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Abstract

DEEP LEARNING ON COMPLEX GRAPHS

ABSTRACT

Deep learning on graphs has recently become a hot research topic in
machine learning and shown great promise in a wide variety of applications
such as recommendation and social network analysis. This dissertation con-
siders a set of more practical and challenging cases of learning on complex
graphs, i.e., edges with attribute information, nodes with missing attributes
and multiple graphs with overlapped nodes.

Our first work aims to model the topological information in signed
directed networks where the edges have additional attribute information,
i.e. signs and directions. In signed directed networks, different signs and
directions have different effects in information propagation, which raises
challenges to model the structural information. We propose to decouple
the modeling of signs and directions with different network parameters, and
meanwhile maximize the log-likelihood of observed edges by a variational
evidence lower bound to learn the node representations. The experimental
results show the effectiveness of the proposed model on both link sign
prediction and node recommendation task.

Our second work considers learning on attribute-missing graphs where
attributes of partial nodes are entirely missing. Previous graph learning
algorithms have limitations in dealing with this kind of graphs. The random
walk based methods suffer from the sampling bias issue of structures. The
popular graph neural networks feed the structures and attributes to a shared
network, and thus become incompatible for attribute-missing nodes. To
better learn on attribute-missing graphs, we consider the structures and
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Abstract

attributes as two correlated views of the node information andmake a shared-
latent space assumption of these two views. Based on the assumption, we
propose to model the two views by two different encoders and meanwhile
maintain their joint distribution by a novel distribution matching scheme.
Extensive experiments on seven real-world datasets show the superiority of
the proposed model on both the link prediction task and the newly introduced
node attribute completion task.

Moreover, single graphs may have overlapped nodes and become one
complex graph. A popular case is the user-item bipartite graphs in cross
domain recommendation where users are shared while items are from differ-
ent domains. Previous methods usually emphasize the overlapped features
of user preferences while compromise the domain-specific features or learn
the domain-specific features by heuristic human knowledge. Our third work
proposes to learn both features in a more practical way by an equivalent
transformation assumption. The assumption hypothesizes the user prefer-
ence in each domain can be mutually converted to each other by equivalent
transformation. Then, a novel equivalent transformation based distribution
matching scheme is developed to model the joint distribution of user behav-
iors across domains and conduct the recommendation task. The results on
three real-world benchmarks confirm the superiority of the proposed model.
KEYWORDS: deep learning, graph learning, complex graphs
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