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Abstract

DEEP LEARNING ON COMPLEX GRAPHS

ABSTRACT

Deep learning on graphs has recently become a hot research topic in
machine learning and shown great promise in a wide variety of applications
such as recommendation and social network analysis. This dissertation con-
siders a set of more practical and challenging cases of learning on complex
graphs, i.e., edges with attribute information, nodes with missing attributes
and multiple graphs with overlapped nodes.

Our first work aims to model the topological information in signed
directed networks where the edges have additional attribute information,
i.e. signs and directions. In signed directed networks, different signs and
directions have different effects in information propagation, which raises
challenges to model the structural information. We propose to decouple
the modeling of signs and directions with different network parameters, and
meanwhile maximize the log-likelihood of observed edges by a variational
evidence lower bound to learn the node representations. The experimental
results show the effectiveness of the proposed model on both link sign
prediction and node recommendation task.

Our second work considers learning on attribute-missing graphs where
attributes of partial nodes are entirely missing. Previous graph learning
algorithms have limitations in dealing with this kind of graphs. The random
walk based methods suffer from the sampling bias issue of structures. The
popular graph neural networks feed the structures and attributes to a shared
network, and thus become incompatible for attribute-missing nodes. To
better learn on attribute-missing graphs, we consider the structures and
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Abstract

attributes as two correlated views of the node information andmake a shared-
latent space assumption of these two views. Based on the assumption, we
propose to model the two views by two different encoders and meanwhile
maintain their joint distribution by a novel distribution matching scheme.
Extensive experiments on seven real-world datasets show the superiority of
the proposed model on both the link prediction task and the newly introduced
node attribute completion task.

Moreover, single graphs may have overlapped nodes and become one
complex graph. A popular case is the user-item bipartite graphs in cross
domain recommendation where users are shared while items are from differ-
ent domains. Previous methods usually emphasize the overlapped features
of user preferences while compromise the domain-specific features or learn
the domain-specific features by heuristic human knowledge. Our third work
proposes to learn both features in a more practical way by an equivalent
transformation assumption. The assumption hypothesizes the user prefer-
ence in each domain can be mutually converted to each other by equivalent
transformation. Then, a novel equivalent transformation based distribution
matching scheme is developed to model the joint distribution of user behav-
iors across domains and conduct the recommendation task. The results on
three real-world benchmarks confirm the superiority of the proposed model.
KEYWORDS: deep learning, graph learning, complex graphs
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Chapter 1 Introduction

Chapter 1 Introduction

1.1 Motivation

Graphs, as shown in Figure 1–1, are ubiquitous in real-world scenarios such as
social networks and citation networks. Deep learning on graphs (DLG) has become
an important machine learning topic which not only benefits many learning paradigms
such as semi-supervised learning [1-3] and relation inference [4-6], but also facilitates
enormous applications such as recommendation [7-9] and community detection [10].
Despite DLG has achieved remarkable achievements, it is confronted with many real-
world cases where the graphs are more complex than that shown in Figure 1–1 and require
specifically designed learning algorithms. For example, a complex graph may have
heterogeneous nodes or edges (e.g. user-movie-director-actor network) or unconventional
graph types (e.g. attributes of partial nodes are completely missing), where popular graph
learning algorithms working on homogeneous graphs or conventional graphs cannot
handle it. Deep learning on complex graphs is a broad topic due to the various types of
complex graphs. In this dissertation, we mainly concentrate on three kinds of complex
graphs, which also correspond to Chapter 3, Chapter 4 and Chapter 5 in the following
part. As reviewed in Figure 1–2, In the edge level, edges may have additional attribute
information such as signs and directions in signed directed networks (e.g. Epinions
and Facebook) [11]. Different signs and directions have different effects in information
propagation and can provide additional value for modeling the complex graph structures.
In the attribute level, attributes of some nodes could be entirely missing. For example,
in citation networks, abstracts or detailed contents of some papers may be inaccessible
due to the copyright protection. In social networks, profiles of several users may be
entirely missing due to the privacy protection. In the graph level, different single graphs
may have overlapped nodes and become one more complex graph. For example, in cross
domain recommendation, different user-item bipartite graphs may have overlapped users
while non-overlapped items from different domains. These graphs work together to be
a more complex graph which is one kind of heterogeneous information networks [12].
The above raises new challenges and difficulties of graph learning and motivates us the
corresponding research to apply graph learning algorithms in more practical scenarios.
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Figure 1–1 An example to show the graph structured data in different scenarios. The bottom row lists
three graph examples (i.e. citation network, coauthor network, social network). The top row
indicates an abstract graph example that summarizes the instances in different scenarios.

The popular proposal to overcome the difficulties is to consider the specific infor-
mation of the complex graphs when designing the learning algorithms. For example, in
signed directed networks, it is crucial to model the signs and directions since they provide
additional information on the graph structures. If there is an algorithm that learns repre-
sentative embeddings of nodes in signed directed networks, the algorithm could greatly
boost many practical problems such as friend recommendation. Formally, deep learning
on complex graphs aims to learn a reliable deep model on real-world graphs. In this
dissertation, our target is to solve three types of complex graphs, and make a contribution
on the progress of graph deep learning algorithms into practice.

1.2 Deep Learning on Graphs

Deep learning on graphs has been investigated from a variety of perspectives, in-
cluding the methodologies [1, 11, 13-14] and the applications [7, 15]. Since we care
more about the learning problems, we mainly introduce the different methodologies here.
Recent deep learning on graphs can be classified into two categories: the network em-
bedding based methods and the graph neural network based methods, which is structured
in Figure 1–3.

— 2—



Chapter 1 Introduction

Figure 1–2 The tree to depict the studied three different scenarios of deep learning on complex
graphs. In the edge level, the edges may have attribute information such as signs and directions. In
the node attribute level, attributes of partial nodes may be entirely missing. In the graph level,

different graphs may have overlapped nodes and become one more complex graph. This figure also
indicates the studied three kinds of complex graphs in Chapter 3, Chapter 4 and Chapter 4,

respectively.

Network Embedding: Network embedding can be partitioned into three popular
families: the random walk based, the matrix factorization based and the deep neural
network based. In the first family, random walk based methods resort to sample graph
structures into sequences and then language models (e.g. skip-gram [16]) are applied to
learn the node embeddings. They are motivated by the fact that the distribution of nodes
appearing in short random walks follows a similar power-law distribution of words in
language sentences [11, 17]. The random walk based method is one kind of statistical
model that statistically represents the graph structures with sequences. Approved by the
efficiency of random walk sampling, it supports distributed training well and can work on
large-scale graphs with millions of nodes. Like a double-edged blade, the random walk
sampling of graph structures is a biased approach [18] and usually requires fined-tuned
hyper-parameters to guarantee the statistical quality of walked sequences.

In the second family, matrix factorization based methods take adjacent matrices of
graphs as input, and then a variety of matrix factorization approaches can be utilized
to learn low-dimensional node embeddings [13, 19]. Matrix factorization in network
embedding is proposed to learn a low-rank space to encode the graph structures, in
contrast with the original high-dimensional space. NetMF [13], as one typical matrix
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Figure 1–3 The tree to depict different methodologies of deep learning on graphs.

factorization method in network embedding, has been proved to be a more generalized
case of some typical random walk based methods [11, 17, 20]. However, nowadays,
matrix factorization in network embedding is less popular since it requires the whole
adjacency matrix as input and thus consumes expensive computational resources on
large-scale graphs. Moreover, most matrix factorization based models are linear and
cannot capture the complicated and highly non-linear patterns in graphs.

In the third family, the main idea is to use deep neural networks to learn non-linear
functions that can fit the graph data well. The key challenge lies in how to fully leverage
the graph structures to constrain the learning of deep neural networks. Several typical
models are SDNE [21] and SDAE [22], which are based on auto-encoding to address
the challenge. Apart from the capacity of modeling the non-linear patterns, deep neural
network based methods have the advantage of incorporating task-specific information in
an end-to-end manner.

Graph Neural Network: Graph neural network (GNN) has become a well-known
graph learning methodology in recent five years. It starts from ChebNet [14] which
reformulates the inefficient spectral graph convolution with a Chebshev polynomial ap-
proximation. There are two key characteristics of GNN that prompt its success. One key
characteristic is low-passing filtering, which emphasizes the low-frequency graph signals
(i.e. useful information) and suppresses the high-frequency graph signals (i.e. noise) [3,
23]. The other one is smoothing that aggregates node features from its neighbours [24].
The smoothing characteristic encourages a node resembles its neighbours in an embed-
ding space. Although it has the advantage of providing complementary information
when the information of a single node is not sufficient, it could have the over-smoothing
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problem where all node embeddings converged to the same subspace so that they are hard
to be distinguished [24]. In general, GNN is a promising direction for deep learning on
graphs and emerging works are polishing the graph convolutional theory.

1.3 Deep Learning on Complex Graphs

In last five years, the advances of DLG including different convolution filters [2-3,
25-26], a variety of pooling techniques [27-29] and advanced learning approaches [30-
33] have put forward the research progress in many areas. Most graph algorithms work on
the standard graphs shown in Figure 1–1. However, the graphs in real-world systems are
usually more complex, and deep learning on complex on graphs is worth more research
attention. In summary, the following challenges raise when considering learning on
complex graphs:

Most aforementioned graph algorithms cannot well tackle the learning difficulties of
complex graphs. For the studied scenarios (i.e. edges with attribute information, missing
node attributes and graphs with overlapped nodes), we demonstrate what the limitations
of existing algorithms are and how we resolve the corresponding problems.

Considering the learning in signed directed networks, most current works [1, 11, 17]
concentrate on modeling the structural information for unsigned and undirected graphs.
However, in many social systems, users may build both positive directed edges (e.g.
trust) and negative directed edges (e.g. distrust) with others. The negative sign contain
additional information [34-36] that helps many tasks, e.g. link sign prediction and node
classification. Besides, the edge direction indicates the asymmetric relationship between
two users, which is important for friend recommendation in social networks [37-38]. As
shown in Figure 1–4, the patterns in signed directed networks are coupled with signs
and directions. Most aforementioned models [1, 11, 17] cannot well capture the patterns
since they fail to recognize the value of signs and directions. How to better model
the structures considering the signs and directions is a key challenge. In particular,
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Figure 1–4 A social network example shows the characteristics (i.e. signed edges and directed edges)
in signed directed networks. The structures in signed directed networks are coupled coupling signals

inner signed edges, inner directed edges, between signed and directed edges.

we propose to decouple the modeling of signs and directions with different network
parameters, and learn the node representations in a variational auto-encoding framework.
This framework ensures the decoupling formulation is an evidence-bounded objective on
maximizing the log-likelihoods of the observed data. By using this framework, we are
able to learn more representative node embeddings for downstream tasks.

When considering the attribute-missing graph where attributes of some nodes are
entirely missing, there are few methods specifically studying on how to learn on these
graphs. Although recently emerged attributed random walk methods [39-40] can poten-
tially deal with it, they rely on high-quality random walks and require carefully designed
sampling strategies [41]. Moreover, current GNN framework is incompatible with these
graphs since it feeds structures and attributes into a shared encoder. In our analysis,
we consider structures and attributes as two correlated views that follow an implicit and
intractable joint distribution to reflect the information of nodes. To tackle the learning on
attribute-missing graphs, we make a shared-latent space assumption of the two views and
model the joint distribution by deep generative techniques. Specifically, we encode the
structures and attributes with two different encoders, and model the joint distribution by
a variational evidence lower bound (ELBO) of the log-likelihood on the observed data.
Then, we take the ELBO as a surrogate objective for learning node representations. The
proposedmethod is a general framework that can incorporate a variety of GNNbackbones
to adapt to different data statistics.

When studying the learning on graphs with overlapped nodes, we explore to col-
laborate the learning of graphs from different domains. Specifically, in this dissertation,
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Figure 1–5 A citation network example shows the characteristics of attribute-missing graphs, where
attributes of only partial nodes are available and those of other nodes are entirely missing. Current
popular methods including the random walk based and the GNN based cannot well handle this case.

Figure 1–6 An example to show that the user preference in CDR has both overlapped features and
domain-specific features. With the correlations of user behaviors in different domains, knowledge
transfer techniques can be employed to improve the learning of user preference and help the user

behavior prediction in each domain.

we study how to incorporate the learning of different user-item bipartite graphs in cross
domain recommendation (CDR). In CDR, most previous works are based on the idea
of shared-user representations, which resort to learn the overlapped features for feature
alignment, but usually compromise the domain-specific features that help better user
behavior prediction [42-44]. Although several works [42, 45-46] employ Multi-Layer
Perception (MLP) as the mapping function to allow the learning flexibility for user repre-
sentations in each domain, they usually require heuristic human knowledge of choosing
training samples to avoid over-fitting for the mapping function [42]. We propose to learn
both features in a more practical way by an equivalent transformation assumption. To be
specific, the assumption indicates each user’s preference in each domain can be mutually
converted to each other with equivalent transformation. Further, we develop an equiv-
alent transformation based distribution matching scheme to model the joint distribution
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of user behaviors across domains and facilitate better user behavior prediction. Exten-
sive experiments on three CDR benchmarks demonstrate the superiority of the proposed
model.

1.4 Contributions and Organizations

This thesis explores the problems of deep learning on complex graphs. In correspon-
dence, we propose different methods to solve a series of issues in each case and achieve
consistent improved performance compared to existing methods. The main contributions
of this thesis are summarized in the following two perspectives:

• Theoretical contributions: When studying specific problems of deep learning
on complex graphs in Chapter 4 and Chapter 5, we present theoretical methods
to model the joint distribution of two different views. These methods are generic
and could be applied to other kinds of applications.

• Algorithmic contributions: By analyzing various scenarios of complex graphs,
we provide a deep analysis on the necessity of deep learning on complex graphs.
Further, we propose the corresponding algorithms to work in different scenarios.

• Application contributions: The proposed algorithms have been evaluated on a
variety of graph benchmarks, and a series of practical tasks in real-world cases.
Extensive experiments have confirmed the superiority of the proposed algorithms
both quantitatively and qualitatively.

The structures of the remaining Chapters in this dissertation are organized as follows:
• Chapter 2 briefly reviews related works of deep learning on graphs, deep learning

on complex graphs and deep generative modeling that involves in the design of
our algorithms.

• Chapter 3 proposes to decouple the modeling of signs and directions in signed
directed networks to better capture the topological information. In particular,
the decoupling idea is formulated from a variational auto-encoding perspective,
which makes the proposed model is evidence-bounded on the log-likelihoods of
the observed data.

• Chapter 4 targets to solve the problems of learning on attribute-missing graphs.
In this chapter, we reformulate GNN from a distribution matching perspective
and propose a novel distribution matching based GNN framework that maximizes
the joint log-likelihoods on the observed data. Further, we derive the ELBO as a
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surrogate objective for efficient optimization.
• Chapter 5 studies the problem of collaborating different user-item bipartite graphs

in CDR. Specifically, an equivalent transformation based model is proposed to
better transfer knowledge and predict user behaviors in each domain.

• Chapter 6 concludes this thesis and discusses the future directions.
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Chapter 2 Background

As discussed in Chapter 1, the main goal of this thesis is to design deep learning
algorithms on complex graphs. This chapter will simply review the related graph learning
algorithms. Section 2.1 reviews deep learning works on graphs in recent years. Sec-
tion 2.2 introduces related works on signed directed networks. As there are few works
targeting on the attribute-missing graph, we do not split a section for the introduction.
Instead, graph algorithms that can potentially deal with it are mentioned in Section 2.1.
Section 2.3 reviews the related works of incorporating different user-item bipartite graphs
in CDR. Further, since the designed algorithms involve the techniques of deep generative
modeling, we use Section 2.4 to show recent advances in deep generative models. It is
also worthwhile to mention that this thesis concentrates on the node focused learning
whose target is related to individual nodes on graphs [47]. The graph focused learning
whose target is related to the whole graph is beyond the scope of this research.

2.1 Deep Learning on Graphs

Recent studies of DLG are mainly from two perspectives: network embedding
and GNN. The main distinction between them is network embedding contains various
kinds of methods for the link reconstruction task while GNN is designed for various
tasks [48]. Therefore, GNN is able to tackle the network embedding problem through
a auto-encoder framework. In the following parts, we respectively introduce the related
network embedding based and GNN based methods.

2.1.1 Network Embedding

Network embedding [11, 17, 20] is proposed to learn representative node embed-
dings on graphs. There are various techniques including the random walk based, the
matrix factorization based and the deep neural network based.

Random walk based: The random walk based is the most popular methodology in
network embedding. At the beginning, Perozzi et al. found that the distribution of nodes
appearing in short random walks follows a power-law distribution that is similar to the
distribution of words in sentences. Based on this, they proposed DeepWalk [11] which
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Figure 2–1 An example to illustrate the typical learning process of random walk based network
embedding.

is the first random walk based method on graphs. In DeepWalk, the authors treat random
walks as sentences and apply advanced models (e.g. skip-gram [49]) in natural language
processing (NLP) to learn node representations. DeepWalk is a statistical model that
uses the truncated random walks to represent the structures of graphs. In LINE [20], the
authors designed an objective function thatmaintains both the local and global topological
information on graphs. In the objective function, a specific "context" of nodes is defined
and nodes in a similar "context" are expected to be similar in the embedding space.
LINE is also a special case of DeepWalk when the size of "context" equals one [13].
Node2Vec [17] extends DeepWalk by defining a flexible notion of a node’s neighbours
and designs a biased random walk to control the Bread First Search (BFS) and Deep First
Search (DFS) on graphs. Then Node2Vec learns a feature extractor that maximizes the
likelihood of preserving the neighbours of nodes on graphs. In practice, Node2Vec needs
fine-tuned hyper-parameters of the BFS and DFS to achieve satisfied performance.

After DeepWalk and Node2Vec, various techniques are proposed to improve them.
For example, Dai et al. [50] incorporated adversarial learning [51-52] to impose prior
distribution on the latent embeddings. As the above random walk based methods do
not support end-to-end training with auxiliary information (e.g. node attributes, node
labels), researchers have investigated different ways to benefit from richer information.
For instance, in [53-54], node attributes are taken as another kind of nodes and attributed
random walking is proposed to exploit the information of attributes for graph learning.
The attributed random walk based algorithms can also potential deal with the attribute-
missing graphs, while they usually suffer from a biased sampling of structures and require
fine-tuned hyper-parameters to guarantee the high-quality of walked sequences. A typical
learning process of random walk based network embedding is shown in Figure 2–1.

Matrix factorization based: The matrix factorization based is another perspec-
tive to conduct network embedding. As a graph can be represented by an adjacency
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Figure 2–2 An example to illustrate the typical learning process of matrix factorization based
network embedding. In this figure, the adjacency matrix can be substituted with other graph matrices
such as graph Laplacian matrix. Various factorization approaches can be employed such as SVD. ⊗

indicates a calculation function which is specific to the factorization method.

Figure 2–3 An example to illustrate the general process of DNN based graph learning algorithms.

matrix where each row and column is a node and the values indicate the relationships
among nodes, some typical matrix factorization based methods can be used to learn
low-dimensional node embeddings. For example, Singular Value Decomposition (SVD)
is widely used in network embedding because of its optimality for low-rank approxima-
tion [37]. Non-negative matrix factorization is another common technique that can be
used due to its interpretability and advantages as an additive model [55]. In addition, Qiu
et al. [13] provided the theoretical connections between graph Laplacian matrix and the
random walk based algorithms. They pointed out DeepWalk [11] and Node2Vec [17] are
also matrix factorization based methods and developed NetMF [13] to more efficiently
compute network embeddings. Although the matrix factorization based has its advantages
such as interpretability, they usually are linear functions and hard to capture the non-linear
topological information on graphs. Besides, matrix factorization on large-scale graphs
is computational-inefficient. A typical learning process of matrix factorization based
methods is shown in Figure 2–2.

Deep neural networks based: The goal of network embedding is to transform
the original network space into an embedding space, which means to learn a mapping
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Figure 2–4 An example to illustrate the general process of GNN based graph learning algorithms. In
this figure, we take node 𝑣1 as an anchor node and show two convolutional layers that involves

different orders of the information propagation for 𝑣1. In the convolutional layers, the orders are
visualized by different shades.

function that conducts the transformation. The aforementioned matrix factorization based
methods assume the mapping function is linear and thus are not adequate to capture the
complicated and highly non-linear patterns in the transformation [56].

In seeking for a non-linear mapping function, deep neural networks (DNN) is a
quite suitable choice since it has shown impressive success in many areas [57-58].
Researchers have studied how to use DNN to encode the non-Euclidean graph structures
into the embedding space. For example, SDNE [21] proposes to encode the structural
information by multiple non-linear layers and an objective function that preserves the
first order and second proximity on graphs. Different from previous works [11, 17] that
employ random walking to sample graph structures, DNGR [22] introduces a random
surfing model to preserve the structures directly. The authors theoretically demonstrated
that the random surfing model has better capability to gather graph structures than the
widely used sampling strategies. However, as the results shown in [22], DNGR requires a
lot of efforts and expertise of tuning the hyper-parameters to achieve satisfied performance.
Besides, the idea of using DNN on graphs is also extended in some specific graph types
such as signed graphs [59] and heterogeneous information networks [60]. A general
learning process of DNN based methods is shown in Figure 2–3.

2.1.2 Graph Neural Networks

Inspired by recent success of convolution on images in Euclidean space, enormous
researchers have attempted to define the convolution on graphs in non-Euclidean space.
GNN has received great attention and become the most popular methodology in graph
representation learning. Since the algorithm design is based on GNN in this thesis, we
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provide a more detailed introduction about it.
The emerging of GNN: To better understand GNN, we start from the definition

of spectral convolution on graphs. Spectral convolution on graphs is defined as the
multiplication of a signal 𝑥 ∈ R𝑁 by a parameterized filter 𝑔𝜃 in the Fourier domain. Let
★ be the convolution operation, the convolution on graphs is written as:

𝑔𝜃 ★ 𝑥 = 𝑈𝑔𝜃 (Λ)𝑈𝑇𝑥 (2–1)

where𝑈 is the eigenvector matrix and Λ is the eigenvalue matrix of the graph Laplacian
𝐿 = 𝐼𝑁−𝐷− 1

2 𝐴𝐷− 1
2 = 𝑈Λ𝑈𝑇 . 𝑈𝑇𝑥 indicates the graph Fourier transform of 𝑥. According

to [14], a polynomial filter is usually taken as 𝑔𝜃 (Λ) =
∑𝐾
𝑘=0 𝜃𝑘Λ

𝑘 .
However, the convolution filter defined in Eq. 2–1 involves the eigen-decomposition

of 𝐿 andmight be computationally expensive for large graphs. To overcome this difficulty,
according to [14], 𝑔𝜃 (Λ) with the polynomial filter can be well-approximated by a
truncated expansion in terms of Chebshev polynomials 𝑇𝑘 (𝑥) up to 𝐾 𝑡ℎ order:

𝑔𝜃 (Λ) =
𝐾∑
𝑘=0

𝜃𝑘Λ
𝑘 ≈

𝐾∑
𝑘=0

𝜃𝑘𝑇𝑘 (Λ̃) (2–2)

where Λ̃ = 2
𝜆𝑚𝑎𝑥

Λ− 𝐼𝑁 is a rescaled version ofΛ and 𝜆𝑚𝑎𝑥 indicates the largest eigenvalue
of 𝐿. The Chebshev polynomials are recursively defined as 𝑇𝑘 (𝑥) = 2𝑥𝑇𝑘−1(𝑥) − 𝑇𝑘−2(𝑥)
with 𝑇0(𝑥) = 1 and 𝑇1(𝑥) = 𝑥. Then taking Eq. 2–2 into consideration, Eq. 2–1 can be
written as:

𝑔𝜃 ★ 𝑥 ≈
𝐾∑
𝑘=0

𝜃𝑘𝑇𝑘 ( �̃�)𝑥 (2–3)

where �̃� = 2
𝜆𝑚𝑎𝑥

𝐿 − 𝐼𝑁 . Eq. 2–3 is also called as the 𝐾-localized convolution on graphs
since it is a 𝐾-th order polynomial in the Laplacian.

Inspired by the idea that high-order convolutions can be built by stacking multiple
convolutional layers [61], graph convolutional networks (GCN) [1] achieves 𝐾 𝑡ℎ convo-
lution by stacking multiple convolutional layers of Eq. 2–3, and each layer is followed
by a point-wise non-linear function. In particular, the layer-wise convolution in Eq. 2–3
is defined as 𝐾 = 1, which indicates a linear function on the graph Laplacian spectrum.
Additionally, GCN approximates 𝜆𝑚𝑎𝑥 ≈ 2 by assuming the neural network can adapt to
this change in the training process, which simplifies Eq. 2–3 as:

𝑔𝜃 ★ 𝑥 ≈ 𝜃0𝑥 + 𝜃1(𝐿 − 𝐼𝑁 )𝑥 = 𝜃0𝑥 − 𝜃1𝐷− 1
2 𝐴𝐷− 1

2 𝑥 (2–4)
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where 𝜃0 and 𝜃1 are two free parameters. In practice, GCN constrains 𝜃 = 𝜃0 = −𝜃1 to
avoid over-fitting, leading to the following expression:

𝑔𝜃 ★ 𝑥 ≈ 𝜃 (𝐼𝑁 + 𝐷− 1
2 𝐴𝐷− 1

2 )𝑥 (2–5)

Note that 𝐼𝑁 + 𝐷− 1
2 𝐴𝐷− 1

2 now has eigenvalues that range in [0, 2]. Repeating the
calculation in Eq. 2–5 will lead to numerical instabilities and even exploding or vanishing
gradients when stacking multiple layers. To solve this problem, a renormalization trick
is introduced as 𝐼𝑁 + 𝐷− 1

2 𝐴𝐷− 1
2→𝐷− 1

2 (𝐴 + 𝐼𝑁 )𝐷− 1
2 , where 𝐷 is the degree matrix of

𝐴 + 𝐼𝑁 . Then when giving a signal matrix 𝑋 ∈ R𝑁×𝐹 where 𝑁 denotes the number of
samples and 𝐹 denotes the feature dimension, the layer-wise graph convolution in [1] is
defined as follows:

𝑍 𝑙+1 = 𝐴𝐻𝑙Θ𝑙, 𝐻𝑙 = ℎ(𝑍 𝑙), 𝐻0 = 𝑋 (2–6)

where the propagationmatrix 𝐴 = 𝐷− 1
2 (𝐴+ 𝐼𝑁 )𝐷− 1

2 . 𝐻𝑙 is the activationmatrix in the 𝑙-th
layer, whose each row is the vector representation of a node. Θ𝑙 is now a matrix of filter
parameters in the 𝑙-th layer and ℎ(·) is the non-linear 𝑅𝑒𝑙𝑢 function. 𝑍 𝑙+1 ∈ R𝑁×𝑑 is the
node representation of (𝑙 + 1)-th layer. This layer-wise convolution as well connects the
graph convolution operation in spectral domain to that in the spatial domain. From above
we can see that GCN learns a node’s representation by aggregating its neighbors which
are also called as the receptive field. The receptive field is enlarged through stacking layers
like the 𝐿-hop in a graph. When 𝐴 = 𝐼𝑁 , GCN degrades to a multi-layer perceptron
(MLP) model, which indicates the graph structures are not considered and the receptive
field of a node is just itself.

The development of GNN: After ChebNet [14] andGCN [1], enormous researchers
have explored the idea of convolutions on graphs. For instance, GraphSage [8] formu-
lates the convolutional kernel as different aggregation functions such as "mean-pooling",
"max-pooling" and "Long-short Term Memory (LSTM)" [62]. Different aggregation
functions indicate different information propagation schemes and are able to recognize
different structures [63]. Due to the success of attention mechanism in various topics [58,
64], Petar et al. [26] stated that the neighbours contribute differently to a node in the
information propagation process and proposed graph attention networks (GAT). GAT
has more powerful representation learning ability since it has a dynamic and learnable
graph convolution filter formulated by the attention module. Other works [65-66] focus
on improving the inefficient recursive sampling strategy of neighbours in GraphSage.
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Importance sampling and variance reduction techniques are introduced in [65] and [66],
respectively.

Deep insights and improvement of GNN: Recently, several works [3, 23] reveal
that the above graph convolution is a low-pass filter which emphasizes low-frequency
signals (i.e. useful information) and suppresses high-frequency signals (i.e. noise). Fol-
lowing this, GraphHeat [25] is proposed to enhance the low-pass filtering characteristic
by a heat kernel [67]. Meanwhile, Li et al. [24] pointed out that the graph convolution
of GCN is a special form of Laplacian smoothing and stacking too many layers would
lead to the over-smoothing problem. The over-smoothing indicates that the node repre-
sentations are over-smoothed to the same subspace and thus indistinguishable from each
other. Besides, GCN also has a severe over-fitting problem when the training labels are
few [24, 31, 48, 68]. Over-smoothing and over-fitting are two important problems of
existing GNN algorithms, and have been investigated from different perspectives. For
example, dropout [69] is a widely used technique to alleviate over-fitting by randomly
setting certain feature dimensions to zeros. Specially for GNN, Rong et al. [68] proposed
DropEdge, where the edges in graphs are dropped with a certain ratio before graph convo-
lutions. DropEdge generates different perturbations of the graph connections and acts as
one data augmentation technique to alleviate the over-fitting and over-smoothing problem
during training. Inspired by the residual connections in Convolutional Neural Networks
(CNN) [70], Li et al. [30] introduced residual connections inGCNand proposedResGCN.
Similarly, JKNet [31] designs a jumping knowledge network to fuse the features from
different layers. CGNN [71] proposes two characteristics of node representations, i.e.
the stability which means a node’s representation is stable to the perturbations and iden-
tifiability which indicates nodes with different structures have different representations,
to prevent the over-fitting and over-smoothing issue.

GNN shows promising performance not only because of its integrity in combining
node attributes but also due to its idea of graph signal processing. It is a fast-developing
research field that consists of exciting practical values as well as great challenges.

2.2 Learning on Signed Directed Networks

The graph learning algorithms discussed in Section 2.1 are designed for unsigned
or undirected networks. In reality, both the existence of directed and signed (positive
and negative) links in social media are ubiquitous. The negative links have been proven
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to have distinct properties and added value over positive links [72-73]. Several works
have studied how to distinctly model the positive and negative links in signed directed
networks. Degree based features like the number of positive-incoming and negative-
incoming links are explored in [72]. While these hand-crafted features are limited and
not capable in many situations. Instead, in [74], spectral analysis is extended for signed
networks. Matrix Factorization (MF) [75] is also adopted to learn low-dimensional
embeddings for signed directed networks. To reduce the computation burden of matrix
decomposition, a specific aggregation manner for learning node embeddings in signed
networks is proposed in [76]. It follows the principle that the enemy of a friend is an
enemy and the enemy of an enemy is a friend, which extends the positive and negative
neighbors for each node.

Due to the superior representation learning ability of deep learning, researchers
attempt to use deep learning techniques to learn more representative node embeddings.
A deep learning framework for signed network named SiNE is proposed in [59], where
the objective function is guided by social theory. Although the framework leverages
non-linearity to learn node representations, it does not model link direction which is
an important factor for some asymmetric tasks. SNE is proposed in [77] and log-
bilinear model is extended to support sign and direction modeling. SNE trains node
embeddings based on a uniform random walk and node context rather than social theory.
However, random walk in SNE applies homophily effects on different signs and fail to
capture the local structures in signed directed networks, as well as does not support
end-to-end training. SIDE [78] is another random walk based method based on social
balance theory [79]. SNEA [80] exploits both the network structures and node attributes
simultaneously for network embedding on attributed signed networks. Specifically, a
margin ranking loss is proposed in SNEA. However, the margin ranking loss is non-
smooth and difficult to be optimized by gradient based algorithms.

From the above, we see that most existing works focus on capturing the first-order
topology, namely modeling the directly linked nodes. Although some methods have
introduced random walk [77] to capture the high-order topology, they cannot recognize
the value of different signs.
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2.3 Learning to Collaborate Different Bipartite Graphs

When single graphs have overlapped nodes and become one complex graph, re-
searchers propose to incorporate different graphs together to boost the representation
learning performance. In this dissertation, we mainly focus on the user-item bipartite
graphs in CDR. The research in CDR has been investigated from both the non-deep-
learning aspect and deep-learning aspect.

Non-deep-learning based CDR: Early CDR methods mainly concentrate on
neighborhood-based solutions [81]. However, the neighborhood-based CDR methods
tend to detect localized relationships and fail to capture the totality of weak signals im-
plied by the user’swhole interactions [82]. Consequently, thesemethods are dominated by
MF-based [82-84] and clustering-based [85-86] methods. For example, collective matrix
factorization (CMF) [83] factorizes multiple user-item interaction matrices from different
domains by sharing the user latent factor. CCCFNet [84] combines collaborative filtering
and content-based filtering into one unified matrix factorization framework. Considering
clustering is one practical technique to alleviate the sparsity problem in single domain
recommendation [87-88], cluster-level matrix factorization [85] leverages K-means to
capture the shared patterns between the cluster of users and the cluster of items from
different domains. Although the neighborhood-based, MF-based and clustering-based
methods have achieved promising results, they are limited for CDR due to the following
reasons [89]. First, most models are linear, which fail to extract the complex patterns
in user-item interactions. Second, the relatively dense information of other domains is
required to augment the target domains.

Deep-learning based CDR: Owing to the superior representation learning ability
of deep learning, many deep-learning based CDR methods [84, 89-92] have been pro-
posed. Deep learning in CDR not only explores how to capture the complex patterns
in user-item interactions, but also pursues a more effective way to transfer knowledge
across domains [93]. Inspired by the concept of modeling data in semantic space of
Deep Structured Semantic models (DSSM) [94], Elkahky et al. [90] proposed a deep
learning approach to project users and items in a shared semantic space, and recommend
items that have maximum similarity with users in that space. CoNet [91] employs deep
cross connection network to transfer knowledge between user-item interactions from dif-
ferent domains. PPGN [95] propagates user preferences with graph neural networks in
CDR. Motivated by dual learning [96], Li et al. [97] introduced a deep dual transfer
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network named DDTCDR to enhance the bidirectional knowledge in CDR. Moreover,
an orthogonal mapping is used in DDTCDR to extract user preferences across domains
while preserving relations between users in the latent space. Inspired by domain adap-
tation [98], [92] and [89] employ domain adaptation techniques to perform knowledge
transfer by learning the overlapped features of user preferences. Further, some researchers
point out that the domain-specific features of user preferences are also important in CDR.
They employ MLP as the mapping function across domains to offer learning flexibility
for user representations in each domain [42, 45-46]. However, although MLP increases
the learning flexibility, it is easier to have the over-fitting problem for the MLP due to
the data sparisity in recommendation [42]. Correspondingly, EMCDR [42] proposes
to choose users with sufficient behaviors for learning the MLP. DCDCSR [45] defines
a metric to measure the sparse degree and incorporates the sparse degree when learn-
ing the representation mapping across domains. ATLRec [99] employs different MLP
functions to learn the domain-shareable and domain-specific features by an adversarial
transfer learning based scheme. DCDIR [46] employs additional knowledge graphs to
learn sparsity-insensitive representations for the mapping.

In summary, previous methods [83-84, 89, 98] are mainly based on the idea of
shared-user representation, and focus on learning the overlapped features. In order to
further capture the domain-specific features, recent works mainly employ MLP as the
mapping function, and train theMLPwith selected user behaviors to avoid the over-fitting
problem [42]. This manner usually requires heuristic knowledge and may introduce
human-bias when selecting samples.

2.4 Advances in Deep Generative Models

Deep generative modeling targets to capture the inner probabilistic distribution that
generates the data. Variational auto-encoding (VAE) [100] and generative adversarial
networks (GAN) [101] are two popular and representative deep generative methods.

VAE first emerged in [100] where the authors aim to perform efficient inference
and learning in directed probabilistic graphic models even with the intractable posteriors.
In [100], the authors first derived the variational ELBO of the marginal log-likelihood
of observed datapoints. Then a reparameterization trick is applied to approximate the
intractable posteriors, which also enables VAE to be straightforwardly optimized using
standard stochastic gradient based methods. After [100], an enormous amounts of
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researchers have studied VAE from different perspectives, which advances the whole
community of variational auto-encoding. Recent advances of VAE theory could be
categorized into two aspects. First, from more expressive likelihood aspect, the standard
VAE [100] makes an assumption that the likelihoods factorizes over dimensions, which
may cause poor approximation for tasks involving images. Thereby, Gulrajani et al. [102]
proposed to model the dependencies within an image and further developed an auto-
regressive decoder in VAE for fine-grained image generation. Besides, there are some
works trying to derivemore expressive likelihoods from information theory such as [103].
Second, from more expressive posterior aspect, the main idea is that the standard VAE
uses mean field approach, which lacks expressiveness for modeling complex posteriors.
Thus, IWAE [104] weights the samples in the posterior approximation process, which
increases the model’s flexibility to capture complex posteriors.

GAN [101] is another representative methodology in deep generative modeling.
GAN contains a generator and a discriminator, where the discriminator tries to distinguish
the real samples with the fake samples and the generator tries to confuse the discriminator.
Adversarial learning in GAN has the advantage of measuring the distribution distance in a
more elegant way by a binary classifier and frees researchers from the painful practice of
defining a tricky objective function. Several works [101, 105-106] have pointed out that
the adversarial loss in GAN actually minimizes the Jensen-Shannon divergence (JSD)
between the data distribution and the generator distribution. Original GANhas risk facing
the vanishing gradient and mode collapse problem. To handle this, a lot of works have
been developed to improve the objective function such as f-GAN [105], LSGAN [107]
and WGAN [108].

There are also some works [109-111] trying to combine VAE and GAN theory to-
gether. For example, in VAE, the generation quality crucially relies on the expressiveness
of the inference model. Thus, Adversarial Variational Bayes (AVB) is proposed in [109]
to train VAE with arbitrary inference models. VEEGAN in [110] changes the matching
manner from data space to latent space. Meanwhile, Rosca et al. [111] pointed out
that VAE based methods fail to match marginal distributions in both latent and visible
space while GAN has the potential to overcome these limitations. Thus they develop a
VAE-GAN hyprid model to improve and generation quality. Combining VAE and GAN
together can employ the advantages and avoid the drawbacks of these two methodologies
for better data distribution modeling. The proposed algorithms in this thesis are also
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based on these methodologies and will be detailed later.
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Chapter 3 Learning on Signed Directed Networks

Many graphs have both directed and signed (i.e. positive and negative) links, such
as Epinions1 and Slashdot2, which are called signed directed networks. Negative links in
social networks hold opposite semantic meaning and contain additional information [34-
36] that helps many tasks, e.g. link sign prediction and node classification. In addition,
link direction indicates the asymmetric relationship between two nodes, which is impor-
tant for node (i.e. user) recommendation in social media [37-38]. For example, stars
may not follow common people while common people tend to follow stars. As discussed
in Chapter 1, learning on signed directed networks is not easy since the structures with
coupled signs and directions are rather difficult to model.

To overcome this difficulty, in this Chapter, we propose to decouple the modeling
of signs and directions in signed directed networks. Moreover, in order to bound the
optimization of this decoupling idea, we reformulate the representation learning problem
from a variational auto-encoding perspective and derive an ELBO as a surrogate objective
function for learning. Thanks to this surrogate objective function, we are able to capture
the complex patterns of structures and learn more representative node embeddings for
downstream tasks. Extensive experiments on three widely used real-world datasets have
confirmed the effectiveness of the proposed model.

3.1 Introduction

In signed directed networks, it is challenging to encode the topological information
into low-dimensional node embeddings. The topological information is composed of
both the high-order and the first-order topology. The high-order topology indicates the
local structures that are formed by information propagation of a node’s neighbours and the
first-order topology indicates the closeness relationships between a node and its directly
linked neighbours. To make it more explicitly, we give an example in Figure 3–1.

However, existing embedding methods usually fail to well capture the first-order and
high-order structures. Firstly, the majority of them concentrate on how to mine the first-

1http://www.epinions.com/?sb=1
2https://slashdot.org/

— 23—



Chapter 3 Learning on Signed Directed Networks

order topology, namely preserving the closeness relationships of nodes. For example,
MF [75] performs matrix factorization on the signed directed adjacency matrix to learn
low-dimensional node embeddings. SNE [77] exploits random walk and log-bilinear
model to learn node embeddings with signed links. SiNE [59] learns node embeddings
through a deep neural network model based on social theory. They model the closeness
relationships in restrictive distance metrics or usually ignore the additional value of
non-existent links. Secondly, the high-order topology, indicating the local structures of
nodes, is difficult to be extracted because of the coupled signs and directions. Different
signs and directions have distinctive information propagation influence. SNE [77] with
random walk applies homophily effects on different signs and fail to capture the high-
order patterns. How to encode both the high-order and first-order topological information
is an important problem in signed directed networks.

(a) An example of signed
directed networks G𝑒

(b) The high-order topology (c) The first-order topology

Figure 3–1 An example to illustrate the high-order topology and first-order topology in signed
directed networks. Red arrows mean positive directed edges and blue arrows indicate negative
directed edges. (a) is an example of signed directed networks G𝑒. (b) indicates the high-order

topology of node 𝑣1 in G𝑒, namely the local structures of 𝑣1. Different depth of shades represent
different orders of structures for 𝑣1. (c) shows the first-order topology of 𝑣1, namely the closeness
relationships between 𝑣1 and its directly linked neighbours. The concentric circles with 𝑣1 as the

center indicate the closeness between 𝑣1 and its positively linked nodes 𝑣2, 𝑣4, the non-linked node 𝑣7

and the negatively linked node 𝑣3.

In this Chapter, we propose to simultaneously capture the first-order and high-
order topology by decoupling the effects of signs and directions in signed directed
networks. In particular, we reformulate the representation learning on signed directed
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networks from a variational auto-encoding perspective and further propose a decoupled
variational embedding (DVE) method. DVE is a specially designed variational auto-
encoding model that contains a decoupled variational encoder and a structure decoder. In
the decoupled variational encoder, the representation of a node is decoupled into source
node embeddings and target node embeddings according to the link direction. Both the
source node embeddings and the target node embeddings contain the local structures
that are extracted by graph convolutions on the decoupled positive and negative graph
according to the link sign. The structure decoder is formulated as a novel Balance
Pair-wise Ranking (BPWR) loss that is developed from the Extended Structural Balance
Theory [112-113]. BPWR extracts the closeness relationships among positive links,
negative links and non-existent links in a Bayesian personalized ranking manner, as well
as refines embeddings learned from the former encoder. The auto-encoding formulation
encourages DVE to preserve the network topology in an end-to-end manner. In brief, the
contributions of this Chapter are summarized as follows:

3.2 DVE: Decoupled Variational Embedding

In this section, we first give the problem definition and then demonstrate how the
decoupling idea works and what are the specific components of the proposed algorithm.

3.2.1 Problem Definition

A signed directed network is defined as G = (V, E 𝑝, E𝑛), where V is the set of all
nodes and E 𝑝 (resp. E𝑛) denotes positive (resp. negative) links. Let E = E 𝑝

⋃ E𝑛 be
the observed links in G. For each link 𝑒 ∈ E, it is denoted as 𝑒𝑢→𝑣 = (𝑢, 𝑣, 𝜖𝑢→𝑣), where
𝑢 → 𝑣 denotes the direction from source node 𝑢 to target node 𝑣. And 𝜖𝑢→𝑣 indicates the
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• We propose a variational auto-encoding based method named DVE to learn more
representative node embeddings for signed directed networks. To the best of our
knowledge, DVE is the first model that simultaneously models both the first-order
and the high-order topology in signed directed networks;

• Based on Extended Structural Balance Theory, we develop a novel Balance Pair-
wise Ranking (BPWR) loss that also works as the decoder in DVE. BPWR mines
the mediator value of non-existent links between positive and negative links;

• We conducted extensive experiments on three real-world datasets. The compari-
son results illustrate the superiority of DVE both quantitatively and qualitatively.
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sign value of link 𝑒𝑢→𝑣, i.e. 𝜖𝑢→𝑣 = 1 if 𝑒𝑢→𝑣 ∈ E 𝑝 or 𝜖𝑢→𝑣 = −1 if 𝑒𝑢→𝑣 ∈ E𝑛. When the
nodes V have raw features, the feature matrix is denoted as 𝑋 ∈ R𝑁×𝐹 , where 𝐹 indicates
the feature dimension. Given G, the objective of node representation learning on signed
directed networks is to embed nodes into low-dimensional embeddings 𝑍 ∈ R𝑁×𝑑 that
benefit downstream tasks such as node recommendation and link prediction.

Zs

Zt

Figure 3–2 The model architecture of DVE. We first decouple the signed directed graph into an
undirected positive graph whose adjacency matrix is 𝐴𝑝 and an undirected negative graph whose
adjacency matrix is 𝐴𝑛. Then our decoupled variational encoder encodes 𝐴𝑝 and 𝐴𝑛 as the source

node representation 𝑍𝑠 and target node representation 𝑍𝑡 , respectively. Finally, 𝑍𝑠 and 𝑍𝑡 are used to
perform the balance pair-wise ranking loss which is also the structure decoder in DVE. Node 𝑖 is the
source node and from 𝑍𝑠, node. Nodes 𝑗 , 𝑘, 𝑟 are the target nodes and from 𝑍𝑡 . 𝑓 (·, ·) indicates the

score of two nodes connecting with positive links.

3.2.2 Variational Auto-Encoding Formulation

In this part, we start to illustrate the proposed decoupled variational embedding
(DVE) model whose architecture is shown in Figure 3–2. Link direction and sign are
two key elements when describing signed directed networks. Link direction between
two nodes indicates the asymmetric relationship that implies the different roles of two
nodes in an interaction. This asymmetric information is an essential factor that facilitates
information propagation in signed directed networks. However, it is inappropriate to
apply some GNN methods such as [1, 14, 25] on directed graphs since they require a
symmetric Laplacian matrix for graph convolutions. As a node in a directed relationship
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Figure 3–3 The graphical model of our the decoupling idea on link direction. In this figure, 𝑍𝑠 and
𝑍𝑡 are the latent variables for the source node representation and target node representation,

respectively. E indicates the observed signed directed edges. Solid arrows denote the generative
process and dashed arrows denote the inference process.

may both be the source node and target node, we thus try to leverage the asymmetric
information by decoupling node embeddings into source node embeddings 𝑍𝑠 and the
target node embeddings 𝑍𝑡 that are independent when given the observed edges E. The
graphical model of this decoupling idea is shown in Figure 3–3. Further, to bound the
optimization of this decoupling idea, we formulate the node representation learning from
a variational auto-encoding perspective. To be specific, we assume the edges are drawn
from some underlying distributions. To clarify, we denote 𝜃 as the parameter symbol for
all non-specified models. The probability distribution function of all observed signed
directed links E is denoted as 𝑃(E) and it can be written as Eq. 3–1:

𝑃(E) =
∫
𝑍𝑠 ,𝑍𝑡

𝑝𝜓 (E|𝑍𝑠, 𝑍𝑡)𝑝 𝜃 (𝑍𝑠, 𝑍𝑡)𝑑𝑍𝑠𝑑𝑍𝑡 (3–1)

where 𝑍𝑠 and 𝑍𝑡 also indicate the latent variables of source nodes and target nodes
respectively. By modeling node embeddings through two different latent variables, the
asymmetric relationship can be well captured. The true posterior distribution of 𝑍𝑠, 𝑍𝑡
can be written as:

𝑝 𝜃 (𝑍𝑠, 𝑍𝑡 |E) =
𝑝𝜓 (E|𝑍𝑠, 𝑍𝑡)𝑝 𝜃 (𝑍𝑠, 𝑍𝑡)

𝑝 𝜃 (E)
(3–2)

where 𝑝 𝜃 (E) denotes the probability density function of E. The true posterior
𝑝 𝜃 (𝑍𝑠, 𝑍𝑡 |E) in Eq. 3–2 is intractable because of the moderately complicated likelihood
function of 𝑝𝜓 (E|𝑍𝑠, 𝑍𝑡) such as a neural network with non-linear layer [100, 114-115].
We thus introduce a tractable posterior 𝑞𝜙 (𝑍𝑠, 𝑍𝑡 |E) to approximate 𝑝 𝜃 (𝑍𝑠, 𝑍𝑡 |E). In
this case, the marginal log-likelihood log 𝑃(E) can be rewritten as:

(3–3)log 𝑃(E) = 𝐷𝐾𝐿 [𝑞𝜙 (𝑍𝑠, 𝑍𝑡 |E) | |𝑝 𝜃 (𝑍𝑠, 𝑍𝑡 |E)] + L
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where 𝐷𝐾𝐿 means the Kullback-Liebler (KL) divergence and L is the variational ELBO
of log 𝑃(E). Since the KL divergence term is non-negative, we can maximize the
log-likelihood log 𝑃(E) by maximizing L. Denoting the joint prior for 𝑍𝑠 and 𝑍𝑡 as
𝑝 𝜃 (𝑍𝑠, 𝑍𝑡), L is derived as:

L = −𝐷𝐾𝐿 [𝑞𝜙 (𝑍𝑠, 𝑍𝑡 |E) | |𝑝 𝜃 (𝑍𝑠, 𝑍𝑡)] + E
𝑞𝜙 (𝑍𝑠 ,𝑍𝑡 |E)

[𝑝𝜓 (E|𝑍𝑠, 𝑍𝑡)] (3–4)

where 𝑝𝜓 (E|𝑍𝑠, 𝑍𝑡) indicates the probabilistic decoder parameterized by 𝜓. The deriva-
tion of this ELBO is written as: In our method, we simplify the joint prior 𝑝 𝜃 (𝑍𝑠, 𝑍𝑡)
by assuming 𝑝 𝜃 (𝑍𝑠, 𝑍𝑡) = 𝑝 𝜃 (𝑍𝑠)𝑝 𝜃 (𝑍𝑠). Complex prior is a specific research topic in
variational inference [116-118]. We do not explore more here since we mainly focus
on the general variational auto-encoding idea for modeling the topological information
in signed directed networks. According to the graphical model in Figure3–3, the latent
variable 𝑍𝑠 and 𝑍𝑡 are conditional independent when given the observed links E, with
which we rewrite the approximate posterior 𝑞𝜙 (𝑍𝑠, 𝑍𝑡 |E) as:

𝑞𝜙 (𝑍𝑠, 𝑍𝑡 |E) = 𝑞𝜙𝑠 (𝑍𝑠 |E)𝑞𝜙𝑡 (𝑍𝑡 |E) (3–5)

where 𝑞𝜙𝑠 (𝑍𝑠 |E) and 𝑞𝜙𝑡 (𝑍𝑡 |E) are the approximate posteriors parameterized by 𝜙𝑠 and
𝜙𝑡 respectively. If we denote 𝑝 𝜃 (𝑍𝑠) and 𝑝 𝜃 (𝑍𝑡) are the prior for 𝑍𝑠 and 𝑍𝑡 respectively,
we rewrite the ELBO in Eq. 3–4 as:

L = −𝐷𝐾𝐿 [𝑞𝜙𝑠 (𝑍𝑠 |E) | |𝑝 𝜃 (𝑍𝑠)]−𝐷𝐾𝐿 [𝑞𝜙𝑡 (𝑍𝑡 |E) | |𝑝 𝜃 (𝑍𝑡)]+ E
𝑞𝜙𝑠 (𝑍𝑠 |E)
𝑞𝜙𝑡 (𝑍𝑡 |E)

[log 𝑝𝜓 (E|𝑍𝑠, 𝑍𝑡)]

(3–6)
More detailed derivation is provided is Appendix A.1. DVE tries to learn 𝑍𝑠 and 𝑍𝑡
via maximizing the above ELBO. To better understand DVE, we firstly introduce the two
variational approximate posteriors 𝑞𝜙𝑠 (𝑍𝑠 |E) and 𝑞𝜙𝑡 (𝑍𝑡 |E). Modeling these two distri-
butions also indicates the decoupled variational encoder in Figure 3–2. The conditional
distribution 𝑝𝜓 (E|𝑍𝑠, 𝑍𝑡) which indicates the structure decoder, will be discussed later.

3.2.3 Decoupled Variational Encoder

In this part, how the decoupled variational encoder works is introduced. In our
expectation, 𝑍𝑠 and 𝑍𝑡 are the representation for the source node and target node respec-
tively. These two representations should capture the local structures indicated by the
positive links and negative links. Take the source node representation 𝑍𝑠 as an example,
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directly learning 𝑍𝑠 through existing GCNmethods is not appropriate, because this makes
GCN do homophily effects on different signs. Instead, we decouple the signed directed
graph into an undirected positive graph and an undirected negative graph, and consider
that 𝑍𝑠 could be generated by the node representation 𝑍 𝑝𝑠 involved in the undirected
positive graph and the node representation 𝑍𝑛𝑠 involved in the undirected negative graph.
In other words, 𝑍𝑠 is represented as 𝑍𝑠 = 𝑓𝑠 (𝑍 𝑝𝑠 , 𝑍𝑛𝑠 ), where 𝑓𝑠 is the generative function.
A proper choice of 𝑓𝑠 can capture the interactions between positive and negative links.

In the learning process of 𝑍 𝑝𝑠 and 𝑍𝑛𝑠 , if we denote 𝐴𝑝 and 𝐴𝑛 as the adjacency
matrix of the undirected positive graph and the undirected negative graph, respectively,
variational GCN is applied on 𝐴𝑝 and 𝐴𝑛. In this context, 𝑍𝑠 ∼ 𝑞𝜙𝑠 (𝑍𝑠 |E) can be
denoted by the combination of 𝑍 𝑝𝑠 ∼ 𝑞𝜙𝑝

𝑠
(𝑍 𝑝𝑠 |𝐴𝑝, 𝑋), 𝑍𝑛𝑠 ∼ 𝑞𝜙𝑛

𝑠
(𝑍𝑛𝑠 |𝐴𝑛, 𝑋) and 𝑓𝑠, where

𝑞𝜙𝑝
𝑠
(𝑍 𝑝𝑠 |𝐴𝑝, 𝑋) and 𝑞𝜙𝑛

𝑠
(𝑍𝑛𝑠 |𝐴𝑛, 𝑋) indicate the approximate posterior distribution for

the source node involved in the undirected positive graph and undirected negative graph,
respectively. We set 𝑓𝑠 as concatenation operation here for simplicity. Note that the
adjacent matrices of both the undirected positive graph and the undirected negative graph
are composed of 0 and 1, where 1means linked and 0 otherwise. The variational inference
procedure for 𝑞𝜙𝑠 (𝑍𝑠 |E) indicates the source node encoder shown in Figure 3–2 and is
introduced in the following part.

Let the node feature matrix be 𝑋 ∈ R𝑁×𝐹 where 𝑁 is the number of nodes and 𝐹 is
the feature dimension. Let 𝑍 𝑝𝑠,𝑖 ∈ R1×𝑑 and 𝑍𝑛𝑠,𝑖 ∈ R1×𝑑 be the source node embeddings
of 𝑖-th node involved in the undirected positive graph and the undirected negative graph,
respectively. Then, we can have:

𝑞𝜙𝑝
𝑠
(𝑍 𝑝𝑠 |𝐴𝑝, 𝑋) =

𝑁∏
𝑖=1

𝑞𝜙𝑝
𝑠
(𝑍 𝑝𝑠,𝑖 |𝐴𝑝, 𝑋) (3–7)

𝑞𝜙𝑛
𝑠
(𝑍𝑛𝑠 |𝐴𝑛, 𝑋) =

𝑁∏
𝑖=1

𝑞𝜙𝑛
𝑠
(𝑍𝑛𝑠,𝑖 |𝐴𝑛, 𝑋) (3–8)

Inspired by the idea that different semantics can come from the same family of functions
(e.g. Gaussian) since these semantics are modeled by different parameters and are in
different spaces [100, 119-120]. We assume that both 𝑞𝜙𝑝

𝑠
(𝑍 𝑝𝑠 |𝐴𝑝, 𝑋) and 𝑞𝜙𝑛

𝑠
(𝑍𝑛𝑠 |𝐴𝑛, 𝑋)

follow Gaussian distribution, then the reparametrization Gaussian parameters 𝜇𝑝,𝑙𝑠 ∈
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R𝑁×𝑑, 𝜎𝑝,𝑙𝑠 ∈ R𝑁×𝑑, 𝜇𝑛,𝑙𝑠 ∈ R𝑁×𝑑, 𝜎𝑛,𝑙𝑠 ∈ R𝑁×𝑑 in 𝑙-th layer are defined as1:
𝜇𝑝,𝑙+1𝑠 = 𝐴𝑝𝐻 𝑝,𝑙

𝑠,𝜇𝑊
𝑝,𝑙
𝑠,𝜇 , 𝐻

𝑝,𝑙
𝑠,𝜇 = ℎ(𝜇𝑝,𝑙𝑠 ), 𝐻 𝑝,0

𝑠,𝜇 = 𝑋

log𝜎𝑝,𝑙+1𝑠 = 𝐴𝑝𝐻 𝑝,𝑙
𝑠,𝜎𝑊

𝑝,𝑙
𝑠,𝜎, 𝐻

𝑝,𝑙
𝑠,𝜎 = ℎ(log𝜎𝑝,𝑙𝑠 ), 𝐻 𝑝,0

𝑠,𝜎 = 𝑋
(3–9)


𝜇𝑛,𝑙+1𝑠 = 𝐴𝑛𝐻𝑛,𝑙

𝑠,𝜇𝑊
𝑛,𝑙
𝑠,𝜇, 𝐻

𝑛,𝑙
𝑠,𝜇 = ℎ(𝜇𝑛,𝑙𝑠 ), 𝐻𝑛,0

𝑠,𝜇 = 𝑋

log𝜎𝑛,𝑙+1𝑠 = 𝐴𝑛𝐻𝑛,𝑙
𝑠,𝜎𝑊

𝑛,𝑙
𝑠,𝜎, 𝐻

𝑛,𝑙
𝑠,𝜎 = ℎ(log𝜎𝑛,𝑙𝑠 ), 𝐻𝑛,0

𝑠,𝜎 = 𝑋
(3–10)

where 𝐴𝑝 = [𝐷 𝑝]− 1
2 (𝐴𝑝+ 𝐼𝑁 ) [𝐷 𝑝]− 1

2 and 𝐴𝑛 = [𝐷𝑛]− 1
2 (𝐴𝑛+ 𝐼𝑁 ) [𝐷𝑛]− 1

2 are the propaga-
tionmatrices. 𝐷 𝑝 and𝐷𝑛 are the degreematrices of 𝐴𝑝+𝐼𝑁 and 𝐴𝑛+𝐼𝑁 , respectively. ℎ(·)
denotes the non-linear 𝑅𝑒𝑙𝑢 function. 𝑊 𝑝,𝑙

𝑠,𝜇 ∈ R𝐹×𝑑 and𝑊 𝑝,𝑙
𝑠,𝜎 ∈ R𝐹×𝑑 denote the 𝑙-layer

reparametrization parameters for 𝑍 𝑝𝑠 . Similarly, 𝑊𝑛,𝑙
𝑠,𝜇 ∈ R𝐹×𝑑 and 𝑊𝑛,𝑙

𝑠,𝜎 ∈ R𝐹×𝑑 are the
𝑙-layer reparametrization parameters for 𝑍𝑛𝑠 . If we denote 𝑝 𝜃 (𝑍

𝑝
𝑠 ) and 𝑝 𝜃 (𝑍𝑛𝑠 ) are prior

distributions for 𝑍 𝑝𝑠 and 𝑍𝑛𝑠 respectively, the prior regularization loss on 𝑞𝜙𝑝
𝑠
(𝑍 𝑝𝑠 |𝐴𝑝, 𝑋)

and 𝑞𝜙𝑛
𝑠
(𝑍𝑛𝑠 |𝐴𝑛, 𝑋) are written as:

min
𝜙𝑠
𝐿𝑠𝐾𝐿 = 𝐷𝐾𝐿 [𝑞𝜙𝑝

𝑠
(𝑍 𝑝𝑠 |𝐴𝑝, 𝑋) | |𝑝 𝜃 (𝑍 𝑝𝑠 )] + 𝐷𝐾𝐿 [𝑞𝜙𝑛

𝑠
(𝑍𝑛𝑠 |𝐴𝑛, 𝑋) | |𝑝 𝜃 (𝑍𝑛𝑠 )] (3–11)

where 𝜙𝑠 = {𝜙𝑝𝑠 , 𝜙𝑛𝑠 } = {𝑊 𝑝,𝑙0 𝑜𝑟 𝑙1
𝑠,𝜇 𝑜𝑟 𝜎 ,𝑊

𝑛,𝑙0 𝑜𝑟 𝑙1
𝑠,𝜇 𝑜𝑟 𝜎 } is the parameter of the source node

encoder. Therefore, the source node representation 𝑍𝑠 is 𝑍𝑠 = 𝑍 𝑝𝑠 ⊕ 𝑍𝑛𝑠 (⊕ means
concatenation), where 𝑍 𝑝𝑠 ∼ 𝑞𝜙𝑝

𝑠
(𝑍 𝑝𝑠 |𝐴𝑝, 𝑋) and 𝑍𝑛𝑠 ∼ 𝑞𝜙𝑛

𝑠
(𝑍𝑛𝑠 |𝐴𝑛, 𝑋). The target node

representation 𝑍𝑡 can be computed in similar procedure.
It is worthwhile to highlight that GCN working on both 𝐴𝑝 and 𝐴𝑛 with different

parameters models the distinctive effects of different link signs. Conducting GCN on
𝐴𝑝 and 𝐴𝑛 is reasonable since GCN does not specify positive or negative meaning of
links in graphs. Instead, GCN emphasizes the correlation that links two nodes. How
to leverage the information from 𝐴𝑝 and 𝐴𝑛 in the subsequent modules determines the
positive or negative semantics. In our case, we use GCN to summarize the correlation
patterns among nodes, and then ask the following loss to determine the positive semantics
in 𝐴𝑝 and negative semantics in 𝐴𝑛. By this way, the local structures in signed directed
networks can be modeled in a decoupled manner. In addition, splitting the graph into a
positive and a negative graph is one way to decouple the effects of signed directed edges
but may not the best way. We will explore the how to model the signed directed edges in
the future.

1A quick note: 𝑠means the source node, 𝜇, 𝜎 denote the mean value and standard deviation parameter of Gaussian
distribution, 𝑝 means undirected positive graph and 𝑛 indicates undirected negative graph.
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3.2.4 Structure Decoder

In auto-encoding theory, decoder is an essential module and we introduce our
structure decoder here. The structure decoder is expected to reconstruct the signed
directed links and guide the encoder learning. This requires that the structure decoder
should preserve the structural characteristics in signed directed networks. Note that
the Extended Structural Balance Theory [112] states the closeness of users in signed
networks. The essential insight of this theory is that for four users 𝑖, 𝑗 , 𝑘, 𝑟 , if the link
signs are 𝜖𝑖 𝑗 = 1, 𝜖𝑖𝑘 = 0, 𝜖𝑖𝑟 = −1, the closeness among them follows Eq. 3–12.

𝑔(𝑖, 𝑗) < 𝑔(𝑖, 𝑘) < 𝑔(𝑖, 𝑟) (3–12)

where 𝑔(𝑖, 𝑗) denotes distance between user 𝑖 and 𝑗 . For example, if a positive link
means trust and a negative link means distrust in social networks, user 𝑖 prefers to trust
𝑗 than 𝑘 and trusts 𝑘 more than 𝑟. Actually, this theory states the first-order topology
that indicates the closeness relationships among nodes. By combining this theory with
Bayesian Personalized Ranking [121], we naturally develop a novel Balance Pair-wise
Ranking (BPWR) loss to guide the whole model learning. To clarify, we denote the
distance in Eq. 3–12 as the score of two nodes building positive links. The higher score
is, the more probably the positive link exists. Thus, the Extended Structural Balance
Theory can be interpreted as Eq. 3–13:

𝑓 (𝑖 → 𝑗) > 𝑓 (𝑖 → 𝑘) > 𝑓 (𝑖 → 𝑟) (3–13)

where 𝑓 (𝑖 → 𝑗) indicates the score of building positive links from source node 𝑖 to target
node 𝑗 . Given node 𝑖 as the reference object, we use 𝑗 >𝑖 𝑘 to indicate the score of 𝑖 → 𝑗

is larger than that of 𝑖 → 𝑘 for samples (𝑖, 𝑗 , 𝑘, 𝑟) where 𝜖𝑖→ 𝑗 = 1, 𝜖𝑖→𝑘 = 0, 𝜖𝑖→𝑟 = −1.
The maximum posteriors satisfy:

max
𝜙𝑠 ,𝜙𝑡

∏
(𝑖, 𝑗 ,𝑘)

𝑝(𝜙𝑠, 𝜙𝑡 | 𝑗 >𝑖 𝑘) ∝
∏

(𝑖, 𝑗 ,𝑘)
𝑝( 𝑗 >𝑖 𝑘 |𝜙𝑠, 𝜙𝑡)𝑝(𝜙𝑠, 𝜙𝑡)

max
𝜙𝑠 ,𝜙𝑡

∏
(𝑖,𝑘,𝑟)

𝑝(𝜙𝑠, 𝜙𝑡 |𝑘 >𝑖 𝑟) ∝
∏

(𝑖,𝑘,𝑟)
𝑝(𝑘 >𝑖 𝑟 |𝜙𝑠, 𝜙𝑡)𝑝(𝜙𝑠, 𝜙𝑡)

(3–14)

where 𝜙𝑠 and 𝜙𝑡 are the parameters of the decoupled variational encoder to obtain 𝑍𝑠 and
𝑍𝑡 . 𝑝( 𝑗 >𝑖 𝑘 |𝜙𝑠, 𝜙𝑡) and 𝑝(𝑘 >𝑖 𝑟 |𝜙𝑠, 𝜙𝑡) indicate the likelihood functions which are
written as: 

𝑝( 𝑗 >𝑖 𝑘 |𝜙𝑠, 𝜙𝑡) = 𝜎( 𝑓 (𝑖 → 𝑗) − 𝑓 (𝑖 → 𝑘))

𝑝(𝑘 >𝑖 𝑟 |𝜙𝑠, 𝜙𝑡) = 𝜎( 𝑓 (𝑖 → 𝑘) − 𝑓 (𝑖 → 𝑟))
(3–15)
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where 𝑓 (𝑖 → 𝑗) is calculated by the inner product of the source node embedding 𝑍𝑠,𝑖
of node 𝑖 and the target node embedding 𝑍𝑡 , 𝑗 of node 𝑗 . 𝑓 (𝑖 → 𝑘) and 𝑓 (𝑖 → 𝑟) can
be obtained in similar way. 𝜎 is the sigmoid function. Following [121], the Balance
Pair-wise Ranking (BPWR) loss of our structure decoder can be written as:

min
𝜙𝑠 ,𝜙𝑡

𝐿𝐵𝑃𝑊𝑅 = − E(𝑖, 𝑗 ,𝑘)∼𝑃 (E) ln𝜎(𝑍𝑇𝑠,𝑖𝑍𝑡 , 𝑗 − 𝑍𝑇𝑠,𝑖𝑍𝑡 ,𝑘)

− E(𝑖,𝑘,𝑟)∼𝑃 (E) ln𝜎(𝑍𝑇𝑠,𝑖𝑍𝑡 ,𝑘 − 𝑍𝑇𝑠,𝑖𝑍𝑡 ,𝑟 )
(3–16)

When 𝑍𝑠 and 𝑍𝑡 are not learned from the decoupled variational encoder, 𝑍𝑠 and 𝑍𝑡 can be
initialized trainable embedding matrices. In other words, BPWR can be an independent
model to learn node embeddings in signed directed networks.

3.2.5 Model Learning

Putting the encoder and decoder together, we can write the objective function of
DVE as follows1:

min
𝜙𝑠 ,𝜙𝑡

𝐿𝐷𝑉𝐸 = − E(𝑖, 𝑗 ,𝑘)∼𝑃 (E) ln𝜎(𝑍𝑇𝑠,𝑖𝑍𝑡 , 𝑗 − 𝑍𝑇𝑠,𝑖𝑍𝑡 ,𝑘)

− E(𝑖,𝑘,𝑟)∼𝑃 (E) ln𝜎(𝑍𝑇𝑠,𝑖𝑍𝑡 ,𝑘 − 𝑍𝑇𝑠,𝑖𝑍𝑡 ,𝑟 )

+ 1
𝑁

𝑁∑
𝑖=1

{𝐷𝐾𝐿 [𝑞𝜙𝑝
𝑠
(𝑍 𝑝𝑠,𝑖 |𝐴𝑝, 𝑋) | |𝑝 𝜃 (𝑍 𝑝𝑠 )] + 𝐷𝐾𝐿 [𝑞𝜙𝑛

𝑠
(𝑍𝑛𝑠,𝑖 |𝐴𝑛, 𝑋) | |𝑝 𝜃 (𝑍𝑛𝑠 )]}

+ 1
𝑁

𝑁∑
𝑖=1

{𝐷𝐾𝐿 [𝑞𝜙𝑝
𝑡
(𝑍 𝑝𝑡,𝑖 |𝐴𝑝, 𝑋) | |𝑝 𝜃 (𝑍

𝑝
𝑡 )] + 𝐷𝐾𝐿 [𝑞𝜙𝑛

𝑡
(𝑍𝑛𝑡,𝑖 |𝐴𝑛, 𝑋) | |𝑝 𝜃 (𝑍𝑛𝑡 )]}

(3–17)

where 𝜙𝑠 = {𝜙𝑝𝑠 , 𝜙𝑛𝑠 } = {𝑊 𝑝,𝑙0 𝑜𝑟 𝑙1
𝑠,𝜇 𝑜𝑟 𝜎 ,𝑊

𝑛,𝑙0 𝑜𝑟 𝑙1
𝑠,𝜇 𝑜𝑟 𝜎 } is the parameter of the source node

encoder and 𝜙𝑡 = {𝜙𝑝𝑡 , 𝜙𝑛𝑡 } = {𝑊 𝑝,𝑙0 𝑜𝑟 𝑙1
𝑡 ,𝜇 𝑜𝑟 𝜎 ,𝑊

𝑛,𝑙0 𝑜𝑟 𝑙1
𝑡 ,𝜇 𝑜𝑟 𝜎 } denotes the parameter of the target

node encoder. The source node embeddings and target node embeddings are respectively
denoted as 𝑍𝑠 = 𝑍 𝑝𝑠 ⊕ 𝑍𝑛𝑠 , 𝑍𝑡 = 𝑍

𝑝
𝑡 ⊕ 𝑍𝑛𝑡 . All priors 𝑝 𝜃 (𝑍

𝑝
𝑠 ),𝑝 𝜃 (𝑍𝑛𝑠 ),𝑝 𝜃 (𝑍

𝑝
𝑡 ) and 𝑝 𝜃 (𝑍𝑛𝑡 )

are standard Gaussian distributions. In DVE, the matrix multiplication is conducted
between a sparse adjacency matrix and a dense matrix, e.g. Eq. 3–9,3–10, which can
be implemented with high efficiency in recent deep learning programming frameworks.
For each positive link 𝑒𝑖→ 𝑗 and negative link 𝑒𝑖→𝑟 , we randomly sample 𝑛𝑛𝑜𝑖𝑠𝑒 non-
linked nodes to play as 𝑘 and construct the training quadruples (𝑖, 𝑗 , 𝑘, 𝑟). We adopt

1Note that we take the expectation formula here for scaled loss values instead of summarization.
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Dropout technique for regularization. Many widely used optimization algorithms such as
RMSProp can be applied for model learning. A concise description of DVE is depicted
in Algorithm 3–1.

3.2.6 Comparison Between DVE and Existing Methods

There are differences and connections between DVE and existing methods. Most
existingmethods [59, 75, 80] focus onmodeling the first-order topology. Someworks [77-
78] are trying to learn the high-order topology but usually apply homophily effects of
different signs or directions. By contrast, DVE integrally models both the first-order
and high-order topology and is aware of the different effects of signs and directions by a
decoupling idea.

Meanwhile, there are connections betweenDVE and existingmethods in terms of the
first-order topology modeling. Both DVE and existing methods perform the first-order
topology modeling regarding signed directed links. Existing methods usually ignore the
mediator value of non-existent links. Instead, BPWR models the non-existent links and
has more potential to capture the closeness relationships of nodes. It is also worthwhile
to point out that both the margin ranking (MR) loss in SNEA [80] and BPWR loss in
DVE have similar target that are developed from Extended Structural Balance Theory.
However, MR is a deterministic non-smooth metric and BPWRmaximizing the posterior
of the observations is smooth and easy to be optimized by gradient based techniques [121].
The superior performance of BPWR over SNEA-MR is also verified in Section 3.3.4.

3.2.7 Time Complexity Analysis

Stochastic training of DNN methods involves two steps, the forward and backward
computations. DVE supports the mini-batch training and the time cost lies in the decou-
pled variational encoder and structure decoder. We thus decompose the time complexity
of DVE into two parts, namely the time complexity of decoupled variational encoder
and structure decoder. In each batch of DVE, the decoupled variational encoder learns
node embeddings for all nodes. Thus, following the analysis of GCN in [48], the time
complexity of decoupled variational encoder is O(2|E 𝑝 | +2|E𝑛 |) = O(2|E |), where |E 𝑝 |,
|E 𝑝 | and |E | denote the number of edges of undirected positive graph, undirected negative
graph and signed directed graph, respectively. Note that for this decoupled variational
encoder, the source node encoder and target node encoder can be parallelly conducted.
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Algorithm 3–1 Decoupled Variational Embedding (DVE)
Input: A signed directed adjacencymatrix 𝐴 ∈ R𝑁×𝑁 ; A node feature matrix 𝑋 ∈ R𝑁×𝐹 ,

𝑋 could be the identity matrix 𝐼𝑁 if there is no feature; the training quadruples
(𝑖, 𝑗 , 𝑘, 𝑟) where 𝑒𝑖→ 𝑗 is positive, 𝑒𝑖→𝑟 is negative and 𝑒𝑖→𝑘 is non-existent.

Output: Source node embeddings 𝑍𝑠 ∈ R𝑁×𝑑 and target node embeddings 𝑍𝑡 ∈ R𝑁×𝑑.
1: Decouple signed directed graph 𝐴 into an undirected positive graph 𝐴𝑝 and an

undirected negative graph 𝐴𝑛, where both 𝐴𝑝 and 𝐴𝑛 are composed of 0,1.
2: Calculate the symmetric propagation matrices 𝐴𝑝 and �̃�𝑛.
3: while not converged do
4: # source node encoder.
5: Calculate th parameters 𝜇𝑝𝑠 , 𝜎𝑝𝑠 , 𝜇𝑛𝑠 , 𝜎𝑛𝑠 defined in Eq 3–9,3–10.
6: # target node encoder.
7: Calculate reparametrization parameters 𝜇𝑝𝑡 , 𝜎

𝑝
𝑡 , 𝜇𝑛𝑡 , 𝜎𝑛𝑡 that share similar defini-

tion in Eq 3–9,3–10 but with different parameters.
8: Calculate target node embeddings 𝑍𝑡 = 𝑍 𝑝𝑡 ⊕ 𝑍𝑛𝑡 , 𝑍

𝑝
𝑡 ∼ N(𝜇𝑝𝑡 , 𝜎𝑝𝑡 ), 𝑍𝑛𝑡 ∼

N(𝜇𝑛𝑡 , 𝜎𝑛𝑡 ).
9: For training quadruples (𝑖, 𝑗 , 𝑘, 𝑟), lookup source node embeddings 𝑍𝑠,𝑖 for node
𝑖, target node embeddings 𝑍𝑡 , 𝑗 , 𝑍𝑡 ,𝑘 and 𝑍𝑡 ,𝑟 for node 𝑗 , 𝑘, 𝑟 respectively;

10: Apply an optimization method to update model parameters based on the loss
defined in Eq. 3–17.

11: end while

In this case, the time complexity for decoupled variational encoder can be reduced to
O(|E 𝑝 | + |E𝑛 |) = O(|E|). Furthermore, the graph convolution on 𝐴𝑝 and 𝐴𝑛 to learn 𝑍𝑠
and 𝑍𝑡 could also be parallel, which leads to the time complexity as O(max{|E 𝑝 |, |E𝑛 |}).
When considering the structure decoder in each batch, we compute the BPWR loss by
sampling non-existent links. If we denote the sampling size as 𝑛𝑛𝑜𝑖𝑠𝑒 and the batch size
of training positive or negative links as 𝐵, the time complexity is O(𝑛𝑛𝑜𝑖𝑠𝑒𝐵).

In summary, the time complexity of the non-parallel DVE in each batch is
O(2|E |+𝑛𝑛𝑜𝑖𝑠𝑒𝐵), the half-parallel counterpart isO(|E|+𝑛𝑛𝑜𝑖𝑠𝑒𝐵) and the quarter-parallel
counterpart is O(max{|E 𝑝 |, |E𝑛 |} + 𝑛𝑛𝑜𝑖𝑠𝑒𝐵). Generally, the main time cost lies in the
decoupled variational encoder, since we usually have 2|E | > |E | > max{|E 𝑝 |, |E𝑛 |} >>
𝑛𝑛𝑜𝑖𝑠𝑒𝐵. Actually, the time complexity of decoupled variational encoder is related to the
specific graph convolutional network. For datasets with too large max{|E 𝑝 |, |E𝑛 |}, the
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O(max{|E 𝑝 |, |E𝑛 |}) in each batch may still be time-consuming. This can be solved by
using other kinds of GCN [2, 65-66] that reduce O(max{|E 𝑝 |, |E𝑛 |}) to the scale of the
training batch size 𝐵. This makes DVE be scalable to much larger datasets. We do not
explore more here since we mainly focus on the general idea of variational auto-encoding
to learn the first-order and high-order structures in signed directed networks.

3.3 Experiments and Analysis

In this section, we conduct experiments on three widely used datasets. Performance
on both link sign prediction task and node recommendation task are implemented to verify
the effectiveness of DVE. Further ablation study and qualitative analysis are investigated
to provide a deep understanding about DVE.

3.3.1 Dataset Description

We conduct the experiments on three widely used real-world datasets. Epinions1:
Epinions is one popular product review site in which users can create both trust (positive)
and distrust (negative) links to others. Slashdot2 is a technology news platform where
users can create friend (i.e. positive) and foe (i.e. negative) links to others. Wiki3 is
a dataset collected from the Wikipedia site, where users vote for or against other users
in order to determine administration promotion. For each dataset, we randomly sample
a subset links as our experimental dataset. We also filter out users who have no link
with others. The statistics of processed data are shown in Table 3–1. From the table, it
is obvious that both the undirected positive graph and the undirected negative graph are
quite sparse.

3.3.2 Baselines

We compare DVE with nine competitive baselines.

1https://snap.stanford.edu/data/soc-sign-epinions.html
2https://snap.stanford.edu/data/soc-sign-Slashdot090216.html
3https://snap.stanford.edu/data/wiki-RfA.html

— 35—

• LINE [20]: LINE defines loss functions to preserve the first-order or second-order
proximity between nodes in a graph. Here, we conduct LINE on the positive links
since it does not work on signed graphs. As LINE’s first order proximity usually
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Table 3–1 The statistics of Epinions, Slashdot and Wiki utilized in our experiments.

Dataset Epinions Slashdot Wiki
#nodes 22,503 17,496 6,836
#edges 84,102 54,920 89,365

#positive edges 60,044 46,189 70,075
#negative edges 24,058 8,731 19,290

undirected positive graph density 0.0119% 0.0151% 0.1499%
undirected negative graph density 4.75e-3% 2.85e-3% 4.12e-4%

presents better performance than the second order one, the performance of LINE’s
first-order proximity is reported here.

1It refers to Eq.5 in the original paper.
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• MF [75]: Matrix factorization is one popular technique for network embedding.
We employ MF with the same noise sampling approach of DVE to learn low-
dimensional node embeddings for signed directed networks.

• SNE [77]: This method develops the log-bilinear model with random walks to
learn low-dimensional node embeddings for signed networks. On signed directed
networks, we use directed random walk for SNE.

• SiNE [59]: SiNE is a deep neural network method that makes a distinction
between positively linked nodes and negatively linked nodes. It is capable of
capturing the non-linear pattern in signed directed networks.

• SIDE [78]: SIDE is a random walk based model which formulates the social
balance theory into a likelihood for signed directed networks.

• SNEA-MR [80]: SNEA is a method for attributed signed social networks. Con-
sidering that the margin ranking (MR) loss 1 in SNEA is also based on Extended
Structural Balance Theory, we thus extend it here as a baseline to make a com-
parison with BPWR.

• BPWR (Ours): As the structure decoder of our DVE model, this Balance Pair-
wise Ranking loss could be an independent model and be a comparison to the
loss in SiNE and SNEA-MR.

• SLVE (Ours): SLVE substitutes the decoupled variational encoder in DVE with
a non-decoupled one by leveraging the signed Laplacian matrix [122].

• DE (Ours): DE is the non-variational variant of DVE method.
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Table 3–2 Link sign prediction performance. Names with * refer to our methods. Compared to
SiNE, the absolute improvement percentage of DE and DVE are given.

Dataset Epinions Slashdot Wiki
Method AUC F1 AUC F1 AUC F1
LINE 0.906 0.902 0.855 0.920 0.782 0.889
MF 0.934 0.927 0.801 0.918 0.595 0.884
SNE 0.952 0.933 0.869 0.928 0.848 0.902
SiNE 0.929 0.919 0.870 0.916 0.864 0.904
SIDE 0.807 0.861 0.798 0.917 0.647 0.884

SNEA-MR 0.864 0.891 0.753 0.913 0.732 0.889
BPWR∗ 0.933 0.926 0.891 0.929 0.881 0.911
SLVE∗ 0.924 0.918 0.871 0.922 0.874 0.905
DE∗ 0.958(+2.9%) 0.939(2.0%) 0.899(2.9%) 0.930(1.4%) 0.885(2.1%) 0.909(0.5%)
DVE∗ 0.960(3.1%) 0.940(2.1%) 0.905(3.5%) 0.934(1.8%) 0.889(2.5%) 0.911(0.7%)

3.3.3 Experimental Setups

For each baseline, we follow the parameter settings in their papers or codes. Batch
training size is 1,000 for all methods. For our model, we set the training epoch size as
200 and the number of GCN layers as 𝑙 = 2. Dropout probability is 0.2. Learning rate is
taken as 0.01. RMSProp optimizer [123] is adopted to optimize our objective function.
According to the training loss, the size of randomly sampled noise (𝑒𝑖→𝑘=0) is set as 5
for Epinions and 20 for Slashdot and Wiki. Embedding size is 𝑑1 = 128 and 𝑑 = 64 on
all three datasets. We randomly split each dataset into 80% train data and 20% test data.
For every model, we conduct 10 times and report the averaged best performance on test
set as the model performance.

3.3.4 Performance Comparison

3.3.4.1 Link Sign Prediction

We first compare the model performance on link sign prediction task. Link sign
prediction aims to predict the unobserved signs of existing links. Following the evaluation
protocols in existing works [59, 77], we train a binary classifier which is a two-layer MLP
with 𝑅𝑒𝑙𝑢 as the non-linear function. Then, we use signed links in the model training
stage as the train data for the binary classifier and predict signs for the test links. More
specifically, we concatenate two node embeddings as the link representation and take
the link representation as input for the binary classifier. Due to the imbalanced signs in
test links, AUC and F1 are adopted to make the evaluation. The results are shown in
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Table 3–2. From this table, we summarize that:
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• The proposed DVE outperforms recent competitive models and achieves the best
performance. For example, regarding AUC on Slashdot, DVE obtains a 3.5%
improvement compared to SiNE and a 3.6% improvement compared to SNE.
This verifies that DVE learns more representative node embeddings in signed
directed networks.

• Comparing BPWR with other baselines (SiNE, SNE, MF), BPWR outperforms
them on AUC and F1 on all three datasets. This exposes the deficiencies of the
baselines in mining the first-order topology. Developed from Extended Structural
Balance Theory, BPWR working in a personalized pair-wise ranking manner is
more capable of mining the closeness relationships among nodes. It is worthwhile
to point out that although SNEA-MR and BPWR are both based on the Extended
Structural Balance Theory and have a similar training goal. However, the objective
of SNEA-MR is not smooth while BPWR based on maximizing the posterior of
signed directed links is smooth and easy to be optimized by gradient based
optimization methods. The comparison results as well confirm the superiority of
BPWR.

• Modeling the high-order topology facilitates to learn more representative node
embeddings in signed directed networks. Compared to BPWR, DVE and DE
with graph convolution are able to model both the first-order and the high-
order topology. However, BPWR works as an independent model can only
model the first-order topology. The gap is more obvious in the following node
recommendation task.

• It is obvious that DVE always outperforms SLVE, which confirms the importance
of our decoupling idea. Particularly, SLVE is the non-decoupled variant of DVE
by applying signed Laplacian matrix [122] in GCN. Thus the only difference
between SLVE and DVE is the encoder part. From the comparison between SLVE
and BPWR, we can see that SLVE even damages its own decoder’s (BPWR)
performance. This highlights the necessity of applying distinctive effects on
different types of links in signed directed networks.

• Compared to DE, DVE models the uncertainty of node embeddings in signed
directed networks and thus shows better performance than the non-variational DE
on Slashdot and Wiki. If provided with a better prior distribution, the performance
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Table 3–3 Node recommendation performance on Epinions. Names with ∗ refer to our methods. The
metrics for this task are Recall@k and Precision@k. We pick k=10,20,50 here. Compared to SiNE,

the absolute improvement of DVE is given in the table.

Dataset Epinions
Methods R@10 R@20 R@50 P@10 P@20 P@50
LINE 0.004 0.011 0.025 0.004 0.004 0.005
MF 0.022 0.036 0.069 0.029 0.025 0.021
SNE 0.002 0.003 0.008 0.001 9.5e-4 9.0e-4
SiNE 0.027 0.039 0.074 0.031 0.026 0.021
SIDE 5.5e-4 8.2e-4 0.002 8.3e-4 7.1e-4 5.9e-4

SNEA-MR 0.024 0.037 0.065 0.024 0.020 0.016
BPWR∗ 0.031 0.053 0.088 0.026 0.024 0.021
SLVE∗ 0.0181 0.029 0.070 0.017 0.015 0.012
DE∗ 0.030 0.045 0.082 0.022 0.020 0.017
DVE∗ 0.035(0.8%) 0.053(1.4%) 0.100(2.6%) 0.035(0.4%) 0.030(0.4%) 0.024(0.3%)

Table 3–4 Node recommendation performance on Slashdot. Names with ∗ refer to our methods. The
metrics for this task are Recall@k and Precision@k. We pick k=10,20,50 here. Compared to SiNE,

the absolute improvement of DVE is given in the table.

Dataset Slashdot
Methods R@10 R@20 R@50 P@10 P@20 P@50
LINE 0.011 0.017 0.033 0.006 0.006 0.006
MF 0.015 0.026 0.053 0.025 0.022 0.018
SNE 0.002 0.006 0.011 0.002 0.002 0.002
SiNE 0.052 0.068 0.107 0.027 0.025 0.021
SIDE 8.2e-4 0.001 0.005 6.5e-4 6.5e-4 7.6e-4

SNEA-MR 0.005 0.007 0.014 0.005 0.004 0.003
BPWR∗ 0.058 0.073 0.111 0.028 0.023 0.020
SLVE∗ 0.037 0.049 0.089 0.018 0.017 0.016
DE∗ 0.039 0.057 0.101 0.025 0.022 0.019
DVE∗ 0.060(0.8%) 0.086(1.8%) 0.134(2.7%) 0.036(0.9%) 0.031(0.6%) 0.024(0.3%)

gap could be more obvious.

3.3.4.2 Node Recommendation

Another practical application in signed directed networks is node recommendation.
It matches a fact that friend recommendation in social media. We conduct the node
recommendation task here to investigate the quality of learned node embeddings.

In particular, for a specific node, we recommend nodes that have high-probabilities
to build positive directed links. For example, denote 𝑖 as the source node, we want
to recommend a target node list J𝑖 = [ 𝑗1, 𝑗2, ..., 𝑗𝑘] which is ranked according to the
prediction scores to build positive links. 𝑘 means the cut off number. Specifically, we
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Table 3–5 Node recommendation performance on Wiki. Names with ∗ refer to our methods. The
metrics for this task are Recall@k and Precision@k. We pick k=10,20,50 here. Compared to SiNE,

the absolute improvement of DVE is given in the table.

Dataset Wiki
Methods R@10 R@20 R@50 P@10 P@20 P@50
LINE 0.037 0.054 0.112 0.014 0.010 0.009
MF 0.011 0.024 0.048 0.005 0.005 0.004
SNE 0.002 0.005 0.011 8.4e-4 9.9e-4 9.5e-4
SiNE 0.033 0.055 0.111 0.012 0.010 0.009
SIDE 0.001 0.002 0.009 5.8e-4 5.2e-4 7.6e-4

SNEA-MR 0.002 0.004 0.014 9.4e-4 7.6e-4 0.011
BPWR∗ 0.049 0.087 0.174 0.018 0.016 0.014
SLVE∗ 0.013 0.037 0.101 0.004 0.006 0.007
DE∗ 0.043 0.073 0.152 0.018 0.016 0.014
DVE∗ 0.050(1.7%) 0.092(3.7%) 0.179(6.8%) 0.020(0.8%) 0.018(0.8%) 0.016(0.7%)

use the learned embeddings and calculate the prediction scores by the trained model on
the test nodes. The results are shown in Table 3–3,3–4,3–5, from which we see that:

3.3.4.3 Effects of Sparse Training Data

We investigate the effects of sparse training data onmodel performance. In particular,
we vary the ratio of the 80% training data as new train data and keep the 20% test data
fixed. Results are shown in Figure 3–4. From this figure, we see that:
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• DVE outperforms other baselines on all datasets. Compared to SiNE on Re-
call@50, DVE reaches a 2.6%, a 2.7% and a 6.8% improvement on Epinions,
Slashdot and Wiki, respectively. Compared to the baselines that ignore the
high-order topology, DVE integrally extracts both the first-order and high-order
topology, and learns more representative node embeddings for node recommen-
dation.

• Compared with other baselines (SiNE, SNE, MF), BPWR models the mediator
value of non-existent links. In this case, it has better ability to learn the relative
difference of node embeddings for better node recommendation performance.

• Generally, the performance of each model decreases with the decline of training
data, which indicates that sparse data causes deterioration to the model perfor-
mance. Meanwhile, DVE consistently shows the best performance in most sparse
cases, which indicates DVE has better adaptability with more sparse edges.

• For node recommendation task in Figure 3–4 (d)(e)(f), it is obvious that both
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Figure 3–4 Comparison of methods with different training data on Epinions, Slashdot and Wiki for
two tasks. AUC in (a)(b)(c) is the metric for link sign prediction task and Recall@50 in (d)(e)(f) is

the metric for node recommendation task.

MF and SNE perform worse than other methods (e.g. SiNE, BPWR) in most
cases, because MF and SNE are not ranking based loss. By contrast, SiNE
and BPWR are both based on ranking loss which is more advantageous in node
recommendation task.

3.3.4.4 Effects of Different Latent Dimensions

The latent dimension of embeddings is an important factor that accounts for the
model performance in network embedding. We thus conduct an experiment to investigate
the effects of different latent dimensions. The results are shown in Figure 3–5. From this
figure, we have the following observations:

• The proposed methods (BPWR, DE and DVE) consistently outperform other
baselines with different latent dimensions. DVE achieves the best performance in
most cases, because DVE is the only method that simultaneously captures both the
first-order and high-order topological information in signed directed networks.

• It is worthwhile to notice that DVE tends to reach a better performance at a
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Figure 3–5 Comparison of methods with different latent dimension on Epinions, Slashdot and Wiki
for two tasks. AUC in (a)(b)(c) is the metric for link sign prediction task and Recall@50 in (d)(e)(f)

is the metric for node recommendation task.

higher dimension in comparison with SiNE. DVE considering both the high-order
and the first-order topology requires a high dimension to encode the additional
information. As for the baselines that only consider the first-order topology,
when the dimension is high, the information in learned embeddings tends to be
redundant and yields unsatisfied performance on the test set.

MF SNE SiNE SIDE BPWR DVE-N DVE-H DVE-Q

Method

0

10

20

30

40

50

60

C
o
s
t 

T
im

e
 (

s
)/

E
p

o
c
h

0.72

57.57

13.84

17.58

4.08

13.67

7.09
5.63

(a) Epinions

MF SNE SiNE SIDE BPWR DVE-N DVE-H DVE-Q

Method

0

10

20

30

40

C
o
s
t 

T
im

e
 (

s
)/

E
p

o
c
h

0.41

43.91

4.83

10.61

2.46

6.76

3.55 3.10

(b) Slashdot

MF SNE SiNE SIDE BPWR DVE-N DVE-H DVE-Q

Method

0

10

20

30

40

50

60

70

80

R
u

n
n

in
g

 T
im

e
 (

s
)/

E
p

o
c
h

2.65

84.51

13.06

62.81

8.36

37.06

20.20

16.07

(c) Wiki

Figure 3–6 The empirical running time in each epoch of different methods. In this figure, DVE-N
indicates the non-parallel DVE, DVE-H means the half-parallel one and the DVE-Q denotes the

quarter-parallel one.
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3.3.4.5 Empirical Running Time Analysis

To investigate the time complexity, we conduct an experiment to compare the em-
pirical running time in each epoch of different methods. In particular, we set the training
batch number as 1,000 for all methods. All these methods are implemented with deep
learning programming frameworks such as Pytorch, Tensorflow or Theano. For DVE,
we implement it with Tensorflow and the sampling size 𝑛𝑛𝑜𝑖𝑠𝑒 of non-existent links is
5,5,20 on Epinions, Slashdot andWiki, respectively. Since DVE has parallel versions, we
thus denote DVE-N as the non-parallel one, DVE-H as the half-parallel one and DVE-Q
as the quarter-parallel one. We conduct the experiments 10 times on the same machine
with one Nvidia 1080-Ti GPU. The mean value of running time per epoch is reported in
Figure 5–10. From the table, we can summarize that:

3.3.5 Qualitative Visualization

3.3.5.1 Topology Preservation

Signed directed networks have complex topology pattern and there are some obvi-
ous topology characteristics. If we denote 𝑖 as a source node, N𝑝 (𝑖) as the positively
linked target neighbours, N𝑛(𝑖) as negatively linked target neighbours and N𝑢𝑛(𝑖) as the
non-linked neighbours, there are several characteristics of topology in signed directed
networks:
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• MF costs the least time because of its simple scheme. SNE and SIDE involving the
softmax operation consume much more time than other methods. The proposed
DVE in non-parallel version (DVE-N) generally costs more time than MF and
SiNE, because DVE is more complex in order to capture both the high-order and
first-order topological information.

• DVE-H and DVE-Q take much less time than DVE-N. They are even faster than
SiNE in some cases. Meanwhile, DVE provides better performance in comparison
with SiNE. In summary, the decoupling idea has advantages to accelerate the
training process as well as learns more representative node embeddings.

• N𝑝 (𝑖), N𝑛(𝑖) and N𝑢𝑛(𝑖) tend to be three clusters since they play different roles
for node 𝑖;

• Closeness between N𝑝 (𝑖) and node 𝑖 tends to be larger than that between N𝑢𝑛(𝑖)

and node 𝑖;
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(a) MF (b) SNE (c) SiNE

(d) BPWR (e) SLVE (f) DVE

Figure 3–7 t-SNE visualization of topology preservation in Epinions. The node in red color means
the sampled central node 𝑖 as source node. The nodes in blue color represents the positively linked
neighbours N𝑝 (𝑖) and nodes in green color are the negatively linked neighbours N𝑛 (𝑖). While the

yellow ones are randomly sampled non-linked nodes N𝑢𝑛 (𝑖) for center node 𝑖. Both N𝑝 (𝑖) and N𝑛 (𝑖)

are target nodes.

• Closeness between N𝑢𝑛(𝑖) and node 𝑖 is larger than that between N𝑛(𝑖) and node
𝑖.

In order to study whether the learned node embeddings preserve the above characteristics,
we conduct an experiment to visualize the node embeddings by t-SNE [124]. In particular,
we randomly sample a source node 𝑖 whose number of directly linked neighbours is larger
than 100 from Epinions. The positively linked neighbours N𝑝 (𝑖) and negatively linked
neighbours N𝑛(𝑖) are both from target nodes. Next, we also randomly sample some non-
linked nodes N𝑢𝑛(𝑖). Finally, we visualize the corresponding embeddings for 6 methods.
The results are shown in Figure 3–7. From the figure, we can summarize that:

• DVE has the best visualization performance in terms of the well clustered nodes
and clear closeness pattern among different types of nodes. For SNE in Figure 3–7
(b), we can see that the closest neighbours for the central node are non-linked
nodes and the positively linked nodes are not well clustered. For SiNE in Figure 3–
7 (c), the nodes are not well distributed and it is even impossible to recognize
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3.3.5.2 Closeness Distribution

In signed directed networks, positive edges mean trust or friend while negative edges
represent distrust or enemy, and the non-existent edges may both have the probability
to be positive ones or negative ones. According to Extended Structural Balance theory,
different types of node pairs pose different closeness distributions and we may have the
following rules:

Thereby, we conduct an experiment to investigate whether DVE has better ability of
preserving the closeness distribution pattern. In particular, we visualize the estimated
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some nodes. MF in Figure 3–7 (a) clusters the positively linked nodes and non-
linked nodes well but fails in negatively linked nodes. Compare to these three
competitive baselines, our proposed methods BPWR and DVE in Figure 3–7 (d)
and (f) are capable of learning the distributed and well clustered node embeddings.
The central node in red color are surrounded by the positively linked nodes in
blue color. The clear closeness pattern among different types of nodes as well
matches the fact that we have illustrated before. These advantages are benefited
from modeling both the first-order and high-order topology in signed directed
networks.

• DVE models the distinctive influence of messaging propagation in signed directed
networks, and yields better topology preservation. Compared to DVE in Figure 3–
7 (f), SLVE in Figure 3–7 (e) tends to mix positively linked nodes and non-linked
nodes. Moreover, the central node in red color is false positioned in the middle
part of positively linked nodes and non-linked nodes. This is because SLVE
applies homophily effects on different signs, which cannot model the distinctive
influence of message propagation. In contrary, DVE with decoupled variational
encoder can learn distinctive effects for different signs.

• The similarity between positively linked node pairs is expected to be large because
of the semantics of positive edges;

• The similarity between negatively linked node pairs should be small due to the
meaning of negative edges;

• For the node pairs with non-existent edges, they have potential to be either positive
or negative relation, and should be in the middle position between positively linked
node pairs and negatively linked ones.
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(a) MF (b) SNE (c) SiNE

(d) BPWR (e) SLVE (f) DVE

Figure 3–8 Estimated probability density function of different types of node pairs on Slashdot for 6
methods. The red curve means the estimated PDF (Probability Density Function) of cosine

similarity among positively linked node pairs. Similarly, the yellow curve and green curve denote the
estimated PDF among the negatively linked node pairs and non-linked node pairs, respectively.

Probability Density Function (PDF) of different node pairs on Slashdot for 6 methods. In
particular, we calculate the cosine similarity of all positively linked node pairs, negatively
linked node pairs and randomly sampled non-linked node pairs by leveraging the learned
embeddings from 6 methods. The estimated PDF curves of cosine similarity are shown
in Figure 3–8. The red curve, yellow curve and green curve indicate the estimated PDF
curve for positively linked node pairs, negatively linked node pairs and non-linked node
pairs, respectively. From this figure, we have the following observations:

• From Figure 3–8 (a)(b)(c), we can see that the baseline methods MF, SNE and
SiNE all exhibit high overlap of different curves, especially for SNE in Figure 3–8.
This indicates these methods are not capable of capturing the different closeness
distribution patterns of different node pairs. By contrast, considering the results
of BPWR and DVE in Figure 3–8 (d)(e)(f), it is obvious that these three curves
show different distributions. BPWR and DVE follow the closeness rules where
positively linked node pairs have highest cosine similarity, non-linked node pairs
have the second and negatively linked ones have the last.
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• In Figure 3–8 (d)(e), the estimated PDF of non-linked node pairs in green color
tends to have more overlap with the other curves, which may lead to indis-
tinguishable node embeddings. Instead, DVE in Figure 3–8 (f) presents both
distinguishable estimated PDF curves with smaller overlap and obvious cosine
similarity gap among different kinds of node pairs. This confirms that DVE can
better preserve the closeness distribution pattern in signed directed networks.

3.3.6 Ablation Study
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Figure 3–9 Performance of DVE with different generative functions. AUC in (a)(b)(c) refers to the
metric for link sign prediction task. Recall@50 in (d)(e)(f) is the metric for node recommendation

task.

3.3.6.1 Effects of Different Generative Functions

Remind that we assume the source node embeddings 𝑍𝑠 could be generated through
𝑍𝑠 = 𝑓𝑠 (𝑍

𝑝
𝑠 , 𝑍

𝑛
𝑠 ), where 𝑓𝑠 is the generative function. In order to explore the influence of

different generative functions, we conduct an experiment with various functions that are
defined in Table 3–6. Note that we only use 𝑓𝑠 as an example to illustrate the experiment
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Table 3–6 Different generative functions for 𝑓𝑠. In this table, [·, ·] means the concatenation operation
and𝑊𝐶 ∈ R2𝑑×2𝑑 is the weight of MLP for concatenation. ⊙ indicates the element-wise product

operation and𝑊𝐸 ∈ R𝑑×𝑑 is the weight of MLP for element-wise product.

type formula
concat 𝑍𝑠 = [𝑍 𝑝𝑠 , 𝑍𝑛𝑠 ]

concat+MLP 𝑍𝑠 = ([𝑍 𝑝𝑠 , 𝑍𝑛𝑠 ])𝑊𝐶

element-wise product 𝑍𝑠 = 𝑍
𝑝
𝑠 ⊙ 𝑍𝑛𝑠

element-wise product+MLP 𝑍𝑠 = (𝑍 𝑝𝑠 ⊙ 𝑍𝑛𝑠 )𝑊𝐸

setting here. The target node representation 𝑍𝑡 has similar formulation but the notations
are 𝑍 𝑝𝑡 , 𝑍𝑛𝑡 and 𝑓𝑡 . The results are shown in Figure 3–9.

From Figure 3–9, we observe two interesting phenomenons: 1) concatenation does
better than concatenation+MLP and element-wise product does better than element-
wise product+MLP; 2) concatenation performs better than element-wise product and
concatenation+MLP performs better than element-wise product+MLP. The main reason
for the first phenomenon may be that additional trainable parameters lead to over-fitting
on the sparse graph data. For the second phenomenon, it is because both 𝑍 𝑝𝑠 and 𝑍𝑛𝑠
are learned with distinctive deep neural networks, which indicates they are in different
latent spaces. The aligned element-wise product may lead to information loss to represent
source node embeddings 𝑍𝑠. Therefore, concatenation operation tends to be the most
suitable choice among them in terms of both efficiency and easy implementation.

3.3.6.2 Hyper-Parameter Sensitivity

In DVE, the two hyper-parameters are the number of GCN layer 𝑛𝐺𝐶𝑁 and the
noise sampling size 𝑛𝑛𝑜𝑖𝑠𝑒. 𝑛𝐺𝐶𝑁 controls the order of a node’s local structures and
𝑛𝑛𝑜𝑖𝑠𝑒 influences the sampling size of non-existent links. We here investigate the model
sensitivity on these two hyper-parameters. The results are show in Figure 3–10, from
which we have the following observations:
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• DVE achieves its best performance on different datasets when 𝑛𝐺𝐶𝑁 = 2, 3 and
𝑛𝑛𝑜𝑖𝑠𝑒 = 5, 20. The slight change of 𝑛𝐺𝐶𝑁 indicates that most useful topological
information is within low-order neighborhoods. While the noise sampling size
𝑛𝑛𝑜𝑖𝑠𝑒 varies a lot on different datasets, which means 𝑛𝑛𝑜𝑖𝑠𝑒 is better chosen
according to the datasets.
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Figure 3–10 Performance of DVE with different parameter settings. AUC in (a)(b)(c) is the metric
for link sign prediction task and Recall@50 in (d)(e)(f) is the metric for node recommendation task.

• From Figure 3–10 (a)(b)(c) for link sign prediction task, we see that the perfor-
mance of link sign prediction does not change a lot (0.958∼ 0.964 on Epinions and
0.88∼ 0.90 on Slashdot and 0.86∼ 0.88 on Wiki). This slight change indicates that
the link sign prediction performance is robust to 𝑛𝐺𝐶𝑁 and 𝑛𝑛𝑜𝑖𝑠𝑒. However, as
shown in Figure 3–10 (d)(e)(f), the node recommendation performance changes
obviously (0.10∼ 0.06 on Epinions and 0.14∼ 0.06 on Slashdot and 0.09∼ 0.17
on Wiki). This is because the node recommendation is instinctively measured
from model training, while a binary classifier is additionally trained for link sign
prediction. The binary classifier reduces model sensitivity on 𝑛𝐺𝐶𝑁 and 𝑛𝑛𝑜𝑖𝑠𝑒.

3.3.6.3 Dropout Regularization

In our method, we apply Dropout for regularization. In order to study the influence
of Dropout, we investigate the model performance with different Dropout rates along the
training process. The results are shown in Figure 3–11.

From Figure 3–11, we can see that different Dropout rates may have different
influence on different datasets. In Figure 3–11 (a)(d) for Epinions, it is obvious that
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Figure 3–11 Performance of DVE with different dropout rates. Dropout rate=0.0 means dropout
keep probability is 1.0 during training. AUC in (a)(b)(c) is the metric for link sign prediction task

and Recall@50 in (d)(e)(f) is the metric for node recommendation task.

DVE reaches its best performance when dropout=0.0, which means the Dropout keep
probability equals 1.0 is better for Epinions. The reason for this may be that the training
data is enough to model the data distribution and no Dropout encourages the model to
fit data better. In contrary, in Figure 3–11 (b)(e) for Slashdot and Figure 3–11 (c)(f) for
Wiki, Dropout rate equals 0.2 facilitates better performance, which indicates DVE needs
necessary regularization on these two datasets to avoid over-fitting.

3.4 Summary

In this Chapter, we study the representation learning problem on signed directed
networks. In particular, we reformulate the problem from a variational auto-encoding
perspective and further propose a decoupled variational embedding (DVE) method to
learn representative node embeddings. DVE is capable of preserving both the first-
order and high-order topology for signed directed networks. Extensive experiments on
three real-world datasets of two tasks proves the superiority of DVE compared to recent
competitive baselines.
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Remind that DVE constructs source node embeddings 𝑍𝑠 just by the limited con-
catenation operation of two latent embeddings 𝑍 𝑝𝑠 and 𝑍𝑛𝑠 . We will explore how to better
model the interaction between 𝑍 𝑝𝑠 and 𝑍𝑛𝑠 for better performance in future.
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Chapter 4 Learning on Attribute-Missing Graphs

Graph-structured data are heterogeneous in nature, with correlated information about
graph structures and node attributes. Given a graph with attributes, based on the com-
pleteness of the node attributes, we may classify the graph into the three types shown in
Figure 4–1. 1) Attribute-complete graph: every node is with complete set of attributes;
2) Attribute-incomplete graph : every node is with a non-empty set of attributes; 3)
Attribute-missing graph : attributes of partial nodes are entirely missing.

The attribute-missing one is related to real-world applications. For example, in cita-
tion networks, raw attributes or detailed descriptions of some papers may be inaccessible
due to the copyright protection. In social networks, user profiles may be unavailable
because of the privacy protection. Existing graph learning algorithms on this graph type
either face the sampling bias issue of graph structures or are not compatible for learning.
In this Chapter, we study the learning problems on attribute-missing graphs and propose
a novel distribution matching based graph learning framework. We perform extensive
experiments on seven benchmark datasets. The experimental results have demonstrated
that the proposed framework achieves superior learning performance.

4.1 Introduction

In current stage of DLG, there are limited studies investigating learning on attribute-
missing graphs. Existing graph learningmethods such as the randomwalk based [11, 17],
the attributed randomwalk based [39-40] andGNN[1-2, 26, 125-126] are not specified for
attribute-missing graphs and are limited in solving the corresponding learning problems.
Random walk based methods emerged as large-scale and effective graph embedding
approaches which only take structures into consideration. They cannot take the advantage
of rich information from node attributes [1]. Although the attributed random walk based
methods [39-40] can potentially deal with the attribute-missing graph, these methods
rely on high-quality randomwalks and require carefully designed sampling strategies and
fine-tuned hyper-parameters [41]. GNN leverages structures and attributes as a whole in a
unified framework which is shown in Figure 4–2 (a) [1, 8, 27, 125]. On attribute-missing
graphs with only partial nodes associated with attributes, GNN can work with some
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(a) Attribute-complete (b) Attribute-incomplete (c) Attribute-missing

Figure 4–1 Given a graph with attributes, based on the completeness of the node attributes, we may
classify the graph into three types.

E

D

(a) Recent GNN (b) shared-latent space assumption (c) Our SAT

Figure 4–2 The comparison between recent GNN and our SAT, together with the illustration of our
shared-latent space assumption. (a)means recent GNN usually requires structures and attributes as a
whole input. 𝐸 is the encoder and 𝐷 is the decoder. (b) shows our shared-latent space assumption

where 𝐸𝑋 and 𝐸𝐴 are two encoders and 𝐷𝑋 and 𝐷𝐴 are two decoders. (c) shows the general
architecture of the proposed SAT.

attribute-filling tricks such as zero-filling. However, these tricks would introduce noise
to the learning process. Therefore, designing a learning algorithm for attribute-missing
graphs is a burning issue to the graph learning community.

One possible way to solve the issue is to input structures and attributes in a decou-
pled scheme and simultaneously allow the joint distribution modeling of structures and
attributes. Structures and attributes are two resources that come from two marginal distri-
butions. The coupling theory [127] states that there is an infinite set of joint distributions
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that can reach the given marginal distributions in general. Therefore, it is impossible
for us to perform the joint distribution modeling without any assumption. Besides, the
graph structured data has two characteristics: 1) the structures and attributes come from
two heterogeneous spaces (heterogeneity); 2) the node attributes can either be real-valued
or categorical (discontinuity). These two characteristics hinder us from achieving joint
distribution modeling in data space by existing techniques such as adversarial training
in data space [52, 128-129]. To this end, we make a share-latent-space assumption on
graphs which assumes that the heterogeneous structures and attributes are related to each
other and come from the same latent space (illustrated in Figure 4–2 (b)).

In this Chapter, we achieve the shared-latent space assumption by distribution
matching techniques and further develop a novel distribution matching based GNN for
learning on attribute-missing graphs, called structure-attribute transformer (SAT). The
general architecture of SAT is shown in Figure 4–2 (c). SAT leverages structures and
attributes in a decoupled scheme and achieves the joint distributionmodeling bymatching
the latent codes of structures and attributes. It can not only perform the link prediction task
but also retrieve themissing attributes. We also call the latter as node attribute completion
which benefits several subsequent tasks such as node classification and profiling. The
node attribute completion is a new problem on graphs which distinguishes from other
existing problems and requires specific evaluation measures. Main contributions of this
paper can be summarized as follows:
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• We investigate the learning problems on attribute-missing graphs. In this sce-
nario, we make a shared-latent space assumption on graphs and develop a novel
distribution matching based GNN called SAT. SAT is a generic framework that
can be equipped with other popular GNN backbones such as GCN and GAT;

• We introduce a new task called node attribute completion on graphs which aims to
complete the missing node attributes and benefit other subsequent tasks. To quan-
tify the performance of node attribute completion, practical evaluation measures
are introduced including both node classification in the node level and profiling
in the attribute level;

• Extensive experiments on seven real-world datasets show that our method can not
only perform well on link prediction task but also restore high-quality attributes
that benefit subsequent tasks such as node classification and profiling.
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4.2 SAT: Structure-Attribute Transformer

4.2.1 Problem Definition

Let G = (V, 𝐴, 𝑋) be a graph with node set V = {𝑣1, 𝑣2, ..., 𝑣𝑁 }, 𝐴 ∈ 𝑅𝑁×𝑁 be
the graph adjacency matrix and 𝑋 ∈ R𝑁×𝐹 be the node attribute matrix. Note that the
element in 𝑋 could be either categorical values or real values. LetV𝑜 = {𝑣𝑜1 , 𝑣𝑜2 , ..., 𝑣𝑜𝑁𝑜

}
be the set of attribute-observed nodes. Let 𝑥𝑜𝑖 ∈ R𝐹 and 𝑎𝑜𝑖 be the attribute vector
and structural information (the neighbors of a node) of node 𝑣𝑜𝑖 , respectively. Then,
for V𝑜, the attribute information is denoted as 𝑋𝑜 = {𝑥𝑜0 , 𝑥𝑜1 , ..., 𝑥𝑜𝑁𝑜

} and structural
information is denoted as 𝐴𝑜 = {𝑎𝑜0 , 𝑎𝑜1 , ..., 𝑎𝑜𝑁𝑜

}. Let V𝑢 = {𝑣𝑢1 , 𝑣𝑢2 , ..., 𝑣𝑢𝑁𝑢
} be the set

of attribute-missing nodes. Let 𝑥𝑢𝑖 ∈ R𝐹 and 𝑎𝑢𝑖 be the attribute vector and structural
information of node 𝑣𝑢𝑖 , respectively. Then, for V𝑢, the attribute information is denoted
as 𝑋𝑢 = {𝑥𝑢0 , 𝑥𝑢1 , ..., 𝑥𝑢𝑁𝑢

} and structural information is denoted as 𝐴𝑢 = {𝑎𝑢0 , 𝑎𝑢1 , ..., 𝑎𝑢𝑁𝑢
}.

According to our definition, 𝐴 is another expression of 𝐴𝑜 and 𝐴𝑢. 𝑋 is another expression
of 𝑋𝑜 and 𝑋𝑢. To clarify more clearly, we have V = V𝑢 ∪ V𝑜, V𝑢 ∩ V𝑜 = ∅ and
𝑁 = 𝑁𝑜 + 𝑁𝑢. Learning on attribute-missing graphs has several applications such as
link prediction and the newly introduced node attribute completion. In link prediction,
we expect to predict the missing links in 𝐴. In node attribute completion, we aim to
restore the missing node attributes 𝑋𝑢 based on the observed node attributes 𝑋𝑜 and
graph structures 𝐴.

4.2.2 Overview

Graph-structured data include two perspectives of representations: structures and
attributes. On attribute-missing graphs, attributes of some nodes might be entirely
missing. One possible way to learn on attribute-missing graphs is to input structures and
attributes in a decoupled scheme and simultaneously allow the joint distributionmodeling
of structures and attributes. In particular, if we denote 𝑥𝑖 and 𝑎𝑖 as the attribute vector
and structural information of node 𝑣𝑖, we can see (𝑥𝑖, 𝑎𝑖) is a paired sample to describe
node 𝑣𝑖. The joint log-likelihood of the attributes and structures is composed of a sum
over the likelihoods of individual datapoints

∑
𝑖 𝑝 𝜃 (𝑥𝑖, 𝑎𝑖), where 𝑝 𝜃 (𝑥𝑖, 𝑎𝑖) is the joint

probability density function. Inspired by the idea of maximizing the marginal likelihood
in VAE [100], if 𝑧𝑥 and 𝑧𝑎 are the latent factors of 𝑥𝑖 and 𝑎𝑖, respectively, log 𝑝 𝜃 (𝑥𝑖, 𝑎𝑖)
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Figure 4–3 Architecture of SAT. SAT first transforms attributes and structures into the latent space,
then aligns the paired latent representations via adversarial distribution matching, and finally

decodes to the original attributes and structures, namely the paired structure-attribute matching.

can be formulated as:

log 𝑝 𝜃 (𝑥𝑖, 𝑎𝑖) =𝐷𝐾𝐿 [𝑞𝜙 (𝑧𝑥 , 𝑧𝑎 |𝑥𝑖, 𝑎𝑖) | |𝑝(𝑧𝑥 , 𝑧𝑎 |𝑥𝑖, 𝑎𝑖)]

+ L(𝜃, 𝜙; 𝑥𝑖, 𝑎𝑖)
(4–1)

where the first term is the KL divergence of the approximate posterior 𝑞𝜙 (𝑧𝑥 , 𝑧𝑎 |𝑥𝑖, 𝑎𝑖)
from the true posterior 𝑝(𝑧𝑥 , 𝑧𝑎 |𝑥𝑖, 𝑎𝑖). Since this KL term is non-negative, the second
term is the ELBO on the log-likelihood log 𝑝 𝜃 (𝑥𝑖, 𝑎𝑖). And L(𝜃, 𝜙; 𝑥𝑖, 𝑎𝑖) is written as:

L(𝜃, 𝜙; 𝑥𝑖, 𝑎𝑖) =E𝑞𝜙 (𝑧𝑥 ,𝑧𝑎 |𝑥𝑖 ,𝑎𝑖) [log 𝑝 𝜃 (𝑥𝑖, 𝑎𝑖 |𝑧𝑥 , 𝑧𝑎)]

− 𝐷𝐾𝐿 [𝑞𝜙 (𝑧𝑥 , 𝑧𝑎 |𝑥𝑖, 𝑎𝑖) | |𝑝(𝑧𝑥 , 𝑧𝑎)] (4–2)

where 𝑝 𝜃 (𝑥𝑖, 𝑎𝑖 |𝑧𝑥 , 𝑧𝑎) denotes the conditional distribution parameterized by 𝜃. The first
term in Eq. 4–2 indicates the joint reconstruction loss where 𝑧𝑥 , 𝑧𝑎 encoded from 𝑥𝑖, 𝑎𝑖 are
used to reconstruct 𝑥𝑖, 𝑎𝑖. The second term in Eq. 4–2 indicates the prior regularization
loss where 𝑞𝜙 (𝑧𝑥 , 𝑧𝑎 |𝑥𝑖, 𝑎𝑖) is expected to match the prior distribution 𝑝(𝑧𝑥 , 𝑧𝑎). The
proposed SAT implements the the joint reconstruction loss via a paired structure-attribute
matching strategy and approximates and the prior regularization loss via an adversarial
distribution matching strategy. The architecture of SAT is shown in Figure 4–3. In the
following sections, we provide details on the two strategies, followed by the objective
function and implementation.
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4.2.3 Paired Structure-Attribute Matching

The first term E𝑞𝜙 (𝑧𝑥 ,𝑧𝑎 |𝑥𝑖 ,𝑎𝑖) [log 𝑝 𝜃 (𝑥𝑖, 𝑎𝑖 |𝑧𝑥 , 𝑧𝑎)] in Eq. 4–2 consists of an ap-
proximate posterior 𝑞𝜙 (𝑧𝑥 , 𝑧𝑎 |𝑥𝑖, 𝑎𝑖) parameterized by 𝜙 and a conditional distribution
𝑝 𝜃 (𝑥𝑖, 𝑎𝑖 |𝑧𝑥 , 𝑧𝑎) parameterized by 𝜃. The posterior 𝑞𝜙 (𝑧𝑥 , 𝑧𝑎 |𝑥𝑖, 𝑎𝑖) is rather complicated
to infer since the two latent variables 𝑧𝑥 and 𝑧𝑎 are coupled together. In order to solve
this complicated posterior, recent image-to-image translation works [129-131] employ
the mean field theory to approximate the posterior at a low computational cost. Similarly,
we make an analogy of the nodes with two different views (i.e. the attribute view and the
structure view) to objects with two different image views and define the posterior as:

𝑞𝜙 (𝑧𝑥 , 𝑧𝑎 |𝑥𝑖, 𝑎𝑖)
def
==== 𝑞𝜙𝑥

(𝑧𝑥 |𝑥𝑖, 𝑎𝑖)𝑞𝜙𝑎 (𝑧𝑎 |𝑥𝑖, 𝑎𝑖) = 𝑞𝜙𝑥
(𝑧𝑥 |𝑥𝑖)𝑞𝜙𝑎 (𝑧𝑎 |𝑎𝑖) (4–3)

where 𝑞𝜙𝑥
(𝑧𝑥 |𝑥𝑖) indicates the encoder 𝐸𝑋 that encodes 𝑥𝑖 to 𝑧𝑥 . Similarly, 𝑞𝜙𝑎 (𝑧𝑎 |𝑎𝑖)

indicates the encoder 𝐸𝐴 that encodes 𝑎𝑖 to 𝑧𝑎. In order to solve the conditional distribu-
tion, we make the following shared-latent space assumption on graphs, which allows us
to perform the joint distribution modeling in latent space.
Shared-latent Space Assumption: In graph structured data, each node’s attributes and
structures are correlated together and can be represented with the same distribution in a
shared-latent space
This assumption indicates the latent variables 𝑧𝑥 and 𝑧𝑎 are equivalent to each other. It is
also illustrated in Figure 4–2 (b), with which we have:

Proposition 4.1. Given latent variables 𝑧𝑥 and 𝑧𝑎, the observations 𝑥𝑖 and 𝑎𝑖 are
conditional independent.

With Proposition 4.1 and the assumption, we have:

𝑝 𝜃 (𝑥𝑖, 𝑎𝑖 |𝑧𝑥 , 𝑧𝑎)
Proposition 4.1
============= 𝑝 𝜃𝑥 (𝑥𝑖 |𝑧𝑥 , 𝑧𝑎)𝑝 𝜃𝑎 (𝑎𝑖 |𝑧𝑥 , 𝑧𝑎)

Shared-latent space assumption
========================= 𝑝 𝜃𝑥 (𝑥𝑖 |𝑧𝑥)𝑝 𝜃𝑎 (𝑎𝑖 |𝑧𝑎)

=
√
𝑝 𝜃𝑥 (𝑥𝑖 |𝑧𝑥)𝑝 𝜃𝑥 (𝑥𝑖 |𝑧𝑎)

√
𝑝 𝜃𝑎 (𝑎𝑖 |𝑧𝑎)𝑝 𝜃𝑎 (𝑎𝑖 |𝑧𝑥) (4–4)

where 𝜃𝑥 is the parameter of the shared decoder 𝐷𝑋 and 𝜃𝑎 is the parameter of the shared
decoder 𝐷𝐴. Eq. 4–4 indicates a paired structure-attribute matching strategy where 𝑧𝑥 is
used to reconstruct 𝑥𝑖 and 𝑎𝑖, and 𝑧𝑎 is used to reconstruct 𝑎𝑖 and 𝑥𝑖. It is worthwhile to
mention that the shared-latent space assumption is not the best one since node attributes
and structures might not be fully overlapped. That’s why we use distribution matching
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scheme to formulate this assumption rather than discriminative approaches, to provide
certain flexibility and uncertainty in learning. The experiments in Section 4.3 can also
confirm the effectiveness of our method.

Taking the above into consideration, we write E𝑞𝜙 (𝑧𝑥 ,𝑧𝑎 |𝑥𝑖 ,𝑎𝑖) [log 𝑝 𝜃 (𝑥𝑖, 𝑎𝑖 |𝑧𝑥 , 𝑧𝑎)]
in Eq. 4–2 as:

E𝑞𝜙 (𝑧𝑥 ,𝑧𝑎 |𝑥𝑖 ,𝑎𝑖) [log 𝑝 𝜃 (𝑥𝑖, 𝑎𝑖 |𝑧𝑥 , 𝑧𝑎)] =
1
2
{
E𝑥𝑖∼𝑝𝑋 [E𝑞𝜙𝑥 (𝑧𝑥 |𝑥𝑖) [log 𝑝 𝜃𝑥 (𝑥𝑖 |𝑧𝑥)]]+

E𝑎𝑖∼𝑝𝐴 [E𝑞𝜙𝑎 (𝑧𝑎 |𝑎𝑖) [log 𝑝 𝜃𝑎 (𝑎𝑖 |𝑧𝑎)]]+

E𝑎𝑖∼𝑝𝐴 [E𝑞𝜙𝑎 (𝑧𝑎 |𝑎𝑖) [log 𝑝 𝜃𝑥 (𝑥𝑖 |𝑧𝑎)]]+

E𝑥𝑖∼𝑝𝑋 [E𝑞𝜙𝑥 (𝑧𝑥 |𝑥𝑖) [log 𝑝 𝜃𝑎 (𝑎𝑖 |𝑧𝑥)]]
}

(4–5)

The optima of of Eq. 4–5 is the same as Eq. 4–5 multiplied by a constant. Thereby, for
simplified expression, we write the joint reconstruction loss as:

min
𝜃𝑥 , 𝜃𝑎 ,𝜙𝑥 ,𝜙𝑎

L𝑟 = − E𝑥𝑖∼𝑝𝑋 [E𝑞𝜙𝑥 (𝑧𝑥 |𝑥𝑖) [log 𝑝 𝜃𝑥 (𝑥𝑖 |𝑧𝑥)]]

− E𝑎𝑖∼𝑝𝐴 [E𝑞𝜙𝑎 (𝑧𝑎 |𝑎𝑖) [log 𝑝 𝜃𝑎 (𝑎𝑖 |𝑧𝑎)]]

− 𝜆𝑐 · E𝑎𝑖∼𝑝𝐴 [E𝑞𝜙𝑎 (𝑧𝑎 |𝑎𝑖) [log 𝑝 𝜃𝑥 (𝑥𝑖 |𝑧𝑎)]]

− 𝜆𝑐 · E𝑥𝑖∼𝑝𝑋 [E𝑞𝜙𝑥 (𝑧𝑥 |𝑥𝑖) [log 𝑝 𝜃𝑎 (𝑎𝑖 |𝑧𝑥)]] . (4–6)

where the first two terms indicate the self-reconstruction stream. It means the information
from attributes (resp. structures) is decoded as attributes (resp. structures). The last two
terms indicate the cross-reconstruction stream. It means the information from attributes
(resp. structures) is decoded as attributes (resp. structures). 𝜆𝑐 is a hyper-parameter to
weight the cross reconstruction stream.

4.2.4 Adversarial Distribution Matching

The second term 𝐷𝐾𝐿 [𝑞𝜙 (𝑧𝑥 , 𝑧𝑎 |𝑥𝑖, 𝑎𝑖) | |𝑝(𝑧𝑥 , 𝑧𝑎)] in Eq. 4–2 indicates a prior
distribution matching for the latent factors 𝑧𝑥 and 𝑧𝑎. Learning joint prior is a specific
topic that could be explored in the future with the guidance of recent works [116-118],
here we set 𝑝(𝑧𝑥 , 𝑧𝑦) = 𝑝(𝑧)𝑝(𝑧) for simplicity, where 𝑝(𝑧) is the prior distribution for
the shared-latent space. Taking Eq. 5–4 into consideration, the prior regularization term
is formulated as:

𝐷𝐾𝐿 [𝑞𝜙 (𝑧𝑥 , 𝑧𝑎 |𝑥𝑖, 𝑎𝑖) | |𝑝(𝑧𝑥 , 𝑧𝑎)] = 𝐷𝐾𝐿 [𝑞𝜙𝑥
(𝑧𝑥 |𝑥𝑖) | |𝑝(𝑧)]

+𝐷𝐾𝐿 [𝑞𝜙𝑎 (𝑧𝑎 |𝑎𝑖) | |𝑝(𝑧)] (4–7)
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Algorithm 4–1 Structure-attribute Transformer (SAT)
Input: A graph G, the adjacency matrix 𝐴 ∈ 𝑅𝑁×𝑁 , the attributes of attribute-observed

nodes 𝑋𝑜 ∈ R𝑁×𝐹 , the learning hyper-parameters such as 𝜆𝑐.
Output: The restored node attributes 𝑋𝑢 ∈ 𝑅𝑁𝑢×𝐹 or missing links in 𝐴.
1: while not converged do
2: # encoding for attributes and structures
3: Calculate the latent codes 𝑍𝑋𝑜 by encoder 𝐸𝑋 with 𝑋𝑜 as input.
4: Calculate the latent codes 𝑍𝐴 by encoder 𝐸𝐴 with 𝐴 as input.
5: # distribution matching
6: Make embedding lookup operation to obtain 𝑍𝐴𝑜 from 𝑍𝐴.
7: Get samples for adversarial distribution matching from Gaussian prior 𝑧𝑝 ∼

N(0, 1).
8: Conduct the paired structure-attribute matching by Eq.4–6 and adversarial dis-

tribution matching by Eq.4–8.
9: # objective function and optimization
10: Calculate loss by Eq.4–9 and optimize the network parameters.
11: end while

Eq. 5–8 states the regularization that matches 𝑞𝜙𝑥
(𝑧𝑥 |𝑥𝑖) and 𝑞𝜙𝑎 (𝑧𝑎 |𝑎𝑖) to prior 𝑝(𝑧).

Since it is not easy to derive explicit formulations for complicated priors in KL di-
vergence, SAT employs the adversarial distribution matching that can impose an arbitrary
prior distribution for the latent codes without hard derivation [52]. Following [52], the
prior regularization loss in adversarial distribution matching is written as:

min
𝜓

max
𝜙𝑥 ,𝜙𝑎

L𝑎𝑑𝑣 = − E𝑧𝑝∼𝑝 (𝑧) [logD(𝑧𝑝)]

− E𝑧𝑥∼𝑞𝜙𝑥 (𝑧𝑥 |𝑥𝑖) [log(1 − D(𝑧𝑥))]

− E𝑧𝑝∼𝑝 (𝑧) [logD(𝑧𝑝)]

− E𝑧𝑎∼𝑞𝜙𝑎 (𝑧𝑎 |𝑎𝑖) [log(1 − D(𝑧𝑎))] (4–8)

where 𝜓 is the parameters of the shared discriminator D. 𝑧𝑝 indicates true samples
sampled from the prior 𝑝(𝑧) for adversarial learning.

The employed adversarial distribution matching in Eq. 4–8 has several advantages
compared to the KL divergence in Eq. 4–7. The KL divergence tries to match 𝑞𝜙𝑥

(𝑧𝑥 |𝑥𝑖)
to prior 𝑝(𝑧), which will have risk to lose the information from input 𝑥𝑖. By contrast, the
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adversarial distribution matching in latent space makes the posterior 𝑞𝜙𝑥
(𝑧𝑥 |𝑥𝑖) to be the

aggregated posterior 𝑞𝜙𝑥
(𝑧𝑥), which encourages 𝑧𝑥 to match the whole distribution of

𝑝(𝑧) [51-52]. Accordingly, 𝑧𝑎 can match the whole distribution of 𝑝(𝑧) in similar way.
Meanwhile, the mode collapse problem in adversarial learning could be avoided since
our method involves a reconstruction operation which encourages the latent embeddings
to match both the prior and the entire true data distribution [110].

4.2.5 Objective Function and Implementation

Taking the above into summary, the objective function of SAT is:

min
Θ

max
Φ

L = L𝑟 + L𝑎𝑑𝑣 (4–9)

where Θ = {𝜃𝑥 , 𝜃𝑎, 𝜙𝑥 , 𝜙𝑎, 𝜓} and Φ = {𝜙𝑥 , 𝜙𝑎}. By leveraging the shared-latent space
assumption, SAT leverages the correlation between observed node attributes and struc-
tures and thus facilitates learning on attribute-missing graphs. It is worthwhile to point
out that SAT cannot handle attribute-incomplete graphs. On attribute-incomplete graphs,
the incomplete node attributes would cause too much information gap for structures and
attributes, and SAT based on the shared-latent space assumption is not appropriate.

For the implementation, SAT consists of three components: (1) self-reconstruction
stream, (2) cross-reconstruction stream, and (3) adversarial distribution matching. In
the self-reconstruction stream, both the observed attributes 𝑋𝑜 and structures 𝐴 are
encoded as latent codes 𝑍𝑋𝑜 and 𝑍𝐴, respectively. Then 𝑍𝑋𝑜 and 𝑍𝐴 are decoded as 𝑋𝑜

and 𝐴, respectively. In the cross-reconstruction stream, the structure embedding 𝑍𝐴𝑜
of attribute-observed nodes are obtained through an embedding lookup layer from 𝑍𝐴.
Then, the latent codes 𝑍𝑋𝑜 and 𝑍𝐴𝑜 are decoded as 𝐴𝑜 and 𝑋𝑜, respectively. These
appear in Figure 5–2, in which 𝐸𝑋 is a two-layer MLP, 𝐸𝐴 is a two-layer GNN, 𝐷𝑋 is
a two-layer MLP and 𝐷𝐴 is a two-layer MLP followed by a sigmoid function. In the
adversarial distribution matching module, we apply adversarial learning between 𝑍𝑋𝑜 ,
𝑍𝐴 and samples from a standard normal distributionN(0, 1), sharing the same two-layer
MLP discriminator. And Relu is used as the non-linear activation function for all three
modules. The concise description of SAT is shown in Algorithm 4–1.

4.2.6 Time Complexity Analysis

Stochastic training of DNN methods involves two steps, the forward and backward
computations. SAT includes a paired structure-attribute matching strategy and an adver-
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Table 4–1 The statistics of seven datasets. In this table, “attribute form” means the attribute style.
“#avg hot num” means the average hot number for multi-hot attributes of nodes. #class indicates the

number of categories.

Cora Citeseer Steam Pubmed
Coauthor

-CS
Amazon
-Computer

Amazon
-Photo

#nodes 2,708 3,327 9,944 19,717 18,333 13,752 7,650
#edges 5,278 4,228 266,981 44,324 81,894 245,861 119,081

#graph density 0.07% 0.04% 0.26% 0.01% 0.02% 0.13% 0.20%
#attribute dim 1,433 3,703 352 500 6,805 767 745
#avg hot num 18.17 31.6 8.45 - - 267.23 258.81

#class 7 6 - 3 15 10 8
attribute form categorical categorical categorical real-valued real-valued categorical categorical

sarial distribution matching strategy. We thus decompose the time complexity of SAT
into two parts, namely the time complexity of the paired structure-attribute matching and
the time complexity of the adversarial distribution matching.

In the paired structure-attribute matching, a GNN backbone encodes the structures
into latent codes and a MLP module encodes the attributes into latent embeddings.
Following the analysis of GNNmodels in [48], the time complexity of the GNN backbone
is O(|E|), where |E | denote the number of edges. And for the MLP module that encodes
node attributes, the time complexity is O(𝑁𝑜𝐹), where 𝑁𝑜 is the number of attribute-
observed nodes and 𝐹 is the attribute dimension. Since the GNN backbone and the MLP
module can be calculated parallelly, then the time complexity for the paired structure-
attribute matching is O(max{|E |, 𝑁𝑜𝐹}). After the calculation of the paired structure-
attribute matching, the adversarial distribution matching can be conducted to impose a
prior distribution on the latent codes. The time complexity for the adversarial distribution
matching is O(𝑁𝑜𝑑), where 𝑑 is the latent dimension.

In summary, the time complexity of the non-parallel SAT is O(|E| + 𝑁𝑜𝐹 + 𝑁𝑜𝑑),
and the parallel counterpart is O(max{|E |, 𝑁𝑜𝐹} + 𝑁𝑜𝑑). Note that SAT has a flexible
GNN backbone such as GCN [1] and GraphSage [2]. This indicates SAT can be scalable
to much larger datasets when a scalable GNN backbone is employed.
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4.3 Experiments and Analysis

In this section, we will first introduce the datasets and baselines as well as the exper-
imental settings. Then, the experiments for node attribute completion and link prediction
are introduced. We further provide some visualization results for better comprehension
of SAT.

4.3.1 Dataset Description

We evaluate the proposed SAT on seven real-world datasets to quantify the perfor-
mance.
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• Cora. Cora [132] is a citation graph with 2,708 papers as nodes and 10,556
citation links as edges. The attribute vector of each node indicates whether the
corresponding paper contains specific word tokens, and it is represented as a
multi-hot vector with dimension 1,433.

• Citeseer. Citeseer [133] is also a citation graph which contains 9,228 edges and
3,327 papers. After processing of the content, 3,703 distinct words compose the
attribute corpus. Each attribute vector is formed from the corpus and expressed
by a multi-hot vector with dimension 3,703.

• Steam. Steam is a dataset collected from a game website with user-bought
behaviors of 9,944 items and 352 tags. We count the co-purchase frequency
between every two games and make a sparse item co-purchase graph through
binarization operation with the threshold as 10. After that, we obtain 533,962
edges for this graph. The tag corpus constructs the multi-hot attribute vector for
each item with dimension 352.

• Pubmed. Pubmed [134] is a citation graph with 19,717 nodes and 88,651 edges.
Each attribute vector is described by a Term Frequency-Inverse Document Fre-
quency (TF-IDF) vector from 500 distinct terms.

• Coauthor-CS. Coauthor-CS [135] is a coauthor dataset based on the Microsoft
Academic Graph from the KDD Cup 2016 challenge. In this dataset, we have
18,333 nodes that are authors and 81,894 edges that mean two authors are con-
nected if they coauthored a paper. Node attributes are frequencies of the 6,805
keywords from each author’s papers.

• Amazon-Computer and Amazon-Photo. Amazon-Computer [135] and Amazon-
Photo [135] are from segments of the Amazon co-purchase graph [136]. In
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Amazon-computer, there are 13,752 items and 245,861 edges. In Amazon-Photo,
there are 7,650 items and 119,081 edges. For both datasets, multi-hot bag-of-
words encoded from the product reviews construct the multi-hot node attributes.

Among these datasets, attributes of Cora, Citeseer, Steam, Amazon-Computer and
Amazon-Photo are categorical and represented as multi-hot vectors. For Pubmed and
Coauthor-CS, attributes are real-valued and represented as scalars. More details are
shown in Table 4–1.

4.3.2 Baselines

Node Attribute Completion. Since there is no specialized method for the node
attribute completion task, we compare our SATwith the following representative baselines
selected from five aspects: NeighAggre is from the classical aggregation aspect, VAE
is from the auto-encoding aspect, GNN methods are from the GNN-encoding aspect,
GraphRNA and ARWMF are from the attributed random walking aspect and Hers is
from the cold-start recommendation aspect.
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• NeighAggre. NeighAggre [137] aggregates the neighbors’ attributes for nodes
without attributes through mean pooling. NeighAggre is a classical profiling
algorithm, which is simple, but usually provides strong empirical performance.
When a neighbor’ attributes are missing, we do not regard it as the aggregation
node. We use the one-hop neighbors as a node’s neighbors here.

• VAE. VAE [100] is one well-known generative method. In our setting, we make
normal VAE for the attribute-observed nodes, encoding attributes of these nodes
as latent codes. For test nodes without any attribute, we use neighbor aggregation
like NeighAggre in the latent space to obtain the aggregated latent codes for test
nodes. Then, the decoder in VAE can be used to restore attributes for test nodes.

• GCN, GraphSage and GAT. GCN [1], GraphSage [2] and GAT [26] are three rep-
resentative GNN methods in recent years. In our problem, only graph structures
are used as input and encoded as latent codes. Then the latent codes are decoded
as node attributes. In the test stage, the latent codes of test nodes are used to
restore attributes by the decoder of GNN. Note that we do not use the zero-filling
trick here since this task require reconstruction of attributes and the zero-filling
trick largely deteriorates the performance.

• GraphRNA [39] and ARWMF [40] are two representative attributed random
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Link Prediction. Even on attribute-missing graphs, link prediction is still an
important task. We choose baselines for link prediction comparison from two aspects:
the structure-only aspect and the fused-structure-attribute aspect. SPM, DeepWalk,
Node2Vec and Hers are only suitable for the structure-only aspect. GraphRNA and
ARWMF are only feasible for the fused-structure-attribute aspect. GAE and VGAE are
feasible for both aspects.
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walk based methods. In attributed random walk based methods, graphs with node
attributes are taken as bipartite graphs and then random walks based approaches
are applied to learn node embeddings. Thereby, attributed random walk based
methods can potentially work on attribute-missing graphs. Note that there are
three variants of ARWMF in [40], we introduce the third variant as the baseline
since it generally shows better performance than the other two variants [40].

• Hers. Since the attribute-completion on attribute-missing graphs is similar to
the cold-start recommendation problem. We thus introduce one representative
cold-start recommendation method called Hers [138] to be a comparison method.

• SPM. Structure perturbation method (SPM) [139] is one classic link prediction
model on graphs. It assumes that the regularity of a graph is reflected in the
consistency of structures before and after structural perturbations. Based on this
assumption, it proposes a universal structural consistency index for link prediction
on graphs.

• DeepWalk. DeepWalk [11] learns node representation from random walk se-
quences on graphs. It only considers graph structures in the learning process.

• Node2vec. Node2vec [17] extends DeepWalk by designing a biased random walk
to control the Bread First Search (BFS) and Deep First Search (DFS). It also learns
node embeddings with only graph structures.

• GAE. Graph Auto-encoder (GAE) [125] combines GCN and the auto-encoder
theory. Specifically, GCN plays as a graph convolution encoder to replace the
MLP encoder in vanilla auto-encoder [100]. When GAE works for the fused-
structure-attribute aspect, it requires structures and attributes as a whole input.
Thus we use zero-filling, a common trick in data mining community, for the
attribute-missing nodes. Furthermore, we also use GAT as the graph convolution
encoder called GAE(GAT) as another baseline method.

• VGAE. Variational Graph Auto-encoder (VGAE) [125] performs variational in-
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4.3.3 Experimental Setups

For node attribute completion, we randomly sample 40% nodes with attributes
as training data and 10% as validation data and the rest 50% as test data. For link
prediction, we randomly sample 60%, 20% and 20% links with equivalent non-links as
train, validation and test data, respectively.

For the cold-start recommendation method Hers [138], we use the graph data as
the social context and the attribute matrix as the target to complete. For random walk
based methods (DeepWalk1, Node2Vec2) and attributed random walk based methods
(GraphRNA and ARWMF), their hyper-parameters such as number of walks, walk length
and window size are set as the default according to the codes online. All GNN methods
use a two-layer graph convolution. ForGraphSage, we set the neighborhood sampling size
is (5,5) for Cora, Citeseer and Steam, while (10,25) for Pubmed according to the default
settings of the online codes3. For GraphSage on Coauthor-CS, Amazon-Computer and
Amazon-Photo, we found it performs well when neighborhood sampling size is (10,25).
For GAT4, in order to reduce training time and storage, we use one-head attention. By
following recent works [1, 26], we set the latent dimension as 64 for all learning-based
methods. Learning rate is 0.005. Dropout rate equals 0.5, and the maximum iteration
number is 1,000. Adam optimizer is applied for them to learn the model parameters.

For our distribution matching based SAT, we set the generative step as 2 and
discriminative step as 1. For balanced comparison, the hyper-parameters of different
GNN backbones are the same as the GNN baselines. The hyper-parameter 𝜆𝑐 ranges
in [0.1, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, 100.0]. According to the performance on the val-
idation set, for the node attribute completion task, we have 𝜆𝑐 = 10.0, 10.0, 50.0, 10.0,
100.0, 100.0, 100.0 for Cora, Citeseer, Pubmed, Steam, Coauthor-CS,Amazon-Computer

1https://github.com/phanein/deepwalk
2https://github.com/aditya-grover/node2vec
3https://github.com/williamleif/graphsage-simple/
4https://github.com/Diego999/pyGAT
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ference for GAE with reparameterization tricks. We use it in the same way as
GAE and also combine it with GAT called VGAE(GAT) as another baseline.

• Hers, GraphRNA and ARWMF. Since Hers [138], GraphRNA [39] and AR-
WMF [40] are able to learn node embeddings, we thus also introduce them here
for the link prediction task.
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and Amazon-Photo, respectively. For the link prediction task, we set 𝜆𝑐 = 10.0, 10.0, 1.0,
10.0, 0.1, 0.1, 0.1 for Cora, Citeseer, Pubmed, Steam, Coauthor-CS, Amazon-Computer
and Amazon-Photo, respectively. For all methods, The best trained model is chosen for
testing according to the performance on the validation set.

For datasetswith categorical attributes, weightedBinaryCross Entropy loss (BCE) is
applied. Theweight put on non-zero values equals #𝑧𝑒𝑟𝑜 𝑐𝑜𝑢𝑛𝑡

#𝑛𝑜𝑛−𝑧𝑒𝑟𝑜 𝑐𝑜𝑢𝑛𝑡 which is calculated from
the training attribute matrix. For datasets with real-valued attributes, Mean Square Error
(MSE) loss is used. We do not use GraphSage as the baseline for link prediction since it
takes much time for random neighborhood sampling in each iteration. The experiments
are conducted 5 times, and then the mean value is adopted as the performance. The
method is implemented by Pytorch on a machine with one Nvidia TitanX GPU.

4.3.4 Node Attribute Completion

4.3.4.1 Necessity of Node Attribute Completion

Node attribute completion is a new problem on graphs and distinguishes from other
existing problems including label prediction and graph embedding.

Although node labels could be one kind of attributes, node attribute completion is
quite different from the widely explored label prediction problem on graphs [1] due to
their characteristic, functionality and methodology. From the aspect of characteristic,
labels are designed to be clean and only limited to categorical values, while attributes are
more general, noisy and either numeric or categorical. From the aspect of functionality,
label prediction on graphs is one subsequent task of node attribute completion. Many
label prediction algorithms require both structures and attributes as inputs to achieve
superior performance [47]. Node attribute completion enables recovering unknown at-
tributes of nodes, which is useful for many subsequent tasks, including label prediction.
From the aspect of methodology, when typical label-prediction methods are applied to
node attribute completion, such as GCN [1] used to predict labels (categorical attributes)
by minimizing classication loss, they ignore the joint relationship between node struc-
tures and attributes. Furthermore, compare to the graph embedding problem [11, 17,
125], node attribute completion restores high-dimensional and human-understandable
attributes while graph embedding learns to represent nodes or graphs in low-dimensional
and hard-perceptive vectors.
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4.3.4.2 Evaluation Measures

In the node attribute completion task, whether the restored attributes can benefit
real-world applications should be considerable. Consequently, we propose to measure
the quality of restored attributes from both the node level and the attribute level with two
real-world applications.

4.3.4.3 Node Classification

In this task, the restored node attributes are split into 80% train data and 20% test
data with five-fold validation in 10 times. We consider two classifiers, including MLP
and GCN, both with the class information as supervision. Three settings are designed
to conduct the comparisons: the node-attribute-only approach, the graph-structure-only
approach, and the fused approach. In the node-attribute-only approach, we directly use
the restored attributes and a two-layer MLP as the classifier to do the classification task.
In the graph-structure-only approach, only graph structures are applied and this has
been studied by many methods such as DeepWalk [11], Node2Vec [17] and GCN [1].
DeepWalk and Node2Vec both aim to learn node embeddings, and then anMLP classifier
is used. GCN is an end-to-end method which learns the node embeddings supervised by
the classification loss. In the fused approach, we combine restored node attributes with
structures by a GCN classifier.

Table 4–2 shows the classification performance, where “X” indicates the node-
attribute-only approach, “A” indicates the structure-only approach and “A+X” is the
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• Node classification. This task aims to evaluate whether the restored attributes can
serve as data augmentation and benefit the classification model. In this task, we
use the restored attributes of test nodes to make comparison of node classification
among different methods. In other words, this task evaluates the overall quality
of restored attributes by classifiers, which is also termed as the evaluation in the
node level. We implement this task on datasets with class labels.

• Profiling. Profile provides a cognitive description for objects such as key terms of
papers on Cora and tags of items on Steam. Profiling aims to predict the possible
profile for test nodes, and we use Recall@k and NDCG@k as the evaluation
metrics. In other words, this task evaluates the recall and ranking quality of
restored attributes in the attribute level. For this task, we compare different
methods on datasets with categorical attributes.
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Table 4–2 Node classification of the node-level evaluation for node attribute completion. The first
column with “X”, “A” and “A+X” indicates three settings to do node classification with only

attributes, only structures and the fused one. Note that SAT has an extendable GNN backbone, so we
combine it with different models as SAT(GCN), SAT(GraphSage) and SAT(GAT). SAT(GCN)-no

self, SAT(GCN)-no cross and SAT(GCN)-no adver respectively denotes SAT without
self-reconstruction terms, cross-reconstruction terms and adversarial learning terms. The term “True

attributes” indicates we use the ground truth attributes to do node classification.

attribute
completion method

classification
method Cora Citeseer Pubmed Coauthor

-CS
Amazon
-Computer

Amazon
-Photo

NeighAggre MLP 0.6248 0.5539 0.5150 0.7562 0.8365 0.8846
VAE MLP 0.2826 0.2551 0.4008 0.2317 0.3747 0.2598
GCN MLP 0.3943 0.3768 0.3992 0.2180 0.3660 0.2683

GraphSage MLP 0.4852 0.3933 0.4013 0.2317 0.3747 0.2598
GAT MLP 0.4143 0.2129 0.3996 0.2317 0.3747 0.2598
Hers MLP 0.3046 0.2585 0.4004 0.2317 0.3747 0.2598

GraphRNA MLP 0.7581 0.6320 0.6035 0.7710 0.6968 0.8407
ARWMF MLP 0.7769 0.2267 0.6180 0.2320 0.5608 0.4675

SAT(GCN)-no self MLP 0.7074 0.4976 0.4000 0.7504 0.7410 0.8585
SAT(GCN)-no cross MLP 0.3036 0.2289 0.4023 0.2317 0.3748 0.2613
SAT(GCN)-no adver MLP 0.7587 0.6051 0.4680 0.6879 0.7356 0.8629

SAT(GCN) MLP 0.7644 0.6010 0.4652 0.7592 0.7410 0.8762
SAT(GraphSage) MLP 0.7032 0.5936 0.4585 0.6637 0.8396 0.9035

SAT(GAT) MLP 0.7937 0.6475 0.4618 0.7672 0.8201 0.8976

X

True attributes MLP 0.7618 0.7174 0.656 0.9396 0.8423 0.9151
- DeepWalk+MLP 0.7149 0.4802 0.6917 0.7561 0.8444 0.8955
- Node2Vec+MLP 0.6830 0.4422 0.6721 0.7554 0.8415 0.8908A
- GCN 0.7631 0.5651 0.7125 0.8370 0.8785 0.9117

NeighAggre GCN 0.6494 0.5413 0.6564 0.8031 0.8715 0.901
VAE GCN 0.3011 0.2663 0.4007 0.2335 0.4023 0.3781
GCN GCN 0.4387 0.4079 0.4203 0.2180 0.3974 0.3656

GraphSage GCN 0.5779 0.4278 0.4200 0.2335 0.4019 0.3784
GAT GCN 0.4525 0.2688 0.4196 0.2334 0.4034 0.3789
Hers GCN 0.3405 0.3229 0.4205 0.2334 0.4025 0.3794

GraphRNA GCN 0.8198 0.6394 0.8172 0.8851 0.8650 0.9207
ARWMF GCN 0.8025 0.2764 0.8089 0.8347 0.7400 0.6146

SAT(GCN)-no self GCN 0.7727 0.5358 0.4197 0.8575 0.8455 0.9127
SAT(GCN)-no cross GCN 0.3402 0.2698 0.4204 0.3499 0.4394 0.3846
SAT(GCN)-no adver GCN 0.8231 0.6609 0.7371 0.8161 0.8439 0.9123

SAT(GCN) GCN 0.8327 0.6599 0.7537 0.8576 0.8519 0.9163
SAT(GraphSage) GCN 0.8255 0.6547 0.7360 0.8001 0.8834 0.9234

SAT(GAT) GCN 0.8579 0.6767 0.7439 0.8402 0.8766 0.9260

A+X

True attributes GCN 0.8493 0.7348 0.8723 0.9186 0.9097 0.9412

fused one. Considering results of the node-attribute-only approach, we have the following
observations:
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• SAT generally presents better performance than baseline methods. For example,
compared to NeighAggre, SAT(GCN) reaches nearly 14% and 5% gain on Cora
and Citeseer, respectively. On Pubmed, it seems that NeighAggre suits this dataset
well, but it deteriorates quickly when attribute-observed nodes are less, which is
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Comparing the results between the structure-only approach and the fused one, we
have the following observations.
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shown in Section 4.3.4.5.
• The attributed random walk based methods (GraphRNA and ARWMF) show

the best performance on Pubmed and Coauthor-CS. It is mainly because the
attributed random walk based methods apply random walks on the node-attribute
bipartite graphs, which could potentially capture the correlation between attribute
dimensions and facilitate the node attribute completion task. On Pubmed and
Coauthor that have real-valued node attributes, the correlation between attributes
could be more obvious because attributes have relative sizes for different attribute
dimensions, and thus GraphRNA and ARWMF show better performance. Instead,
the proposed SAT cannot capture the correlation between attributes and thus
perform worse than GraphRNA and ARWMF. On other datasets, SAT perform
better than GraphRNA and ARWMF mainly because SAT has the advantage of
extracting features by graph convolution techniques.

• From the results of Hers, we can see that simply taking the graph structures
as one kind of side information to augment the recommendation model cannot
well exploit the structures and node attributes. By contrast, the proposed SAT
explicitly models the joint distribution of node structures and attributes and thus
shows superior performance compared to Hers.

• The performance of SAT(GCN) gets closer to that of true attributes. SAT(GAT)
even gets better than the true attributes on Cora mainly because the structural
information may take more important role for classification and the restored
attributes contain transferred structural information.

• Both SAT(GCN)-no self, SAT(GCN)-no cross and SAT(GCN)-no adver perform
worse than SAT(GCN) because the incompleteness of SAT cannot guarantee the
joint distribution modeling.

• SAT with different GNN backbones generally show better performance other
baselines, which also states SAT is extendable and robust with different choices
of graph convolution filters.

• The restored attributes from SAT(GCN) can augment the GCN classifier with
6.96%, 9.48% and 4.12% gain on Cora, Citeseer and Pubmed, respectively. While
NeighAggre fails and harms the GCN performance with the figures as 11.37%,
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4.3.4.4 Profiling

For the profiling task, restored attributes are probabilities that the node may have in
each attribute dimension. High-quality restored attributes should have high probabilities
in specific dimensions as the true attributes. The results of Recall@k and NDCG@k are
shown in Table 4–3. From Table 4–3, we can summarize as follows.

4.3.4.5 Less Attribute-Observed Nodes

The attribute-observed nodes are necessary and supervise the learning on attribute-
missing graphs. In some scenarios, this supervision could be less, so it is curious to
see whether SAT can still restore reliable and high-quality node attributes when less
attribute-observed nodes are available. We experiment to see the node classification and
profiling performance in this scenario.

Figure 4–4 (a)(b)(c) show the node classification results when only node attributes
are used. From these figures, we can see that SAT(GCN) generally performs much
better than other methods. NeighAggre deteriorates quickly and the gap is more obvious
when attribute-observed nodes are less. Figure 4–4 (d)(e)(f) show the node classification
performance when “A+X” is used. In these figures, the dotted line indicates only “A”
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2.38% and 5.61% on Cora, Citeseer and Pubmed, respectively.
• The classical aggregation method NeighAggre, the auto-encoding method VAE,

and the GNN-encoding methods restore inferior attributes. They hurt the GCN
classifier since they are not specifically designed for attribute-missing graphs.

• NeighAggre performs the worst among all methods on the three datasets. It is not a
learning algorithm and cannot perform robustly in this fine-grained attribute-level
evaluation.

• The attributed random walk based methods have the potential to capture the
correlation between attribute dimensions, GraphRNA and ARWMF show the
most competitive performance on this attribute-level evaluation. However, the
applied random walks may introduce noise to statistically represent the original
graph data. Thereby, GraphRNA and ARWMF cannot outperform SAT on this
fine-grained attribute-level evaluation.

• SAT achieves superior performance over other methods because it restores at-
tributes based on the transformation knowledge.
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Table 4–3 Profiling of the attribute-level evaluation for node attribute completion. Note that we use
top 3, 5, 10 to evaluate the performance on Steam since the average non-zero hot number of node

attributes on Steam is quite small.

Method Recall@10 Recall@20 Recall@50 NDCG@10 NDCG@20 NDCG@50
NeighAggre 0.0906 0.1413 0.1961 0.1217 0.1548 0.1850

VAE 0.0887 0.1228 0.2116 0.1224 0.1452 0.1924
GCN 0.1271 0.1772 0.2962 0.1736 0.2076 0.2702

GraphSage 0.1284 0.1784 0.2972 0.1768 0.2102 0.2728
GAT 0.1350 0.1812 0.2972 0.1791 0.2099 0.2711
Hers 0.1226 0.1723 0.2799 0.1694 0.2031 0.2596

GraphRNA 0.1395 0.2043 0.3142 0.1934 0.2362 0.2938
ARWMF 0.1291 0.1813 0.296 0.1824 0.2182 0.2776

SAT(GCN)-no self 0.1378 0.2018 0.3339 0.1931 0.2360 0.3052
SAT(GCN)-no cross 0.1224 0.1724 0.2823 0.1686 0.2023 0.2599
SAT(GCN)-no adver 0.1356 0.1966 0.3179 0.1924 0.2331 0.2971

SAT(GCN) 0.1508 0.2182 0.3429 0.2112 0.2546 0.3212
SAT(GraphSage) 0.1356 0.1981 0.3165 0.1905 0.2320 0.2947

Cora

SAT(GAT) 0.1653 0.2345 0.3612 0.2250 0.2723 0.3394
NeighAggre 0.0511 0.0908 0.1501 0.0823 0.1155 0.1560

VAE 0.0382 0.0668 0.1296 0.0601 0.0839 0.1251
GCN 0.0620 0.1097 0.2052 0.1026 0.1423 0.2049

GraphSage 0.0612 0.1097 0.2058 0.1003 0.1393 0.2034
GAT 0.0561 0.1012 0.1957 0.0878 0.1253 0.1872
Hers 0.0576 0.1025 0.1973 0.0904 0.1279 0.1900

GraphRNA 0.0777 0.1272 0.2271 0.1291 0.1703 0.2358
ARWMF 0.0552 0.1015 0.1952 0.0859 0.1245 0.1858

SAT(GCN)-no self 0.0679 0.1163 0.2140 0.1167 0.1570 0.2209
SAT(GCN)-no cross 0.0564 0.1013 0.1963 0.0863 0.1238 0.1860
SAT(GCN)-no adver 0.0705 0.1168 0.2145 0.1196 0.1582 0.2223

SAT(GCN) 0.0764 0.1280 0.2377 0.1298 0.1729 0.2447
SAT(GraphSage) 0.0704 0.1163 0.2174 0.1179 0.1563 0.2227

Citeseer

SAT(GAT) 0.0811 0.1349 0.2431 0.1385 0.1834 0.2545
NeighAggre 0.0321 0.0593 0.1306 0.0788 0.1156 0.1923

VAE 0.0255 0.0502 0.1196 0.0632 0.0970 0.1721
GCN 0.0273 0.0533 0.1275 0.0671 0.1027 0.1824

GraphSage 0.0269 0.0528 0.1278 0.0664 0.1020 0.1822
GAT 0.0271 0.0530 0.1278 0.0673 0.1028 0.1830
Hers 0.0273 0.0525 0.1273 0.0676 0.1025 0.1825

GraphRNA 0.0386 0.0690 0.1465 0.0931 0.1333 0.2155
ARWMF 0.0280 0.0544 0.1289 0.0694 0.1053 0.1851

SAT(GCN)-no self 0.039 0.0698 0.1506 0.0956 0.1368 0.2229
SAT(GCN)-no cross 0.0287 0.0554 0.1295 0.0691 0.1054 0.1852
SAT(GCN)-no adver 0.0322 0.0603 0.1364 0.0790 0.1170 0.1984

SAT(GCN) 0.0391 0.0703 0.1514 0.0963 0.1379 0.2243
SAT(GraphSage) 0.0419 0.0738 0.1562 0.1030 0.1457 0.2333

Amazon-Computer

SAT(GAT) 0.0421 0.0746 0.1577 0.1030 0.1463 0.2346
NeighAggre 0.0329 0.0616 0.1361 0.0813 0.1196 0.1998

VAE 0.0276 0.0538 0.1279 0.0675 0.1031 0.1830
GCN 0.0294 0.0573 0.1324 0.0705 0.1082 0.1893

GraphSage 0.0295 0.0562 0.1322 0.0712 0.1079 0.1896
GAT 0.0294 0.0573 0.1324 0.0705 0.1083 0.1892
Hers 0.0292 0.0574 0.1328 0.0714 0.1094 0.1906

GraphRNA 0.0390 0.0703 0.1508 0.0959 0.1377 0.2232
ARWMF 0.0294 0.0568 0.1327 0.0727 0.1098 0.1915

SAT(GCN)-no self 0.0399 0.0732 0.1583 0.0982 0.1425 0.2330
SAT(GCN)-no cross 0.0302 0.0578 0.1334 0.0738 0.1112 0.1923
SAT(GCN)-no adver 0.0354 0.0656 0.1463 0.0880 0.1287 0.2149

SAT(GCN) 0.0410 0.0743 0.1597 0.1006 0.145 0.2359
SAT(GraphSage) 0.0483 0.0766 0.1601 0.1082 0.1475 0.2402

Amazon-Photo

SAT(GAT) 0.0427 0.0765 0.1635 0.1047 0.1498 0.2421
Method Recall@3 Recall@5 Recall@10 NDCG@3 NDCG@5 NDCG@10

NeighAggre 0.0603 0.0881 0.1446 0.0955 0.1204 0.1620
VAE 0.0564 0.0820 0.1251 0.0902 0.1133 0.1437
GCN 0.2392 0.3258 0.4575 0.3366 0.4025 0.4848

GraphSage 0.2356 0.3068 0.4568 0.3311 0.3892 0.4817
GAT 0.2395 0.3431 0.4649 0.3364 0.4138 0.4912
Hers 0.2387 0.3346 0.4586 0.3305 0.4059 0.4842

GraphRNA 0.2490 0.3208 0.4372 0.3437 0.4023 0.4755
ARWMF 0.2104 0.3201 0.4512 0.3066 0.3877 0.4704

SAT(GCN)-no self 0.2429 0.3116 0.4614 0.3414 0.3969 0.4889
SAT(GCN)-no cross 0.2382 0.3381 0.4611 0.3282 0.4057 0.4835
SAT(GCN)-no adver 0.2371 0.3382 0.4707 0.3353 0.4114 0.4966

SAT(GCN) 0.2527 0.3560 0.4933 0.3544 0.4332 0.5215
SAT(GraphSage) 0.2518 0.3470 0.4845 0.3529 0.4271 0.5133

Steam

SAT(GAT) 0.2536 0.3620 0.4965 0.3585 0.4400 0.5272

is used by a GCN classifier, which serves as a criterion to evaluate whether the restored
attributes can enhance the GCN classifier. It is clear that SAT(GCN) reaches superior
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(a) X - Cora (b) X - Citeseer (c) X - Pubmed

(d) A+X - Cora (e) A+X - Citeseer (f) A+X - Pubmed

(g) Recall - Cora (h) Recall - Citeseer (i) Recall - Steam

Figure 4–4 Node classification and profiling performance with less attribute-observed nodes. (a)-(c)
illustrates the results of node classification with “X” setting. (d)-(f) shows the results of node

classification with “A+X” setting. The dashed line is a criterion to criticize whether the restored
attributes can enhance the GCN classifier. (g)-(i) shows the results of profiling task. Train ratio

means the ratio of samples from the original train data.

performance than baselines on Cora and Citeseer. On Pubmed with real-valued node
attributes, GraphRNA and ARWMF show better performance because they have the
potential to capture the correlation between attribute dimensions. Figure 4–4 (g)(h)(i)
indicate the fine-grained profiling performance. These figures also demonstrate the
advantage of SAT in restoring fine-grained node attributes.
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Table 4–4 Area under curve (AUC) and average precision (AP) of Link prediction task. “A” indicates
the structure-only aspect and only structures are used. While “A+X” means the fused

structure-attribute aspect and both structures and attributes are used.

Method
Cora Citeseer Pubmed Steam

Coauthor
-CS

Amazon
-Computer

Amazon
-Photo

AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP

A

SPM 0.8627 0.9001 0.8293 0.8646 0.8339 0.8544 0.8848 0.9355 0.9169 0.9385 0.9345 0.9309 0.9372 0.9416
DeepWalk 0.8735 0.9018 0.8082 0.8467 0.8361 0.8560 0.9591 0.9217 0.9174 0.9119 0.8735 0.8657 0.9148 0.9079
Node2Vec 0.8496 0.8695 0.7644 0.8246 0.8346 0.8884 0.9591 0.9233 0.9359 0.9348 0.8551 0.8355 0.8770 0.8608
GAE(GCN) 0.8281 0.8309 0.8254 0.8344 0.7072 0.6548 0.9804 0.9772 0.7674 0.7307 0.8436 0.7755 0.9135 0.8960
GAE(GAT) 0.8340 0.8642 0.8563 0.8777 0.7028 0.6559 0.9730 0.9637 0.7702 0.7359 0.8408 0.8419 0.8802 0.8493
VGAE(GCN) 0.8433 0.8616 0.8396 0.8456 0.8011 0.8171 0.9738 0.9693 0.8591 0.8440 0.9345 0.9281 0.9359 0.9329
VGAE(GAT) 0.7267 0.7329 0.7046 0.7156 0.7011 0.6264 0.8227 0.8094 0.7370 0.6935 0.7492 0.6564 0.8313 0.7500

Hers 0.6908 0.7169 0.6779 0.7197 0.5001 0.5182 0.9869 0.9818 0.5433 0.5338 0.5314 0.5122 0.5809 0.5589

A+X

GAE(GCN) 0.8375 0.8374 0.8227 0.8245 0.7947 0.7855 0.9735 0.9643 0.9409 0.9386 0.9361 0.9336 0.9336 0.9296
GAE(GAT) 0.8575 0.8493 0.8387 0.8661 0.7839 0.7821 0.9717 0.9706 0.9452 0.9374 0.7945 0.7836 0.9441 0.9282
VGAE(GCN) 0.7910 0.8018 0.7962 0.8011 0.8229 0.8156 0.9581 0.9454 0.8960 0.8936 0.9315 0.924 0.9205 0.9202
VGAE(GAT) 0.7062 0.7172 0.7069 0.7061 0.7861 0.7578 0.9728 0.9195 0.7678 0.7382 0.7609 0.6909 0.7125 0.6699
GraphRNA 0.8579 0.8695 0.8298 0.8580 0.8406 0.8445 0.9157 0.8807 0.8688 0.8579 0.7115 0.6859 0.8359 0.8010
ARWMF 0.7601 0.7770 0.7260 0.7646 0.7022 0.7320 0.7832 0.6580 0.8582 0.8503 0.8325 0.8251 0.9102 0.8949

SAT(GCN)-no self 0.8549 0.8432 0.8542 0.8550 0.7661 0.7497 0.9702 0.9599 0.8166 0.8029 0.8593 0.8253 0.8888 0.8470
SAT(GCN)-no cross 0.8048 0.7894 0.8042 0.8097 0.7817 0.7998 0.9617 0.9560 0.7990 0.7592 0.8877 0.8918 0.8950 0.8556
SAT(GCN)-no adver 0.8438 0.8405 0.8438 0.8459 0.7851 0.8018 0.9703 0.9605 0.9005 0.8920 0.9363 0.9303 0.9466 0.9390

SAT(GCN) 0.8554 0.8500 0.8569 0.8566 0.8258 0.8039 0.9713 0.9636 0.9077 0.8977 0.9433 0.9368 0.9467 0.9393
SAT(GAT) 0.8929 0.9018 0.8916 0.9139 0.8510 0.8554 0.9896 0.9881 0.9138 0.9035 0.9100 0.8940 0.9283 0.9112

4.3.5 Link Prediction

4.3.5.1 Overall Performance

Link prediction is a key problem on graphs which aims to predict the missing
links among nodes. It has various applications such as friend recommendation [140].
We conduct the link prediction task on attribute-missing graphs from two aspects: the
structure-only aspect and the fused structure-attribute aspect. The results are shown in
Table 4–4.

In Table 4–4, “A” indicates the structure-only aspect where only structures are
used. While “A+X” means the fused structure-attribute aspect where both structures and
attributes are used. From this table, we can summarize that:
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• SPM with the idea of perturbations on graphs show competitive performance
because of its denoising characteristic. However, it is limited in learning deep
representations for nodes and cannot beat SAT. Meanwhile, introducing the per-
turbation idea from SPM to SAT is also an interesting problem that can be explored
in future.

• In the “A+X” setting, SAT generally outperforms recent GNN based methods (e.g.
GAE and VGAE) and attributed random walk based methods (e.g. GraphRNA
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4.3.5.2 Less Observed Links

In link prediction task, the robustness of methods with less observed links is usually
explored. We also conduct the link prediction experiment of link sparsity here. The
results are shown in Figure 4–5.

From Figure 4–5, we can summarize that: (1) SAT(GAT) outperforms other com-
petitive baselines even with less observed links. Considering the results of SAT(GCN)
and SAT(GAT), we see that GAT is a strong graph convolution module and benefits SAT
a lot. (2) Applying zero-filling trick for attribute-missing nodes sometimes augments the
models (e.g. GAE), but it is not consistent on all datasets. (3) On Pubmed, DeepWalk
and Node2Vec are the most two competitive baselines, they even beat SAT(GCN) in some
sparse cases. Introducing the advantageous ranking loss from DeepWalk and Node2Vec
to GNN might augment SAT(GCN) for link prediction task, but we do not explore it here
since we mainly focus on the general method for learning on attribute-missing graphs.

4.3.6 Analysis of Learned Node Representations

In node attribute completion, VAE, GCN, GraphRNA and SAT(GCN) infer node
attributes by learning the latent embeddings of nodes. Good representation ability means
that a method can learn representative embeddings where nearby nodes correspond to
similar objects. Therefore, we experiment to visualize the learned node embeddings by
t-SNE. Specifically, the latent embeddings for all test nodes are sampled. Then we use
t-SNE to make dimension reduction and visualize them in 2-D space on Cora dataset.
Nodes in the same class are expected to be clustered together. Note that for all methods,
they do not use any label information in the training process.
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and ARWMF). Compared to GAE(GAT), SAT(GAT) obtains a 3.73% gain, 6.2%
gain and 6.71% gain on Cora, Citeseer and Pubmed respectively. This also indi-
cates that SAT has the advantage of using attribute-observed nodes while recent
GNN methods cannot handle the link prediction task in this scenario properly.
Compared to GraphRNA and ARWMF, SAT has the advantage of encoding struc-
tures with graph convolution scheme and thus show better performance on link
prediction task.

• Breaking the unified loss in Eq. 4–9 causes deterioration to the performance since
it cannot guarantee the joint distribution modeling depicted in Section 4.2.2.
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(a) Cora (b) Citeseer (c) Pubmed

Figure 4–5 Link prediction with less observed links on three datasets. We use AUC here to evaluate
the performance. Train ratio means the ratio of random samples from original train data. The term

“with X” means attributes are taken into consideration and “no X” means only structures are
considered.

(a) VAE (b) GCN (c) GraphRNA (d) SAT(GCN)

Figure 4–6 The t-SNE visualization of test node embeddings on Cora. Each color represents one
class. Note that all methods learn node embeddings without class supervision.

From Figure 4–6 (a) of VAE, we can see that nodes of different classes are mixed,
which means VAE cannot distinguish the nodes belonging to different categories. For
GCN in Figure 4–6 (b), the nodes are encoded into a narrow and stream-like space,
where different nodes are mixed and overlapped. Compared to VAE, GCN has no
prior assumption, which makes it lose distributed constraint and lead to the narrow
and stream space. Compared to GraphRNA, SAT(GCN) shows more distinguished
node representations and different nodes are clustered well. Although Gaussian prior
is imposed on the latent space of both VAE and SAT, our SAT can capture the joint
relationship between attributes and structures, and learn better node embeddings.

4.3.7 Learning Process Visualization

In order to better understand the learning process of SAT, we plot learning curves
including the train reconstruction loss, train GAN loss, validation metric, and MMD
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(a) self-reconstruction loss (b) cross-reconstruction loss (c) GAN loss

(d) Recall@10 (e) MMD distance (f) MMD distance

Figure 4–7 Visualization of the training process for SAT(GCN) on Cora. (a) The self-reconstruction
loss. (b) The cross-reconstruction loss. (c) The GAN loss in adversarial distribution matching. (d)
Validation Recall@10 along the training steps. (e) The train and validation MMD distance between
the aggregated distribution 𝑞(𝑧) and Gaussian prior 𝑝(𝑧). (f) The train and validation MMD distance

between distributions of 𝑧𝑥 and 𝑧𝑎.

distance along the training epochs. The results are shown in Figure 4–7.

From Figure 4–7, we can summarize that that both the train reconstruction loss in
(a)(b) and train GAN loss in (c) converge in the training process. And the validation
Recall@10 in (d) increases step by step and finally converges at around 800𝑡ℎ epoch.
The MMD distance between learned aggregated distribution 𝑞(𝑧) and Gaussian prior
𝑝(𝑧) in (e) decreases step by step, which shows 𝑞(𝑧) matches the whole distribution of
𝑝(𝑧) successfully. Furthermore, since SAT involves distribution matching between latent
codes 𝑧𝑥 encoded from attributes and 𝑧𝑎 encoded from structures, thus it is necessary
to see whether our method matches them as what we expected. We show the train and
validation MMD distance between 𝑧𝑥 and 𝑧𝑎 in Figure 4–7 (f). In this figure, the MMD
distance between 𝑧𝑥 and 𝑧𝑎 is minimized gradually. This also keeps consistency with our
shared-latent space assumption and further benefits the joint distribution modeling on
attribute-missing graphs.
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(a) A+X - Cora (b) A+X - Citeseer (c) A+X - Pubmed

(d) Recall - Cora (e) Recall - Citeseer (f) Recall - Steam

(g) AUC - Cora (h) AUC - Citeseer (i) AUC - Pubmed
Figure 4–8 The effects of 𝜆𝑐 on both the node classification and profiling task. (a-c) means the result
for node classification with “A+X” setting on Cora, Citeseer and Pubmed. The dotted line with "only
A" indicates that only the structural information is used, where GCN is the classifier. (d-f) indicates
the result for profiling on Cora, Citeseer and Steam. The dotted line with "GCN" means we use the
GCN as the attribute completion model. (g-i) shows the link prediction result with different 𝜆𝑐.
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4.3.8 Hyper-parameter 𝜆𝑐

In SAT, we introduce 𝜆𝑐 to weight the cross-reconstruction stream in the objective
function. It is desirable to see how our method responds to this hyper-parameter. Intu-
itively, we conduct an experiment about the node attribute completion and link prediction
performance with different 𝜆𝑐 and the results are shown in Figure 4–8.

From Figure 4–8 (a-f), we can see that we need a large 𝜆𝑐 to restore high-quality
node attributes. 𝜆𝑐 is vital for node attribute completion since we rely on the cross-
reconstruction stream to restore node attributes. For link prediction in Figure 4–8 (g-i),
it seems that link prediction performance is more robust with 𝜆𝑐 compared to the node
attribute completion task. This is mainly because node attribute completion is a more
difficult task since it generates high-dimensional data, which requires more fine-grained
restoration.
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Figure 4–9 The empirical running time in each epoch of different methods. In this figure,
SAT(GCN)-N indicates the non-parallel SAT(GCN), and SAT(GCN)-P means the parallel one.

4.3.9 Empirical Running Time Analysis

To investigate the time complexity, we conduct an experiment to compare the empir-
ical running time of each epoch for different methods. Since SAT has parallel versions,
we thus denote SAT-N as the non-parallel one, SAT-P as the parallel one. We conduct
the experiments 10 times on the same machine with one Nvidia-TitanX GPU. The mean
value of running time per epoch is reported in Figure 5–10.

From Figure 5–10, we can see that: (1) GraphRNA costs the most time because
it involves the LSTM for feature encoding. Although SAT(GCN) involves a two-level
distribution matching, it takes less time than GraphRNA. Taking the previous experi-
mental results into consideration, we see that the proposed SAT generally achieves better
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performance with less time complexity compared to GraphRNA. (2) SAT(GCN)-N and
SAT(GCN)-P have similar time consumption. This indicates that the time cost ofMLP en-
coding is trivial compared to the GNN encoding. In practice, we can use the non-parallel
SAT instead of the parallel one.

4.4 Summary

In this Chapter, we explore the learning problems on attribute-missing graphs and
make a shared-latent space assumption. Based on the assumption, we develop a novel dis-
tribution matching based GNN framework called structure-attribute transformer (SAT).
SAT can not only handle the link prediction task but also the newly introduced node
attribute completion task on graphs. Furthermore, for the node attribute completion task,
we introduce practical measures including both node classification in the node level and
profiling in the attribute level to evaluate the quality of restored node attributes. Empirical
results validate the superiority of our method on both node attribute completion and link
prediction task.

Learning on attribute-missing graphs is still an open problem and many topics
could be studied from both the methodology and application aspect. For example,
under our SAT framework, more efficient distribution matching methods for this problem
could be investigated. There are some related real-world applications could be explored
such as fraud detection in social networks, author description generation in co-author
networks and image caption generation. Furthermore, more complex graph data such as
heterogeneous attribute-missing graphs could also be an interesting problem. These will
be studied in future works.
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Chapter 5 Learning to Collaborate Different Bipartite
Graphs

In recommendation, the user-item behaviors can be considered as a bipartite graph.
When single user-item bipartite graphs have overlapped nodes, researchers propose to
incorporate the bipartite graphs from other domains for boosted performance. It is also
popularly mentioned as cross domain recommendation (CDR) [141]. According to real-
world application conditions, CDR can be categorized into four different scenarios [142]:
1. User–No Item overlap (U-NI); 2. No User–Item overlap (NU-I); and 3. User–Item
overlap (U-I). Among different scenarios, the U-NI scenario is a common case where
items from different domains have no overlap and the users are shared. Recommendation
in the U-NI scenario has been widely explored for real-world recommender system such
as Netflix and Amazon [91, 143]. How to employ the correlations of user behaviors
across domains and design the knowledge transfer scheme is an important topic in CDR.
As we discussed in Chapter 5, the user preference encoded from the user behaviors
includes both the overlapped and domain-specific features that are important for the
recommendation task. To transfer knowledge, previous works usually resort to learn the
overlapped features for feature alignment and compromise the domain-specific features
or learn the domain-specific features based on heuristic human knowledge. How to better
capture both features of user preferences is a key challenge in CDR.

To tackle this challenge, we make an equivalent transformation assumption that
hypothesizes the user preference encoded from the behaviors in each domain can be
mutually converted to each other with equivalent transformation. With this assumption,
we further develop a novel distribution matching scheme to model the joint distribution of
user behaviors across domain, yielding a variational evidence lower bound for optimizing
the recommendation objective. By projecting the user preference from different domains
into equivalently transformed space, the user representations could have the capacity
of learning both features, which further facilitates better knowledge transfer. Extensive
experiments on three real-world benchmarks confirm the superiority of the proposed
model both quantitatively and qualitatively.
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5.1 Introduction

In theU-NI scenario, researchers have studied various perspectives to transfer knowl-
edge across domains and better predict user behaviors. For example, Li et al. [144]
introduced a shared cluster-level rating model which defines a rating function for the
latent user- and item-cluster variables to transfer knowledge. Others [82-83, 85] utilized
different variants of matrix factorization (MF) approaches. However, most clustering
and MF-based methods cannot capture the complex pattern in user-item interactions.
Thus, some deep learning based methods [84, 89-91] emerged to improve the knowl-
edge transfer and mine the complex patterns indicated by user-item interactions. For
example, a deep cross connection network is designed in [91] to learn and transfer the
shared interaction knowledge among domains. DARec [89] employs the domain adap-
tation technique [98] to learn domain-invariant user representations for CDR and it has
achieved remarkable performance. Further, some works [42, 45-46] propose to model
domain-specific features of user representations by employing a multi-layer perceptron
(MLP) as the mapping function across domains.

Recent knowledge transfer works [145-147] indicate that modeling the joint dis-
tribution of different domain samples facilitates better knowledge transfer since joint
distribution inherently captures the correlation of different domain samples. Similarly,
modeling the joint distribution of user behaviors across domains is crucial in CDR, be-
cause the user behaviors in different domains are correlated together. Recent works [83,
89-90] based on the idea of shared-user representation attempt to model the above joint
distribution. With the idea of shared-user representation, the CDR model resorts to learn
the overlapped features for feature alignment, which usually leads to compromise the
domain-specific features that help to better predict user behaviors [42-43]. In this con-
text, the CDR model may not well do the feature alignment because of the user behavior
prediction loss, as well as be hard to learn the domain-specific features for improved
recommendation performance [44]. Several works [42, 45-46] have proposed to model
the domain-specific features in addition to the overlapped features by employing MLP as
the mapping function of user representations in each domain. However, the sparse data
in user behaviors easily causes over-fitting for the mapping function [42]. EMCDR [42]
proposes to choose users with dense behaviors to learn the MLP, while it requires heuris-
tic human knowledge for choosing users. ATLRec [99] improves them with intuitively
designed network architecture, but also requires heuristic ways for network design.
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In this paper, we attempt to learn both the overlapped and domain-specific features
for CDR in a more principled way. In particular, we assume that each user’s preferences
of different domains can be mutually converted to each other with equivalent transfor-
mation. Then, we propose an equivalent transformation learner (ETL) which models
the joint distribution of user behaviors across domains. The equivalent transformation
in ETL relaxes the idea of shared-user representation and enables a user’s preferences
across domains to have the capacity of preserving the domain-specific features as well
as learning the overlapped features. Moreover, the proposed ETL has no requirement of
carefully selecting training samples like [42, 45]. Figure 5–1 shows our idea of equiva-
lent transformation based recommendation method. We show that when using ETL, the
recommendation accuracy is largely improved compared to state-of-the-art methods on
several public benchmarks. The contributions are summarized as follows:

5.2 ETL: Equivalent Transformation Learner

In this section, we first give the problem definition. Then, details about the proposed
method is introduced. The model architecture of the proposed method is shown in
Figure 5–2.

5.2.1 Problem Definition

In this Chapter, we focus on the U-NI scenario [142] in CDR. In this setting, different
domains X and Y have the same set of usersU = {𝑈1,𝑈2, ...,𝑈𝑁 } where 𝑁 denotes the
number of users. The item set of domain X and Y respectively is 𝐼X = {𝐼X1 , 𝐼X2 , ..., 𝐼X𝑀}
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• We highlight the importance of modeling the joint distribution of user behaviors
across domains for CDR;

• We make an equivalent transformation assumption and further propose a novel
method named ETL that models both the overlapped and domain-specific fea-
tures in a joint distribution matching scheme. The proposed model works in a
more principled way and does not require choosing training users or intuitively
designing the networks;

• Extensive experiments on three public benchmarks demonstrate the effectiveness
of the proposed ETL. Empirically, the results of designed experiments show that
ETL has better ability to capture the overlapped and domain-specific features of
user preferences in CDR.
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X

Y

X

Y

Figure 5–1 Our equivalent transformation based model for recommendation in the U-NI scenario.
Solid lines mean observed user-item interactions and dashed lines are the interactions we aim to
predict with probabilities. Given a user, 𝑧𝑥 and 𝑧𝑦 are the preference representations encoded the

user-item interactions in domain X and domain Y, respectively. The proposed ETL has an
equivalent transformation between 𝑧𝑥 and 𝑧𝑦 , and models the joint distribution of the user behaviors

across domains.

and 𝐼Y = {𝐼Y1 , 𝐼Y2 , ..., 𝐼Y𝑇 }, where 𝑀 and 𝑇 indicate the number of items in domain X

and Y, respectively. The user-item interactions of domain X could be represented by a
matrix 𝑅X ∈ R𝑁×𝑀 where the values are explicit feedback, such as ratings, or implicit
feedback, such as clicks. Similarly, the user-item interactions of domain Y is indicated by
𝑅Y ∈ R𝑁×𝑇 . Usually, 𝑅X and 𝑅Y are very sparse since a user only interacts with a small
subset of items in each domain. The goal of CDR is to improve the recommendation
accuracy for users in domain X and Y. Unlike [89], we do not distinguish a source
domain or a target domain since the recommendation task for each domain is performed
in an unified method here.

5.2.2 Joint Distribution Modeling

Modeling the joint distribution of user behaviors across domains is essential since
the behaviors exhibit correlations in CDR. By modeling the joint distribution, we learn
more representative user preferences which can help to predict the missing interactions.
The proposed ETL is based on modeling the above joint distribution. Thus, we start
with the joint distribution to introduce ETL. We here model the joint distribution via
maximizing the joint log-likelihood of the observations.

Assume 𝑥𝑖 and 𝑦𝑖 are the behaviors for user 𝑈𝑖 in domain X and Y respectively.
In other words, 𝑥𝑖 and 𝑦𝑖 are the row vectors of 𝑅X and 𝑅Y . Let (𝑥𝑖, 𝑦𝑖) be one paired
sample for user 𝑈𝑖. The joint log-likelihood of observations is composed of a sum over
the likelihoods of individual data points

∑𝑁
𝑖=1 log 𝑝 𝜃 (𝑥𝑖, 𝑦𝑖), where 𝑝 𝜃 (𝑥𝑖, 𝑦𝑖) denotes the
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Figure 5–2 The architecture of ETL. ETL encodes user behaviors in two domains with different
encoders and then decodes the latent codes to user behaviors in each domain. The joint

reconstruction loss and a prior regularization loss facilitates knowledge transfer between two
domains and benefits the user behavior prediction.

probability density function.

log 𝑝 𝜃 ((𝑥1, 𝑦1), (𝑥2, 𝑦2), ..., (𝑥𝑁 , 𝑦𝑁 )) =
𝑁∑
𝑖=1

log 𝑝 𝜃 (𝑥𝑖, 𝑦𝑖) (5–1)

Borrowing the idea of maximizing the marginal log-likelihood in VAE [100], if 𝑧𝑥 and
𝑧𝑦 are the latent factors of 𝑥𝑖 and 𝑦𝑖 respectively, log 𝑝 𝜃 (𝑥𝑖, 𝑦𝑖) can be formulated as:

log 𝑝 𝜃 (𝑥𝑖, 𝑦𝑖) =𝐷𝐾𝐿 [𝑞𝜙 (𝑧𝑥 , 𝑧𝑦 |𝑥𝑖, 𝑦𝑖) | |𝑝(𝑧𝑥 , 𝑧𝑦 |𝑥𝑖, 𝑦𝑖)]

+ L(𝜃, 𝜙; 𝑥𝑖, 𝑦𝑖)
(5–2)

where the first term is the KL divergence of the approximate posterior 𝑞𝜙 (𝑧𝑥 , 𝑧𝑦 |𝑥𝑖, 𝑦𝑖)
from the true posterior 𝑝(𝑧𝑥 , 𝑧𝑦 |𝑥𝑖, 𝑦𝑖). Since this KL term is non-negative, the second
term is the ELBO on the log-likelihood log 𝑝 𝜃 (𝑥𝑖, 𝑦𝑖). Following the derivation in
VAE [100], L(𝜃, 𝜙; 𝑥𝑖, 𝑦𝑖) can be written as:

L(𝜃, 𝜙; 𝑥𝑖, 𝑦𝑖) =E𝑞𝜙 (𝑧𝑥 ,𝑧𝑦 |𝑥𝑖 ,𝑦𝑖) [log 𝑝 𝜃 (𝑥𝑖, 𝑦𝑖 |𝑧𝑥 , 𝑧𝑦)]

− 𝐷𝐾𝐿 [𝑞𝜙 (𝑧𝑥 , 𝑧𝑦 |𝑥𝑖, 𝑦𝑖) | |𝑝(𝑧𝑥 , 𝑧𝑦)] (5–3)

where 𝑝 𝜃 (𝑥𝑖, 𝑦𝑖 |𝑧𝑥 , 𝑧𝑦) denotes the conditional distribution parameterized by 𝜃. The first
term in Eq. 5–3 indicates the joint reconstruction loss where 𝑧𝑥 , 𝑧𝑦 encoded from 𝑥𝑖, 𝑦𝑖 are
used to reconstruct 𝑥𝑖, 𝑦𝑖. The second term in Eq. 5–3 indicates the prior regularization
loss where 𝑞𝜙 (𝑧𝑥 , 𝑧𝑦 |𝑥𝑖, 𝑦𝑖) is expected to match the prior distribution 𝑝(𝑧𝑥 , 𝑧𝑦). ETL
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implements the the joint reconstruction loss and the prior regularization loss via a dual
auto-encoder structure and an adversarial learning scheme. The architecture of ETL is
shown in Figure 5–2. In the following sections, we provide details on the two losses,
followed by the objective function and implementation.

5.2.3 Joint Reconstruction Loss

The first term E𝑞𝜙 (𝑧𝑥 ,𝑧𝑦 |𝑥𝑖 ,𝑦𝑖) [log 𝑝 𝜃 (𝑥𝑖, 𝑦𝑖 |𝑧𝑥 , 𝑧𝑦)] in Eq. 5–3 consists of an ap-
proximate posterior 𝑞𝜙 (𝑧𝑥 , 𝑧𝑦 |𝑥𝑖, 𝑦𝑖) parameterized by 𝜙 and a conditional distribution
𝑝 𝜃 (𝑥𝑖, 𝑦𝑖 |𝑧𝑥 , 𝑧𝑦) parameterized by 𝜃. To ease the solution of the posterior 𝑞𝜙 (𝑧𝑥 , 𝑧𝑦 |𝑥𝑖, 𝑦𝑖),
we employ the mean filed theory [148] to define the approximate posterior by following
recent works [131, 149-150]:

𝑞𝜙 (𝑧𝑥 , 𝑧𝑦 |𝑥𝑖, 𝑦𝑖)
def
==== 𝑞𝜙𝑥

(𝑧𝑥 |𝑥𝑖)𝑞𝜙𝑦
(𝑧𝑦 |𝑦𝑖) (5–4)

which means the latent codes 𝑧𝑧 and 𝑧𝑦 are encoded from 𝑥𝑖 and 𝑦𝑖, respectively. In order
to further solve the conditional distribution 𝑝 𝜃 (𝑥𝑖, 𝑦𝑖 |𝑧𝑥 , 𝑧𝑦), we make an equivalent
transformation (ET) assumption.

Equivalent Transformation Assumption: In CDR, each user’s preferences of
different domains are correlated and can be mutually converted to each other with
equivalent transformation.

According to the definition in mathematics [151], the equivalent transformation
between 𝑧𝑥 and 𝑧𝑦 is defined as 𝑧𝑥 = 𝑄−1𝑧𝑦𝑃, where 𝑄, 𝑃 are two invertible matrices.
Note that we set 𝑄 as an identity matrix 𝐼 here for simplicity. Thus, if we denote 𝑧𝑦→𝑥

as the equivalently transformed 𝑧𝑦 and 𝑧𝑥→𝑦 as the equivalently transformed 𝑧𝑥 , we have
𝑧𝑦→𝑥 = 𝑧𝑦𝑊𝑥 , 𝑧𝑥→𝑦 = 𝑧𝑥𝑊𝑦 and𝑊𝑥 = 𝑃,𝑊𝑥𝑊𝑦 = 𝐼. Further, according to the graphical
model of ETL in Figure 5–3, we have the following proposition:

Proposition 5.1. ¬: Given latent variables 𝑧𝑥 , 𝑧𝑦, the observations 𝑥𝑖 and 𝑦𝑖 are
conditional independent. : Given the latent variable 𝑧𝑥 , the observation 𝑥𝑖 and the
latent variable 𝑧𝑦 are conditional independent. ®: Given the latent variable 𝑧𝑦, the
observation 𝑦𝑖 and the latent variable 𝑧𝑥 are conditional independent.

By this proposition and the ET assumption, we rewrite the conditional distribution
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Figure 5–3 The graphical model of our the equivalent transformation based model. In this figure, 𝑧𝑥
and 𝑧𝑦 are the latent variables of user representations encoded the behaviors 𝑥 of domain X and 𝑦 of
domain Y, respectively. Solid arrows denote the generative process and dashed arrows denote the

inference process.

as:

𝑝 𝜃 (𝑥𝑖, 𝑦𝑖 |𝑧𝑥 , 𝑧𝑦)
�
= 𝑝 𝜃𝑥 (𝑥𝑖 |𝑧𝑥 , 𝑧𝑦)𝑝 𝜃𝑦 (𝑦𝑖 |𝑧𝑥 , 𝑧𝑦)

� and �
========= 𝑝 𝜃𝑥 (𝑥𝑖 |𝑧𝑥)𝑝 𝜃𝑦 (𝑦𝑖 |𝑧𝑦)

=
√
𝑝 𝜃𝑥 (𝑥𝑖 |𝑧𝑥)𝑝 𝜃𝑥 (𝑥𝑖 |𝑧𝑥)

√
𝑝 𝜃𝑦 (𝑦𝑖 |𝑧𝑦)𝑝 𝜃𝑦 (𝑦𝑖 |𝑧𝑦)

ET assumption
=============

√
𝑝 𝜃𝑥 (𝑥𝑖 |𝑧𝑥)𝑝 𝜃𝑥 (𝑥𝑖 |𝑧𝑦𝑊𝑥)

√
𝑝 𝜃𝑦 (𝑦𝑖 |𝑧𝑦)𝑝 𝜃𝑦 (𝑦𝑖 |𝑧𝑥𝑊𝑦) (5–5)

where 𝜃𝑥 is the parameter of a decoder 𝐷𝑥 and 𝜃𝑦 is the parameter of a decoder 𝐷𝑦.
Eq. 5–5 indicates a dual auto-encoder structure where 𝑧𝑥 and 𝑧𝑦 are used to reconstruct
𝑥𝑖 and 𝑦𝑖, respectively. Meanwhile, with the equivalent transformation, 𝑧𝑥 and 𝑧𝑦 are
able to generate 𝑦𝑖 and 𝑥𝑖. 𝑝 𝜃𝑥 (𝑥𝑖 |𝑧𝑦𝑊𝑥) and 𝑝 𝜃𝑦 (𝑦𝑖 |𝑧𝑥𝑊𝑦) indicate the cross domain
generation that can help to learn the equivalent transformation. In the end, the equivalent
transformation allows 𝑧𝑥 and 𝑧𝑦 to have the capacity of maintaining the domain-specific
features as well as learning the overlapped features by this dual auto-encoder structure.

Specification of Equivalent Transformation: Different transformations may have
different impacts on knowledge transfer, and they are discussed with experiments in
Section 5.3.6.1. In ETL, inspired by [86], we consider that the equivalent transfor-
mation in CDR should avoid false correlations between users. Thus, the orthogonal
transformation is employed here since it preserves the inner product of vectors, namely
it keeps the user similarities across domains. According to the definition of orthogo-
nal transformation, 𝑊𝑥 and 𝑊𝑦 satisfies 𝑊𝑥 = 𝑊 and 𝑊𝑦 = 𝑊𝑇 , where 𝑊 ∈ R𝑑×𝑑 is
the trainable orthogonal mapping matrix. Taking the above into summary, we rewrite
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E𝑞𝜙 (𝑧𝑥 ,𝑧𝑦 |𝑥𝑖 ,𝑦𝑖) [log 𝑝 𝜃 (𝑥𝑖, 𝑦𝑖 |𝑧𝑥 , 𝑧𝑦)] in Eq. 5–3 as:

E𝑞𝜙 (𝑧𝑥 ,𝑧𝑦 |𝑥𝑖 ,𝑦𝑖) [log 𝑝 𝜃 (𝑥𝑖, 𝑦𝑖 |𝑧𝑥 , 𝑧𝑦)] =
1
2
{
E𝑞𝜙𝑥 (𝑧𝑥 |𝑥𝑖) [log 𝑝 𝜃𝑥 (𝑥𝑖 |𝑧𝑥)]

+ E𝑞𝜙𝑦 (𝑧𝑦 |𝑦𝑖) [log 𝑝 𝜃𝑥 (𝑥𝑖 |𝑧𝑦𝑊)]

+ E𝑞𝜙𝑦 (𝑧𝑦 |𝑦𝑖) [log 𝑝 𝜃𝑦 (𝑦𝑖 |𝑧𝑦)]

+ E𝑞𝜙𝑥 (𝑧𝑥 |𝑥𝑖) [log 𝑝 𝜃𝑦 (𝑦𝑖 |𝑧𝑥𝑊
𝑇)]

}
(5–6)

The optima of Eq. 5–6 is the same as that of Eq. 5–6 multiplied by a constant.
Thereby, for simplified expression, we write the joint reconstruction loss as:

min
𝜙𝑥 ,𝜙𝑦 , 𝜃𝑥 , 𝜃𝑦 ,𝑊

L𝐽𝑅𝐿 = −E𝑞𝜙𝑥 (𝑧𝑥 |𝑥𝑖) [log 𝑝 𝜃𝑥 (𝑥𝑖 |𝑧𝑥)]

− E𝑞𝜙𝑦 (𝑧𝑦 |𝑦𝑖) [log 𝑝 𝜃𝑥 (𝑥𝑖 |𝑧𝑦𝑊)]

− E𝑞𝜙𝑦 (𝑧𝑦 |𝑦𝑖) [log 𝑝 𝜃𝑦 (𝑦𝑖 |𝑧𝑦)]

− E𝑞𝜙𝑥 (𝑧𝑥 |𝑥𝑖) [log 𝑝 𝜃𝑦 (𝑦𝑖 |𝑧𝑥𝑊
𝑇)]

+𝜆( | |𝑧𝑥 − 𝑧𝑥𝑊𝑇𝑊 | |1𝐹 + ||𝑧𝑦 − 𝑧𝑦𝑊𝑊𝑇 | |1𝐹) (5–7)

where the last term indicates the regularization loss for equivalent transformation when
the transformation is specified as orthogonal mapping. 𝜆 is the hyper-parameter to weight
the importance of the regularization. {𝜙𝑥 , 𝜙𝑦} and {𝜃𝑥 , 𝜃𝑦} are the parameters of encoders
and decoders, respectively.

5.2.4 Prior Regularization Loss

The second term 𝐷𝐾𝐿 [𝑞𝜙 (𝑧𝑥 , 𝑧𝑦 |𝑥𝑖, 𝑦𝑖) | |𝑝(𝑧𝑥 , 𝑧𝑦)] involves joint prior 𝑝(𝑧𝑥 , 𝑧𝑦)
which indicates a complex prior for 𝑧𝑥 , 𝑧𝑦. In this Chapter, we set 𝑝(𝑧𝑥 , 𝑧𝑦) = 𝑝(𝑧𝑥)𝑝(𝑧𝑦)
for simplicity. Taking Eq. 5–4 into consideration, the prior regularization term is:

𝐷𝐾𝐿 [𝑞𝜙 (𝑧𝑥 , 𝑧𝑦 |𝑥𝑖, 𝑦𝑖) | |𝑝(𝑧𝑥 , 𝑧𝑦)] = 𝐷𝐾𝐿 [𝑞𝜙𝑥
(𝑧𝑥 |𝑥𝑖) | |𝑝(𝑧𝑥)]

+𝐷𝐾𝐿 [𝑞𝜙𝑦
(𝑧𝑦 |𝑦𝑖) | |𝑝(𝑧𝑦)] (5–8)

where 𝑝(𝑧𝑥) and 𝑝(𝑧𝑦) are the prior distributions. Eq. 5–8 states the regularization that
matches 𝑞𝜙𝑥

(𝑧𝑥 |𝑥𝑖) to prior 𝑝(𝑧𝑥) and matches 𝑞𝜙𝑦
(𝑧𝑦 |𝑦𝑖) to prior 𝑝(𝑧𝑦).

Since it is not easy to derive explicit formulations for some complex priors in
KL divergence, ETL employs the adversarial distribution matching that can impose an
arbitrary prior distribution for the latent codes without hard derivation [52]. Inspired
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by [52, 109-111], we propose to use adversarial learning to perform the distribution
matching between 𝑞𝜙𝑥

(𝑧𝑥 |𝑥𝑖) (resp. 𝑞𝜙𝑦
(𝑧𝑦 |𝑦𝑖)) and 𝑝(𝑧𝑥) (resp. 𝑝(𝑧𝑦)). Following [52],

the prior regularization loss can be formulated with the following adversarial learning
objective:

min
𝜓

max
𝜙

L𝑃𝑅𝐿 = − E𝑧𝑥∼𝑝 (𝑧𝑥 ) [logD𝑥 (𝑧𝑥)]

− E𝑧𝑥∼𝑞𝜙𝑥 (𝑧𝑥 |𝑥𝑖 )
[log(1 − D𝑥 (𝑧𝑥))]

− E𝑧𝑦∼𝑝 (𝑧𝑦) [logD𝑦 (𝑧𝑦)]

− E𝑧𝑦∼𝑞𝜙𝑦 (𝑧𝑦 |𝑦𝑖 )
[log(1 − D𝑦 (𝑧𝑦))] (5–9)

where 𝜙 = {𝜙𝑥 , 𝜙𝑦} shares the same definition in Eq. 5–7 and 𝜓 = {𝜓𝑥 , 𝜓𝑦} are the
parameters of the discriminators D𝑥 ,D𝑦. 𝑝(𝑧𝑥) and 𝑝(𝑧𝑦) are the prior distributions of
𝑧𝑥 and 𝑧𝑦 respectively.

The employed adversarial distribution matching in Eq. 5–9 has several advantages
compared to the KL divergence in Eq. 5–8. The KL divergence tries to match 𝑞𝜙𝑥

(𝑧𝑥 |𝑥𝑖)
to prior 𝑝(𝑧), which will have risk to lose the information from input 𝑥𝑖. By contrast,
the adversarial distribution matching in latent space makes the posterior 𝑞𝜙𝑥

(𝑧𝑥 |𝑥𝑖) to
be the aggregated posterior 𝑞𝜙𝑥

(𝑧𝑥), which encourages 𝑧𝑥 to match the whole distribu-
tion of 𝑝(𝑧𝑥) [51-52]. Meanwhile, the mode collapse problem in adversarial learning
could be avoided since ETL involves the reconstruction loss which encourages the latent
embeddings to match both the prior and the entire true data distribution [110].

5.2.5 Objective Function and Implementation

Taking Eq. 5–7 and Eq. 5–9 into account, maximizing the ELBO in Eq. 5–3 can be
performed via optimizing the following objective function:

min
Θ

max
Φ

L𝐸𝑇𝐿 = L𝐽𝑅𝐿 + 𝜂L𝑃𝑅𝐿 (5–10)

where Θ = {𝜙𝑥 , 𝜙𝑦, 𝜃𝑥 , 𝜃𝑦, 𝜓𝑥 , 𝜓𝑦,𝑊} and Φ = {𝜙𝑥 , 𝜙𝑦} are the network parameters. 𝜂
is the hyper-parameter to weight the importance of the prior regularization term.

The architecture of ETL is shown in Fig. 5–2, where 𝐸𝑥 is the encoder for 𝑞𝜙𝑥
(𝑧𝑥 |𝑥𝑖)

and 𝐸𝑦 is the encoder for 𝑞𝜙𝑦
(𝑧𝑦 |𝑦𝑖). Similarly, 𝐷𝑥 and 𝐷𝑦 are the decoders for 𝑝 𝜃𝑥 (𝑥𝑖 |·)

and 𝑝 𝜃𝑦 (𝑦𝑖 |·), respectively. The discriminators D𝑥 and D𝑦 are designed for adversarial
learning. In our implementation, all 𝐸𝑥 , 𝐸𝑦, 𝐷𝑥 , 𝐷𝑦,D𝑥 ,D𝑦 are two-layer MLP with
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Algorithm 5–1 Equivalent Transformation Learner (ETL)
Input: User behavior data 𝑅X and 𝑅Y from different domains, the hyper-parameters of

the model such as 𝜆 and 𝜂, the hyper-parameters for learning such as the number of
epochs 𝑛𝑏_𝑒𝑝𝑜𝑐ℎ𝑠, batch size 𝐵 and learning rate 𝑙𝑟 .

Output: Predict the scores of user-item interactions and rank them for recommendation.
1: for epoch in range(nb_epochs) do
2: # sample mini-batch data
3: Shuffle and split the training data to have the dataloader.
4: for (𝑖, (𝑥𝑖, 𝑦𝑖)) in enumerate(dataloader) do
5: # encoding for mini-batch data
6: Encode 𝑥𝑖, 𝑦𝑖 into latent codes 𝑧𝑥 , 𝑧𝑦 by 𝐸𝑥 , 𝐸𝑦.
7: # joint reconstruction loss
8: Calculate the joint reconstruction loss according Eq. 5–7.
9: # prior regularization loss
10: Calculate the prior regularization loss according Eq. 5–9.
11: Calculate the loss in Eq. 5–10 and update model parameters.
12: end for
13: end for

Relu as the non-linear activation function. We use standard Gaussian distributions such
that 𝑝(𝑧𝑥) ∼ N (0, 1) and 𝑝(𝑧𝑦) ∼ N (0, 1), which is a common scenario in recent
adversarial learning based methods [52, 101, 110]. It is also worthwhile to point out that
although both 𝑝(𝑧𝑥) and 𝑝(𝑧𝑦) follow the standard Gaussian distribution, it does not mean
𝑧𝑥 and 𝑧𝑦 are in the same latent space and it will not break our motivation of modeling
both features of user preferences in CDR. Moreover, the reconstruction loss between the
predictions and true data could beMSE if the user-item interactions are explicit feedback
and binary cross entropy if the user-item interactions are implicit feedback. A concise
description of ETL is provided in Algorithm 5–1.

5.2.6 Discussion of Equivalent Transformation

In this section, we have some discussion about the equivalent transformation to
provide deep insight on how ETL connects to and differs from previous methods. Al-
though recent methods [83-84, 89-90, 92] with the idea of shared-user representation do
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not mention this, they attempt to model the joint distribution of user behaviors across
domains. According to the coupling theory [127], if we want to model a joint distribution
of two marginal observations X,Y, an assumption is indispensable to describe the rela-
tionship of the corresponding latent factors 𝑧𝑥 and 𝑧𝑦. The assumption can be expressed
as 𝑧𝑥 = 𝑧𝑦𝑊𝑥 , 𝑧𝑦 = 𝑧𝑥𝑊𝑦 (or as non-linear formulation). There are two possible formu-
lations which are unconstrained and constrained. The unconstrained formulation means
there is no constraint between 𝑊𝑥 and 𝑊𝑦, and it is similar to the idea of using MLP
as the mapping function across domains [42, 46]. While the constrained one imposes
constraints on𝑊𝑥 and𝑊𝑦.

In CDR, 𝑧𝑥 and 𝑧𝑦 in different domains have correlations. Thus, in ETL, we adopt
the constrained formulation which specifically is our ET assumption. This assumption
involves the equivalent transformation with𝑊𝑥𝑊𝑦 = 𝐼, which degenerates to the idea of
shared-user representation in [83, 89-90] when 𝑊𝑥 = 𝑊𝑦 = 𝐼. However, 𝑊𝑥 = 𝑊𝑦 = 𝐼

would make the domain-specific features be suppressed. In contrary, ETL with ET
assumption allows a user’s preferences in different domains to have the capacity of
learning the domain-specific features as well as the overlapped features. It is worthwhile
to point out that the ET assumption ensures cross domain generation that facilitates better
knowledge transfer. Different variants of the unconstrained and constrained formulations
are discussed with experiments in Section 5.3.6.1.

It is also worthwhile to mention that not all data points will follow this equivalent
transformation assumption. A simple way to judge whether the assumption holds for
two domains is whether these domains have obvious overlapped and domain-specific
attributes. If they have, then the assumption holds, otherwise, it does not. For example,
Movie and Book domain have obvious overlapped attributes such as theme (e.g. love,
war) and obvious domain-specific attributes such as "director" in the movie domain and
"writing style" in the book domain.

5.2.7 Time Complexity Analysis

Stochastic training of DNN methods involves two steps, the forward and backward
computations. ETL supports the mini-batch training and the time cost lies in the joint
reconstruction term and the prior regularization term. We thus decompose the time
complexity of ETL into two parts, namely the time complexity of the joint reconstruction
term and the prior regularization term. In each batch of ETL, the joint reconstruction
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term encodes user behaviors into latent codes and then decodes the latent codes into user
behaviors. If we denote 𝐵 as the batch size, 𝑀 and 𝑇 as the number of items in each
domain, then the complexity of the joint reconstruction term is O(𝐵(𝑀 + 𝑇)). The prior
regularization term imposes prior distribution on the latent codes. If we denote the latent
dimension as 𝑑, the complexity of the prior regularization term isO(𝐵𝑑). In summary, the
time complexity of ETL is O(𝐵(𝑀 +𝑇) +𝐵𝑑). In addition, user behaviors in each domain
usually are extremely sparse vectors. This indicates most values in the 𝑀−dimensional
and 𝑇−dimensional user behavior vectors are zeros. Then the sparse vectors can be fast
calculated by the sparse matrix multiplication in Pytorch or Tensorflow. If we denote
the average number of non-zero values of the 𝑀−dimensional and 𝑇−dimensional user
behavior vectors in a batch as 𝑐, we have 𝑐 ≪ 1

2 (𝑀 +𝑇). And the complexity of the joint
reconstruction term can be largely reduced to O(2𝐵𝑐). In this case, the complexity of
ETL is O(2𝐵𝑐 + 𝐵𝑑), which ensures that ETL can work on much larger datasets.

Moreover, when applying ETL on multiple domains, a two combination of each two
domains can be used, which is the same for other CDR methods (e.g. DARec). If we
denote the domain number as 𝑁𝑑, the complexity of ETL is O( 𝑁𝑑 (𝑁𝑑−1)

2 (𝐵(𝑀+𝑇) +𝐵𝑑)).
Since two domains are the most common setting in CDR and this paper mainly focuses
on the idea of modeling both the overlapped and domain-specific features, we thus do not
explore more in the multiple-domain case by following recent works [89, 91, 133].

5.3 Experiments and Analysis

In this section, we first give the details about the datasets and experimental settings.
Then we systemically evaluate ETL via the comparison with recent state-of-the-art meth-
ods on multiple public benchmarks. Next, we design two experiments to demonstrate that
ETL simultaneously learns the overlapped and domain-specific features in CDR. Finally,
we conduct the ablation study on ETL.

5.3.1 Dataset Description

To evaluate the effectiveness of ETL, we utilize three largest benchmarks from
Amazon1. The three datasets are Movies and TV (Movie), Books (Book), CDs and Vinyl
(Music). Note that these three dataset are benchmarks for corss domain recommendation
and have been used in recent works [89, 91]. Following [89, 91], we make a two

1http://jmcauley.ucsd.edu/data/amazon/
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Table 5–1 The statistics of datasets.

Datasets Movie & Book Movie & Music Music & Book

#Users 29,476 15,914 16,267

Domain Movie Book Movie Music Music Book

#Items 24,091 41,884 17,794 20,058 18,467 23,988

#Interactions 591,258 579,131 416,228 280,398 233,251 291,325

Density 0.08% 0.05% 0.14% 0.09% 0.08% 0.07%

combinations amongst the three datasets and find the shared users in each of the two
domains for the U-NI CDR scenario [142]. Next, we obtain Movie & Book, Movie
& Music and Music & Book as our experimental datasets. Compared to the explicit
feedback (e.g. the user ratings on items), the implicit feedback (e.g. the user clicks or
does not click an item) are more common in real-world recommender systems [152-153],
we thus focus on the implicit user-item interactions in this paper. In other words, the user-
item interaction matrices 𝑅X, 𝑅Y are binary matrices where the value is 1 (observed or
clicked) if the user interacted with the item and 0 (unobserved or not clicked) otherwise.
Since the user-item interactions in these benchmarks are ratings ranging from 0 to 5,
we convert the ratings of 3,4,5 as positive samples by following [91]. Finally, we filter
users and items whose number of interactions is less than 5. The dataset statistics are
shown in Table 5–1. As shown in Table 5–1, both domains in each dataset are extremely
sparse with at least 99.86% interactions are unobserved. It presents a great challenge
on most clustering-based and MF-based CDR methods since these methods normally
require dense interactions in at least one domain [89]. In addition, the number of items in
Movie & Book is unbalanced and the density in Movie & Music is imbalanced, which
provides more comprehensive evaluation conditions for different CDR methods.

5.3.2 Baselines

To illustrate the effectiveness, we compare ETL with single domain methods (PMF,
CDAE, CFVAE and AAE) and recent cross domain methods (CMF, AAE++, CoNet,
sCoNet, ATLRec, DDTCDR and DARec) as follows:
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method for single domain recommendation, which has been successfully applied
in real systems [155]. Since we focus on the implicit feedback here, we replace
the original mean square error (MSE) loss in [155] with binary cross entropy loss
for fair comparison.

• CDAE [156]: Collaborative denoising auto-encoder is a generalization of several
auto-encoder based recommendation methods but with more flexible components.

• CFVAE [157]: Collaborative variational auto-encoder is a variational auto-
encoder model for collaborative filtering.

• AAE [52]: Adversarial auto-encoder combines the recent generative adversarial
networks (GAN) and the auto-encoding variational inference. We follow CDAE’s
setting here for AAE to perform the recommendation task.

• CMF [83]: Collective matrix factorization is a multi-relational learning method
that jointly factorizes the user-item interaction matrices of different domains.

• AAE++ [52]: We extend AAE as AAE++ here for CDR. To be specific, AAE++
performs the adversarial auto-encoder for different domains with the same stan-
dard Gaussian distribution as prior and different discriminators. It also serves as
a variant of our ETL model with no cross generation stream.

• CoNet and sCoNet [91]: CoNet transfers knowledge of different domains through
a modified cross-stitch neural network. Specifically, it constructs deep cross-
connections for the predicted user-item interactions from different domains.
sCoNet is a sparse version of CoNet with L1-regularization on the user and
item representations.

• ATLRec [99]: ATLRec is an adversarial transfer learning based model that cap-
tures domain-shareable and domain-specific features by different neural networks.
In particular, it use two domain-specific neural networks to learn the domain-
specific features and one shared neural network to capture the domain-shareable
features.

• DDTCDR [97]: DDTCDR introduces the mechanism of dual learning in CDR
and proposes a deep dual transfer network. DDTCDR requires user features and
item features with the same dimension as input, and these features are obtained
by employing the matrix factorization technique on user-item interaction matrix.

• DARec [89]: DARec introduces domain adaptation techniques [158] for CDR
and has achieved remarkable recommendation performance.
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5.3.3 Experimental Setups

Evaluation Protocols: In item recommendation, the leave-one-out (LOO) evalua-
tion is widely used [91, 159-162] andwe also use LOOhere. In other words, we randomly
reserve two items for each user, one as the validation item and the other one as the test
item. Following [91, 159], we randomly sample 99 items that are not interacted by the
user as negative items, and then evaluate how the recommender can rank the validation
and test item against the negative items. Since we focus on the implicit feedback in rec-
ommendation, we adopt three widely used evaluation metrics: hit ratio (HR), normalized
discounted cumulative gain (NDCG) and mean reciprocal rank (MRR). The predicted
rank list is cut off at 𝑡𝑜𝑝𝐾 = 5, 10. A higher value means a better recommendation
performance for all three metrics. Also, during training, we save the best trained model
according to the performance on the validation set and perform testing with the saved
model. Moreover, all models are run 5 times and the mean value on the test are reported
as the model performance. Empirically, we also show the t-test results to illustrate that
ETL has statistically significant performance over other methods.

Parameter Settings: We implement our ETL with Pytorch on a machine with one
1080Ti GPU. The embedding size is fixed to 200 for all methods. We optimize all
models with Adam optimizer [163] and the batch size is set as 256. The default Xavier
initializer [164] is used to initialize all model parameters. For all methods, the dropout
ratio is set as 0.5 and the learning rate is 0.001. The number of training epochs is set
to 300 which could ensure the convergence for all models. In ETL, we do not tune
hyper-parameter 𝜂 and fix it as 1.0 on the three benchmarks for simplicity. For hyper-
parameter 𝜆, we tune it among [0.1,0.5,1.0,2.0,5.0,10.0] according to the performance on
the validation set. Then we obtain 𝜆 = 5.0 for Movie & Book, 𝜆 = 0.5 for Movie &Music
and 𝜆 = 1.0 for Music & Book. The codes of PMF, CDAE, CFVAE, AAE and CMF are
easily obtained online. For CoNet, sCoNet, ATLRec and DDTCDR, we directly use the
codes provided by the authors from emails and keep the default settings. Since we do
not acquire the codes of DARec from the authors, we implemented them with Pytorch
according to details in [89].
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• ETL-JRL: ETL-JRL is a variant of our ETL model, which only contains the joint
reconstruction loss L𝐽𝑅𝐿.
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Table 5–2 The overall comparison on Movie & Book. The underlined results are the best
performance of baselines.

Movie & Book
topK topK=5 topK=10

Domain Movie Book Movie Book
Metrics HR NDCG MRR HR NDCG MRR HR NDCG MRR HR NDCG MRR
PMF 0.4364 0.3147 0.2745 0.4003 0.2961 0.2621 0.5737 0.3591 0.2928 0.5121 0.3327 0.2772
CDAE 0.4660 0.3471 0.3056 0.4483 0.3492 0.3157 0.5991 0.3901 0.3263 0.5640 0.3851 0.3315
CFVAE 0.4587 0.3396 0.3006 0.4277 0.3258 0.2918 0.5928 0.3852 0.3206 0.5508 0.3646 0.3091
AAE 0.4661 0.3471 0.3080 0.4457 0.3509 0.3128 0.5989 0.3900 0.3269 0.5559 0.3871 0.3291
CMF 0.4433 0.3224 0.2815 0.4373 0.3225 0.2848 0.5848 0.3674 0.3000 0.5583 0.3616 0.3009

AAE++ 0.4803 0.3590 0.3189 0.4537 0.3592 0.3280 0.6098 0.4009 0.3362 0.5656 0.3954 0.3429
CoNet 0.3886 0.2702 0.2279 0.3451 0.2316 0.2033 0.5244 0.3145 0.2464 0.4690 0.2716 0.2195
sCoNet 0.3914 0.2709 0.2277 0.3408 0.2322 0.2043 0.5308 0.3167 0.2463 0.4711 0.2724 0.2209
ATLRec 0.3851 0.2836 0.2435 0.3452 0.2587 0.2020 0.5349 0.3354 0.2607 0.4763 0.3131 0.2362
DDTCDR 0.4090 0.2942 0.2576 0.4008 0.3153 0.2893 0.5394 0.3382 0.2732 0.5073 0.3492 0.3013
DARec 0.4914 0.3641 0.3224 0.4690 0.3591 0.3227 0.6202 0.4069 0.3401 0.5919 0.3989 0.3392
ETL-JRL 0.5109 0.3805 0.3427 0.5020 0.3940 0.3663 0.6412 0.4157 0.3600 0.6266 0.4221 0.3819

ETL 0.5115 0.3812 0.3431 0.5111 0.3989 0.3705 0.6419 0.4244 0.3608 0.6329 0.4383 0.3861
%Improv. 4.09% 4.69% 6.42% 8.97% 11.05% 12.95% 3.49% 4.30% 6.08% 6.92% 9.87% 12.59%

Table 5–3 The overall comparison on Movie & Music. The underlined results are the best
performance of baselines.

Movie & Music
topK topK=5 topK=10

Domain Movie Music Movie Music
Metrics HR NDCG MRR HR NDCG MRR HR NDCG MRR HR NDCG MRR
PMF 0.4081 0.2872 0.2474 0.4505 0.3350 0.2969 0.5490 0.3326 0.2261 0.5769 0.3759 0.3137
CDAE 0.4191 0.3093 0.2723 0.4433 0.3396 0.3053 0.5544 0.3528 0.2898 0.5662 0.3792 0.3225
CFVAE 0.4318 0.3110 0.2750 0.4362 0.3281 0.2884 0.5699 0.3605 0.2945 0.5646 0.3663 0.3082
AAE 0.4357 0.3226 0.2860 0.4557 0.3445 0.3086 0.5689 0.3658 0.3023 0.5772 0.3863 0.3248
CMF 0.4309 0.3025 0.2603 0.4794 0.3568 0.3166 0.5736 0.3487 0.2793 0.6124 0.4011 0.3349

AAE++ 0.4281 0.3142 0.2754 0.4538 0.3501 0.3142 0.5628 0.3564 0.2928 0.5789 0.3887 0.3301
CoNet 0.3729 0.2556 0.2176 0.3887 0.2658 0.2183 0.5146 0.3013 0.2369 0.5380 0.3140 0.2229
sCoNet 0.3773 0.2594 0.2197 0.3953 0.2670 0.2080 0.5209 0.3060 0.2390 0.5411 0.3148 0.2283
ATLRec 0.3771 0.2758 0.2440 0.3820 0.2782 0.2435 0.5189 0.3215 0.2627 0.5198 0.3225 0.2514
DDTCDR 0.3880 0.2748 0.2366 0.4204 0.3169 0.2804 0.5220 0.3177 0.2542 0.5421 0.3563 0.2962
DARec 0.4589 0.3349 0.2950 0.4822 0.3636 0.3241 0.5973 0.3790 0.3134 0.6125 0.4051 0.3413
ETL-JRL 0.4869 0.3629 0.3210 0.5260 0.4027 0.3631 0.6222 0.4057 0.3387 0.6548 0.4422 0.3766

ETL 0.4891 0.3632 0.3224 0.5314 0.4037 0.3653 0.6241 0.4076 0.3404 0.6550 0.4442 0.3819
%Improv. 6.58% 8.45% 9.28% 10.20% 11.02% 12.71% 4.48% 7.54% 8.61% 6.93% 9.65% 11.89%
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Table 5–4 The overall performance on Music & Book. The underlined results are the best
performance of baselines. Compared to ETL, the t-test results of other baselines are shown in this

table.

Music & Book
topK topK=5 topK=10

Domain Music Book Music Book
Metrics HR NDCG MRR HR NDCG MRR HR NDCG MRR HR NDCG MRR
PMF 0.4213 0.3138 0.2783 0.4015 0.3182 0.2889 0.5360 0.3508 0.2936 0.4992 0.3480 0.3009
CDAE 0.4266 0.3259 0.2839 0.4046 0.3129 0.2868 0.5471 0.3615 0.3031 0.5139 0.3478 0.2985
CFVAE 0.4101 0.3104 0.2718 0.3763 0.2891 0.2573 0.5342 0.3488 0.2860 0.5077 0.3275 0.2747
AAE 0.4302 0.3326 0.3007 0.3983 0.3159 0.2852 0.5498 0.3712 0.3152 0.5121 0.3491 0.2992
CMF 0.4113 0.3084 0.2748 0.4017 0.3126 0.2920 0.5280 0.3468 0.2906 0.5132 0.3468 0.3055

AAE++ 0.4270 0.3287 0.2956 0.3996 0.3200 0.2917 0.5450 0.3661 0.3110 0.5084 0.3535 0.3055
CoNet 0.3380 0.2235 0.2186 0.3265 0.2032 0.2061 0.4699 0.2663 0.2365 0.4505 0.2452 0.2419
sCoNet 0.3508 0.2370 0.2261 0.3263 0.2185 0.2297 0.4846 0.2780 0.2440 0.4490 0.2590 0.2460
ATLRec 0.3540 0.2512 0.2372 0.3292 0.2576 0.2376 0.4935 0.2942 0.2549 0.4522 0.2773 0.2529
DDTCDR 0.3965 0.3061 0.2749 0.3689 0.2992 0.2734 0.5110 0.3412 0.2879 0.4700 0.3300 0.2872
DARec 0.4535 0.3422 0.3060 0.4368 0.3350 0.3013 0.5796 0.3832 0.3229 0.5494 0.3710 0.3161
ETL-JRL 0.4646 0.3586 0.3228 0.4458 0.3389 0.3139 0.5855 0.3968 0.3385 0.5650 0.3828 0.3288

ETL 0.4686 0.3683 0.3282 0.4496 0.3493 0.3155 0.5942 0.4034 0.3444 0.5669 0.3865 0.3369
%Improv. 3.32% 7.62% 7.25% 2.93% 4.26% 4.71% 2.51% 5.27% 6.65% 3.18% 4.17% 6.58%

5.3.4 Performance Comparison

5.3.4.1 Overall Comparison

In this evaluation, after we learned the user representations 𝑧𝑥 and 𝑧𝑦 from the user
behaviors in each domain, we use 𝑧𝑥 and 𝑧𝑦 to predict the user behaviors by the decoder
𝐷𝑥 and 𝐷𝑦, and thus make the recommendation. The performance comparison results
are reported in Table 5–2,5–3,5–4, together with the t-test results. Compared to the
most competitive baseline, the percentage of relative improvement (%Improv.) of ETL is
calculated through 100 ∗ (𝑣𝐸𝑇𝐿 − 𝑣𝑏𝑎𝑠𝑒)/𝑣𝑏𝑎𝑠𝑒. From these tables, we have the following
observations:
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• ETL consistently yields the best performance on the three datasets. In particular,
ETL improves over the most competitive baseline with a 7.54%, 9.65% relative
gain of NDCG@10 on movie and music domain of Movie & Music. Compared to
DDTCDR, ETL explicitly models the joint distribution of user behaviors across
domains by the equivalent transformation assumption and achieves better perfor-
mance. The superior performance of ETL over AAE++ indicates the importance
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5.3.4.2 Different Latent Dimensions

The latent dimension is an important factor that accounts for the recommendation
performance of different methods. We thus investigate the impact of different latent
dimensions for different methods. To be specific, we fix the other factors of all methods
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of cross domain generation in ETL. Compared to ATLRec, the proposed ETL con-
tains the cross-generation stream that helps to better learn the user representations
in each domain, and shows better performance.

• Cross domain based methods generally outperform the single domain based meth-
ods, indicating the importance of transferring knowledge across domains in rec-
ommendation [83, 89, 97]. In particular, in order to transfer knowledge from other
domains, CMF utilizes the linear collective matrix factorization technique while
AAE++ and DARec employ various deep learning techniques. Compare to CMF,
the proposed ETL consistently shows better performance on different datasets in
different sparsity levels. For CoNet, it presents an unsatisfactory performance,
because the learning mechanism in CoNet breaks the joint behavior pattern in
CDR.

• ETL achieves better performance than ETL-JRL which only has the joint recon-
struction loss. The reason for this is that the prior regularization in ELBO of
Eq. 5–3 encourages the preferences to be learned in a specific space with prior
knowledge, which benefits the learning process. Moreover, although the original
intention of the prior regularization is the joint prior 𝑝(𝑧𝑥 , 𝑧𝑦), the results show
the standard Gaussian distribution in Section 5.2.4 also works. This verifies the
effectiveness of ETL even with a simple prior.

• The improvements of ETL are higher when using Movie as one of the domains. A
possible explanation is that the movie domain tends to have more information (e.g.
background music, prototype book, actor, director, etc.) than other two domains.
When more useful information is captured, the recommendation performance can
be improved. Previous works based on the idea of shared-user representation
focus on modeling the overlapped features and are not able to learn sufficient
information from the movie domain, while ETL has the flexibility of capturing
more information in the movie domain and thus helps to learn more informative
user representations.
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(a) Movie & Book-Movie (b) Movie & Book-Movie (c) Movie & Book-Book (d) Movie & Book-Book

Figure 5–4 The effects of different latent dimensions on Movie & Book.

(a) Movie & Music-Movie (b) Movie & Music-Movie (c) Movie & Music-Music (d) Movie & Music-Music

Figure 5–5 The effects of different latent dimensions on Movie & Music.

and allow the latent dimension 𝑑 to range in [50,100,150,200,250,300]. The results on
three datasets are shown in Figure 5–4, Figure 5–5 and Figure 5–6. From these figures,
we summarize that:

5.3.4.3 Different Sparsity Levels

Since sparsity is an important problem in recommendation systems, it is necessary
to investigate whether ETL can still perform better than other methods under more sparse
conditions. To this end, we vary sparsity levels of the training data to investigate the
method’s corresponding performance. In particular, fixing the validation and test set,
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• Compared with other methods, ETL consistently achieves the best performance
on almost every latent dimension. ETL is robust to the change of latent dimension
according to the slight change of performance. This verifies the significance of
modeling both features, which helps to robustly transfer knowledge with different
latent dimensions.

• It is worthwhile to point out that DARec does not perform robustly with the change
of latent dimensions. This main reason is that DARec involves the pretraining of
AutoRec [165] as the base model, which could accumulate noise with a bad latent
dimension because of the two-step scheme.
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(a) Music & Book-Music (b) Music & Book-Music (c) Music & Book-Book (d) Music & Book-Book

Figure 5–6 The effects of different latent dimensions on Music & Book.

(a) Movie & Book-Movie (b) Movie & Book-Movie (c) Movie & Book-Book (d) Movie & Book-Book

Figure 5–7 The effects of different sparsity levels on Movie & Book. Train ratio means the ratio of
the original train data.

we randomly sample a ratio ranging in [20%,40%,60%,80%,100%] of the original train
data as new train data for different sparsity levels. The results are shown in Figure 5–7,
Figure 5–8 and Figure 5–9. According to these figures, we can see that:
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• It is obvious that ETL performs better than other methods on almost all sparsity
levels. We also observe that ETL has less improvement over other counterparts
when the data are extremely sparse. One possible reason is that ETL involves
the parameterized equivalent transformation that needs necessary data to exert its
performance. Too sparse data may limit the training of the transformation, which
may be a limitation of ETL and could be explored in the future.

• The extreme sparse cases would cause deterioration to the recommendation per-
formance. As shown in Figure 5–7, Figure 5–8 and Figure 5–9, all methods would
have a decrease when training data are less. In the extreme sparse case 0.2, the
gap among most CDR methods is not obvious, because the observed data are too
less to train a reliable model with 0.2 train ratio. For example, with 0.2 train ratio,
we only have 0.01% observed interactions on Movie & Book-Book.
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(a) Movie & Music-Movie (b) Movie & Music-Movie (c) Movie & Music-Music (d) Movie & Music-Music

Figure 5–8 The effects of different sparsity levels on Movie & Music. Train ratio means the ratio of
the original train data.

(a) Music & Book-Music (b) Music & Book-Music (c) Music & Book-Book (d) Music & Book-Book

Figure 5–9 The effects of different sparsity levels on Music & Book. Train ratio means the ratio of
the original train data.

5.3.4.4 Empirical Running Time Analysis

To investigate the time complexity, we conduct an experiment to compare the em-
pirical running time of each epoch for different models. We conduct the experiments 10
times on the same machine with one 1080Ti GPU. The mean value of running time per
epoch is reported in Figure 5–10.

From Figure 5–10, we can see that: (1) CoNet costs the most time because it involves
the pretraining of a single domain and stacks multiple cross connection units to model the
interactions of different domains. (2) Compared to AAE++ and DARec, ETL takes the
running time in the same level and achieves better recommendation performance. This
also verifies the time efficiency of the proposed model. (3) The matrix factorization based
method CMF costs more time than auto-encoding based methods (e.g. AAE++, DARec
and ETL). This is because with the same batch size, CMF takes user-item interaction
pairs for training, while auto-encoding based methods can take all behaviors of batch
users.
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(a) Movie & Book (b) Movie & Music (c) Music & Book

Figure 5–10 The empirical running time in each epoch of different methods.

5.3.5 Analysis of Learned User Preferences

Aswementioned before, the equivalent transformation enables ETL to better capture
both the domain-specific and overlapped features for CDR. In order to verify this, we
design two experiments in this section. Note that our model mainly concentrates on
the user-item interactions, specific instances about the overlapped and domain-specific
features is beyond the interest of this study.

5.3.5.1 Overlapped Features of User Preferences

In this experiment, we make a hypothesis that the preferences (representations)
across domains belonging to the same user usually would have more overlaps than those
belonging to different users in CDR. If the overlaps are well captured, there will be an
obvious difference between the embedding pair of the same user and that of different
users, which means it can be formulated as a binary classification problem. This intuition
is similar to that in some multi-view translation works [129-130, 166-168] that use a
binary classifier to measure the distribution-level distance between the joint distribution
𝑞(𝑧𝑥 , 𝑧𝑦) and 𝑞(𝑧𝑥 , 𝑧𝑦′) where 𝑧𝑥 , 𝑧𝑦 belong to the same instance and 𝑧𝑥 , 𝑧𝑦′ belong
to different instances, and judge whether the two embeddings have consistent features.
Thereby, we employ a binary classifier here to verify whether ETL can better capture the
overlapped features of user preferences across domains.

In particular, we denote 𝑍𝑥 ∈ R𝑁×𝑑 and 𝑍𝑦 ∈ R𝑁×𝑑 as the user embedding matrix for
X and Y domain, respectively. In this experiment, we hold a rule where representations
(i.e. 𝑍𝑥𝑖 and 𝑍𝑦𝑖) belonging to the same user are the paired sample and representations
(i.e. 𝑍𝑥𝑖 and 𝑍𝑦 𝑗 with 𝑗 ≠ 𝑖) belonging to different users are the unpaired sample. We
obtain the classification data for this experiment by constructing one paired sample and
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Table 5–5 The binary classification results with AUC. This experiment is designed to verify that the
proposed ETL can better learn the overlapped features of user preferences in CDR.

Movie & Book Movie & Music Music & Book

PMF 0.6571 0.7322 0.5709

CDAE 0.6796 0.7267 0.6195

AAE 0.7128 0.7734 0.6516

AAE++ 0.7253 0.7777 0.6565

DARec 0.7460 0.8203 0.6934

ETL 0.9160 0.9574 0.8826

one random unpaired sample for each user. Then, we train a two-layer MLP classifier
to perform the binary classification task with (𝑍𝑥𝑖, 𝑍𝑦𝑖) as label 1 and (𝑍𝑥𝑖, 𝑍𝑦 𝑗) as label
0. In this experiment, the concatenation operation is employed between 𝑍𝑥 and 𝑍𝑦
and we follow the common 6(train)-2(validation)-2(test) setting for classification. The
experiment is conducted 10 times and we report the mean value as the results1. The
results are shown in Table 5–5. There are two key observations:

1CMF and CoNet both learn one low-dimensional embedding for each user across domains, which makes them
not suitable for this experiment here.
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• The proposed ETL yields the best classification performance. This indicates that
ETL has better ability to discriminate embeddings that belongs to the same user.
In other words, ETL can better capture the overlapped features of the same user and
distinguish the user from others. It is also worthwhile to mention that the result
accuracy is consistently lower for Music & Book combo since the correlations
between Music and Book domain are not as high as other two domains. As we
analyzed before, with the idea of shared-user representation, the CDR model may
converge to a comprised solution where both the overlapped and domain-specific
features are not well-captured. In contrast, the equivalent transformation in ETL
allows the flexibility for user representations in each domain, and can also better
learn the overlapped features by the transformed user representations. Learning
the overlapped features and domain-specific features is not a conflict for better
recommendation performance as long as we find an effective way to do the feature
alignment. Through the results, we can see that ETL indeed better captures the
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(a) Movie & Book-Movie (b) Movie & Music-Movie (c) Music & Book-Music

(d) Movie & Book-Book (e) Movie & Music-Music (f) Music & Book-Book

Figure 5–11 The results of model performance and MMD distance on three benchmarks. This
experiment is designed to show that ETL has the capacity to learn the domain-specific features of

user preferences.
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correlations across domains.
• Two interesting phenomenons are observed in Table 5–5. First, the single do-

main based methods (PMF, CDAE, AAE) have worse AUC compared with the
cross domain based methods (AAE++, DARec and ETL). Second, considering
the recommendation performance in Table 5–2,5–3,5–4, it seems that the recom-
mendation accuracy has a positive correlation with the classification AUC, which
implies that a model with better classification performance tends to have better
recommendation accuracy. These two phenomenons emphasize our motivation of
learning 𝑧𝑥 and 𝑧𝑦 in CDR with equivalent transformation that helps to learn the
overlapped features. It is quite different from the idea of other works that learns
those features by fully aligning 𝑧𝑥 and 𝑧𝑦, where the alignment can be affected by
the user behavior prediction loss in each domain.
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5.3.5.2 Domain-Specific Features of User Preferences

Assuming the overlapped features are well captured, a CDRmodel can further boost
the recommendation by learning the domain-specific features. The idea of shared-user
representation expects to align 𝑧𝑥 and 𝑧𝑦, and thus leads to low distance between 𝑞(𝑧𝑥 |𝑥𝑖)
and 𝑞(𝑧𝑦 |𝑦𝑖) in two domains. In contrast, when the domain-specific features are captured,
𝑞(𝑧𝑥 |𝑥𝑖) and 𝑞(𝑧𝑦 |𝑦𝑖) are expected to have a larger distribution distance.

We thus can verify whether ETL is able to learn the domain-specific features by
measuring the distance between 𝑞(𝑧𝑥 |𝑥) and 𝑞(𝑧𝑦 |𝑦). In particular, for different methods,
we use the 𝑧𝑥 and 𝑧𝑦 learned by different methods to calculate the Maximum Mean
Discrepancy (MMD) distance [169]. Letℱ be a class of functions 𝑓 : 𝒳 → R, then the
MMD distance is defined as:

𝑀𝑀𝐷 [ℱ, 𝑞(𝑧𝑥 |𝑥), 𝑞(𝑧𝑦 |𝑦)] = sup
𝑓 ∈ℱ

(E𝑧𝑥 [ 𝑓 (𝑧𝑥)] − E𝑧𝑦 [ 𝑓 (𝑧𝑦)])

When given 𝑛 samples from 𝑞(𝑧𝑥 |𝑥) and 𝑚 samples from 𝑞(𝑧𝑦 |𝑦), we can empirically
estimate the MMD distance with the following equation1:

�𝑀𝑀𝐷 =
1
𝑛2

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑘 (𝑧𝑖𝑥 , 𝑧 𝑗𝑥) +
1
𝑚2

𝑚∑
𝑖=1

𝑚∑
𝑗=1

𝑘 (𝑧𝑖𝑦, 𝑧 𝑗𝑦) −
2
𝑛𝑚

𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑘 (𝑧𝑖𝑥 , 𝑧 𝑗𝑦)

where 𝑧𝑖 𝑜𝑟 𝑗𝑥 and 𝑧𝑖 𝑜𝑟 𝑗𝑦 are embedding vectors and 𝑘 (·, ·) denotes the kernel function.
In our case, we use the widely used Gaussian radial basis function (RBF) kernel that is
defined as 𝑘 (𝑥, 𝑥 ′) = 𝑒𝑥𝑝(− 1

2𝜎2 ∥𝑥−𝑥′ ∥2 ). Following recent works [170], we use multiple
kernels of different 𝜎 and then sum them as the final kernel function2. The results of
MMD distance and recommendation performance on three benchmarks are shown in
Figure 5–11. From this figure, we have the following observations:

1https://en.wikipedia.org/wiki/Kernel_embedding_of_distributions
2https://github.com/OctoberChang/MMD-GAN/blob/master/mmd.py
3CMF and CoNet both share exactly the same user representation and have zero MMD distance.
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• Based on the well-captured overlapped features, ETL can further learn the domain-
specific features for better recommendation performance and thus has larger MMD
distance than other CDR methods3. Unlike the idea of shared-user representation
that compresses domain-specific features, the idea of equivalent transformation
enables ETL to have the capacity of capturing the domain-specific variations as
well as the correlations across domains.
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Table 5–6 The definitions of different transformations. Trans1 and Trans2 are both not equivalent
transformation. Trans3 is one simple equivalent transformation. Trans4 is our extended non-linear

equivalent transformation from Trans3.

Trans Formulation Type

Trans1 𝑧𝑦→𝑥 = 𝑧𝑦𝑊𝑥 , 𝑧𝑥→𝑦 = 𝑧𝑥𝑊𝑦
unconstrained

(linear)

Trans2 𝑧𝑦→𝑥 = 𝜎(𝑧𝑦𝑊1
𝑥)𝑊2

𝑥 , 𝑧𝑥→𝑦 = 𝜎(𝑧𝑥𝑊1
𝑦)𝑊2

𝑦

unconstrained
(non-linear)

Trans3
𝑧𝑦→𝑥 = 𝑧𝑦𝑊𝑥 , 𝑧𝑥→𝑦 = 𝑧𝑥𝑊𝑦

𝑠.𝑡. min | |𝑧𝑥 − 𝑧𝑥→𝑦𝑊𝑥 | |1𝐹
𝑠.𝑡. min | |𝑧𝑦 − 𝑧𝑦→𝑥𝑊𝑦 | |1𝐹

constrained
(linear, equivalent)

Trans4
𝑧𝑦→𝑥 = 𝜎(𝑧𝑦𝑊1

𝑥)𝑊2
𝑥 , 𝑧𝑥→𝑦 = 𝜎(𝑧𝑥𝑊1

𝑦)𝑊2
𝑦

𝑠.𝑡. min | |𝑧𝑥 − 𝜎(𝑧𝑥→𝑦𝑊
1
𝑥)𝑊2

𝑥 | |1𝐹
𝑠.𝑡. min | |𝑧𝑦 − 𝜎(𝑧𝑦→𝑥𝑊

1
𝑦)𝑊2

𝑦 | |1𝐹

constrained
(non-linear, equivalent)

(a) Movie-HR (b) Movie-NDCG (c) Book-HR (d) Book-NDCG

Figure 5–12 The effect of different transformations on Movie & Book. Note that we show the results
on Movie & Book here as an example to illustrate our idea. Results on other two benchmarks follow

similar pattern.

5.3.6 Ablation Study

5.3.6.1 The Effects of Different Transformations

In case thatwe adopt the orthogonal transformation for the equivalent transformation,
it is curious to explore what are the effects of other transformations. We here conduct
an experiment with other 4 different transformations for ETL. The results on Movie &
Book are shown in Figure 5–12, where Trans5 is the used orthogonal transformation and
Trans1∼4 indicate other 4 different transformations that are defined in Table 5–6. From
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• It is also worthwhile to point out that large distance between 𝑧𝑥 and 𝑧𝑦 does not
mean better recommendation performance. The recommendation performance in
CDR relies on both the overlapped features and the domain-specific features. In
this context, we can understand why some single domain methods (e.g. CDAE and
AAE) have larger MMD distance but achieve poor recommendation performance.
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Table 5–7 The effects of different priors on three benchmarks. Uniform indicates samples from
𝑈 (0, 1), Laplace indicates samples from 𝐿 (0, 1) and Gaussian means samples from N(0, 1). For
multi-variate Gaussian (MVGaussian), we set it as 𝑀𝑉𝐺 = N(0, 1) + N (3, 1) to form multiple

peaks.

Movie and Book
topK topK=5 topK=10

Domain Movie Book Movie Book
Metrics HR NDCG MRR HR NDCG MRR HR NDCG MRR HR NDCG MRR
Uniform 0.5030 0.3761 0.3348 0.4976 0.3761 0.3368 0.6341 0.4185 0.3527 0.6211 0.4167 0.3536
Laplace 0.5095 0.3826 0.3406 0.5149 0.4052 0.3637 0.6418 0.4254 0.3583 0.6320 0.4437 0.3792

MVGaussian 0.5044 0.3770 0.3349 0.4960 0.3788 0.3399 0.6398 0.4208 0.3529 0.6191 0.4186 0.3564
Gaussian 0.5115 0.3812 0.3431 0.5111 0.3989 0.3705 0.6419 0.4244 0.3608 0.6329 0.4383 0.3861

Movie and Music
topK topK=5 topK=10

Domain Movie Music Movie Music
Metrics HR NDCG MRR HR NDCG MRR HR NDCG MRR HR NDCG MRR
Uniform 0.4831 0.3561 0.3168 0.5123 0.3875 0.3470 0.6214 0.4005 0.3350 0.6382 0.4295 0.3644
Laplace 0.4931 0.3684 0.3291 0.5297 0.4063 0.3660 0.6274 0.4117 0.3464 0.6578 0.4477 0.3823

MVGaussian 0.4734 0.3517 0.3103 0.4992 0.3824 0.3433 0.6113 0.3949 0.3281 0.6294 0.4242 0.3603
Gaussian 0.4891 0.3632 0.3224 0.5314 0.4037 0.3653 0.6241 0.4076 0.3404 0.6550 0.4442 0.3819

Music and Book
topK topK=5 topK=10

Domain Music Book Music Book
Metrics HR NDCG MRR HR NDCG MRR HR NDCG MRR HR NDCG MRR
Uniform 0.4403 0.3305 0.3054 0.4394 0.3338 0.2989 0.5629 0.3700 0.3212 0.5576 0.372 0.3147
Laplace 0.4614 0.3568 0.3230 0.4623 0.3572 0.3217 0.5766 0.3954 0.3388 0.5768 0.3928 0.3364

MVGaussian 0.4392 0.3431 0.3056 0.4325 0.3303 0.2952 0.5675 0.3818 0.3219 0.5590 0.3700 0.3116
Gaussian 0.4686 0.3683 0.3282 0.4496 0.3493 0.3155 0.5942 0.4034 0.3444 0.5669 0.3865 0.3369

Table 5–6 and Figure 5–12, we can see:
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• The orthogonal transformation (Trans5) outperforms other 4 transformations.
This is reasonable since only Trans5 is the equivalent one as well as does not
introduce spurious correlations between users after knowledge transfer.

• It is worthwhile to notice that the equivalent transformations (Trans3∼5) present
better performance compared to the non-equivalent ones (Trans1∼2). This verifies
the correctness of our ET assumption that encourages ETL to learn better coverage
of user preferences. The unconstrained ones deteriorate the recommendation
performance since they are too flexible and may easily be over-fitting on the sparse
data in recommendation. Moreover, even with other equivalent transformations
(Trans3∼4), ETL still performs better than DARec according to Table 5–2∼5–4.
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(a) Movie & Book
Movie-NDCG@10

(b) Movie & Book
Book-NDCG@10

(c) Movie & Music
Movie-NDCG@10

(d) Movie & Music
Music-NDCG@10

Figure 5–13 The effects of hyper-parameters 𝜆, 𝜂 on two datasets. We show the results of two
datasets here to illustrate the observations and the results of another dataset follow similar pattern.

5.3.6.2 The Effects of Different Priors

In Section 5.2.5, we take standard Gaussian distributions as priors. Different priors
have different prior knowledge for the learned user preferences. Thus it is interesting to
see the effects of different priors. In this part, we explore the effects of different priors
on the model performance. In particular, we apply four common priors in generative
modeling and show the results in Table 5–7. From Table 5–7, we have the following key
observations:

5.3.6.3 Hyper-parameter Sensitivity

In ETL,𝜆 controls theweight of the equivalent transformation and 𝜂weights the prior
regularization. To investigate how the hyper-parameters 𝜆, 𝜂 influence the performance
of ETL, we conduct an experiment to study the sensitivity of these two hyper-parameters.
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• Compared to other priors, uniform prior consistently leads to poor recommen-
dation performance. It is because users usually have non-uniform interests on
different topics and the uniform distribution does not match the implicit distribu-
tion of user preferences.

• Gaussian and Laplace prior have comparable performance. On Movie & Music,
Laplace prior gain better performance than Gaussian prior, while on other two
benchmarks, they have slight gaps and Gaussian prior has better performance in
some cases. Thus the choice of prior should be data-dependent.

• MVGaussian prior generally does not have better performance than Gaussian prior.
This is mainly because it is hard to define the parameters of MVGaussian and it is
easy to involve human bias. Instead, the most common prior (i.e. Gaussian) can
provide satisfied performance.
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The corresponding results are shown in Figure 5–13.
From this figure, we can see that the best hyper-parameter setting is different on

different datasets. For example, in Figure 5–13 (b), ETL performs better when 𝜂 is
around 10.0 and 𝜆 is around 0.2 on Movie & Book-Book. While for Movie & Music-
Music in Figure 5–13 (d), the hyper-parameters are around 𝜂 = 0.5, 𝜆 = 5.0. This is
because different datasets have different distributions and require different weights of the
equivalent transformation and the prior regularization.

5.4 Summary

In this Chapter, based on the equivalent transformation assumption, we propose a
novel distribution matching based CDR model that advocates to capture both the over-
lapped and domain-specific features. Extensive experiments on three public benchmarks
demonstrate the effectiveness of the proposed model for boosting the recommendation
accuracy.

Although ETL has shown better performance than previous methods, there are
still some inadequacies that limit its potential. Firstly, we make a simplified Gaussian
assumption for the joint prior 𝑝(𝑧𝑥 , 𝑧𝑦) in Section 5.2.4. A complex prior that provides
more informative prior knowledge can be explored later. Secondly, in common CDR,
usually popular related domains are considered for recommendation. In the future,
it is interesting to study how to do the recommendation among unpopular domains.
Thirdly, how to incorporate ETL with auxiliary information to boost the recommendation
performance and even solve the cold-start problem is also interesting.
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Chapter 6 Conclusion

In this thesis, we focus on deep learning on complex graphs to put forward the graph
learning algorithms into practice. Specifically, we study the issues of complex graphs in
different levels, i.e. signed directed networks in the edge level, attribute-missing graphs
in the attribute level and user-item bipartite graphs of CDR in the graph level, and propose
the corresponding solutions. The summarization of the proposed methods will be given
in this Chapter and meanwhile we will discuss some future directions on algorithms and
applications.

6.1 Summary of Contributions

Chapter 3 studies the representation learning problem on signed directed networks.
Specifically, the structures in signed directed networks are coupled by signs and directions,
which raises challenges to model the structural patterns. We propose to decouple the
modeling of signs and directions in a principled way by maximizing the variational
ELBO on the log-likelihoods of the observed data. Further, based on the ELBO, we
develop a decoupled variational embedding (DVE) model to learn node embeddings
for downstream tasks. The empirical results on three real-world datasets confirm the
promising performance of DVE on learning representative node embeddings.

In Chapter 4, we study the learning problem of attribute-missing graphs. In this
Chapter, we analyze that recent graph algorithms either suffer from the sampling bias of
structures or are incompatible to learn on attribute-missing graphs. We consider attributes
and structures as two heterogeneous views to describe the information of nodes, and
model the two views by decoupled encoder while preserving their joint distribution by
deep generative techniques. Following this, we make a shared-latent space assumption
of attributes and structures, and further propose a novel distribution matching based
GNN framework for learning on attribute-missing graphs. Extensive experiments on
seven benchmarks demonstrate that our method outperforms the current popular graph
learning algorithms on both link prediction task and the newly introduced node attribute
completion task.

Chapter 5 studies how to collaborate the learning of different user-item bipartite
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graphs in CDR. We analyze that most models in CDR are based the idea of shared
user representation, and thus resort to learn the overlapped features and compromise the
domain-specific features. Although several works employ MLP as the mapping function
to allow the learning flexibility for user preference in each domain, they usually require
heuristic human knowledge of choosing training samples to avoid over-fitting for the
mapping function. We propose to learn the both features by an equivalent transformation
assumptionwhichmeans each user’s preference in each domain can bemutually converted
to each other with equivalent transformation. Based on this assumption, we derive the
ELBO of the joint log-likelihood of the user behaviors across domains as a surrogate
objective function to optimize the recommendation target. Quantitative and qualitative
results on three widely-used benchmarks confirm the superiority of our model.

6.2 Future Works

Although we have present some useful methods to handle the learning problems of
deep learning on complex graphs, there is still a long way to go in this area. The potential
works on algorithm designs and application developments deserve further exploration in
the future, which are summarized as follows.
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• More effective posterior solutions. One common drawback of the methods in
Chapter 4 and Chapter 5 is the imperfect posterior approximation by mean field
theory. In real data, the latent codes are usually dependent even when given the
observed data, which causes limitations of the approximate posterior. Employing
more effective posterior approximation techniques will be useful to improve the
representation learning and could be studied in future.

• Dynamic complex graphs with temporal information. In many scenarios, the
complex graphs are usually not static and change the structures or attributes along
the time. For instance, the users in social media may change his or her social
relationships or profiles when facing different things offline. The traffic networks
in a city may be extended or cut according to the policy from the government.
Exploring the involving patterns in these dynamic graphs encourages us to better
understand how the edges build and what the mutual influence of node structures
and attributes, and facilitates better knowledge of several graph prediction tasks,
e.g. link prediction and label prediction. Research on this topic may involve
the techniques in sequential modeling, online learning and Bayesian reasoning,
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which can be investigated in future works.
• Potential applications. Deep learning on complex graphs is related to many

practical applications. For example, the edges of signs and directions are very
useful for friend recommendation and enemy detection. Meanwhile, learning
on attribute-missing graphs in Chapter 4 relates to many practical tasks, e.g.
auto-tagging in e-commence systems, and fraud detection in financial systems.
Employing the designed algorithms into these practical applications might provide
more value for the society.
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A.1 Variational Evidence Lower Bound

The detailed derivation of the ELBO in Eq. 3–6 is shown as follows.

log 𝑃(E) =
∫

𝑞𝜙 (𝑍𝑠, 𝑍𝑡 |E) log 𝑝 𝜃 (E)𝑑𝑍𝑠𝑑𝑍𝑡 (A–1)

=
∫

𝑞𝜙 (𝑍𝑠, 𝑍𝑡 |E) log
𝑝 𝜃 (E, 𝑍𝑠, 𝑍𝑡)
𝑝 𝜃 (𝑍𝑠, 𝑍𝑡 |E)

𝑑𝑍𝑠𝑑𝑍𝑡 (A–2)

=
∫

𝑞𝜙 (𝑍𝑠, 𝑍𝑡 |E) log
𝑝 𝜃 (E, 𝑍𝑠, 𝑍𝑡)
𝑞𝜙 (𝑍𝑠, 𝑍𝑡 |E)

·
𝑞𝜙 (𝑍𝑠, 𝑍𝑡 |E)
𝑝 𝜃 (𝑍𝑠, 𝑍𝑡 |E)

𝑑𝑍𝑠𝑑𝑍𝑡 (A–3)

=
∫

𝑞𝜙 (𝑍𝑠, 𝑍𝑡 |E) log
𝑝 𝜃 (E, 𝑍𝑠, 𝑍𝑡)
𝑞𝜙 (𝑍𝑠, 𝑍𝑡) |E

𝑑𝑍𝑠𝑑𝑍𝑡

+
∫

𝑞𝜙 (𝑍𝑠, 𝑍𝑡) log
𝑞𝜙 (𝑍𝑠, 𝑍𝑡 |E)
𝑝 𝜃 (𝑍𝑠, 𝑍𝑡 |E)

𝑑𝑍𝑠𝑑𝑍𝑡 (A–4)

=
∫

𝑞𝜙 (𝑍𝑠, 𝑍𝑡 |E) log
𝑝 𝜃 (E, 𝑍𝑠, 𝑍𝑡)
𝑞𝜙 (𝑍𝑠, 𝑍𝑡 |E)

𝑑𝑍𝑠𝑑𝑍𝑡

+ 𝐷𝐾𝐿 [𝑞𝜙 (𝑍𝑠, 𝑍𝑡) |E | |𝑝 𝜃 (𝑍𝑠, 𝑍𝑡 |E)] (A–5)

We then have the formulation of the ELBO in Eq. 3–4 as:

L =
∫

𝑞𝜙 (𝑍𝑠, 𝑍𝑡 |E) log
𝑝 𝜃 (E, 𝑍𝑠, 𝑍𝑡)
𝑞𝜙 (𝑍𝑠, 𝑍𝑡 |E)

𝑑𝑍𝑠𝑑𝑍𝑡 (A–6)

=
∫

𝑞𝜙 (𝑍𝑠, 𝑍𝑡 |E) log
𝑝 𝜃 (𝑍𝑠, 𝑍𝑡)
𝑞𝜙 (𝑍𝑠, 𝑍𝑡 |E)

𝑑𝑍𝑠𝑑𝑍𝑡

+
∫

𝑞𝜙 (𝑍𝑠, 𝑍𝑡 |E) log 𝑝𝜓 (E|𝑍𝑠, 𝑍𝑡)𝑑𝑍𝑠𝑑𝑍𝑡 (A–7)

= − 𝐷𝐾𝐿 [𝑞𝜙 (𝑍𝑠, 𝑍𝑡 |E) |𝑝 𝜃 (𝑍𝑠, 𝑍𝑡)] + E
𝑞𝜙 (𝑍𝑠 ,𝑍𝑡 |E)

[𝑝𝜓 (E|𝑍𝑠, 𝑍𝑡)] (A–8)

Following the proposition and prior assumption, we have the ELBO in Eq. 3–6 as follows:

L = − 𝐷𝐾𝐿 [𝑞𝜙 (𝑍𝑠, 𝑍𝑡 |E) |𝑝 𝜃 (𝑍𝑠, 𝑍𝑡)] + E
𝑞𝜙 (𝑍𝑠 ,𝑍𝑡 |E)

[𝑝𝜓 (E|𝑍𝑠, 𝑍𝑡)] (A–9)

=
∫

𝑞𝜙𝑠 (𝑍𝑠 |E)𝑞𝜙𝑡 (𝑍𝑠 |E) log
𝑝 𝜃 (𝑍𝑠)𝑝 𝜃 (𝑍𝑡)

𝑞𝜙𝑠 (𝑍𝑠 |E)𝑞𝜙𝑡 (𝑍𝑠 |E)
𝑑𝑍𝑠𝑑𝑍𝑡 + E

𝑞𝜙 (𝑍𝑠 ,𝑍𝑡 |E)
[𝑝𝜓 (E|𝑍𝑠, 𝑍𝑡)]

(A–10)

= − 𝐷𝐾𝐿 [𝑞𝜙𝑠 (𝑍𝑠 |E) | |𝑝 𝜃 (𝑍𝑠)] − 𝐷𝐾𝐿 [𝑞𝜙𝑡 (𝑍𝑡 |E) | |𝑝 𝜃 (𝑍𝑡)] + E
𝑞𝜙 (𝑍𝑠 ,𝑍𝑡 |E)

[𝑝𝜓 (E|𝑍𝑠, 𝑍𝑡)]

(A–11)
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