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A B S T R A C T

In this paper, we propose a four compartmental model to understand the dynamics of infectious disease COVID-
19. We show the boundedness and non-negativity of solutions of the model. We analytically calculate the basic
reproduction number of the model and perform the stability analysis at the equilibrium points to understand the
epidemic and endemic cases based on the basic reproduction number. Our analytical results show that disease free
equilibrium point is asymptotically stable (unstable) and endemic equilibrium point is unstable (asymptotically
stable) if the basic reproduction number is less than (greater than) unity. The dispersal rate of the infected
population and the social awareness control parameter are the main focus of this study. In our model, these
parameters play a vital role to control the spread of COVID-19. Our results reveal that regional lockdown and
social awareness (e.g., wearing a face mask, washing hands, social distancing) can reduce the pandemic of the
current outbreak of novel coronavirus in a most densely populated country like Bangladesh.
1. Introduction

Mathematical modeling is an important tool to analyze several com-
plex phenomena surrounding us. When a real system change concerning
time, then it is referred to as a dynamical system. A dynamical system can
be described by using a system of ordinary differential equations (ODEs)
or a system of partial differential equations (PDEs) depending on the real
(physical or chemical or biological or social) problems. These are
sometimes called the ODE or PDE models respectively. In this paper, we
propose a new deterministic ODE model, which has four ODEs, for the
study of spread and control of infectious disease of COVID-19. COVID-19
is an active research topic not only in the community of mathematical
epidemiology group [1,6,9,28,41] but also the problem is of interests in
various scientific communities including the group of modeling biolog-
ical systems [8,13], biomedical engineering [5,33] and signal processing
[46], etc. To prepare a new mathematical model for a specific disease,
some population-specific assumptions are important to make the model
tics, Jahangirnagar University, S
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simple. However, the principal of model parsimony is also important,
which is simply states as ”a mathematical model should be as simple as
possible and as complex as necessary” [39]. It also includes the parameter
estimation from the source of real outbreaks information. A new math-
ematical model grants us to know the asymptotic prediction of infectious
outbreaks shortly of a particular area of a country or of a country [4,25,
35,37,40,45] by using the present data of outbreaks and also allow us to
understand the basic epidemiological processes [2]. Thehe first, simplest
and most basic proposed ODE model in the study of epidemiology is the
three compartmental SIR (susceptible, infected, and recovered) model
proposed by Kermack and McKendrick in 1927 [21]. Several modifica-
tions of the SIR model was published to understand the infectious out-
breaks in humans and other animals [19,20,29]. Modeling approach was
also used to predict and understand several infectious diseases such as
HIV-infection [31], influenza pandemic [10], H1F1 epidemic [20],
pseudo-periodic 1918 pandemic influenza (known as Spanish flu) [3,12,
30,39], 2002/2003 SARS epidemic in Asia [27,44], etc. The agents of
avar, Dhaka, 1342, Bangladesh
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Fig. 1. The schematic diagram of the model.

Table 1
Compartmental variables.

Compartmental variables Physical meaning

Sn Non-quarantined susceptible population
Sq Quarantined susceptible population
I Infected population
R Recovered or Immune population

Table 2
List of the parameters involved in the model.

Parameters Description

A Recruitment rate of non-quarantined susceptible population
η Number of individual having COVID-19 negative after quarantine
α Rate of non-quarantined individuals having COVID-19 symptoms
β Immunity increasing rate
μ Rate of non-quarantined population having COVID-19 positive
ν Social Awareness control parameter
ρ Natural death rate
γ Infection rate of quarantined population
ε Natural recovery rate of quarantined population
σ Recovery rate of infected individual
δ COVID-19 induced death rate of infected individual
d Average spatial dispersal rate of infected population

Table 3
Estimated values of the parameters. Source: Worldometer- COVID-
19 data for Bangladesh.

Parameters Values (in thousands per Day)

A 2.0
η 0.03
α 0.747
β 1.0
μ 0.583
ν 1.0
ρ 0.2
γ 0.0752
ε 0.5
σ 0.153
κ 0.11
d 0.032
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infectious diseases are mainly viruses, bacteria, and protozoa. The
fundamental characteristics or biological dynamics of different infectious
diseases are different. A basic model needs to modify based on a partic-
ular disease so that the model behavior and results adapt to the field data.
Therefore, in this study, we propose a new model to understand the
dynamics and control mechanisms of an ongoing pandemic coronavirus
disease 2019 (COVID-19), caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) [32], emerging in December 2019 inWuhan
city of China [15]. There are already proposed mathematical models for
COVID-19 [18,26,36] to understand the current global outbreaks.
COVID-19 outbreaks transmitted rapidly throughout the world and
causing subversive health problems. The non-pharmaceuticals in-
terventions, such as social-distancing (three or six feet), isolation or
hospitalization for confirmed cases, home quarantine for susceptible
cases, contact-tracing, washing hands for 20 s, use of face-masks in public
places and some cases at home, etc. are the only way to suppress the
pandemic burden as no vaccine or antiviral medicines are not yet
invented by the researchers or healthcare management [36]. As of May
29; 2020, COVID-19 has spread to about 216 countries, area or terri-
tories, causing 5704736 infectious and deaths 357736 across the world
[42]. The United States is now the epicenter of the current pandemic of
the coronavirus. The record shows that 1803622 is of confirmed total
cases and 104987 deaths in US [43]. In Bangladesh COVID-19 causes
44844 infectious, 582 deaths and 9015 recovered cases [42]. The first
three cases (two men and one woman) of COVID-19 in Bangladesh was
confirmed on March 8, 2020 [17]. Two men were Italy returnees and the
woman was a family member of one of them. It is clear from the data of
the developed countries that people of 65 years older and above are at
high risk of deaths, however, in the case of Bangladesh it is 40 years and
above. COVID-19 has incubation period (susceptible to infectious) of
range 2� 14 days and common symptoms of the disease are fever or
chills, shortness of breath for mild cases, coughing, fatigue, muscle or
body aches, headache, sore throat, congestion or runny nose, nausea or
vomiting, diarrhoea, loss of smell and pneumonia for severe cases [7,42].
The most dangerous cases are the corona positive people (about 80%)
without any prior symptoms [42]. In a high density populated country
like Bangladesh, it is not easy to maintain six-feet social-distancing in the
public places (e.g., raw vegetable market, shopping-mall, festival gath-
ering, etc.). As a result, the situation is becoming worse day by day here
in Bangladesh.

In this paper, we propose a new mathematical model for the under-
standing of the transmission dynamics of COVID-19. We show the control
mechanism of corona virus and make a possible prediction for the next
six months in Bangladesh. We specially emphasize the influence of the
2

social distancing and regional lockdown on the spread of corona virus in
Bangladesh through our proposed model. This result will help the gov-
ernment in order to prepare the country's medical system, hospitals,
treatment management, etc. for the upcoming days.

In Section 2, a brief introduction of our mathematical model, local
dynamics and its scope for the infectious disease of COVID-19 is pre-
sented. The current real data fit the spread of the corona virus in
Bangladesh and using this result as an initial data our model prediction is
demonstrated in Section 3. The paper is concluded with some general
remarks and future perspectives in Section 4.

2. Mathematical model of COVID-19

To understand the transmission of COVID-19 as well as its outbreak,
we propose a mathematical model that can predict the dynamics of
transmission in four compartments. For this purpose, we assume SnðtÞ
denotes non-quarantined susceptible population, SqðtÞ represents quar-
antined susceptible population, IðtÞ denotes infected population, and RðtÞ
represents recovered or immune population. For the formulation of the
model, we impose the following assumptions:

(A1) Non-quarantined population undergoes to quarantine having
COVID-19 symptoms with rate α, while β can control the exposure
of such symptoms by increasing immune level and following
personal consciousness.

(A2) Non-quarantined population becomes infected with rate μ, while ν
can control such infection by maintaining social distance, wearing
face-mask and PPE, and washing hands with soap frequently, etc.

(A3) Quarantined population having COVID-19 positive with rate γ,
and after completion of quarantine, there is a possibility to go
back to home with COVID-19 negative at a rate η. Moreover,
quarantined population becomes cured underlying the quarantine
protocol strictly with the rate ε.



Fig. 2. a. Non-quarantined population SnðtÞ increases as β increases, b. Quarantined population SqðtÞ decreases as β increases. Here the parameters are chosen
from Table 3.

M.H. Kabir et al. Sensors International 1 (2020) 100043
(A4) Infected population recovers with rate σ through proper medica-
tion and dies with rate δ due to the COVID-19.

(A5) All the compartments have natural death rate ρ.

The schematic representation of our assumptions underlying the
model is depicted in Fig. 1.

Under the above-mentioned assumptions (A1-A5), the model leads to
the following system of nonlinear ordinary differential equations:
8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

dSn
dt

¼ Aþ ηSq � αSn
β þ Sn

Sq � μSn
νþ Sn

I � ρSn;

dSq
dt

¼ αSn
β þ Sn

Sq � γSq � εSq � ηSq � ρSq;

dI
dt

¼ γSq þ μSn
νþ Sn

I � σI � δI � ρI þ dI;

dR
dt

¼ σI þ εSq � ρR;

(2.1)

with the initial conditions Snð0Þ ¼ Sn0 � 0;Sqð0Þ ¼ Sq0 � 0; Ið0Þ ¼ I0 �
0;Rð0Þ ¼ R0 � 0.

The description of compartmental variables and parameters are pre-
sented in the following tables Table 1.

All the parameters are assumed to be nonnegative having following
physical interpretations mentioned in the following Table 2.

We do not make the compartmental variables non-dimensional,
instead we use the following transformations to rescale system (2.1)

~t ¼ mt; ~A ¼ A
m
; ~η ¼ η

m
; ~α ¼ α

m
; ~μ ¼ μ

m

~ε ¼ ε
m
; ~σ ¼ σ

m
; ~ρ ¼ ρ

m
;m ¼ γ þ εþ ηþ ρ; κ ¼ σ þ δþ ρ

γ þ εþ ηþ ρ
:

Now, neglecting the � (tilde) sign, we obtain the following rescaled
version of (2.1)
3

>>>>>
dSn
dt

¼ Aþ ηSq � αSn
β þ S

Sq � μSn
νþ S

I � ρSn;
8
>>>>>>>><
>>>>>>>>>>>>>:

n n

dSq
dt

¼ αSn
β þ Sn

Sq � Sq;

dI
dt

¼ γSq þ μSn
νþ Sn

I � κI þ dI;

dR
dt

¼ σI þ εSq � ρR;

(2.2)

with the initial conditions

�
Snð0Þ; Sqð0Þ; Ið0Þ;Rð0Þ

�¼ �
Sn0; Sq0; I0;R0

�
: (2.3)

In order to analyze the model from analytical and numerical view-
points, we estimate the parameters from the COVID-19 data for
Bangladesh from 08 March to May 24, 2020 available in the World-
ometer [43] which are listed in Table 3.

3. Mathematical analysis of the model

To investigate the local dynamics of the system, we first find the
following non-negative equilibria by solving the following algebraic
system
8>>>>>>>>>>><
>>>>>>>>>>>:

Aþ ηSq � αSn
β þ Sn

Sq � μSn
νþ Sn

I � ρSn ¼ 0

αSn
β þ Sn

Sq � Sq ¼ 0

γSq þ μSn
νþ Sn

I � κI þ dI ¼ 0

σI þ εSq � ρR ¼ 0:

(3.1)

We solve system (3.1) to obtain the disease free equilibrium (DFE) ðS0n ;
S0q ; I

0;R0Þ, the quarantine population free equilibrium (QFE) ðSn; Sq; I;RÞ
and the endemic equilibrium (EE) ðS*n;S*q; I*;R*Þ. The equilibrium points
take the following form



Fig. 3. a. Non-quarantined population SnðtÞ increases, as ν increases, b. Quarantined population SqðtÞ has no significant change with respect to ν, c. Infected pop-
ulation rapidly decreases, as ν increases, d. Recovered population also rapidly decreases, as ν increases. Here the other parameters are chosen from Table 2.

�
S0n; S

0
q; I

0;R0
�
¼

�
A
ρ
; 0; 0; 0

�
;

�
Sn; Sq; I;R

�
¼

�
νðκ � dÞ
μ� κ þ d

; 0;
Aðμ� κ þ dÞ � νρðκ � dÞ

ðμ� k þ dÞðκ � dÞ ;
Aσðμ� κ þ dÞ � σνρðκ � dÞ

ρðμ� k þ dÞðκ � dÞ
�
;

�
S*n; S

*
q; I

*;R*
�
¼

� β

α� 1
;O;P;Q

�
;

where

O ¼ γðAα� A� ρβÞðνα� νþ βÞ
ðα� 1Þ½γμβ � ðη� 1Þððκ � dÞðνα� νþ βÞ � μβÞ�;

P ¼ 1
γ

�
κ � d � μβ

να� αþ β

�
S*q and Q ¼ αI* þ εS*q

ρ
:

M.H. Kabir et al. Sensors International 1 (2020) 100043

4



Fig. 4. a. Non-quarantined population SnðtÞ decreases, as d increases, b. Quarantined population SqðtÞ has no significant change with respect to d, c. Infected pop-
ulation rapidly increases, as d increases, d. Recovered population also rapidly decreases, as d increases. Here the other parameters are chosen from Table 2.
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We perform mathematical analysis [22] of the model (2.2). We
discuss the boundedness and non-negativity analysis, and determining
the basic reproduction number for the model in the following manner.

3.1. Boundedness and non-negativity of solutions of the model

In this section, we propose Lemma 3.1 and Lemma 3.2 to confirm the
boundedness and non-negativity [24] of solutions of system (2.2).

Lemma 3.1. The region Ω ¼ fðSnðtÞ; SqðtÞ; IðtÞ;RðtÞÞ 2 R4
þg is a positively

invariant set of the model (2.2).
Proof. Let the total population size is NðtÞ, where NðtÞ ¼ SnðtÞþ SqðtÞþ

IðtÞþ RðtÞ. Then the rate of change of the total population is dN
dt ¼ dSn

dt þ dSq
dt þ

dI
dt þ dR

dt . From the system (2.2), we find

dN
dt

¼A� ρNþðγþ ηþ εþ ρ� 1ÞSq þ ðdþ σþ ρ� κÞI: (3.2)
5

For large time, that is, for t → ∞, the infected population and quarantined
population become extinct. So, in the absence of quarantined susceptible
population and infected population, that is, Sq ¼ I ¼ 0, we find from the
equation (3.2)

dN
dt

¼A� ρN; (3.3)

which is analogous to a linear differential equation having the inte-

grating factor, e
R

ρdt . With this, solving (3.3) so that we find

NðtÞ¼A
ρ
þ
�
N0 �A

ρ

�
e�ρt: (3.4)

Therefore we write, limt→∞NðtÞ ¼ A
ρ which indicates that NðtÞ � A

ρ, that is,
A
ρ is the upper bound of NðtÞ, that is, the solutions ðSnðtÞ; SqðtÞ; IðtÞ;RðtÞÞ
approach to the region Ω asymptotically. Hence the model (2.2) is mathe-
matically and epidemiologically well-posed in the region Ω. This completes the
proof of Lemma 3.1.



Fig. 5. a. Non-quarantined population SnðtÞ increases, as β, ν increases and d decreases, b. Quarantined population SqðtÞ decreases, as β, ν increases and d decreases, c.
Infected population rapidly increases, as β, ν decreases and d increases, d. Recovered population also rapidly increases, β, ν decreases and d increases. Here the other
parameters are chosen from Table 2.
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Lemma 3.2. If SnðtÞ � 0; SqðtÞ � 0; IðtÞ � 0 and RðtÞ � 0, then the solu-
tions of system (2.2) are non-negative.

Proof. To prove Lemma 3.2, we first consider the first equation of the
system (2.2)

dSn
dt

¼Aþ ηSq � αSn
β þ Sn

Sq � μSn
νþ Sn

I � ρSn: (3.5)

In order to find the non-negativity of the solution of (3.5), we find

dSn
dt

þ ρSn � A: (3.6)

Integrating yields,

SnðtÞ�A
ρ
þ ce�ρt (3.7)

where c is an integrating constant. Applying the initial condition at t ¼ 0, we
have Snð0Þ � A

ρ þ c. Finally, (3.7) takes the form
6

SnðtÞ�A
ρ
þ Snð0Þ�A

ρ
e�ρt: (3.8)
� �

Hence (3.8) confirms that SnðtÞ � 0 at t ¼ 0 and t → ∞. Therefore SnðtÞ
is non-negative for all t � 0.

Similarly,we can show that SqðtÞ � 0; IðtÞ � 0 and RðtÞ � 0 for all t � 0.
This completes the proof of Lemma 3.2. ∎
3.2. Basic reproduction number

In the case of the disease epidemic model, the basic reproduction
number plays a vital role in the model because of the prediction of dis-
ease transmission [11,23,34]. We denote the basic reproduction number
by Λ0, which is defined as the ratio of newly infected individuals with
respect to total infected individuals. It is also widely used in epidemi-
ology because it assures whether the disease persists or extinct. In this
model (2.2), the non-quarantined susceptible population, quarantined
susceptible population, and infected population contribute to spreading



3
777775
:
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the infection among the non-infected population and here, there is no
scope to spread the infection by the recovered or immune population.
Therefore, to find out the basic reproduction number Λ0 of the model, we
consider the first three equations of system (2.2) as follows
8>>>>>>>><
>>>>>>>>:

dSn
dt

¼ Aþ ηSq � αSn
β þ Sn

Sq � μSn
νþ Sn

I � ρSn;

dSq
dt

¼ αSn
β þ Sn

Sq � Sq;

dI
dt

¼ γSq þ μSn
νþ Sn

I � κI þ dI:

(3.9)

From (3.9), we can form the following matrices F and V for gain and
loss terms, respectively

F¼

2
6664

0 η 0

αSq
β þ Sn

� αSnSq
ðβ þ SnÞ2

αSn
β þ Sn

0

0 0 0

3
7775 (3.10)

and

V ¼

2
666664

αSq
β þ Sn

� αSnSq
ðβ þ SnÞ2

þ μI
νþ Sn

� μISn
ðνþ SnÞ2

þ ρ
αSn

β þ Sn

μSn
νþ Sn

0 1 0

� μI
νþ Sn

þ μISn
ðνþ SnÞ2

�γ � μSn
νþ Sn

þ κ � d

(3.11)

At the disease free equilibrium point, ðSn; Sq; I;RÞ ¼
�

A
ρ;0; 0; 0

�
, we

find

F¼

2
6664
0 η 0

0
αA

βρþ A
0

0 0 0

3
7775 and V ¼

2
666664

ρ
αA

βρþ A
μA

νρþ A

0 1 0

0 �γ � μA
νρþ A

þ κ � d

3
777775

and

(3.12)

V�1 ¼

2
666664

1
ρ

A
ρðβρþ AÞððd � κÞðAþ νÞ þ μAÞ

μA
ρððd � κÞðAþ νÞ þ μAÞ

0 1 0

0
γðνρþ AÞ

ðκ � dÞðνρþ AÞ � μA
� νρþ A
ðκ � dÞðνρþ AÞ � μA

3
777775
:

It is now possible to evaluate the next generation matrix FV�1 such
that

FV�1 ¼

2
6664
0 η 0

0
αA

βρþ A
0

0 0 0

3
7775: (3.13)

Thus the basic reproduction number of system (2.2) is

Λ0 ¼ αA
βρþ A

: (3.14)

4. Stability analysis of the model at equilibria

To perform the stability analysis of the model at the equilibrium
points, we consider system (2.2) in vector form

�
_xðtÞ ¼ f ðt; xÞ
xð0Þ ¼ x0

(4.1)
7

where x ¼ ðSnðtÞ;SqðtÞ; IðtÞ;RðtÞÞ, f ¼ ðf1; f2; f3; f4Þ and x0 ¼ ðSn0; Sq0; I0;
R0Þ with

f1
�
Sn; Sq; I;R

� ¼ Aþ ηSq � αSn
β þ Sn

Sq � μSn
νþ Sn

I � ρSn

f2
�
Sn; Sq; I;R

� ¼ αSn
β þ Sn

Sq � Sq

f3
�
Sn; Sq; I;R

� ¼ γSq þ μSn
νþ Sn

I � κI þ dI

f4
�
Sn; Sq; I;R

� ¼ σI þ εSq � ρR:

For stability analysis, we linearize system (4.1) at an equilibrium
point x* so that the Jacobian matrix has the following form

J ¼

2
666666666664

� αβSq
ðβ þ SnÞ2

� μνI

ðνþ SnÞ2
� ρ η� αSn

β þ Sn
� μSn
νþ Sn

0

αβSq
ðβ þ SnÞ2

αSn
β þ Sn

� 1 0 0

μνI

ðνþ SnÞ2
γ

μSn
νþ Sn

� κ þ d 0

0 ε σ �ρ

3
777777777775

:

(4.2)

4.1. Stability analysis of the model at disease free equilibrium point ðS0n ;S0q ;
I0;R0Þ

In order to investigate the stability of system (2.2) at the DFE ðS0n ;S0q ;
I0;R0Þ, we propose the following Theorem 4.1.

Theorem 4.1. The disease free equilibrium point of system (2.2) is locally
asymptotically stable if Λ0 < 1 and μA

νρþA þ d < κ and unstable otherwise.

Proof. The Jacobian matrix (4.2) can be evaluated at the DFE, ðS0n ; S0q ;

I0;R0Þ ¼
�

A
ρ;0;0;0

�
as follows

J1 ¼

2
66666666664

�ρ η� αA
βρþ A

� μA
νρþ A

0

0
αA

βρþ A
� 1 0 0

0 γ
μA

νρþ A
� κ þ d 0

0 ε σ �ρ

3
77777777775
: (4.3)

The eigenvalues of the matrix J1 can be obtained in the following
form

λ1 ¼ αA
βρþ A

� 1; λ2 ¼ �ρ; λ3 ¼ μA
νρþ A

� κ þ d; and λ4 ¼ �ρ:

In terms of basic reproduction number Λ0, these can be rewritten as

λ1 ¼Λ0 � 1; λ2 ¼ �ρ; λ3 ¼ �κ þ μA
νρþ A

þ d; and λ4 ¼ �ρ:

It follows that the DFE is locally asymptotically stable if Λ0 < 1 and
μA

νρþA þ d < κ and unstable otherwise. According to the parameter values

mentioned in Table 3, we find that DFE is unstable. ∎
4.2. Stability analysis of the quarantined susceptible population free
equilibrium point

For the stability of the quarantined susceptible population free

equilibrium point ðSn; Sq; I; RÞ ¼
�

νðκ�dÞ
μ�κþd; 0; Aðμ�κþdÞ�νρðκ�dÞ

ðμ�kþdÞðκ�dÞ ;
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Aσðμ�κþdÞ�σνρðκ�dÞ
ρðμ�kþdÞðκ�dÞ

�
, we propose the following Theorem 4.2.

Theorem 4.2. The quarantined susceptible population free equilibrium
point of system (2.2) is locally asymptotically stable if Λ0 < 1 and unstable if
Λ0 > 1.

Proof. At the quarantined susceptible population free equilibrium point�
νðκ�dÞ
μ�κþd;0;

Aðμ�κþdÞ�νρðκ�dÞ
ðμ�kþdÞðκ�dÞ ;Aσðμ�κþdÞ�σνρðκ�dÞ

ρðμ�kþdÞðκ�dÞ

�
, the Jacobian matrix (4.2) takes

the following form
J2 ¼

2
66666666664

�ðμ� κ þ dÞðAðμ� κ þ dÞ � ρνðκ � dÞÞ
μνðκ � dÞ � ρ η� ανðκ � dÞ

βðμ� κ þ dÞ þ νðk � dÞ d � κ 0

0
ανðκ � dÞ

βðμ� κ þ dÞ þ νðκ � dÞ � 1 0 0

ðμ� κ þ dÞðAðμ� κ þ dÞ � ρνðκ � dÞÞ
μνðκ � dÞ γ 0 0

0 ε σ �ρ

3
77777777775
: (4.4)
The eigenvalues of the matrix J2 can be obtained in the following form

λ1 ¼ � 1
2μνðκ � dÞ

�
w1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ 2w3 þ w4

p �
;

λ2 ¼ � 1
2μνðκ � dÞ

�
w1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ 2w3 þ w4

p �
;

λ3 ¼ � 1� ναðκ � dÞ
dν� dβ � μβ � νκ þ βκ

; and λ4 ¼ � ρ;

where

w1 ¼Aðμ� κ þ dÞ2 þ νρðκ � dÞ2
λ3 ¼ανηðd � κÞ þ βηðd þ μ� κÞ � dðαν� νþ βÞ þ νκðηþ α� 1Þ þ βðμγ � μþ κÞ
ðη� 1Þðαν� νþ βÞ ;
w2 ¼A2ðμ� κ þ dÞ4

w3 ¼ νAðd � κÞ2ðμ� κ þ dÞ2ð2μþ ρÞ

w4 ¼ ρν2ðd � κÞ3�4μ2 þðd� κÞð4μþ ρÞ�:
It is observed that the eigenvalues have a complicated form that makes us

unable to identify their nature (sign) applying Routh-Hurwitz criterion [16,
38]. In that case, we numerically confirm that the quarantined population free
equilibrium of the model is locally asymptotically stable ifΛ0 < 1 and unstable
if Λ0 > 1 concerning the parameter values listed in the Table 3. ∎
4.3. Stability analysis of the endemic equilibrium point

For the stability of the endemic equilibrium point ðS*n; S*q; I*;R*Þ, we
propose the following theorem.
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Theorem 4.3. The endemic equilibrium point of system (2.2) is locally
asymptotically stable if Λ0 > 1 and unstable if Λ0 < 1.

Proof. At the endemic equilibrium point ðS*n; S*q; I*;R*Þ ¼
�

β
α�1; S

*
q; I

*;

R*
�
, the Jacobian matrix (4.2) becomes
J3 ¼

2
666666666664

�ðα� 1Þ2S*q
αβ

� μνI*ðα� 1Þ2
ðνα� νþ βÞ2 � ρ η� 1 � μβ

να� νþ β
0

ðα� 1Þ2S*q
αβ

0 0 0

μνI*ðα� 1Þ2
ðνα� νþ βÞ2 γ

μβ
να� νþ β

� κ þ d 0

0 ε σ �ρ

3
777777777775

:

(4.5)

We determine the eigenvalues of the matrix J3 in the following form
λ1 ¼ u1 þ u2
αβðαν� νþ βÞ2; λ2 ¼

ðαν� νþ βÞ2ðα� 1Þ2ðη� 1ÞS*q
u1 þ u2

;

and λ4 ¼ � ρ

where

u1 ¼ αβμνI*ðα� 1Þ2 þαβρðν� βÞ2 þ 2νρα2βðβ� νÞ

u2 ¼ 6αβνS*qð1� αÞþ α2ν2S*q
�
α2 � 4αþ 6

�þ β2S*qðα� 1Þ2

þ νS*q
�
2α3β� 4αν� 2βþ ν

�
:

Due to the complexity of the explicit form of the eigenvalues, it is
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impossible to confirm the nature (sign) of eigenvalues analytically using
the Routh-Hurwitz criterion. However, we numerically confirm that the
endemic equilibrium point is unstable ðΛ0 < 1Þ for the parameter values
mentioned in Table 3 and it becomes asymptotically stable when we
change the parameters A, α, and β, etc. so that Λ0 > 1. ∎

Finally, it is understood that the stability of the equilibria depends on
the basic reproduction number Λ0. The basic reproductive ratio can also
play a pivotal role to control the infection in epidemiology [14].

5. Numerical investigations

In order to investigate the dynamics of the model, we perform nu-
merical simulations of the model as a standard Initial Value Problem
(IVP) (2.2)–(2.3) incorporating a relevant initial condition.

For numerical solution of the IVP (2.2)–(2.3), we use Runge-Kutta
fourth order method. The initial conditions are chosen from the same
dataset [43] as Sn0 ¼ 2:0;Sq0 ¼ 1:86;I0 ¼ 0:07;R0 ¼ 0:15. We also take

the parameter values from Table 2 so that κ < dþ μA
νρþA and the basic

reproduction number, Λ0 ¼ 0:6791 ð< 1Þ. Under these conditions, it is
expected that the quarantined susceptible population free equilibrium
point, ðSn; Sq; I;RÞ is asymptotically stable.

We are mainly interested to investigate the influence of dispersal on
the infection of COVID-19 pandemic in Bangladesh. In our model, the
parameter d can explain the dispersal of infection of coronavirus in terms
of the frequency of the inter-regional movement of the people (regional
lockdown). In addition to that ν and β correspond to the effect of social
distancing and immune growth of susceptible populations, respectively.
That is why we emphasize these three parameters to understand the
applicability of the model to the real situation of COVID-19.

We first focus on the parameter β which is responsible for immune
growth through intaking vitamins and doing physical exercise although it
has no significant influence on the infected population. People should
increase their immunity during this pandemic so that COVID-19 symp-
toms do not come out and subsequently people do not undergo quaran-
tine. This phenomenon can be reflected by the parameter β in the model.
To investigate this situation, we increase β, that is, β ¼ 10:0, we see that
the quarantine population decreases and the non-quarantine population
increases, as shown in Fig. 2. On the other hand, the quarantine popu-
lation gradually increases as β decreases. This result suggests that COVID-
19 symptoms can be prevented, that is, the frequency of quarantined
people from non-quarantined can be controlled to improve the immunity
level staying at home.

Fig. 3 exhibits the variations of the compartmental variables with
respect to the time when the parameter ν varies. We emphasize the
parameter ν which corresponds to the social awareness parameter, that
is, wearing a mask, PPE and maintaining 3m social distance from each
other and frequently washing hands with soap, etc. when people are in
the workplace or out of the home. When social awareness is well
developed, that is, the parameter ν is suitably increased, it is observed
that the infected population rapidly decreases, as shown in Fig. 3. It is
also inspected that the solution of the IVP (4.1), ðSn; Sq; I;RÞðtÞ converges
to ð25:31; 0:0; 19:40; 0:15Þ for large time when the parameters chosen
from Table 2. We also numerically confirm that for this parameter
setting, the eigenvalues of the matrix J2 in (4.4) are real and negative,
that is, λ1 ¼ � 11:1659;λ2 ¼ � 0:90;λ3 ¼ � 0:2, and λ4 ¼ � 0:07714.
This is a quite reasonable agreement to the stability analysis of ðSn;Sq; I;
RÞ, presented in Section 4.2. Consequently, we claim that the parameter ν
has a significant influence to prevent the infection of novel coronavirus,
that is, the COVID-19 outbreak.

We now focus on the main goal of this research, that is, the influence
of dispersal on the infection of COVID-19 in Bangladesh. The dispersal
effect is implemented by the parameter d in the model through the strict
restriction of the movement of people from one region to another region.
If the movement of people is highly restricted, that is, lockdown is strictly
imposed, the parameter d is relatively smaller. On the other hand, a
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relatively larger value of d corresponds that the people can move often
from one region to another region, that is, lockdown is not maintained.
To this end, we can say that the parameter d controls the flexibility of the
movement of people. To do so, we change the parameter d keeping the
other parameters fixed to understand the spreading dynamics of COVID-
19 all over the country. Fig. 4c demonstrates that the infected population
rapidly increases due to the increase of the dispersal rate d. On the
contrary, when we decrease the value of d, for instance d ¼ 0:001, Fig. 4c
shows that the infected population decreases than that for d ¼ 0:1 and
d ¼ 0:032. Numerical results reveal that the spread of COVID-19 over the
country could be controlled reasonably if we impose restrictions on the
inter-district movements of the people. Finally, we can claim that
regional lockdown can play an important role to reduce the infection of
novel coronavirus and subsequently control the outbreak of COVID-19 in
Bangladesh.

Fig. 5 exhibits the collective influence of the parameters β; ν and d on
the COVID-19 epidemic. We see that the infected population and
recovered population decreases when we increase β, ν and decrease
d simultaneously. The non-quarantined population increases if the pa-
rameters β, ν are increased and d is decreased. When β, ν are increased
and d is decreased, the quarantined population decreases. Finally, we
may conclude from the model that the outbreak of COVID-19 could be
prevented by taking effective measures, that is, controlling the parame-
ters β; ν and d simultaneously in terms of increasing immune level, proper
social distancing, and regional lockdown, respectively.

6. Conclusions

COVID-19 has been declared as a global pandemic by the World
Health Organization (WHO) [42] on March 11, 2020. The coronavirus
COVID-19 pandemic, a major public health concern, is the greatest
challenge we have faced since the second world war. In all the affected
countries over the world, it has the potential to create devastating social,
economic, and political crises and that will leave deep scars. The impact
of the COVID-19 pandemic is not only felt on the national economy but
also the household economy of millions of Bangladeshis. It is merely
important to slow the spread of the novel coronavirus by testing and
treating patients, carrying out contact tracing, limiting travel, quaran-
tining citizens, and canceling all sorts of large gatherings for a reasonable
period. To impose sustainable preventive measures, in this paper, we
proposed a four-compartmental model by introducing the dispersal effect
and social distancing effect on the infection of COVID-19. We analyzed
the boundedness and non-negativity of solutions of the model. To
confirm whether the infection of the coronavirus persists or extinct, we
determined the basic reproduction number for the model. We performed
a stability analysis at the equilibria to identify epidemic and endemic
cases in terms of the basic reproduction number, Λ0. We numerically
confirmed that the quarantined susceptible population-free equilibrium
ðSn; Sq; I;RÞ is locally asymptotically stable if Λ0 < 1 and the endemic

equilibrium
�

β
α�1; S

*
q; I

*;R*
�

is locally asymptotically stable if Λ0 > 1.

Furthermore, we performed numerical simulations to illustrate the
analytical findings. The infection of coronavirus is regulated if the
movement of the people from one region to another region is highly
restricted, that is, regional lockdown is strictly imposed and that was
reflected in the model through the dispersal effect parameter d. We have
seen that the infection is also controlled when the level of social
distancing, such as keeping a 1-m distance from one to another, frequent
handwashing with soap, wearing face mask and PPE, etc. is well devel-
oped, that is, ν is suitably increased. Finally, the numerical results suggest
that the infection of novel coronavirus could be prevented and controlled
in Bangladesh when the dispersal effect, that is, regional lockdown is
strictly maintained and the level of social distancing is well-developed as
non-pharmaceutical interventions.
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