark datasets

and low light image datasets. Experimental results demonstrate that all of the pro-

posed model components can gradually improve the model’s performance. Con-

sequently, from the perspective of visualization and quantitative performance, our

final model outperforms other state-of-the-art methods on both low light images and

common images.

In Section 3.2, we first discuss our model with related work. Then, we present

our model in Section 3.3 and report the experimental results in Section 3.4. Finally,

in Section 3.5 we draw our conclusion.
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3.2 Related Work

CNNs have been widely used for RGB SOD and RGB-D SOD. For the former,

please refer to [102] for a comprehensive survey. We focus on the later in this thesis.

In the two early pioneering deep RGB-D SOD works [84, 87], the authors used

superpixels as the computational units and combined both traditional handcrafted

features and CNNs to classify them as salient or non-salient. However, such schemes

are usually computationally inefficient and therefore limit the model performance.

Subsequent models start to adopt CNNs to directly process each input image and

obtain the saliency map. Specifically, Han et al. [29] adopted two-stream CNNs to

process RGB and depth images respectively, and then used fully connected layers

to predict global saliency maps. Chen et al. [7] further combined this method with

FCNs to fuse global and local contextual reasoning. In [23], Fan et al. first developed

depth maps and then used single-stream FCNs with Pyramid Dilated Convolution

modules [89] to predict saliency maps. These models directly predict saliency maps

from the last layer of a CNN without considering multi-level features.

Most of the other works use the UNet architecture to gradually aggregate multi-

level deep features. For instance, Chen et al. [6] first used two encoder networks

to extract multi-level features from an RGB image and a depth image, respectively.

Then, they proposed to densely fuse multi-level cross-modal features in a top-down

decoder network. Zhao et al. [133] first proposed to leverage depth-based contrast to

enhance the RGB encoder features, and then fused multi-level features using a top-

down decoder with dense short connections. Liu et al. followed the work in [61] to

embed recurrent convolutional layers into top-down decoder modules for fusing en-

coder and decoder features with the depth map. Li et al. [48] fused RGB and depth

encoder features first and then also adopted a UNet style decoder to aggregate the

multi-level features. All of these models only considered a top-down feature aggre-
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gation path for RGB-D SOD, without exploring other feature aggregation schemes.

In contrast, we cascade both top-down and bottom-up processing to promote fea-

tures at all levels. Furthermore, most previous works, except the work in [7],directly

use pretrained two-stream encoder networks without fusing and improving encoder

features. The authors of [7] only propagated depth encoder features to RGB ones.

In this chapter, we perform the bidirectional feature aggregation and propagation

via the proposed early aggregation scheme.

Attention models are also widely used in RGB-D SOD models. Chen et al. [5]

adopted the SENet [34] style channel attention in decoder modules to modulate

feature channels. In [81], channel attention and spatial attention were separately

adopted in a recurrent attention module for generating the final saliency maps. Liu

et al. [66] proposed to selectively fuse self-mutual attention for fusing cross-modal

information at the beginning of the decoder network. Different from the existing

models, we propose to modulate the whole feature map in each decoder module with

a gated attention and further present a multi-factored factorization mechanism to

save computational costs and enhance the model capability.

In [14, 125, 64], a gated attention was also used in the convolution operation for

language modeling, image inpainting, and RGB-D SOD, respectively. Different from

them, we propose the multi-factored factorization operation for the gated attention

to reduce computational costs and boost the model capability.

Two works are closely related to our proposed model. Chen and Li [10] also used

both top-down and bottom-up decoders. The difference between our model and

theirs are as follows. Firstly, they adopted the bottom-up decoder first to fuse cross-

modal features and then used the top-down decoder to obtain coarse-to-fine saliency

maps, while we build our model based on UNet and use the top-down decoder first.

Secondly, we also propose to use the holistic aggregation paths to aggregate all-level
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features simultaneously, while they only linearly fused the side output saliency maps.

Thirdly, they used the existing SENet [34] style channel attention in the top-down

decoder while we propose a novel factorized gated attention model and employ it

in all aggregation paths. Fourthly, we also propose an early aggregation scheme to

promote the two-stream encoders.

Wang et al. [103] proposed to iterate top-down and bottom-up decoders for mul-

tiple steps for RGB SOD. Different from them, although we only cascade top-down

and bottom-up decoding paths once, our model’s performance is already saturated.

Furthermore, they adopt RNN in each decoder module to enhance the decoder ca-

pability while we use the proposed gated attention mechanism. We also propose

the holistic aggregation paths to more effectively leverage multi-level features and

present the early aggregation scheme for the two-stream architecture nature of the

RGB-D SOD models.

3.3 Proposed Method

In this section, we articulate the proposed network for RGB-D SOD. Its detailed

network architecture is shown in Figure 3.3.

We have reconsidered the feature aggregation schemes for deep RGB-D SOD

and proposed novel feature aggregation methods. Based on the widely used two-

stream UNet architecture, we have first proposed to add early aggregation and

holistic aggregation paths to propagate cross-modal information in an early stage

and learn abundant feature interactions among all multi-level features. We have

also proposed to cascade the top-down decoder network in U-Net with a bottom-up

decoder network, thus enabling to improve the high-level features with the already

improved low-level features. Furthermore, we have proposed a factorised gated

attention model to modulate the feature aggregation actions for each feature node

with reduced computational costs and boosted model performance.
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Figure 3.3 : Network architecture of the proposed RGB-D SOD model. We first use

two encoder branches for the RGB and depth inputs to extract multi-level encoder

features (F R
∗ and FD

∗ ). Within the two-stream encoders, we adopt early aggregation

paths (F EA
∗ ) to propagate cross-model information from the very beginning. Here,

the early aggregation path for the two Conv5_3 layers is not shown. Then, we

successively adopt a top-down decoder network (D↓
∗) and a bottom-up one (D↑

∗)

to aggregate multi-level features. We also use holistic aggregation paths to directly

aggregate features across all levels. The size of each feature map is also given and

denoted by channel × height × width. C© denotes concatenation and ⊕ means

element-wise summation.

3.3.1 Encoder Network

We first follow most previous methods and adopt a two-stream encoder network

for extracting multi-level RGB and depth features. In order to learn common fea-

tures for cross-modality, we share the network structure and parameters for the two

encoder branches. To leverage better image features, we use an ImageNet [15] pre-
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trained network as the encoder. The VGG 16-layer network [88] is adopted for a

fair comparison with previous works. It has five convolutional (Conv) blocks and

pooling layers, and two fully connected (FC) layers. For better adapting the net-

work to SOD, we enhance the original VGG network by keeping large scale feature

maps and preserving high-level FC layers. Concretely, we first reduce the stride of

the pool5 layer to 1. Then, we convert the FC6 layer to a Conv layer with 1024

channels and 3 × 3 kernels, and adopt the dilated convolution algorithm [8] with

dilation = 6. Similarly, the FC7 layer is also converted to a Conv layer with 1024

channels and 1 × 1 kernels. As such, the stride of the encoder network is reduced

from 32 to 16 and high-level FC features are also preserved in the encoder.

To propagate cross-modal information from an early stage, we introduce early

aggregation (EA) into the two encoders, specifically for the last Conv feature maps

of the last four Conv blocks, which are Conv2_2, Conv3_3, Conv4_3, Conv5_3,

and the FC7 layers. We do not use EA for the first Conv block since its low-level

features may be quite different in the two modalities while the other higher layers

can learn more common semantics. Given an RGB encoder feature map denoted

by ER
i and a depth one denoted by ED

i from the same level, our EA path first

aggregates them by element-wise summation and then taking an average to obtain

the EA feature map:

F EA
i =

ER
i +ED

i

2
. (3.1)

Then, we propagate F EA
i back to the two encoder features using residual learning:

ER
i = ER

i + α · Conv(F EA
i ),

ED
i = ED

i + α · Conv(F EA
i ),

(3.2)

Where two Conv operations perform on two 1× 1 Conv layers and α is a learnable

parameter. We initialize α to 0 to make sure that the EA path brings no impact to

the pretrained encoder networks at the beginning of the model training. As such,
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the EA path boosts the encoder representation ability by leveraging cross-modal

information and can also leverage pretrained model parameters.

Finally, we pick out the output feature maps of the Conv1_2, Conv2_2, Conv3_3,

Conv4_3, and FC7 layers as the multi-level features and reuse them in the decoders

later. Since these features have diverse channel numbers, we first use 3 × 3 Conv

layers to convert each of them to 64 channels, thus making them compatible with

each other in the subsequent feature aggregation. For representation simplicity, we

denote these multi-level features by F R
1 to F R

5 and FD
1 to FD

5 for the RGB and the

depth branches, respectively, as shown in Figure 3.3. The input scales of each RGB

image and the depth map are fixed to 224 × 224 for simplicity. Hence, the sizes of

the multi-level feature maps can be easily inferred, as marked in Figure 3.3.

3.3.2 Decoder Networks

After obtaining the ten multi-level features from both of the RGB and the depth

branches, we aggregate them for RGB-D SOD. First, we follow UNet [85] to pro-

gressively aggregate features at every two adjacent levels in a top-down (denoted

as ↓) decoder network. Specifically, in the ith top-down decoder module, where

i ∈ {1, 2, 3, 4}, we obtain its decoder feature D↓
i by aggregating the previous de-

coder feature D↓
i+1 with the RGB and depth features F R

i and FD
i at this level. Since

D↓
i+1 has a smaller spatial size, we first upsample it by bilinear interpolation. For

the 5th decoder module, we directly aggregate F R
5 and FD

5 . The top-down feature

aggregation process can be summarized by:

D↓
i =


Conv(BR([F R

i ,F
D
i ])), i = 5,

Conv(BR([UP (D↓
i+1),F

R
i ,F

D
i ])), i ∈ {1, 2, 3, 4},

(3.3)

where [·] means the concatenation operation, BR means the batch normalization

[36], Conv denotes a 3× 3 Conv layer with 64 channels and UP means the bilinear

upsampling.
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After the top-down feature aggregation, low-level features can be enhanced by

high-level features. Thus, the final output feature map D↓
1 simultaneously preserves

local details and contains high-level semantics. Most of the previous works directly

use this layer to predict the saliency maps. We further construct a bottom-up

(denoted by ↑) decoder network to use the enhanced low-level features to improve

the high-level features. To be concrete, we first use holistic aggregation paths to

aggregate the features D↓
i at all levels to obtain the first feature map D↑

1. Then, in

the subsequent i ∈ {2, 3, 4, 5} bottom-up decoder modules, we generate the decoder

features D↑
i by aggregating the previous bottom-up decoder feature D↑

i−1 with the

top-down decoder feature D↓
i at this level. Since D↑

i−1 has a larger spatial size, we

downsample it using a max-pooling layer with stride of 2. The bottom-up feature

aggregation process can be represented by:

D↑
i =


Conv(BR([D↓

1, UP (D
↓
2), · · · , UP (D

↓
5)])), i = 1,

Conv(BR([DW (D↑
i−1),D

↓
i ]), i ∈ {2, 3, 4, 5},

(3.4)

where DW means down-sampling with a max-pooling layer.

After the bottom-up feature aggregation, high-level features can also perceive

better low-level features thus generating better semantic information. Hence, by

cascading both of the top-down and bottom-up decoder networks, we can simulta-

neously enhance all low-level and high-level features. Finally, we adopt the holistic

aggregation again at the finest scale to obtain the final decoder feature map as:

DF = Conv(BR([D↑
1, UP (D

↑
2), · · · , UP (D

↑
5)])). (3.5)

A 1× 1 Conv layer with 1 channel and the Sigmoid activation function can be used

on top of DF to obtain the final saliency map. During training, we also generate an

intermediate saliency map from D↑
1 in the same way. Then, we compute two binary

cross entropy losses between the two saliency maps and the ground truth to train

the whole network.
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3.3.3 Factorized Gated Attention

It is worth noting that SOD is a challenging dense prediction task, and usually

not all features are useful for the final decision. Thus, we propose to introduce the

gated attention for the feature aggregation operations to adaptively select informa-

tive features for each decoder module. Specifically, for the Conv layers in (3.2),

(3.3), (3.4), (3.5), considering an input feature map X ∈ RC×H×W , in which C, H,

and W respectively denote its channel number, height, and width, we predict an

gated attention matrix G of the same size with each of its elements in the range of

[0, 1]. Then, we use G to modulate each node of X to control the aggregation flow

in each decoder module as:

XG = G�X, (3.6)

where � is the element-wise multiplication. As such, G serves as a modulator and

can retain informative features and suppress useless ones in X. Then, we use XG

as the input for the Conv layers.

However, predicting G requires predicting all of the C×H ×W gate weights. A

straightforward way is using a Conv layer with C channels on X. Nevertheless, this

scheme only uses local information, which equals to generating channel-wise gates

for each pixel with shared parameters. Another way is to use an FC layer. This

design is computationally prohibitive since it requires a large number of parameters

to learn. We propose to learn a factorized form of G for reducing the number

of attention weights to predict. Concretely, we factorize G ∈ RC×H×W into the

multiplication of two low-rank matrices Gc ∈ RC×r and Gs ∈ Rr×(H×W ). In this

way, when a small number is used for r, the number of gate weights to predict can

be reduced to (C+H×W )×r. For example, for D↓
2 where C = 192,W = H = 112,

using our factorization scheme with 2 factors, we can decrease the computational

costs by 94.6 times.
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Using the factorized attention, Equation (3.6) can be rewritten to:

XG = G�X

= (GcGs)�X

=
r∑

j=1

(Gc
j(G

s
j)

>)�X,

(3.7)

where Gc
j ∈ RC and Gs

j ∈ R(H×W ) are the jth factors of Gc and Gs, respectively.

We can respectively regard Gc
j and Gs

j as the traditional channel and spatial gated

attention. In this way, G can be seen as being spanned by the outer product

of channel attention and spatial attention. As such, we efficiently generate the

attention weights for the entire feature map and leads to cheaper computation and

memory costs. Furthermore, we generate r factors for both channel and spatial

gated attentions, similar to the multi-head attention in [95]. Thus, our proposed

factorized gated attention (FGA) mechanism can help to select different channels

and spatial locations in different factors.
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Figure 3.4 : Architecture of the proposed factorized gated attention module. We

factorize the gated attention of the feature map X as the multiplication of multi-

factored channel-wise gate weights Gc and spatial gate weights Gs to reduce compu-

tation and memory costs and introduce attention ensemble. AAP: adaptive average

pooling. �: element-wise multiplication. ⊗: matrix multiplication. Sizes of some

crucial features are marked by gray font.

Motivated by the SENet model [34], we use average pooling and an FC layer

to predict Gc. Specifically, we first adopt the adaptive average pooling on X to

pool the entire feature map to the spatial size of 2 × 2. The resultant feature map

represents the mean activation value of each channel in a H
2
× W

2
window. Then, we

use an FC layer with BN and the Sigmoid activation function to generate Gc, which

is a vector of C × r dimensions. For generating Gs, we first use a 7× 7 Conv layer

with r channels on X. Then, BN and the Sigmoid activation function are used to

obtain Gs. Figure 3.4 shows the detailed architecture of the proposed FGA module.

Since each element of Gc and Gs is in the range of [0, 1] and the summation

over r factors in (3.7) will magnify the value range of the elements of G, we further

divide G by r to shrink its value range back to [0, 1]. The final formulation of the
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proposed FGA module is:

XG =
1

r
(GcGs)�X. (3.8)

We write a new layer for this operation to implement it efficiently. Given

∂L/∂XG being the gradient of the loss function L with respect to XG, the gra-

dients with respect to the three inputs can be easily obtained by the chain rule

as:

∂L

∂X
=

1

r
(GcGs)� ∂L

∂XG
,

∂L

∂Gc
=

1

r
(
∂L

∂XG
�X)(Gs)>,

∂L

∂Gs
=

1

r
(Gc)>(

∂L

∂XG
�X).

(3.9)

Thus, the proposed FGA module can be trained along with other layers of the

network simultaneously via existing gradient based optimizers.

We adopt FGA for all decoder modules and the generation of the multi-level

encoder features F R
∗ and FD

∗ . Experimental results in Section 3.4.4 demonstrate

that the feature aggregation effectiveness for RGB-D SOD is further improved.

3.4 Experiments

In this section, we report the experimental results on benchmark datasets to

validate the effectiveness of our proposed model.

3.4.1 Datasets

We evaluate the effectiveness of the proposed model on eight widely used RGB-

D SOD benchmark datasets. The first one is the NJUD [42] dataset, which has

1985 stereo images. The images are selected from the Internet, 3D movies, and

stereo photographs. The salient objects are labeled in a 3D display environment.

The second one is the NLPR [80] dataset with 1000 RGB-D images collected by

Microsoft Kinect. Most of them are indoor images with simple salient objects. The
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third one is the RGBD135 [12] dataset, which has 135 RGB-D indoor images

captured by Kinect. The fourth one is the LFSD [51] dataset. It consists of 100

challenging images captured by the Lytro light field camera, including 60 indoor

scenes and 40 outdoor scenes. The fifth one is the STERE [76] dataset, which has

1000 stereoscopic images. Many of the images include complex scenes and various

objects. SSD [139] is the sixth dataset that has 80 images selected from three stereo

movies. DUT-RGBD [81] dataset is the seventh one. It includes 800 indoor and

400 outdoor images with challenging scenes and generated depth maps. The last

one SIP [22] dataset is a newly released one with 1000 human activities oriented

images.

3.4.2 Implementation Details

We follow the previous work [81] to select 1400, 650, and 800 images from the

NJUD, NLPR, and DUT-RGBD datasets, respectively, to train the proposed

SOD network. To alleviate overfitting, we conduct data augmentation by first resiz-

ing each training image pair to 288×288 pixels and then randomly cropping 224×224

image patches and also using random horizontal flipping. The input image pairs are

pre-processed by subtracting the mean RGB and depth pixels computed on the

training set. We adopt the stochastic gradient descent (SGD) algorithm with mo-

mentum to train our network, where we set the batchsize, momentum, and weight

decay to 4, 0.9, and 0.0005, respectively. We set the initial learning rate of the VGG

part of the two encoder branches to 0.001 and train the other part of the network

with random initialization and the initial learning rate of 0.01. We train the network

with totally 60,000 steps and reduce the learning rates by 10 times at the 40, 000th

and 50, 000th steps, respectively.

Our code is implemented based on an improved Caffe [38] library∗ to save the

∗https://github.com/yjxiong/caffe
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GPU memory. We use a GTX 1080 Ti GPU to accelerate network training and

testing. During testing, we directly resize each image pair to 224 × 224 pixels as

the input and get the network output as the predicted saliency map, without any

post-processing technique. The testing process costs 0.089 seconds for each image.

3.4.3 Evaluation Metrics

We adopt four widely used SOD metrics. The first one is the max F-measure

score. Concretely, for each image, we first use a series of thresholds, which vary

from 0 to 1 to binarize the predicted saliency map. Then, we compare the bina-

rized saliency maps with the ground truth saliency map, thus obtaining a series

of precision-recall value pairs. F-measure comprehensively considers both precision

and recall as:

Fβ =
(1 + β2)Precision×Recall

β2Precision+Recall
, (3.10)

where β2 is set to 0.3 as suggested in the previous work to emphasize more on

precision. Max F-measure Fmax
β is obtained by selecting the highest F-measure

score under the optimal threshold.

The second metric is the Mean Absolute Error (MAE), which computes the

average absolute difference between the predicted saliency map S and the ground

truth saliency map G as:

MAE =
1

WH

W∑
w=1

H∑
h=1

|G(w, h)− S(w, h)| . (3.11)

Although being widely used in previous work, the above two mentioned met-

rics are all based on pixel-wise errors and ignore structural information, and they

are shown to be highly sensitive for the human visual system. Thus, we use the

Structure-measure Sm [20] as our third metric to evaluate the structural similarity

between the predicted saliency maps and the ground truth maps.

Fan et al. [21] recently simultaneously evaluate image-level statistics and local
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pixel matching with the proposed Enhanced-alignment measure Eξ, which demon-

strated superiority over other existing measures. Thus, we also follow recent work

to adopt this measure as the fourth metric.

3.4.4 Component Analysis

In this part, we analyze the effect of each proposed model component on four

large datasets to verify their effectiveness. We use the two-stream UNet [85] as the

baseline model, as shown in Row(I) of Table 3.1.

Table 3.1 : Ablation study on the effectiveness of the holistic aggregation paths

(HA), the bottom-up aggregation (BU), the factorized gated attention (FGA), and

the early aggregation (EA). Bold indicates the best performance.

ID
Settings NJUD [42] NLPR [80] DUT-RGBD [81] STERE [76]

HABUFGA EA Sm maxF Eξ MAE Sm maxF Eξ MAE Sm maxF Eξ MAE Sm maxF Eξ MAE

I 0.888 0.889 0.930 0.059 0.908 0.894 0.951 0.036 0.898 0.906 0.937 0.052 0.891 0.888 0.936 0.055

II X 0.894 0.892 0.933 0.053 0.911 0.902 0.953 0.035 0.912 0.915 0.948 0.046 0.889 0.890 0.937 0.055

III X X 0.897 0.890 0.929 0.051 0.917 0.901 0.950 0.030 0.915 0.914 0.944 0.041 0.897 0.887 0.932 0.048

IV X X 1 0.899 0.890 0.928 0.048 0.914 0.894 0.944 0.031 0.918 0.921 0.949 0.042 0.897 0.887 0.934 0.049

V X X 2 0.901 0.893 0.933 0.047 0.920 0.901 0.953 0.029 0.921 0.926 0.952 0.037 0.905 0.897 0.941 0.043

VI X X 3 0.903 0.894 0.934 0.047 0.919 0.903 0.953 0.029 0.919 0.919 0.946 0.040 0.902 0.892 0.938 0.046

VII X X 2 X 0.906 0.902 0.936 0.045 0.927 0.912 0.961 0.025 0.926 0.927 0.954 0.034 0.904 0.896 0.940 0.042

Holistic Aggregation Paths.

To evaluate the effectiveness of the proposed holistic aggregation paths, we di-

rectly aggregate decoder features across all levels of the UNet model on the finest

level and use the obtained feature map (i.e., D↑
1) to generate saliency maps. The

results are shown in row (II) of Table 3.1. By comparing them with the results in

row (I), we can see that aggregating multi-level features holistically can improve the

performance of UNet, especially on the DUT-RGBD [81] dataset.
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Bottom-up Aggregation.

We further add the bottom-up decoder network to promote high-level features

using low-level features from the top-down decoder network of UNet. The results in

row (III) show obvious performance gains based on the model setting in row (II),

and demonstrate the effectiveness of an additional bottom-up feature aggregation

path.

(a)Image (b)Depth (c)GT Saliency (d)Two-stream UNet (e)+HA+BU (f)+HA+BU+FGA (g)+HA+BU+FGA+EA

Figure 3.5 : Visual comparison of different model settings. We compare the results

of the baseline Two-stream UNet (d), adding the holistic aggregation paths and the

bottom-up aggregation (e), and further adding the factorized gated attention (f).
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(a1)Image (b1)Depth (c1)Att 1 (d1)Att 2 (a2)Image (b2)Depth (c2)Att 1 (d2)Att 2

Figure 3.6 : Visualization of two learned two spatial attention factors for D↑
2. “Att

1” and “Att 2” denote the two spatial attention maps, respectively.

Factorized Gated Attention.

We further adopt our proposed factorized gated attention in all decoder modules

to verify its effectiveness. We have tried different settings with the factor number

r varying from 1 to 3 and show the results in rows (IV) to (VI) of Table 3.1. We

can see that when using 1 factor to factorize the gated attention, the model does

not bring obvious performance gains when compared with the results in row (III).

However, when we increase the factor number to 2 and 3, the model performance

can be obviously improved. We also observe that the model performance saturates

when r is greater than 2. Thus, we do not try other settings for r and select r = 2

as the best setting.

Early Aggregation.

The above model settings follow most previous works to use the original VGG

network as encoders. Then, we add early aggregation paths between our two-stream

encoders to introduce early cross-modal information interaction. The results are

given in row (VII) of Table 3.1. We can see that adding early aggregation paths can

effectively improve the model performance on most datasets. Thus, we select this

model setting as our final SOD model.
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Qualitative Comparison.

To further demonstrate the effectiveness of the proposed model components, we

show a visual comparison in Figure 3.5. We can see that adopting the proposed

holistic aggregation, the bottom-up aggregation, the factorized gated attention, and

the early aggregation can gradually improve the SOD results. We observe that the

proposed model components can help to not only recover missing salient regions, but

also filter out redundant detected regions. As a result, the final model can obtain

better saliency maps that are close to the ground truth.

What do the multi-factored attention learn?

Since we factorize the gated attention into the multiplication of channel-wise

gated attention Gc and a spatial gated attention Gs with multiple factors, what do

these multiple attention factors learn? To answer this question, we show the learned

two spatial attention maps of our final SOD model in Figure 3.6 for the D↑
2 feature

map. We can see that the spatial attention maps mainly focus to highlight object

boundaries. The two attention maps in each example are slightly different. Thus,

our proposed multi-factored attention model can be seen as an ensemble of multiple

submodules, and it has been widely proved to be useful in various machine learning

algorithms. We also observe similar phenomena for the spatial attention in other

layers and the channel-wise gated attention.
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Table 3.2 : Comparison between FGA and existing attention models, including convolutional gated attention (CGA), spatial atten-

tion (SA), and the Convolutional Block Attention Module (CBAM). We report both RGB-D SOD performance and computational

costs, which include both memory costs and running times during testing. Here we only test the network forwarding time and

ignore the time for reading and writing images for rigorous comparisons. Bold indicates the best performance.

Attention
Mem Time NJUD [42] NLPR [80] DUT-RGBD [81] STERE [76]

(Mb) (s) Sm maxF Eξ MAE Sm maxF Eξ MAE Sm maxF Eξ MAE Sm maxF Eξ MAE

SA 2247 0.057 0.901 0.896 0.933 0.049 0.916 0.898 0.946 0.032 0.918 0.921 0.948 0.040 0.902 0.893 0.937 0.047
CGA 4139 0.226 0.908 0.903 0.941 0.044 0.916 0.898 0.951 0.031 0.924 0.927 0.954 0.036 0.903 0.894 0.939 0.046
CBAM[112] 2813 0.139 0.907 0.901 0.937 0.043 0.922 0.907 0.958 0.027 0.922 0.926 0.952 0.036 0.904 0.896 0.941 0.042

FGA 3033 0.066 0.906 0.902 0.936 0.045 0.927 0, 0, 10.912 0.961 0.025 0.926 0.927 0.954 0.034 0.904 0.896 0.94 0.042
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Comparison between FGA and existing attention models.

We compare our proposed FGA with the conventional convolutional gated atten-

tion (CGA), spatial attention (SA), and the Convolutional Block Attention Module

(CBAM) [112], in terms of both model performance and computational costs. For

CGA, we simply use a 7 × 7 Conv layer to generate the gated attention weights

with the same size with each input feature map. The attention generation for SA

is similar, except that we generate a single channel attention map. For CBAM, we

use the default settings to incorporate cascaded channel and spatial attention. We

substitute FGA in our SOD model with these three attention models and report the

comparison results in Table 3.2. The results clearly show that our proposed FGA

model achieves the best RGB-D SOD performance. In terms of computational costs,

we can see that FGA costs much less GPU memory than CGA and is much faster

than CGA and CBAM. Compared with CGA, FGA predicts much fewer attention

weights. Compared with CBAM, FGA only needs to carry out the attending opera-

tion once while CBAM needs to do it twice. Compared with SA, FGA costs a little

more inference time but achieves better model performance.
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3.4.5 Comparison with State-of-the-art Models

I

II

III

IV

V

VI

VII

Image Depth GT Ours* ICNet[48] S2MA[66] DMRA[81] CPFP[133] TANet[10] PCF[6] MMCI[7] CTMF[29] AFNet[98]

Figure 3.7 : Visualization of the saliency maps of our SOD model and other state-

of-the-art RGB-D SOD models.

The universality of the model.

More experimental results illustrate the universality of the model towards the

high light images and low light images.

We use our designed CNN-based model in chapter 2 to improve the ExDARK

[69] sample images, which comprise more than 7000 original low-light shots. Then,

after the previous improvement, we perform seven separate SOD techniques on these

samples. Figure 3.8 represents the CNN-based enhanced results.
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Image Enhanced Ours BASNet[83] DSS[33] BMP[129] CPD[113] PoolNet[60] R3Net[16]

Figure 3.8 : Comparison of different SOD methods conducted on enhanced low light

images from ExDARK Dataset [69] with our designed CNN-based model in chapter

2.

To verify the effectiveness of our final model for RGB-D SOD, we conduct a per-

formance comparison with other 11 state-of-the-art RGB-D SOD methods. We con-

sider recently published deep-learning-based models, including CTMF [29], MMCI

[7], PCF [6], TANet [10], CPFP [133], DMRA [81], S2MA [66], ICNet [48], UCNet

[128], and JL-DCF [26].

The quantitative comparison in terms of the above mentioned four metrics is

reported in Table 3.3. Since most compared models, except DMRA and S2MA,

were trained on only two datasets, i.e., NJUD and NLPR, we report the comparison

results of the methods using both 2 and 3 training datasets for fair comparisons.

The results show that, when using 2 training datasets, our proposed model achieves

a comparable performance with the SOTA UCNet. When trained on 3 datasets,

our model obviously outperforms all other methods, including all of those trained

on either 2 or 3 datasets.

On the other hand, we show a qualitative model comparison of the saliency
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Table 3.3 : Quantitative comparison of our proposed model with state-of-the-art RGB-D SOD methods. We report comparison

results under two settings, i.e., training with 2 datasets (NJUD and NLPR) and training with 3 datasets (NJUD, NLPR, and

DUT-RGBD). Underline and Bold indicate the best and the second best performance under each setting, respectively. Underline

means the best performance under both settings. Note that, for fair comparisons, we show the results of the JL-DCF [26] model

with the VGG backbone, whose results are only reported on 6 datasets in their paper.

Dataset Metric
Training with 2 Datasets Training with 3 Datasets

CTMF MMCI PCF TANet CPFP ICNet UCNet JL-DCF
Ours

DMRA S2MA
Ours*[29] [7] [6] [10] [133] [48] [128] [26] [81] [66]

NJUD Sm ↑ 0.849 0.858 0.877 0.878 0.878 0.894 0.897 0.897 0.908 0.886 0.894 0.906
maxF ↑ 0.845 0.852 0.872 0.874 0.877 0.891 0.895 0.899 0.901 0.886 0.889 0.902

Eξ ↑ 0.913 0.915 0.924 0.925 0.923 0.926 0.936 0.939 0.943 0.927 0.930 0.936
[42] MAE ↓ 0.085 0.079 0.059 0.060 0.053 0.052 0.043 0.044 0.040 0.051 0.053 0.045

NLPR Sm ↑ 0.860 0.856 0.874 0.886 0.888 0.923 0.920 0.920 0.922 0.899 0.915 0.927
maxF ↑ 0.825 0.815 0.841 0.863 0.867 0.908 0.903 0.907 0.908 0.879 0.902 0.912

Eξ ↑ 0.929 0.913 0.925 0.941 0.932 0.952 0.956 0.959 0.957 0.947 0.953 0.961
[80] MAE ↓ 0.056 0.059 0.044 0.041 0.036 0.028 0.025 0.026 0.026 0.031 0.030 0.025

RGBD135 Sm ↑ 0.863 0.848 0.842 0.858 0.872 0.920 0.933 0.913 0.925 0.900 0.941 0.943
maxF ↑ 0.844 0.822 0.804 0.827 0.846 0.913 0.930 0.905 0.910 0.888 0.935 0.937

Eξ ↑ 0.932 0.928 0.893 0.910 0.923 0.960 0.976 0.955 0.963 0.943 0.973 0.978
[12] MAE ↓ 0.055 0.065 0.049 0.046 0.038 0.027 0.018 0.026 0.018 0.030 0.021 0.016
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Dataset Metric
Training with 2 Datasets Training with 3 Datasets

CTMF MMCI PCF TANet CPFP ICNet UCNet JL-DCF
Ours

DMRA S2MA
Ours*[29] [7] [6] [10] [133] [48] [128] [26] [81] [66]

LFSD Sm ↑ 0.796 0.787 0.794 0.801 0.828 0.868 0.864 0.833 0.860 0.847 0.837 0.879
maxF ↑ 0.791 0.771 0.779 0.796 0.826 0.871 0.864 0.840 0, 0,

10.867

0.856 0.835 0.881

Eξ ↑ 0.865 0.839 0.835 0.847 0.872 0.903 0.905 0.877 0.904 0.900 0.873 0.914
[51] MAE ↓ 0.119 0.132 0.112 0.111 0.088 0.071 0.066 0.091 0.078 0.075 0.094 0.062

STERE Sm ↑ 0.848 0.873 0.875 0.871 0.879 1, 0, 00.9030.903 0.894 0.897 0.886 0.890 0.904
maxF ↑ 0.831 0.863 0.860 0.861 0.874 0.898 0.899 0.889 0.887 0.886 0.882 0.896

Eξ ↑ 0.912 0.927 0.925 0.923 0.925 0.942 0.944 0.938 0.934 0.938 0.932 0.940
[76] MAE ↓ 0.086 0.068 0.064 0.060 0.051 0.045 0.039 0.046 0.048 0.047 0.051 0.042

SSD Sm ↑ 0.776 0.813 0.841 0.839 0.807 0.848 0.865 - 0.880 0.857 0.868 0.876
maxF ↑ 0.729 0.781 0.807 0.810 0.766 0.841 0.855 - 0.871 0.844 0.848 0.852

Eξ ↑ 0.865 0.882 0.894 0.897 0.852 0.902 0.907 - 0.926 0.906 0.909 0.915
[139] MAE ↓ 0.099 0.082 0.062 0.063 0.082 0.064 0.049 - 0.045 0.058 0.052 0.049

DUT- Sm ↑ 0.831 0.791 0.801 0.808 0.818 0.852 0.897 - 0.870 0.889 0.903 0.926
RGBD maxF ↑ 0.823 0.767 0.771 0.790 0.795 0.850 0.895 - 0.860 0.898 0.901 0.927

Eξ ↑ 0.899 0.859 0.856 0.861 0.859 0.899 0.936 - 0.901 0.933 0.937 0.954
[81] MAE ↓ 0.097 0.113 0.100 0.093 0.076 0.072 0.043 - 0.066 0.048 0.043 0.034

SIP Sm ↑ 0.716 0.833 0.842 0.835 0.850 0.854 0.875 0.866 0.881 0.806 0.872 0.889
maxF ↑ 0.694 0.818 0.838 0.830 0.851 0.857 0.879 0.873 0.884 0.821 0.877 0.889

Eξ ↑ 0.829 0.897 0.901 0.895 0.903 0.903 0.919 0.916 0.926 0.875 0.919 0.930
[22] MAE ↓ 0.139 0.086 0.071 0.075 0.064 0.069 0.051 0.056 0.049 0.085 0.057 0.047
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maps in Figure 3.7. The results show that the saliency maps of our model can not

only highlight salient objects more accurately, but also recover object details more

precisely (see Row III). Our model can also cope with various challenging scenarios,

e.g., the large statue in Row II, the very challenging relief in Row IV, and the book

in row VI, where most other SOTA models fail to completely highlight the salient

objects. For Rows V and VII, although the backgrounds are very cluttered, our

model can successfully separate the salient objects from the backgrounds despite

that other SOTA models are largely distracted by the backgrounds.

3.4.6 Failure Analysis

Image Depth GT Ours* Image Depth GT Ours*

Figure 3.9 : Visualization of common failure patterns.

We show some common failure patterns in Figure 3.9. We observe that our RGB-

D SOD model mainly fails in four cases. The first row of Figure 3.9 demonstrates

that it is hard to perceive low-level (e.g., color) contrast thus may incorrectly localize

salient objects. The left example in the second row shows that extreme illumination

condition is a challenge for our model. The right example shows that it may be

distracted by cluttered backgrounds. The last row indicates that it may also fail

when facing images with no obvious salient objects. All of these four cases are

challenging for all deep learning based SOD models. Solving these problems can be

our future work.
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3.5 Summary

We learned in this chapter that UNet-based architectures are frequently used

in Deep RGB-D salient object detection models, although UNet only uses a top-

down decoder network to progressively combine high-level functions with low-level

functions. In this chapter, we proposed employing holistic aggregation pathways

and a bottom-up decoder network to improve the function of aggregation. The

former combines multi-level features in a holistic way to learn a large number of

function interactions, whereas the latter combines improved low-level features with

high-level features to improve their representation capacity. When compared to

relatively current state-of-the-art approaches, experimental results have shown that

our final RGB-D SOD model is more effective.
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Chapter 4

Low-Light Saliency Detection via Deep CNN
without Depth

In the previous chapter, we have investigated saliency detection on low-light RGB-

D images, where RGB and depth saliency cues are fused to obtain the saliency

detection results. In this way, depth maps provide complementary information for

appearance cues and thus promote the saliency detection performance, especially

for challenging scenarios. Nevertheless, 3D sensors are not popular and usually

expensive, making RGB-D images much more difficult to obtain than RGB images.

Moreover, how to solve the depth information loss under low illumination is another

key problem. In this chapter, we propose a novel deep learning framework to detect

RGB-D saliency without actually requiring input depth data. Specifically, we predict

depth maps for RGB images and simultaneously fuse depth features with RGB

features to detect salient objects. Experimental results illustrate the universality of

the model towards the high light images and low light images.

4.1 Introduction

The existing saliency models usually detect salient objects from RGB signals,

which can be easily captured by modern cameras or cell phones. They usually

use the contrast mechanism [37] to find the regions different from others and extract

semantic features to find the regions that are most likely to be objects. Although the

recent CNN-based RGB saliency models [61, 33, 62, 25, 134] and other models [58,

119, 2, 35, 19] have achieved very promising results, they can still easily fail to detect

salient objects in challenging scenarios since RGB data can only provide visual cues
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for saliency detection, thus greatly limits the model capability. In this chapter, we

talk about how low-light images can be dealt with in the saliency detection after

images are enhanced.

Figure 4.1 shows two examples of natural images. We can see that for the images

with cluttered backgrounds (the top row), saliency models that use RGB cues only

(the column (c)) can be easily distracted by backgrounds. For salient objects with

complex appearance (the bottom row), using only the RGB cues (the column (c))

easily leads to incomplete detection.

(a) Image (b) GT (c) w/o_Depth (e) w_Depth(d) Predicted Depth Map

Figure 4.1 : Comparison of the saliency detection results without (“w/o_Depth”)

and with (“w_Depth”) using depth cues. (a) and (b) show two example images and

their ground truth (GT) saliency maps. (c) shows the saliency detection results of

a baseline deep saliency model without using depth cues. (d) shows our predicted

depth maps. (e) shows our predicted saliency maps with using depth cues.

On the other hand, the human visual system can easily leverage 3D information

from the real world, in which the depth information plays a very important role in

visual perception. For example, in the human visual attention mechanism, salient

objects usually have different depths with the backgrounds. To this end, some

researchers propose to detect saliency using RGB-D data. First, RGB-D images

are captured using 3D sensors such as Microsoft Kinect, stereo cameras, light field

cameras, etc. Then, they fuse RGB and depth saliency cues to obtain the saliency
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detection results. As such, depth maps can provide complementary information for

appearance cues and thus promote the saliency detection performance, especially

for challenging scenarios.

Nevertheless, 3D sensors are not popular and usually expensive, making RGB-D

images much more difficult to obtain than RGB images. For the common vision,

which is usually taken by the dual cameras instead of the monocular devices, how to

solve the depth information loss under low illumination is another key problem. In

this chapter, we propose a novel deep learning framework to detect RGB-D saliency

without actually requiring input depth data. Specifically, we predict depth maps for

RGB images and simultaneously fuse depth features with RGB features to detect

salient objects. By using the predicted depth information, our model can filter out

the distraction from backgrounds (see the top row of Figure 4.1) and highlight the

whole salient object more uniformly (see the bottom row of Figure 4.1).

On one hand, we leverage depth information to detect saliency more accurately.

On the other hand, we do not require testing images to have depth maps and only

use common RGB images. In Figures 4.1 (c) and (e), we show the comparison of the

saliency detection results between our proposed model (column (e)) and a baseline

model without using depth cues (column (c)). The results show that our model can

obviously improve saliency detection performance for RGB images.

Furthermore, the previous RGB-D saliency detection models usually fuse RGB

features with depth features by using simple feature concatenation, addition [29, 6],

or attention models [81, 133]. Different from them, inspired by the DenseASPP

(DASPP) model [122], we propose a novel multimodal feature fusion model by

densely fusing RGB and depth DASPP features, thus greatly enriching the fea-

ture fusion paths across multiple scales. Considering that the original DASPP

model only incorporates multiscale local features, we also propose to enhance it
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with an additional global context propagation module [108]. Experimental results

demonstrate that this proposed feature fusion model can better improve multimodal

features. Finally, our saliency model outperforms previous RGB based saliency de-

tection methods and also achieves comparable or even better results compared with

state-of-the-art RGB-D saliency algorithms.

We have proposed to simultaneously estimate the depth and detect saliency

for RGB images in a unified deep CNN. Intermediate depth features can be fused

with RGB saliency features to supply complementary information for improving the

saliency detection performance. We have further proposed to fuse multiscale depth

and RGB features, and introduced global contexts.

To summarize, our contributions of this chapter are as follows.

1) We propose the first deep saliency model to leverage depth cues for enhancing

the saliency detection performance but without actually using depth data.

2) We propose a novel depth feature fusion model by introducing dense fusion

paths in DASPP and also enhance it by incorporating global contexts.

3) Experimental results demonstrate the effectiveness of our proposed model on

both low light images and common images. It not only outperforms the previous

RGB saliency models, but also can obtain comparable results with the state-of-the-

art RGB-D saliency methods.

In the rest of the chapter, we first discuss our model with related work in Sec-

tion 4.2. Then, we present our proposed model in Section 4.3 in detail and report

the experimental results in Section 4.4. Finally, we draw conclusion in Section 4.5.

4.2 Related Work

Early RGB saliency detection models usually extract low-level image features

and then leverage the contrast mechanism [63, 11], background prior [121, 91], or
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objectness prior [30, 3] to detect salient objects. Recently, many researches works

introduced CNNs into the saliency detection field and have achieved very promising

results. Most of these methods directly solve the saliency detection problem using

end-to-end CNNs. For example, early models [96, 49, 135] usually use multi-scale

CNNs to extract multi-scale features for each pixel or superpixel from its multiple

local and global patches, and then combine the multi-scale deep features to clas-

sify or regress its saliency value. Subsequent models adopt the fully convolutional

network (FCN) [70] architecture to perform saliency classification for individual

pixels, simultaneously. Typically, encoder and decoder model has been a trend for

researchers [24]. An encoder with pretrained parameters is first used, such as the

work of VGG [88] or ResNet [31], to extract multi-level deep features, and then a

decoder is built to fuse these multi-levels features for saliency detection. Some works

[61, 72, 132, 9] use the U-Net [85] architecture to progressively fuse multi-level fea-

tures, and some other works [55, 33] adopt the HED [117] network architecture to

fuse them simultaneously. The above-mentioned methods all directly infer image

saliency from extracted deep features, without considering other knowledge.

Some complementary knowledge has been introduced to enhance the saliency

detection performance. Li et al. [52] introduced the semantic segmentation task to

enhance the feature capability for object perception. Wang et al. [104] used eye

fixation to guide the detection of salient objects. In [130], Zhang et al. leveraged

image captioning to help to capture semantic information of salient objects in vi-

sual scenes. Recently, many deep saliency models [53, 106, 25, 60, 134] have been

proposed to simultaneously predict object contours and use the contour prior to

enhance the object boundaries for salient objects. However, none of these works has

explored to use depth knowledge to enhance the saliency detection performance. In

this work, we propose to simultaneously predict the depth map for each image and

use the depth features to supplement the RGB features for saliency detection.
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In [116], Xiao et al. also proposed to derive pseudo depth from an RGB image,

and then leverage the pseudo depth to boost the performance of RGB saliency model

by computing a depth-driven background prior and a depth contrast feature. Our

method significantly differs from theirs in two aspects. First, their model is based

on traditional saliency features and frameworks, while ours is an end-to-end deep

saliency model, thus having much better model performance and much faster speed.

Second, their model needs to derive the pseudo depth map first and then use it to

compute the depth-based feature and prior map, while ours can use the intermediate

depth features to boost the RGB features before the generation of the depth map,

thus is more effective and efficient.

4.3 RGB-D Saliency Detection

Traditional RGB-D saliency models usually use the depth map as another chan-

nel and follow RGB saliency models to derive some saliency cues, such as depth-based

contrast [12] or background priors. Finally, RGB and depth cues are combined to

obtain the final saliency detection results. Some other models propose some special

saliency cues from the depth data, such as the shape and 3D layout priors proposed

in [13], to supplement the RGB saliency cues. Recently, many works adopted CNNs

in the RGB-D saliency detection task and have obtained much better results than

traditional models. Some of the models [84, 67] regard the depth map as the fourth

channel besides the RGB image and then train a deep saliency model with four-

channel input images. Some other models [98] adopt two CNNs on the RGB image

and the depth map separately to generate two saliency maps and then fuse them to

obtain the final saliency map. Most works use two-stream CNNs to extract RGB and

depth features from the two modalities, respectively, and then fuse the multimodal

features with various methods, such as feature concatenation and addition [29, 6],

spatial channel attention [81, 133], and mutual attention [66]. All of these methods
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require to input the captured depth maps into the saliency models for enhancing

their performance. In contrast, we propose to infer depth maps from the input RGB

images and simultaneously leverage the intermediate depth features to enhance the

RGB features, thus exploiting the depth knowledge for saliency detection without

actually requiring depth data. Furthermore, different from previous feature fusion

schemes, we propose a novel feature fusion model by adding dense fusion paths and

a global context propagation branch in DASPP.

A contemporary work in [82] also proposed to eliminate the dependency on

depth maps for RGB-D saliency detection. They trained a saliency detection branch

based on depth data, and then used the result to perform knowledge distillation

for promoting the model capability of the RGB saliency branch. Although our

model and theirs try to achieve the same goal, the implementation mechanisms are

totally different. First, they aimed at designing a light-weight saliency detection

model and adopted the knowledge distillation technique, while we aim to build

a powerful saliency model and also eliminate the dependency on the input depth

maps, hence performing multi-task learning. As a result, they can only leverage

RGB-D saliency detection data to train their model, while ours can exploit large-

scale external RGB saliency detection data and depth estimation data. Second, their

model was implemented based on knowledge distillation, hence the model capacity

was theoretically limited by the teacher network, i.e., the depth saliency detection

branch. In contrast, our method explicitly fuses RGB information with the inferred

depth feature. Thus, the model capacity is an ensemble of both modalities. As a

result, our model is much more effective than theirs, although theirs may be more

efficient.

In this part, we articulate the proposed deep saliency model in detail. As shown

in Figure 4.2, given each image, we first use an encoder network to extract multi-

level encoder features. Then, we follow the U-Net [85] architecture to progressively
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fuse the multi-levels features to predict the depth map and the saliency map via

two decoder networks, respectively. We also fuse the depth features with the RGB

features to leverage depth cues for enhancing the saliency detection performance.

Specifically, we adopt a DASPP [122] model at the beginning of the depth decoder

branch, and then fuse the depth DASPP features with RGB features in a novel Dense

MultiScale Fusion (DMSF) module. Subsequently, we fuse each depth decoding

feature map with each corresponding RGB decoding feature map.

4.3.1 Encoder Network

Following the work in[62], our encoder network is based on the VGG-16 network

[88]. It is an FCN and has seven convolutional (Conv) blocks. The first five blocks

are based on the five Conv blocks of VGG-16, i.e., Conv1-Conv5, each of which is

composed of two or three consecutive Conv layers. The last two blocks are based on

the two fully connected (FC) layers of VGG-16, i.e., FC6 and FC7. Since the original

VGG-16 network has five pooling layers following the five Conv blocks, respectively,

thus downsampling the input image by a factor of 32, which is too large for saliency

detection. To enlarge the spatial sizes of the feature maps, we change the strides of

the last two pooling layers to 1, and also use atrous Conv layers [8] with rate r = 2

in the Conv5 block. We also transform the two FC layers of VGG-16 to Conv layers

for taking advantage of the plentiful features learned in them. Concretely, the FC6

layer is transformed to a 3 × 3 atrous Conv layer with r = 12 and 1024 channels,

while the FC7 layer is transformed to a 1 × 1 Conv layer with the same channel

number. Finally, we obtain the final FC7 feature map with a downsampling factor

of 8, and also get five multi-level feature maps from Conv1-Conv5.

4.3.2 Decoder Networks

Next, we construct two decoder branches for predicting the depth map and the

saliency map. We name them the depth branch and the RGB saliency branch,
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respectively. We first use DASPP and DMSF to extract and fuse multiscale fea-

tures from the FC7 encoder features, and then follow the U-Net [85] architecture to

progressively fuse multi-level encoding features in subsequent decoding modules.

DASPP and DMSF
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Figure 4.2 : Network architecture of the proposed model. The whole model has an

encoder network (green cubes) and two decoder networks (white and gray cubes).

The encoder network is used to extract multi-level encoder features, while the two

decoder networks are used for predicting the depth map and the saliency map,

respectively. We use the VGG-16 network [88] as our encoder, and its multi-level

features are marked on the cubes. Each decoder progressively fuses the multi-level

features by using skip-connections. The depth features are also fused with the RGB

features via fusion connections for enhancing the saliency detection performance.

The channel numbers of the decoding modules are also marked under the cubes.



Figure 4.3 : Network architecture of the DASPP model and the proposed DMSF

model.

For each decoder branch, we first use a Conv layer to reduce the channel number

of the FC7 feature map to 512 channels. We denote the two feature maps by XR
FC7′

for the RGB saliency branch and XD
FC7′ for the depth branch. Then, we extract

and fuse multiscale features based on the DASPP [122] model. Specifically, we di-

rectly use DASPP for the depth feature XD
FC7′ . DASPP deploys several atrous Conv

layers on the input feature map with increasing rates, thus obtaining multiscale fea-

tures with different receptive fields. Meanwhile, it also introduces dense connections

among the multiscale atrous layers, connecting each layer to all subsequent layers

with larger rates, thus covering scale ranges densely.

As shown in Figure 4.3, we use three atrous layers with rates r = {3, 6, 12}. In

each layer i ∈ {0, 1, 2}, we first concatenate all previous features. Then, a 1×1 Conv

layer is used to reduce the channel number to 512. Finally, we use an atrous Conv

layer with rate ri to generate the atrous feature XD
i with a large receptive field.

We follow the work in [122] to set the channel number of each atrous Conv layer to⌊
512
3

⌋
for reducing the computational cost. The whole process can be written as:

XD
i = ACri(C([XD

FC7′ |XD
0 | · · · |XD

i−1])), (4.1)
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where C means a Conv layer, ACri means an atrous Conv layer with rate ri, and [·]

denotes the concatenation operation.

Finally, the three multiscale features and the original feature are concatenated

to form the final depth DASPP feature via a 1× 1 Conv layer with 512 channels as:

XD
DASPP = C([XD

FC7′ |XD
0 |XD

1 |XD
2 ]). (4.2)

Nevertheless, DASPP is only designed for a single modality. To adapt it to

multimodal features, we propose a novel dense multiscale fusion (DMSF) model by

extending DASPP with dense fusion connections to fuse cross modality features.

In our case, we densely fuse the depth multiscale features with the RGB ones.

Specifically, we deploy the same three atrous Conv layers on the input RGB feature

map. At the same time, we not only densely connect each RGB atrous feature XR
i

to all subsequent atrous layers, but also densely connect each depth atrous feature

XD
i to all RGB atrous layers with larger rates as:

XR
i = ACri(C([XR

FC7′ |XR
0 | · · · |XR

i−1|

XD
FC7′ |XD

0 | · · · |XD
i−1])).

(4.3)

Furthermore, since DASPP only uses atrous Conv layers to construct multiscale

features, these features all have local contexts (since the atrous Conv operation is a

local operation). Based on the basic idea of the DASPP model to construct multi-

scale features with small to large scales, we propose to incorporate global contexts at

the end of DMSF as the largest scale. Specifically, we adopt the non-Local network

[108] as the global context model since its effectiveness has been widely verified. For

the input feature map X ∈ RW×H×C , the non-local network computes three feature

embeddings θ(X), φ(X), g(X) ∈ RWH×C′ first. Then, it uses θ(X) and φ(X) to

compute an global attention matrix with size WH × WH, which can be used to

propagate global contexts from g(X). Finally, the global contexts are transformed

to C ′′ channels by a Conv layer.
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The whole model can be formulated as:

NL(X) = C(softmax(θ(X)φ(X)>)g(X)), (4.4)

where softmax operates on each row of the attention matrix.

As shown in Figure 4.3, we adopt the non-local network as the fourth multiscale

layer in DMSF. It takes all previous RGB multiscale features and depth ones as

input and propagates global contexts for them. We set the number of channels C ′

to 512 and the number of C ′′ to
⌊
512
3

⌋
to keep them consistent with those in the

previous layers. The obtained feature is:

XR
NL = NL([XR

FC7′ |XR
0 |XR

1 |XR
2 |XD

FC7′ |XD
0 |XD

1 |XD
2 ]). (4.5)

Finally, similar to DASPP, all previous RGB and depth layers are concatenated

and a 1× 1 Conv layer is used to obtain the final DMSF feature with 512 channels

as:

XR
DMSF = C([XR

FC7′ |XR
0 |XR

1 |XR
2 |XR

NL|

XD
FC7′ |XD

0 |XD
1 |XD

2 ]).

(4.6)

The final features XD
DASPP XR

DMSF extract and fuse multiscale features from

the two FC7 features, thus supplying good starting points for the depth prediction

branch and the saliency detection branch.
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Decoding Modules
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Figure 4.4 : Network architecture of the decoding module and the fusion decoding

module. “BR” means BN [36] and ReLU, “CBR” means Conv, BN and ReLU. “UP”

means upsampling.

Inspired by U-Net, we design five decoding modules for each decoder branch to

progressively fuse multi-level encoding features via skip-connections. At the same

time, we fuse each depth decoding feature with the corresponding RGB one to

enhance it for saliency detection. We name the decoding modules in the depth

branch Di, where i is in inverse order from 5 to 1, as shown in Figure 4.2. For the

RGB branch, we name them fusion decoding modules FDi since they simultaneously

fuse encoding features and depth decoding ones. The encoding feature of the ith

Conv block is denoted by XEi
, which is the last Conv feature before using the

ReLU activation function.

As shown in Figure 4.4, in the depth branch, each decoding module Di fuses

XEi
with the previous depth decoding feature XD

Di+1
to obtain the current depth

decoding feature XD
Di
:

XD
Di

= CBR([BR(XEi
)|UP(XD

Di+1
)]), (4.7)
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where BR means batch normalization (BN) [36] and ReLU,

UP denotes upsampling since XD
Di+1

is smaller than XEi
for i ≤ 3, CBR means

1 × 1 Conv, BN, and ReLU, and the channel numbers of XD
Di

are set to 512, 256,

128, 64, 64 for i ∈ {5, 4, 3, 2, 1}, respectively. Here, BN is used to normalize XEi

for making it compatible with XD
Di+1

. We use XD
DASPP as the first decoding feature

XD
D6
.

In the RGB saliency branch, each fusion decoding module FDi fuses XEi
with

the previous RGB decoding feature XR
FDi+1

to obtain the current RGB decoding

feature XR
Di
. Then, XD

Di
is also fused to obtain XR

FDi
:

XR
Di

= CBR([BR(XEi
)|UP(XR

FDi+1
)]),

XR
FDi

= CBR([XR
Di
|XD

Di
]),

(4.8)

where XR
DMSF is used as XR

FD6
.

Finally, we directly use a 1× 1 Conv layer with 1 channel on XD
D1

to obtain the

predicted depth map. The same Conv layer with the Sigmoid activation function is

also used on XR
FD1

to predict the saliency map.

4.3.3 Loss Functions

For saliency prediction, we use a simple binary cross entropy loss function. Sup-

posing that we have a predicted saliency map S̄ ∈ [0, 1]W×H and the corresponding

ground truth S ∈ {0, 1}W×H , the saliency loss can be computed by:

Ls(S̄, S) =
1

WH

W,H∑
w,h=1

(SwhlogS̄wh + (1− Swh)log(1− S̄wh)). (4.9)

To ease the network training, we also predict a saliency map from XR
FDi

and

adopt the supervision with the saliency loss for each fusion decoding module.

For depth prediction, we adopt the depth ranking loss in [114], which optimizes

the ordinal relation of each pair of pixels. First, for each predicted depth map Z
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and the corresponding ground truth depth map G, we sample N point pairs. For

pair k, we denote the pair of points as (ik, jk), where ik and jk are the coordinates

of the two points. Its ordinal relation label `k can be defined by:

`k =



+1, Gik

Gjk
> 1 + δ,

−1,
Gjk

Gik
> 1 + δ,

0, otherwise,

(4.10)

where δ is an empirical threshold.

We follow the work in [114] to set N = 3000 and δ = 0.02. Then, the depth

ranking loss is defined by:

Lr(Z,G) =
1∑
ωk

N∑
k=1

ωkψ(ik, jk, `k, Z), (4.11)

where

ψ =


log(1 + exp[(−Zik + Zjk)`k]), `k 6= 0

(Zik − Zjk)
2, `k = 0,

(4.12)

and ωk ∈ {0, 1} is the loss weight for pair k. We follow [114] to sort the losses ψ for

all training pairs at each iteration, and set the pairs with the smallest 25% losses to

have ωk = 0. In this way, we can increase the ratio of equal pairs and avoid keeping

optimizing pairs with large difference.

However, using the ranking loss will lead to slow convergence. Thus, we also

adopt a normalized `2 loss between Z and G. Specifically, it is the `2 loss between

the normalized Z and normalized G:

Ln(Z,G) =
1

WH

W,H∑
w,h=1

(
Zwh − µZ√

σZ
− Gwh − µG√

σG
)2, (4.13)

where µ∗ and σ∗ are the mean and variance, respectively.

For each decoding module in the depth decoder, we predict a depth map from

XD
Di

and use this loss to accelerate the network training.
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4.4 Experiments

In this section, we report the experimental results on seven RGB-D saliency

benchmark datasets to validate the effectiveness of our proposed model.

4.4.1 Datasets and Evaluation Metrics

We conduct experiments on seven widely used RGB-D saliency detection datasets

and four evaluation metrics.

The first dataset is the NJUD [42] dataset with 1985 stereo images. The second

and the third ones are the NLPR [80] and the RGBD135 [12] dataset with 1000

and 135 RGB-D image pairs, respectively. These two datasets are both collected by

using Microsoft Kinect. The fourth dataset is the SSD [139] dataset with 80 stereo

images collected from movies. The fifth dataset is DUT-RGBD, which contains

800 training images and 400 testing images with real life scenarios. The sixth dataset

is STEREO with 1,000 stereo images collected from the Internet. The last one is

the LFSD dataset. It has 100 images captured by a light field camera.

As for the evaluation metrics, the first one is the maximum F-measure (maxF)

score. By binarizing the predicted saliency map with a threshold, we can compare

it with the corresponding ground truth saliency map and obtain the precision and

recall. Then, the F-measure score can be computed by:

Fm =
(1 + β2)Precision×Recall

β2 × Precision+Recall
, (4.14)

where we follow the previous work and set β2 = 0.3 for emphasizing more on pre-

cision. By varying the threshold, we can find the maximum F-measure score. The

second metric is the Mean Absolute Error (MAE). It computes the absolute differ-

ence between the predicted saliency map S̄ and the ground truth S by:

MAE =
1

WH

W,H∑
w,h=1

|S̄wh − Swh|. (4.15)
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The above two metrics both evaluate individual pixels, separately, without con-

sidering high-level statistics. Thus, we also adopt the structure-measure Sm [20]

score as the third metric. It computes and combines a region-aware structural sim-

ilarity Sr and an object-aware one So between each saliency map and the ground

truth by:

Sm = α ∗ So + (1− α) ∗ Sr, (4.16)

where α is set to 0.5 following the advice from [20].

The last metric is the recently proposed enhanced-alignment measure Eξ [21]. It

considers both global statistics and local pixel matching information. We use it for

a more comprehensive evaluation. Our designed algorithm performance is displayed

in Table 5.1.

4.4.2 Implementation Details

We train our model in two stages using the stochastic gradient descent (SGD)

algorithm. In the first stage, we leverage a depth estimation dataset, i.e., ReDWeb

[114], and a saliency detection dataset, i.e., DUTS [97], to pretrain the model itera-

tively. The ReDWeb dataset contains 3600 stereo images collected from the Internet

with various scenes, such as street, office, hill, park, etc. The DUTS dataset consists

of 10553 training images collected from the ImageNet DET’s training and validation

sets [15] with human-annotated saliency maps. We first initialize the encoder part

using the VGG-16 parameters pretrained on Imagenet and randomly initialize the

two decoder branches. For each iteration, we first use the ReDWeb data to train

the encoder and the depth decoder branch with the depth losses Lr and Ln, and

then use the DUTS data to train the whole network using the saliency loss Ls. We

set the batch size and momentum to 10 and 0.9, respectively. The learning rates of

the encoder part and the two decoders are set to 0.001 and 0.01, respectively. The

whole training step is set to 40000 and we divide the learning rates by 10 at the
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20000th and 30000th step.

In the second stage, we follow most previous works [29, 6, 133] to train the

whole network using 1400 images of the NJUD dataset and 650 images of the NLPR

dataset and using Ls and Lr losses. Since many depth maps of the NJUD dataset

are very noisy, we do not use a deep supervision with the Ln losses for the depth

branch. We initialize the network parameters from the pretrained model in the first

stage. The learning rates of the encoder part and the depth decoder are set to 0.0001

and the learning rate of the saliency decoder is set to 0.001 to fine-tune the network.

Other training settings are set to the same as those in the first stage.

We use the scale of 224 × 224 to train and test the network. Specifically, for

training, we first resize each RGB-D image pair to a random size from 224× 224 to

272 × 272 and then randomly crop a 224 × 224 patch from it for network training.

Random horizontal-flipping is also used for data augmentation. For testing, we

directly resize each RGB-D image pair to 224× 224 as the network input and then

obtain the saliency map from the last layer of the RGB saliency branch. Each

image is also pre-processed by subtracting the mean pixel value. The whole model

is implemented using Pytorch [79]. A GTX 1080Ti GPU is used for acceleration

and the inference time for each testing image is only 0.019 seconds.

4.4.3 Comparison with State-of-the-art Models

We compare our method with nine state-of-the-art saliency detection models,

i.e., Amulet [132], DSS [33], BMP [129], PiCANet [62], R3Net [16], CPD [113],

EGNet [134], MINet [78], and ITSD [136]. We also include 12 state-of-the-art RGB-

D saliency detection models for comparison, including DF [84], AFNet [98], CTMF

[29], MMCI [7], PCF [6], TANet [10], CPFP [133], DMRA [81], SSF [131], UCNet

[128], JLDCF [26], and A2dele [82]. Note that all these models are deep learning

based models and the last four were published in 2020. Since our model uses the
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VGG-16 network as the backbone, we use the results of these models with the same

backbone for fair comparisons.

The quantitative comparison results are shown in Table 4.1 and visual compar-

isons are shown in Figure 4.6. We can see that our model outperforms the state-

of-the-art RGB saliency models on five out of the seven datasets. The comparison

in terms of PR curves on four datasets are also given in Figure 4.5. These results

demonstrate the effectiveness of the depth features that we use and the importance

of introducing depth information to deep saliency detection on these datasets.

Figure 4.5 : Comparison with state-of-the-art RGB saliency models in terms of PR

curves on four datasets. The compared models are Amulet [132], DSS [33], BMP

[129], PiCANet [62], R3Net [16], CPD [113], EGNet [134], MINet [78], and ITSD

[136].
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Table 4.1 : Quantitative comparison between our proposed model and state-of-the-art RGB and RGB-D salient object detection

models. We compare our model with nine state-of-the-art (SOTA) CNN-based RGB saliency models and twelve SOTA deep learning

based RGB-D saliency models on seven datasets in terms of four evaluation metrics. “Train w D” means training with depth while

“Test w D” means test with depth. The number in bold indicates the best performance in each group (i.e., RGB and RGB-D).

The number in italic indicates the cases where our model outperforms RGB SOTA models, while * indicates the cases where our

model outperforms the A2dele model. “-” means the results are unavailable since the authors did not release them

Train

w D

Test

w D

NJUD [42] NLPR [80] SSD [139] RGBD135 [12]

Sm maxF Eξ MAE Sm maxF Eξ MAE Sm maxF Eξ MAE Sm maxF Eξ MAE

RGB Saliency Detection Models

Amulet [132] 7 7 0.827 0.819 0.879 0.079 0.838 0.779 0.885 0.055 0.822 0.808 0.876 0.077 0.823 0.761 0.872 0.065
DSS [33] 7 7 0.767 0.762 0.83 0.116 0.832 0.797 0.892 0.057 0.634 0.589 0.729 0.167 0.752 0.741 0.871 0.076
BMP [129] 7 7 0.860 0.850 0.905 0.068 0.880 0.848 0.917 0.045 0.849 0.817 0.895 0.060 0.878 0.854 0.920 0.040
PiCANet [62] 7 7 0.872 0.860 0.910 0.068 0.871 0.830 0.900 0.054 0.846 0.810 0.889 0.069 0.890 0.866 0.922 0.039
R3Net [16] 7 7 0.770 0.752 0.827 0.116 0.846 0.812 0.899 0.056 0.679 0.656 0.773 0.148 0.855 0.814 0.911 0.052
CPD [113] 7 7 0.863 0.858 0.905 0.060 0.893 0.866 0.925 0.034 0.833 0.804 0.878 0.067 0.896 0.882 0.932 0.028
EGNet [134] 7 7 0.840 0.826 0.883 0.079 0.880 0.847 0.917 0.045 0.740 0.701 0.802 0.126 0.888 0.872 0.919 0.036
MINet [78] 7 7 0.870 0.859 0.906 0.057 0.886 0.854 0.914 0.041 0.856 0.827 0.902 0.054 0.894 0.880 0.924 0.029
ITSD [136] 7 7 0.873 0.867 0.911 0.057 0.884 0.850 0.919 0.039 0.850 0.829 0.904 0.057 0.896 0.879 0.930 0.031

A2dele [82] 3 7 0.871 0.874 0.916 0.051 0.898 0.882 0.944 0.029 0.802 0.776 0.862 0.070 0.886 0.872 0.920 0.029
Ours 3 7 0.886* 0.876* 0.927* 0.050* 0.906* 0.882 0.936 0.038 0.861* 0.832* 0.917* 0.049* 0.906* 0.886* 0.943* 0.027*
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Table 4.1 (continued): Quantitative comparison between our proposed model and state-of-the-art RGB and RGB-D salient object

detection models. We compare our model with nine state-of-the-art (SOTA) CNN based RGB saliency models and twelve SOTA

deep learning based RGB-D saliency models on seven datasets in terms of four evaluation metrics. “Train w D” means training

with depth while “Test w D” means test with depth. The number in bold indicates the best performance in each group (i.e., RGB

and RGB-D). The number in italic indicates the cases where our model outperforms RGB SOTA models, while * indicates the

cases where our model outperforms the A2dele model. “-” means the results are unavailable since the authors did not release them

Train

w D

Test

w D

NJUD [42] NLPR [80] SSD [139] RGBD135 [12]

Sm maxF Eξ MAE Sm maxF Eξ MAE Sm maxF Eξ MAE Sm maxF Eξ MAE

RGB-D Saliency Detection Models

DF [84] 3 3 0.763 0.804 0.864 0.141 0.802 0.778 0.880 0.085 0.747 0.735 0.828 0.142 0.752 0.766 0.870 0.093
AFNet [98] 3 3 0.772 0.775 0.853 0.100 0.799 0.771 0.879 0.058 0.714 0.687 0.807 0.118 0.770 0.729 0.881 0.068
CTMF [29] 3 3 0.849 0.845 0.913 0.085 0.860 0.825 0.929 0.056 0.776 0.729 0.865 0.099 0.863 0.844 0.932 0.055
MMCI [7] 3 3 0.858 0.852 0.915 0.079 0.856 0.815 0.913 0.059 0.813 0.781 0.882 0.082 0.848 0.822 0.928 0.065
PCF [6] 3 3 0.877 0.872 0.924 0.059 0.874 0.841 0.925 0.044 0.841 0.807 0.894 0.062 0.842 0.804 0.893 0.049
TANet [10] 3 3 0.878 0.874 0.925 0.060 0.886 0.863 0.941 0.041 0.839 0.810 0.897 0.063 0.858 0.827 0.910 0.046
CPFP [133] 3 3 0.878 0.877 0.923 0.053 0.888 0.867 0.932 0.036 0.807 0.766 0.852 0.082 0.872 0.846 0.923 0.038
DMRA [81] 3 3 0.886 0.886 0.927 0.051 0.899 0.879 0.947 0.031 0.857 0.844 0.906 0.058 0.900 0.888 0.943 0.030
SSF [131] 3 3 0.899 0.896 0.935 0.043 0.914 0.896 0.953 0.026 0.790 0.762 0.867 0.084 0.904 0.884 0.941 0.026
UCNet [128] 3 3 0.897 0.895 0.936 0.043 0.920 0.903 0.956 0.025 0.865 0.855 0.907 0.049 0.933 0.930 0.976 0.018
JLDCF [26] 3 3 0.897 0.899 0.939 0.044 0.920 0.907 0.959 0.026 - - - - 0.913 0.905 0.955 0.026
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Image GT Ours PiCANet CPD EGNet PoolNet BASNet MMCI PCF TANet CPFP DMRA
[62] [113] [134] [60] [83] [7] [6] [10] [133] [81]

Figure 4.6 : Visual comparison between our model and state-of-the-art RGB and

RGBD saliency models. Our model outperforms SOTA RGB saliency models and

surprisingly achieve comparable or even better results than SOTA RGB-D saliency

models.

Additive experimental results illustrate the universality of the model towards the

high light images and low light images.

We separately adopt a CNN-based model to enhance the images from the Ex-

DARK dataset[69], which includes over 7000 original low-light images. Then, we

conduct ours and other seven different SOD methods on these images after the

previous enhancement step. Figure 4.7 shows the CNN-based enhanced results. Vi-

sualization performance proves that our method outperforms other methods and
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Train

w D

Test

w D

DUT-RGBD [81] STEREO [76] LFSD [51]

Sm maxF Eξ MAE Sm maxF Eξ MAE Sm maxF Eξ MAE

RGB Saliency Detection Models

Amulet [132] 7 7 0.813 0.792 0.875 0.089 0.867 0.854 0.919 0.053 0.804 0.808 0.865 0.100
DSS [33] 7 7 0.803 0.776 0.850 0.097 0.794 0.791 0.866 0.094 0.791 0.784 0.837 0.116
BMP [129] 7 7 0.855 0.843 0.890 0.069 0.891 0.880 0.931 0.049 0.802 0.790 0.844 0.103
PiCANet [62] 7 7 0.878 0.868 0.910 0.070 0.896 0.884 0.932 0.051 0.824 0.810 0.854 0.106
R3Net [16] 7 7 0.819 0.805 0.868 0.113 0.768 0.757 0.831 0.107 0.828 0.818 0.871 0.098
CPD [113] 7 7 0.875 0.865 0.911 0.055 0.893 0.886 0.929 0.042 0.822 0.811 0.860 0.089
EGNet [134] 7 7 0.872 0.853 0.905 0.059 0.859 0.844 0.903 0.063 0.834 0.829***0.869 0.090
MINet [78] 7 7 0.875 0.861 0.900 0.058 0.820 0.842 0.896 0.070 0.813 0.791 0.841 0.096
ITSD [136] 7 7 0.881 0.873 0.918 0.055 0.894 0.887 0.930 0.045 0.811 0.797 0.850 0.095

A2dele [82] 3 7 0.885 0.892 0.930 0.042 0.879 0.879 0.928 0.044 0.833 0.832 0.874 0.077
Ours 3 7 0.864 0.853 0.902 0.072 0.899* 0.887* 0.933* 0.046 0.827 0.813 0.866 0.092

RGB-D Saliency Detection Models

DF [84] 3 3 0.736 0.740 0.823 0.144 0.757 0.757 0.847 0.141 0.791 0.817 0.865 0.138
AFNet [98] 3 3 0.702 0.659 0.796 0.122 0.825 0.823 0.887 0.075 0.738 0.744 0.815 0.133
CTMF [29] 3 3 0.831 0.823 0.899 0.097 0.848 0.831 0.912 0.086 0.796 0.791 0.865 0.119
MMCI [7] 3 3 0.791 0.767 0.859 0.113 0.873 0.863 0.927 0.068 0.787 0.771 0.839 0.132
PCF [6] 3 3 0.801 0.771 0.856 0.100 0.875 0.860 0.925 0.064 0.794 0.779 0.835 0.112
TANet [10] 3 3 0.808 0.790 0.861 0.093 0.871 0.861 0.923 0.060 0.801 0.796 0.847 0.111
CPFP [133] 3 3 0.818 0.795 0.859 0.076 0.879 0.874 0.925 0.051 0.828 0.826 0.872 0.088
DMRA [81] 3 3 0.889 0.898 0.933 0.048 0.834 0.847 0.910 0.066 0.847 0.856 0.900 0.075
SSF [131] 3 3 0.915 0.924 0.951 0.033 0.837 0.840 0.912 0.065 0.859 0.867 0.900 0.066
UCNet [128] 3 3 0.871 0.866 0.910 0.059 0.903 0.899 0.944 0.039 0.864 0.864 0.905 0.066
JLDCF [26] 3 3 - - - - 0.894 0.889 0.938 0.046 0.833 0.840 0.877 0.091
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preserves the detailed information.

Image Enhanced Ours BASNet[83] DSS[33] BMP[129] CPD[113] EGNet[134] PoolNet[60] R3Net[16]

Figure 4.7 : Visualization comparison of different SOD methods conducted on en-

hanced low light images from ExDARK Dataset [69] with using our designed CNN-

based model in chapter 2.

More surprisingly, our model also outperforms the contemporary RGB-D saliency

detection methods, i.e., SSF, UCNet, and JLDCF, on four datasets, i.e., NLPR,

SSD, RGBD135, and STEREO. These results show the potential of our proposed

strategy that only involves depth data in training and without using it in testing

for saliency detection. Aiming to achieve this same goal, our model outperforms

the contemporary A2dele model on four datasets, i.e., , NJUD [42], SSD [139],

RGBD135 [12], and STEREO [76], although A2dele also uses the training set of

DUT-RGBD for training. Such a comparison clearly demonstrates the effectiveness

of our mechanism in terms of leveraging the depth data.

In Figure 4.6, we show a visual comparison between our model and the state-

of-the-art RGB and RGB-D saliency models. We can see that our model not only

outperforms RGB saliency models, but also can achieve comparable results com-

pared with RGB-D saliency models. It can leverage depth cues to more accurately

localize salient objects and ignore the disturbance from background objects by com-
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(I)

(II)

(III)

(IV)

(a)Image (b)GT Saliency (c)GT Depth (d)Predicted Depth (e)+Depth (f)RGB U-Net

Figure 4.8 : Visual comparison between “RGB U-Net” and the “+Depth” setting.

The GT depth maps and our predicted ones are also given.

paring the depths of the salient objects and other background ones. We can also see

that our model can work well on various scenes, such as images with both simple and

cluttered backgrounds, cartoon films, both indoor and outdoor scenes, well showing

its robustness.

4.4.4 Ablation Study

To understand why our model performs well, we conduct ablation study experi-

ments on four datasets, i.e., NJUD [42], NLPR [80], RGBD135 [12] and SSD [139].

The qualitative results can be found in Table 3.1. Row (a) means that we train the

baseline U-Net [85] architecture by only using RGB images of the two datasets. Row

(b) means that we add the depth branch and fuse its features with the RGB saliency

branch using fusion decoding modules. Row (c) means that we further use DASPP

for the depth branch and also use the proposed DMSF module for the RGB saliency

branch to fuse the depth DASPP features, but without using the NL model. The

last row means that we further use the NL model in DMSF, i.e., our whole network.

From the results, we can see that adding the depth branch and fusing its features
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(I)

(II)

(III)

Image GT Saliency +DMSF_w/o_NL +Depth

Figure 4.9 : Visual comparison between the “+DMSF_w/o_NL” and the “+Depth”

setting.

for saliency detection can largely improve the model performance, especially for the

MAE metric. Moreover, using the proposed DMSF model to fuse the multiscale

DASPP features can bring further performance gains, especially on the SSD dataset.

Finally, we can obtain the best performance on three out of four datasets by adding

the NL module in DMSF to further incorporate global contexts. These results clearly

demonstrate the effectiveness of our proposed ideas.

We also give qualitative results to show how our proposed model improves per-

formance.

In Figure 4.8, we show the comparison of “RGB U-Net” and the “+Depth”

settings. We can see that adding the depth cues can help our saliency model remove

the distraction from backgrounds (rows (I) and (II)) or recovering the missing parts

of salient objects (rows (III) and (IV)). We also show the GT depth maps and
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(I)

(II)

(III)

Image GT Saliency +NL +DMSF_w/o_NL

Figure 4.10 : Visual comparison between the “+NL” and the “+DMSF_w/o_NL”

setting.

our predicted depth maps in columns (c) and (d). We can see that the depth

information supplies complementary cues with effective discrimination. We also

find that sometimes the GT depth maps are noisy but our model can estimate more

accurate depth (rows (I) and (IV)). This may be the reason why our model can

sometimes outperform the state-of-the-art RGB-D saliency models.

We also show the visual improvements of the “+DMSF_w/o_NL” and the

“+NL” settings in Figure 4.9 and 4.10, respectively. The comparisons show that

using the DMSF model and the NL branch can further help to discriminate and

uniformly highlight the salient objects, thus demonstrating their effectiveness.
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4.4.5 Discussion

In this section, we discuss whether our model can improve the performance of

the RGB saliency detection and also its limitation.

Table 4.2 : Quantitative comparison among our proposed model, baseline RGB U-

Net, and state-of-the-art RGB salient object detection models on six RGB saliency

datasets. The number in bold indicates the best performance in each group.

SOD [74] DUT-O [121] DUTS-TE [97]

Sm maxF Eξ MAE Sm maxF Eξ MAE Sm maxF Eξ MAE

Amulet [132] 0.755 0.808 0.812 0.145 0.781 0.743 0.834 0.098 0.803 0.778 0.851 0.085

DSS [33] 0.741 0.847 0.813 0.128 0.788 0.771 0.845 0.066 0.822 0.825 0.884 0.057

BMP [129] 0.784 0.856 0.847 0.112 0.809 0.774 0.848 0.064 0.861 0.851 0.907 0.049

PiCANet [62] 0.787 0.855 0.846 0.108 0.826 0.794 0.865 0.068 0.861 0.851 0.915 0.054

R3Net [16] 0.761 0.816 0.835 0.124 0.817 0.760 0.857 0.063 0.835 0.801 0.881 0.057

CPD [113] 0.765 0.853 0.849 0.119 0.818 0.794 0.868 0.057 0.866 0.864 0.914 0.043

EGNet [134] 0.807 0.844 0.873 0.097 0.841 0.777 0.878 0.053 0.887 0.866 0.927 0.039

MINet [78] 0.805 0.836 0.870 0.092 0.833 0.769 0.869 0.056 0.884 0.865 0.927 0.037

ITSD [136] 0.809 0.844 0.873 0.093 0.840 0.792 0.880 0.061 0.885 0.868 0.929 0.041

RGB U-Net 0.786 0.811 0.857 0.099 0.821 0.753 0.856 0.065 0.862 0.831 0.906 0.050

Ours 0.795 0.814 0.867 0.094 0.820 0.747 0.848 0.069 0.861 0.824 0.899 0.052

ECSSD [120] HKU-IS [49] PASCAL-S [54]

Sm maxF Eξ MAE Sm maxF Eξ MAE Sm maxF Eξ MAE

Amulet [132] 0.894 0.915 0.932 0.059 0.883 0.896 0.933 0.052 0.821 0.857 0.862 0.103

DSS [33] 0.882 0.921 0.931 0.052 0.880 0.913 0.938 0.040 0.774 0.849 0.860 0.113

BMP [129] 0.911 0.928 0.944 0.045 0.907 0.921 0.950 0.039 0.831 0.877 0.892 0.086

PiCANet [62] 0.914 0.931 0.953 0.047 0.906 0.921 0.951 0.042 0.837 0.880 0.900 0.088

R3Net [16] 0.910 0.926 0.949 0.040 0.895 0.904 0.944 0.036 0.807 0.800 0.853 0.092

CPD [113] 0.910 0.936 0.951 0.040 0.904 0.924 0.950 0.033 0.824 0.880 0.891 0.087

EGNet [134] 0.925 0.936 0.955 0.037 0.918 0.923 0.956 0.031 0.852 0.841 0.892 0.074

MINet [78] 0.925 0.938 0.957 0.033 0.919 0.926 0.960 0.029 0.856 0.846 0.903 0.064

ITSD [136] 0.925 0.939 0.959 0.034 0.917 0.926 0.960 0.031 0.859 0.855 0.908 0.066

RGB U-Net 0.911 0.920 0.946 0.044 0.901 0.907 0.946 0.039 0.849 0.839 0.897 0.073

Ours 0.914 0.921 0.946 0.044 0.904 0.906 0.944 0.039 0.847 0.833 0.893 0.076

Model performance on RGB saliency datasets.
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Since our model only requires RGB images as input during testing, it naturally

raises a question of whether it can improve the performance of RGB saliency de-

tection. To answer this question, we compare our model with state-of-the-art RGB

saliency methods, as well as the baseline U-Net model that does not involve depth

data in training. The results are given in Table 4.2. We can observe that, com-

pared with the SOTA RGB saliency models, our model shows better results on two

datasets, i.e., SOD and ECSSD, but not on all RGB saliency datasets. The possible

reasons are two folds. First, RGB SOD has drawn extensive research interests for

several years and many models have resorted to various elaborately designed meth-

ods to achieve precise saliency detection results, such as attention models, recurrent

models, and complementary contour/edge features. In contrast, we only incorporate

depth estimation into the U-Net model. Second, the current RGB saliency datasets

and RGB-D ones have different data distribution and properties. Depth cues may

be more important for the current RGB-D saliency datasets but they do not supply

much informative cue for current RGB saliency datasets. Hence, the effectiveness of

our proposed model depends on specific scenes. Our proposed model is not suitable

to all visual scenes, nor are other SOTA saliency models.

Model limitations. As aforementioned, our model does not bring performance

gains for current RGB saliency detection datasets. As for the RGB-D saliency

datasets, it also does not outperform the state-of-the-art RGB-D saliency methods.

However, it allows inferring RGB-D saliency without requiring depth input.

In Figure 4.11, we also show some failure cases. We find that our model fails

mainly in two cases. The first case is when the model fails to predict accurate depth

maps, it would produce incorrect saliency maps, as shown in the first two rows

in Figure 4.11. The second case is when the model predicts accurate depth maps

but may not combine both depth and appearance cues properly, it would also yield

incorrect saliency detection results, as shown in the last two rows of this figure.
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Image GT Depth GT Saliency Predicted Depth Predicted Saliency

Figure 4.11 : Failure case analysis.

4.5 Summary

Depth information plays a very important role in the visual attention mechanism.

However, directly collecting depth data for each image or video is expensive and im-

practical. In this chapter, we have proposed to simultaneously estimate the depth

and detect saliency for RGB images in a unified deep CNN. Intermediate depth fea-

tures can be fused with RGB saliency features to supply complementary information

for improving the saliency detection performance. We have further proposed to fuse

multiscale depth and RGB features and also introduced global contexts. Experi-

mental results have clearly demonstrated the effectiveness of our proposed model on

high light and low light image datasets, compared with both state-of-the-art RGB



96

and RGB-D saliency models. We hope our work can inspire further research on

leveraging depth cues for RGB saliency detection.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we have presented three algorithms contributing to the develop-

ment of low-light image enhancement and saliency object detection. The model

aiss CNN based models towards the low-light image enhancement, and two saliency

detection models utilizing feature aggregation and a no-depth module, respectively.

We have provided our insights into some key issues in saliency object detection and

discussed the promising solutions based on different methodologies.

In Chapter 1, we have focused on the overview of the whole architecture of the low

light enhancement and saliency object detection, thus making an overall introduction

for the thesis. In this chapter, we have presented an overview of the main theme,

covering the early theoretical investigation in the 2010s, the more recent attempts

to develop the techniques in the research area, and the latest breakthroughs of deep

learning techniques with low light enhancement.

In Chapter 2, we have conducted research on low light image enhancement tech-

nologies. Low light environments and dark conditions are often overlooked in com-

puter vision tasks and research subjects, and the conventional approaches’ success

in this field is severely limited. Established solutions can result in over-exposure

and a halo effect in a low light scene and they need to be improved. We have

suggested a broad semantic brightening network based on the cognitive perception

paradigm of Retinex theory in this chapter to efficiently integrate the inception net-

work with high-level semantic knowledge about foreground and context. We have
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added a framework in order to train a model for this goal. In order to train a

model towards this goal, we have proposed to add the structure loss and perceptual

loss to boost the enhancement effect by incorporating high-level semantic content.

The qualitative and quantitative comparative studies on benchmark databases have

demonstrated that our method outperforms the current approaches by addressing

the disadvantages of white and color distortion.

In Chapter 3, we have introduced that Deep RGB-D salient target recognition

models often use UNet-based architectures, but UNet use only a top-down decoder

network to gradually aggregate high-level functions with low-level ones. We have

suggested in this chapter to boost the function of aggregation by using holistic aggre-

gation paths and an additional bottom-up decoder network. The former aggregates

multi-level features holistically in order to learn abundant function interactions,

while the latter aggregates enhanced low-level features with high-level features, thus

improving their representation ability. Experimental results have illustrated the

universality of the model towards the high light images and low light images.

We have also suggested a factorized focus module for modulating the feature

aggregation behavior for each feature node effectively. The findings of experiments

on seven commonly used benchmark datasets have shown that all of the proposed

components will steadily boost RGB-D salient object detection results. As a result,

our final saliency model outperforms other state-of-the-art models.

In Chapter 4, we have suggested that depth information was calculated from

monocular RGB images and that intermediate depth features are used to increase

saliency detection efficiency in a deep neural network system. The experimental

results have also shown the universality of the model towards the high light images

and low light images.

To be more precise, we have used an encoder network to extract common features
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from each RGB image before building two decoder networks for depth estimation and

saliency detection. To increase their capability, the depth decoder features can be

paired with the RGB saliency features. In addition, based on the dense ASPP model,

we have suggested a novel dense multi-scale fusion model for densely fusing multi-

scale depth and RGB functions. To enhance the multi-scale functionality, a new

global context branch has been introduced. The experimental results have shown

that both of the additional depth cues and the proposed fusion model can increase

the saliency detection efficiency. Finally, our model has not only outperformed the

cutting-edge RGB saliency models, but also produced similar performance compared

to the cutting-edge RGB-D saliency models.

5.2 Future Work

Research on unsupervised depth saliency model.

Most of the night images on the Internet and night image data obtained from

surveillance videos are raw data obtained through user upload or device acquisition,

and these images do not contain any deterministic annotation information. How-

ever, the network training of the existing deep structure models requires a large

amount of labeled data. Therefore, in order to make the existing algorithms better

extend to those unlabeled night images and make full use of the existing resources

to continuously increase the discriminative performance of the model, our future

work will further study how to extend the deep learning model to semi-supervised

or unsupervised model in learning. On one hand, it is considered to design an effec-

tive learning framework to better mine and utilize the information of the unlabeled

night data. On the other hand, it is also considered to automatically label the salient

areas of the existing night data with undefined labels.

The practical application of the night-time salient target detection

model in related fields.
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The approaches using night-time images proposed in this thesis are significant.

The target detection model has achieved better detection performance than the

existing cutting-edge models on some public datasets and our night image dataset.

For some applications, such as target detection in night video surveillance, night

pedestrian detection, and segmentation, etc, research is also expected to see their

social effects. The further work of this research will also be devoted to extending

the method of night-time salient target detection to more practical applications,

promoting the security monitoring system to achieve full real-time monitoring and

other related works.

Acquisition and Processing of Low Light and Narrow Dynamic Range

Image Data

The collection and processing of a large number of low-light and other types

of image data have always been hot research topics. How to select appropriate

training data and data paradigms, how to reduce the workload and training time

of manual labeling with a better, more stable and more accurate model method,

and how to achieve more robust processing results are also research topics that

researchers have been focusing on in recent years. In the selection of supervised

and unsupervised models, the scope of applications of supervised models has been

extended to the processing of more image types, while the problem of unsupervised

or semi-supervised models is still under development. The next step is to consider

dynamically designing a data augmentation processing framework.

Research on more image scenarios

This thesis mainly studies the scenes of low-light images. The research methodol-

ogy can work on other image scenarios such as foggy days and it has a very important

migration value. The next step is to study a variety of other types of images visual

processing tasks.
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