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Abstract

Nearly half of the world’s population uses biomass fuel for the purposes of cooking and heating. Smoke derived from bio-
mass increases the risk of the development of lung diseases, including pneumonia, chronic obstructive pulmonary disease,
airway tract infections, and lung cancer. Despite the evidence linking biomass smoke exposure to pulmonary disease, only
a small number of experimental studies have been conducted on the impact of biomass smoke on airway epithelial cells.
This is in part due to the lack of a standard and easily accessible procedure for the preparation of biomass smoke. Here, we
describe a cost-effective and reproducible method for the generation of different smoke extracts, in particular, cow dung
smoke extract (CDSE) and wood smoke extract (WSE) for use in a range of biological applications. We examined the effect of
the biomass smoke extracts on human bronchial epithelial cell expression of a known responder to cigarette smoke expo-
sure (CSE), the platelet-activating factor receptor (PAFR). Similar to the treatment with CSE, we observed a dose-dependent
increase in PAFR expression on human airway epithelial cells that were exposed to CDSE and WSE. This method provides
biomass smoke in a re-usable form for cell and molecular bioscience studies on the pathogenesis of chronic lung disease.
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Introduction

It is estimated that nearly 3 billion people worldwide are ex-
posed to biomass smoke, generated from burning wood, crop
residues, or animal dung for household cooking and heating [1].
Biomass smoke is the leading environmental cause of death
and disability, causing over 4 million deaths each year [2].
Several epidemiological studies have associated biomass smoke
exposure with lung diseases, including chronic obstructive pul-
monary disease (COPD), airway infections, and lung cancer [3-
7]. Similarly, in vitro studies have found that human lung cells

exhibit impaired inflammatory and immune responses follow-
ing exposure to biomass smoke [8, 9]. Inhalation of animal dung
biomass smoke is of particular concern to human health as it
has the highest polluting potential per unit energy released
compared to wood smoke [10]. Airway epithelial cells are the
primary target of inhaled smoke; therefore, the responses of ep-
ithelial cells to different types of biomass smoke are of consid-
erable interest. Although, extensive in vitro studies have been
performed on the effects of tobacco smoke on the expression of
host receptors on respiratory epithelial cells and on susceptibil-
ity to bacterial infection [11-13], only a small number of
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Figure 1: Generation of CDSE and WSE. (A) A water aspirator was set up to draw smoke from a burning cow dung or wood shaving roll using the vacuum created by the
flow of water. (B) Cow dung was sun-dried, crushed into fine particles, and rolled in paper. (C) Wood was cut into small chips and rolled in paper.

comparable studies have been performed using biomass smoke.
More mechanistic research is therefore needed to understand
the cellular and molecular responses to biomass smoke, includ-
ing animal dung and wood smoke. Currently, we do not have
standardized experimental approaches for the preparation of
re-usable biomass smoke extract and for the assessment of cel-
lular responses to different types of biomass smoke. Here, we
devised a low-cost and reproducible biomass smoke generation
system and tested the extracts for their effect on human bron-
chial epithelial cell expression of platelet-activating factor re-
ceptor (PAFR), a G-protein-coupled receptor (GPCR), and an
established marker of cigarette smoke exposure [13-15]. GPCRs
constitute a large family of membrane-bound receptors that ac-
tivate intracellular signal transduction pathways in eukaryotic
cells in response to extracellular signals [16].

Materials and methods

Preparation of cigarette smoke extract

Cigarette smoke extract (CSE) was prepared at the College of
Health and Medicine, University of Tasmania, Australia. Briefly,
the filter from a Marlboro cigarette butt was replaced with a
sterile cotton wool filter and was smoked using a water aspira-
tor [11]. The water aspirator consisted of a tee with hose barbs
on three sides fitted with hoses. The hose-fitted tee was
clamped in a stand as shown in Fig. 1A. One of the hoses from
the tee fitting was connected to a tap, the second on the oppo-
site side drained water to a sink, and the third hose at a right
angle held the cigarette roll. When water was passed through
the tube, a vacuum was generated by the Venturi effect, draw-
ing smoke from a burning cigarette [18]. Here, the flow of water
was maintained at the constant rate of 110ml/s. The flow of

water ensured the continual smoking of the cigarette, thereby
collecting the cigarette smoke material in the cotton wool filter
[11, 17]. After complete combustion of a cigarette, the cotton
wool filter was removed and then placed into another cigarette
from which the filter had been removed. This way, the same
cotton filter was used in the smoking of three Marlboro
cigarettes.

The cigarette smoke material retained in the cotton filter
was quantified by measuring the weight of cotton filter before
and after the combustion of the three cigarettes. The cotton fil-
ter was then vortexed in 1ml dimethyl sulfoxide (DMSO). The
solubilized smoke material was quantitated by measuring the
weight of equal volumes of pure DMSO and smoke material-
dissolved DMSO. The CSE was then filter-sterilized through a
0.22 ym membrane filter and the filtrate was re-quantified by
weight measurement.

Preparation of cow dung smoke extract

Cow dung, that was collected from a local farm near Hobart,
Tasmania, was sun-dried for approximately 5days and was
crushed into fine particles using a mortar and pestle. Cow dung
powder was rolled in a paper with a sterile cotton wool filter at
one of the ends, similar to a filtered-cigarette (Fig. 1B). Four
such rolls were prepared from a total of 7.5 g of cow dung fine
particles, such that each roll contained 1.875 g of cow dung
powder. The dung roll was then burned and smoked using the
water aspirator, as described for cigarette smoking. After com-
plete combustion of a dung roll, the cotton filter was removed
and placed in another cow dung roll. In this way, four such cow
dung rolls were smoked using the same cotton wool filter.
Finally, the cow dung smoke extract (CDSE) was prepared by
vortexing the cotton wool filter in 1 ml DMSO. The solubilized
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smoke material was quantitated by measuring the weight of
equal volumes of pure DMSO and smoke material-dissolved
DMSO. The CDSE was then filter-sterilized through a 0.22pum
membrane filter and the filtrate was re-quantified by weight
measurement.

Preparation of wood smoke extract

Fire wood was collected from a local supplier near Hobart,
Tasmania. For wood smoke generation, 1.875 g of wood shav-
ings were rolled in paper with a sterile cotton wool filter at one
of the ends, similar to a filtered-cigarette (Fig. 1C). Four such
rolls were prepared from a total of 7.5 g of wood shavings. Each
wood shaving roll was then burned and smoked using the water
aspirator, as described for cigarette smoking. After complete
combustion of a wood shaving roll, the cotton filter was re-
moved and placed into another wood shaving roll. Finally, the
wood smoke extract (WSE) was prepared by vortexing the cot-
ton wool filter in 1ml DMSO. The solubilized smoke material
was quantitated by measuring the weight of equal volumes of
pure DMSO and smoke material-dissolved DMSO. The WSE was
then filter-sterilized through a 0.22 pm membrane filter and the
filtrate was re-quantified by weight measurement.

Normalization of smoke extracts

To compare the effects of different smoke extracts, the prepared
extracts were normalized to the same concentration and were
stored at —20°C in aliquots of 100pl until use. The normalized
smoke extracts were diluted in bronchial epithelial cell growth me-
dium (BEGM) for use in the smoke extract exposure experiments.

In vitro BEAS-2B cell culture

As airway epithelial cells are the primary cells to respond to
smoke, an immortalized cell line of human bronchial epithelial
cells, BEAS-2B (Catalogue no 95102433, Sigma-Aldrich), was se-
lected for this study. The BEAS-2B cells were maintained at
37°C, 5% CO, in BEGM (Lonza, Basel, Switzerland) supplemented
with the BulletKit (Lonza). The BEAS-2B cells were sub-cultured
in T75 flasks (Corning Inc., Corning, NY, USA), and were used in
experiments at passage numbers <15 passages. Sterile 8-well
chambered glass slides (Millipore, Billerica, MA, USA) were pre-
coated by incubating overnight at 4°C with 200 pl of 5% (v/v) bo-
vine collagen I (ThermoFisher Scientific, USA), prepared in
20mM acetic acid. The wells were rinsed twice with pre-
warmed phosphate buffered saline (PBS) followed by seeding of
the BEAS-2B cells at a cell density of 30 000 cells per well in
200l BEGM and incubated overnight at 37°C, 5% CO,. On the
following day, the culture media was replaced with fresh BEGM
and incubated at 37°C, 5% CO, for 24 h before the in vitro smoke
extract exposure experiments.

Exposure of BEAS-2B cells to smoke extracts

Approximately 50 000-60 000 BEAS-2B cells in each well were
exposed to 200 ul of BEGM containing five different concentra-
tions of CDSE and WSE, ranging from 8.75ng/ml to 87.5pg/ml,
for4h at 37°C and 5% CO,. Parallel exposures of BEAS-2B cells to
CSE in the concentration range of 8.75ng/ml to 87.5 ug/ml were
also performed for comparison.

Immunofluorescence

After 4h of exposure to the smoke extracts, the media was dis-
carded and the cells were washed twice with 200ul PBS
pre-warmed at 37°C. The cells were then fixed with 200 pl of 4%
(w/v) paraformaldehyde (Sigma-Aldrich) for 20min at room
temperature. The cells were rinsed twice with 200 pul of PBS and
permeabilized with 100 pl of chilled (—20°C) acetone for 10 min
at room temperature. After washing the cells again twice with
200l of PBS, the non-specific binding sites were blocked with
200l of 1% (w/v) bovine serum albumin (Sigma-Adrich), pre-
pared in PBS containing 0.1% (v/v) Tween-20 (Sigma-Aldrich),
for an hour at room temperature. Cells were then incubated
overnight with 100 ul of 2.5 ug/ml monoclonal antibody (mAb)
against the human PAFR protein (11A4, Clone 21, Cayman
Chemical Company, USA) at 4°C in the dark. The cells were
rinsed 3 times with 200 pl of 0.1% (w/v) bovine serum albumin
(BSA) in PBS and incubated for an hour with 100 ul of 1:100 dilu-
tions of Alexa Fluor 594 conjugated goat anti-mouse IgG (H+L)
secondary antibody (ThermoFisher Scientific, USA) at room
temperature. After rinsing 3 times with 200 ul of 0.1% (w/v) BSA
in PBS, the cells were stained with 200 ul of 1 ug/mL 4/, 6-diami-
dino-2-phenylindole dihydrochloride (DAPI) (ThermoFisher
Scientific, USA) for 15min at room temperature. Finally, the
cells were washed 3 times with 200 ul of PBS, air-dried and the
slides were mounted with Dako fluorescence mounting media
(Agilent, USA).

Microscopy and image analysis

Cell preparations were examined under 400x magnification us-
ing an Olympus BX50 epifluorescence microscope with NIS ele-
ments software (Nikon; Tokyo, Japan) and Cool Snap Hg2 CCD
camera (Photometrics, Tucson, AZ, USA). Five images were
taken per well from different points using multi-fluorescence
channels designed for simultaneous detection of emission from
the fluorochromes DAPI (violet excitation and blue emission,
200 ms exposure), and Alexa Fluor 594 (green excitation and red
emission, 300-ms exposure). The level of cellular PAFR protein
expression was quantified as a measure of total cell fluores-
cence intensity using the software Image] (NIH, USA) [19].
The cellular fluorescence was corrected against the background
fluorescence using the following formula:

Total cell fluorescence = integrated density — (area of
selected cell x mean fluorescence of the background).

Quantitative real-time polymerase chain reaction
analysis

The expression of PAFR was also determined at the transcrip-
tional level using quantitative real-time polymerase chain reac-
tion. The BEAS-2B cells were seeded into sterile clear-flat
bottom 12-well plates (Corning Inc.) at a density of 2 x 10° cells
per well and incubated overnight at 37°C and 5% CO,. The next
day, cells were exposed to different concentrations of CSE,
CDSE, and WSE at 37°C and 5% CO,. After 3h, total RNA was
extracted with Tri-reagent (Sigma-Aldrich), according to the
manufacturer’s instructions. It was then treated with DNase
(Promega). Using a SensiFAST cDNA synthesis kit (Bioline),
490ng of RNA was converted into first-stranded cDNA. The
cDNA generated was amplified on a LightCycler 480 System
(Roche) with the SensiFAST Probe No-ROX kit (Bioline) in a total
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volume of 20ul. The relative fold change of mRNA expression
was normalized to glyceraldehyde-3-phosphate dehydrogenase
(GAPDH).

BEAS-2B cell viability assay

The BEAS-2B cells were seeded into a sterile clear-flat bottom
96-well plate (Sigma-Aldrich) at a density of 5000 cells per well
and incubated overnight at 37°C and 5% CO,. The cells were ex-
posed to different concentrations of CSE, CDSE, and WSE.
Alamar Blue (Life Technologies) was then added to each well at
a final concentration of 10% (v/v). The absorbance readings
were taken at 570 and 600nm at 2 and 4h post-exposure to
smoke extracts at 8.75 and 87.5ug/ml concentrations using a
Spectromax Spectrophotometer Microplate Reader (Molecular
Devices, USA). The percent reduction of Alamar Blue was calcu-
lated using the following formula:

% Reduction of Alamar Blue Reagent
(Eoxi600 x A570) — (Eoxi570 x A600)

= {Ered570 x C600) — (Ered600 x C570) < 00

Molar extinction coefficient of oxidized Alamar Blue at 570 nm
(Eoxi570) = 80586; at 600 nm (Eoxi600) = 117 216

Absorbance of test wells at 570 nm (A570); at 600 nm (A600)

Molar extinction coefficient of reduced Alamar Blue at 570
nm (Ered570) = 155 677; at 600 nm (Ered600) = 14 652

Absorbance of negative control well (no cells) at 570 nm
(C570); at 600 nm (C600)

Statistical analysis

Data were expressed as mean =+ standard error of the mean
(SEM) and median (interquartile range) using the Microsoft
Excel Statistics package (Microsoft Corporation, Redmond, WA,
USA) and analyzed using GraphPad Prism version 5.0 for
Windows (GraphPad Software, San Diego, CA, USA, www.graph
pad.com). Comparisons between groups were performed using
unpaired two-tailed t-tests with Welch’s correction and one-
way analysis of variance (ANOVA) with Dunnett’s multiple com-
parison analysis.

Results
CSE, CDSE, and WSE preparation

After the combustion of three cigarettes, and 7.5 g each of cow
dung powder and wood shavings, 66.52, 124.7, and 131.2mg of
smoke particles were retained in the cotton filter. The retained
smoke particles were then solubilized in DMSO. The concentration
of DMSO-dissolved cigarette, cow dung, and wood smoke particles
were 10.85, 43.7, and 36.0 mg/ml, respectively. After filter steriliza-
tion, the final concentration of cigarette, cow dung, and wood
smoke material were 8.75, 24.4, and 31.64 mg/ml, respectively. The
CSE, CDSE, and WSE concentrations were all normalized to same
concentration of 8.75mg/ml and were used in subsequent expo-
sure experiments over the range from 8.75 ng/ml to 87.5 ug/ml.

CSE exposure increases PAFR expression on bronchial
epithelial cells

PAFR expression was measured based on fluorescence intensity
following labeling with Alexa Fluor 594 conjugate antibody tar-
geting anti-PAFR mAb. Previous studies have reported that
PAFR expression is upregulated in BEAS-2B cells exposed to CSE

and that maximal induction occurred at 4h of CSE exposure
[11, 12]. Here, CSE exposure for 4h significantly increased the
expression of PAFR on the bronchial epithelial cells (Fig. 2A-C).
We observed a dose-dependent increase in PAFR expression
upon stimulation with CSE at a concentration range of 8.75ng/ml
to 87.5pg/ml. In comparison to the mock (1% DMSO) treated
control BEAS-2B cells, the mean PAFR expression was approxi-
mately 1.18, 1.39, 1.56, 2.06, and 6.10 times higher in the 8.75ng/
ml, 87.5ng/ml, 875ng/ml, 8.75 ug/ml, and 87.5 pg/ml CSE treated
cells, respectively (Fig. 1C). The level of activity of the CSE was
compared over time. There was no significant loss detected in
PAFR induction following storage of CSE at —20°C freezer over a
3-month period (Fig. 5). The viability of the BEAS-2B cells ex-
posed to 8.75 and 87.5 ug/ml of CSE for 2 and 4h was assessed
relative to mock (1% DMSO) treated control cells using the
Alamar Blue assay. The mean relative viability of BEAS-2B cells
treated with 8.75pg/ml CSE for 2 and 4h was at 106.2 =3.1%
(SEM) and 95.8 = 11.4%, respectively, of the control cell viability.
For BEAS-2B cells treated with 87.5pg/ml CSE for 2 and 4h, the
mean relative viability was at 100.7 +5.0% and 95.8 +11.5%,
respectively.

CDSE treatment induces PAFR expression on bronchial
epithelial cells

The expression of PAFR on BEAS-2B cells was significantly upre-
gulated by exposure to CDSE (Fig. 3A-C). We observed a dose-de-
pendent increase in PAFR expression upon exposure to CDSE at
a concentration range of 8.75ng/ml to 87.5 pg/ml. The mean cel-
lular PAFR expression was approximately 1.17, 1.24, 1.51, 1.84,
and 4.67 times higher than the mock (1% DMSO) treated control
BEAS-2B cells in the 8.75ng/ml, 87.5ng/ml, 875ng/ml, 8.75ug/
ml, and 87.5 pg/ml CDSE-stimulated cells, respectively (Fig. 3C).
The level of induction of PAFR expression due to CDSE exposure
was comparable in experiments conducted 3 months apart
(Fig. 5). From the Alamar Blue assay, the mean relative viability
of BEAS-2B cells exposed to 8.75 pg/ml CDSE for 2 and 4h was at
97.4 +6.1% and 97.2 + 13.9%, respectively, of the control cell via-
bility. For BEAS-2B cells treated with 87.5pg/ml CDSE for 2 and
4h, the mean relative viability was at 102.2+7.9% and
90.8 = 10.7%, respectively.

WSE exposure upregulates PAFR expression on
bronchial epithelial cells

Wood smoke extract exposure was also associated with an in-
duction of PAFR expression on the bronchial epithelial cells
(Fig. 4A-C). Treatment with WSE for 4 h resulted in a concentra-
tion-dependent increase in the expression of PAFR on BEAS-2B
cells. Compared to the 1% DMSO-treated control cells, the mean
cellular PAFR expression was approximately 1.28, 1.27, 1.50,
1.99, and 4.34 times higher in 8.75ng/ml, 87.5ng/ml, 875ng/ml,
8.75nug/ml, and 87.5ug/ml WSE exposed BEAS-2B cells, respec-
tively (Fig. 4C). The PAFR inducing activity of WSE was similar in
experiments conducted 3 months apart (Fig. 5). From the
Alamar Blue assay, the mean relative viability of BEAS-2B cells
exposed to 8.75 pg/ml WSE for 2 and 4h was at 101.5 = 9.2% and
83.8 = 8.2%, respectively, of the control cell viability. For BEAS-
2B cells treated with 87.5 ug/ml WSE for 2 and 4 h, the mean rela-
tive viability was at 93.8 = 7.4% and 79.2 + 8.1%, respectively.
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Figure 2: CSE exposure and PAFR expression on bronchial epithelial cells. (A) Mock treatment of BEAS-2B cells with 1% DMSO as a control. (B) BEAS-2B cells exposed to
87.5pg/ml CSE. All immunofluorescence micrographs show BEAS-2B cells with PAFR expression (anti-PAFR monoclonal antibody; 2.5 pg/ml, red) and nuclei stained
with 4/, 6-diamidino-2-phenylindole (1 pg/ml, blue). Magnification = 400x. (C) Response to different concentrations of CSE. PAFR expression corresponds to log;, of fluo-
rescence intensity following labelling with Alexa Fluor 594 conjugate antibody targeting anti-PAFR mAb. PAFR expression was significantly increased in 8.75ng/ml,
87.5ng/ml, 875ng/ml, 8.75ug/ml and 87.5 ng/ml CSE exposed BEAS-2B cells. Data are representative of two independent experiments (‘P < 0.05, ***P <0.0001, One-way

ANOVA with Dunnett’s multiple comparison test).

Transcriptional response of BEAS-2B to CSE, CDSE,
and WSE

To examine the expression of PAFR at the transcriptional
level, the relative PAFR mRNA expression, normalized to
glyceraldehyde-3-phosphate (GAPDH), was measured post-
exposure to the smoke extracts at 8.75 and 87.5 pg/ml concen-
trations. Compared to mock (1% DMSO) treated controls, the
transcriptional level of PAFR was increased 2.45-, 3.37-, and
2.65-fold after exposure to CSE, CDSE, and WSE, respectively, at
8.75ug/ml (Table 1). The mRNA levels of PAFR were 3.19-, 4.17-,
and 3.38-fold higher in BEAS-2B cells exposed to 87.5 pg/ml con-
centrations of CSE, CDSE, and WSE, respectively.

Previous studies have reported a respiratory inflammatory
response to cigarette, animal dung, and wood smoke exposure
[9, 20-23]. To investigate the inflammatory response in vitro, the
BEAS-2B cells were exposed to 875 and 87.5pg/ml

concentrations of CSE, CDSE, and WSE for 3h and mRNA ex-
pression was measured. The mRNA levels for pro-inflammatory
cytokines, interleukin-1 beta (IL-1p), IL-6, and IL-8 were in-
creased by 5.56-, 7.15-, and 10.86-fold, respectively, post-
exposure to 8.75pg/ml CSE (Table 1). Exposure of BEAS-2B cells
to 87.5 pg/ml CSE resulted in an 8.1-, 13.8-, and 11.4-fold increase
in mRNA levels of the inflammatory mediators, IL-1p, IL-6, and
IL-8. A similar increase in inflammatory mediators IL-1p, IL-6,
and IL-8 was observed upon exposure of BEAS-2B cells to 8.75
and 87.5 pg/ml concentrations of CDSE and WSE (Table 1).

Discussion

Nearly 4.3 million people die every year from illnesses attribut-
able to the inhalation of biomass smoke [1]. Among these
deaths, 22% are due to COPD and 12% due to pneumonia [1].
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Figure 3: CDSE exposure and PAFR expression on bronchial epithelial cells. (A) Mock treatment of BEAS-2B cells with 1% DMSO as a control. (B) BEAS-2B cells exposed
to 87.5 pg/ml CDSE. All immunofluorescence micrographs show BEAS-2B cells with PAFR expression (anti-PAFR monoclonal antibody; 2.5 pg/ml, red) and nuclei stained
with 4/, 6-diamidino-2-phenylindole (1 pg/ml, blue). Magnification = 400x. (C) Response to different concentrations of CDSE. PAFR expression corresponds to logo of
fluorescence intensity following labelling with Alexa Fluor 594 conjugate antibody targeting anti-PAFR mAb. The PAFR expression was significantly increased in
8.75ng/ml, 87.5ng/ml, 875ng/ml, 8.75ug/ml and 87.5pug/ml CDSE treated BEAS-2B cells. Data are representative of two independent experiments (*P<0.001,

P <0.0001, one-way ANOVA with Dunnett’s multiple comparison test).

Biomass fuels (wood, animal dung, and crop residues) are the
major source of domestic energy for cooking and household
heating, especially in developing countries. Emissions from bio-
mass contain a multitude of pollutants that adversely affect hu-
man health, such as suspended particulate matter, methane,
free radicals, aldehydes, toxic gases like carbon monoxide
and nitrogen oxides, and polycyclic aromatic hydrocarbons like
benzo[a|pyrene and anthracene [24]. Furthermore, animal dung
combustion produces more toxic byproducts, including particu-
lates (23% more PM, s per kilogram of sample), reactive oxygen
species, and microbial products, compared to wood smoke
[10, 25]. Several epidemiological studies have correlated bio-
mass smoke exposure with the risk of development of lung dis-
eases, including COPD, lung cancer, and airway infections [3-7].
However, there are only a limited number of studies that have
explored mechanisms in biomass smoke induced-pulmonary
inflammation and susceptibility to respiratory infections [26].

This knowledge gap is in part due to the lack of a standardized
low-cost technique for the generation of biomass smoke in the
laboratory.

In work by McCarthy and colleagues, biomass smoke from
the combustion of horse dung was pumped into a chamber in
which human small airway epithelial cells were exposed [9].
While this method delivered smoke to the epithelial cells, it in-
volved immediate use of the smoke generated and did not allow
for storage of batches of biomass smoke for subsequent re-use
[9]. It also required the employment of a cigarette smoking ma-
chine (Baumgartner-jaeger CSM2072i) to generate the smoke. In
a study by Li and co-workers, biomass smoke from the combus-
tion of rice chaff was bubbled through the cell culture growth
medium, Dulbecco’s modified Eagle’s medium [27]. Again this
method generated biomass smoke but the extracts could not be
quantified in terms of mass per volume due to the presence of
multiple nutrient elements in the growth medium.
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levels obtained for the April 2018 experiments. Therefore, no significant decay in the PAFR inducing activity of the smoke extracts was detected following storage at
—20°C over a 3-month period.
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Table 1: The smoke extracts CSE, CDSE, and WSE induce PAFR, IL-18, IL-6, and IL-8 mRNA expression in BEAS-2B cells

Marker CSE CDSE WSE

A B A B A B
PAFR 2.45 +0.08"* 3.19+£0.69 3.37 +£0.18™* 417 +1.13 2.65 +0.25" 3.38+0.5"
IL-1B 5.56 = 0.65™ 8.06 +=2.95 8.26 +0.27"" 14.32+4.73 9.6 +1.24" 6.69 * 0.45*
IL-6 7.15x0.58" 13.83 =4.95 12.39 + 0.4™* 12.02 = 1.57* 10.93 £ 1.05™ 13.42+5.74
IL-8 10.86 = 1.61™" 1144 +4.42 11.64 +1.0™ 20.25 *2.43" 10.62 £ 0.6™" 8.67 * 1.81"

Relative fold change in mRNA of PAFR and inflammatory cytokines normalized with GAPDH among BEAS-2B cells exposed to CSE, CDSE, and WSE for 3h at concentra-
tions (A) 8.75 pg/ml and (B) 87.5 ug/ml (*P < 0.05, **P < 0.001, **P < 0.0001, unpaired two-tailed t-test with Welch’s correction. The data are presented as the mean of the

observed fold change + SEM, n=4 per group.

Furthermore, many components of biomass smoke are not di-
rectly soluble in aqueous solutions such as growth medium,
and as such will not be retained when the smoke is bubbled
through the medium [27]. In work by Huang and co-
investigators, wood smoke from the burning of Chinese fir was
collected directly onto a glass filter with a 1.6-pm pore size [28].
This method collected wood smoke particles as intended but it
is likely that many of the smaller components of the smoke,
such as volatile organic compounds, from the combustion of
the wood would have passed through rather than have been
captured on the glass filter.

In our method, the smoke material that was collected in the
cotton wool was first incubated in the solvent DMSO, which dis-
solves both polar and nonpolar compounds, overnight before
the filtration step to maximize solubilization of the compo-
nents. Furthermore, most of the smoke material in the DMSO
was retained after the filter sterilization step based on both
weight and absorbance measurements. By including quantifica-
tion measurement at several of the preparation steps, we were
able to determine the concentration of smoke-derived material
in milligram per milliliter in each of the smoke extracts. In addi-
tion, we were able to generate batches of smoke extracts that
could be preserved indefinitely and used in multiple exposure
experiments, minimizing inter-assay variation. And impor-
tantly, our protocol does not require the purchase of expensive
equipment and therefore, is suitable for use in resource-limited
situations.

To test our biomass smoke extracts, we compared their ef-
fect on the expression of PAFR on the human bronchial epithe-
lial cells. PAFR is a G-protein-coupled seven transmembrane
domain receptor, involved in various leukocyte functions, plate-
let aggregation, and inflammation [29]. Previous studies have
shown that PAFR expression is upregulated in response to a va-
riety of insults including cigarette smoke, e-cigarette vapor, ur-
ban particulate matter, and welding fumes [30-33]. In terms of
infection, PAFR is utilized by major respiratory bacterial
pathogens including non-typeable Haemophilus influenzae,
Streptococcus pneumoniae, and Pseudomonas aeruginosa as a sur-
face receptor for adhesion of airway epithelial cells. These spe-
cies express a common adhesin, known as phosphorylcholine
(ChoP), in their cell wall that recognizes and binds host cell
PAFR enabling establishment of infection of the respiratory tract
[11, 34, 35].

We determined that PAFR expression is increased in bron-
chial epithelial cells following exposure to CDSE and WSE in a
dose-dependent manner at both the protein and mRNA levels
(Figs. 2-4, Table 1). In addition, the PAFR-inducing activity of the
smoke extracts was comparable in experiments conducted 3
months apart (Fig. 5). Therefore, the activity of the smoke

extracts was preserved during storage at —20°C in DMSO for at
least the 3-month period tested. The upregulation of PAFR may
represent a molecular mechanism through which these bio-
mass smoke types could increase susceptibility to lung diseases
including airway infections. Furthermore, we detected in-
creased expression of pro-inflammatory mediators IL-1p, IL-6,
and IL-8 following exposure of BEAS-2B cells to our CSE, CDSE,
and WSE preparations in accordance with earlier studies on the
effect of smoke on respiratory cells (Table 1). Therefore, the abil-
ity to produce CDSE and WSE in a usable form, by applying a
simple and cost-effective water aspirator-based method, will
enable further research on their mechanistic role in the inflam-
matory response and pathogenesis of respiratory disease in-
cluding COPD. In addition, it will facilitate the discovery of
novel therapeutic compounds that reduce the effects of biomass
smoke on host cells and tissues of the respiratory system.
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