
© 2010 IEEE. Reprinted, with permission, from Didar Zowghi, An ontological framework to manage the relative
conflicts between security and usability requirements . Managing Requirements Knowledge (MARK), 2010 Third
International Workshop on, 2010. This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the University of Technology, Sydney's products or
services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for resale or redistribution must be
obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all
provisions of the copyright laws protecting it

An Ontological Framework to Manage the Relative Conflicts between Security and

Usability Requirements

Dewi Mairiza and Didar Zowghi

Faculty of Engineering and Information Technology

University of Technology Sydney, Australia

(Dewi.Mairiza; Didar.Zowghi)@uts.edu.au

Abstract— Non Functional Requirements (NFRs) are relative,

so are the conflicts among them. In our previously developed

catalogue of NFRs conflicts it can be observed that a number

of specific pairs of NFRs are claimed to be in conflicts in some

cases but they are also claimed not to be in conflict in the other

cases. These relative conflicts occur because the positive or

negative relationships among NFRs are not always clear and

obvious. These relationships might change depending on the

meaning of NFRs within the system being developed. This

paper focuses on the application of ontology in managing the

relative conflicts among NFRs, particularly the relative

conflicts between security and usability requirements. The aim

is to develop a framework to identify, characterize, and define

corresponding resolution strategies for the security-usability

conflicts. This paper thus describes the sureCM framework to

manage these conflicts; summarizes the security-usability

conflicts ontology; and demonstrates how the ontology will be

used as a basis to assist analysts in managing conflicts between

security and usability requirements.

Keywords–non-functional requirements, conflicts, relative,

framework, management, ontology, security, usability

I. INTRODUCTION

NFRs are recognized as a critical factor to the success of
software projects. NFRs address the essential issue of the
quality of the systems [1-3]; and are also considered as the
qualifications of the operations [4, 5]. In the determination of
a system's perceived success or failure, experience shows
that NFRs are often more critical than individual Functional
Requirements (FRs). Neglecting NFRs has led to a series of
software failures, such as a number of systemic failures
discussed in the literature [6-9].

However, although NFRs are widely recognized to be
very critical, several studies reveal that NFRs are often
neglected, poorly understood and not considered adequately
in developing a software application. In the development of
software systems, users naturally focus on specifying their
FRs [1, 10]. Similarly, software developers also do not pay
sufficient attention to NFRs [2, 11-13]. NFRs are not elicited
at the same time and the same level of details as the FRs and
they are often poorly articulated in the requirements
document [12, 13]. Capturing, specifying, and managing
NFRs are still difficult to perform because most software
developers do not have adequate knowledge about NFRs and
little help is available in the literature [14].

One of the characteristics of NFRs is “interacting”, which
means NFRs tend to interfere, conflict, and contradict with
one other. Unlike FRs, this inevitable conflict arises as a
result of inherent contradiction among various types of NFRs
[1, 2]. Certain combinations of NFRs in the software systems
may affect the inescapable trade offs [2, 7, 10]. Achieving a
particular type of NFRs can hurt the achievement of the other
type(s) of NFRs.

Prior studies reveal that dealing with NFRs conflicts is
essential due to several reasons [15]. First of all, conflicts
among software requirements are inevitable [1, 16, 17].
Conflicting requirements are one of the three main problems
in the software development in term of the additional effort
or mistakes attributed to them [17]. A study of two-year
multiple-project analysis conducted by Egyed & Boehm [18,
19] reports that between 40% and 60% of requirements
involved are in conflict, and among them, NFRs involved the
greatest conflict, which was nearly half of requirements
conflict [20]. Lessons learnt from practices also confirm that
one of the essential issues during NFRs specification is
management of conflict among interacting NFRs [2].
Experience shows that most systems suffer with severe
tradeoffs among the major groups of NFRs. In fact, conflict
resolutions for handling NFRs conflicts often results in
changing overall design guidelines, not by simply changing
one module. Therefore, since conflicts among NFRs have
also been widely acknowledged as one of NFRs
characteristics, managing this conflict as well as making this
conflict explicit is important [21]. NFRs conflicts
management is essential for finding the right balance of
attributes satisfaction in achieving successful software
product [7, 10].

II. PROBLEM DEFINITION

A number of techniques to manage the conflicts among
NFRs have been discussed in the literature [15]. Majority of
them provide documentation, catalogue, or list of potential
conflicts among NFRs. These catalogues represent the
interrelationships among various types of NFRs. Some
examples are: the QARCC win-win approach [7, 22, 23],
trace analyzer of the requirements traceability technique
[24], and a technique that adopts a hierarchical constraint
logic programming approach [25]. Apart from strength and
weaknesses of each technique, however, NFRs are also
relative [1]. NFRs can be viewed, interpreted, and evaluated
differently by different people and different context within

which the system is being developed. The interpretation and
importance of NFRs may vary depending on the particular
system and/or the extent of stakeholder involvement.
Consequently, the positive or negative relationships among
NFRs are not always obvious. These relationships might
change depending on the meaning of NFRs in the context of
the system being developed. Due to this relative
characteristic, cataloguing the NFRs relationships in order to
represent the conflicts among NFRs would inevitably
produce disagreement. Identifying the NFRs conflict without
understanding the meaning of NFRs in the system being
developed may produce the erroneous conflict identification
and analysis. Therefore, a technique to identify the conflict
among NFRs by considering the relative characteristic of
NFRs is essential. This technique will allow developers to
identify and reason case by case in each system which NFRs
of the system are in conflict and which NFRs are not.
To understand how NFRs conflict with each other, a
catalogue of conflicts among NFRs with respect to NFRs
relative characteristic has been developed from the literature
[26]. This catalogue is a two-dimensional matrix that
represents the typical interrelationships among NFRs, in
term of the conflict emerges among them. In this catalogue,
the relativity of NFRs conflicts is presented in three
categories: absolute conflict (labeled as “X”); relative
conflict (labeled as “*”); and never conflict (labeled as “O”).
As illustrated in Figure 1, 19 pairs of NFRs in the catalogue
are indicated have the relative conflicts, which means they
are not always in conflict as they are claimed to be in conflict
in the certain cases but they are also claimed as not being in
conflict in the other cases. By combining this result with two
other parameters: frequently listed NFRs; and concerned
NFRs in various types of systems and applications domains
[9], then this research focuses on investigating the relative
conflicts between security and usability requirements.

Figure 1 - Catalogue of Conflicts among NFRs [26]

Security requirements are widely recognized to be in
conflict with usability requirements [27-29]. Security usually
aims to make operations harder to do while usability aims to
make operations easier [27]. Studies to date also indicate that
current trend and challenge in the software engineering
research and practices is producing such secure usable
software products [28-30]. Systems that are secure but not
usable will not be used, while systems that are usable but not
secure will get hacked and compromised [28]. In fact,
literature review reveals that the conflicts between security
and usability are still not well understood. Braz, Seffah &
Raihi in [31] even claim that “there is a very limited amount
of work has been conducted on the security – usability
conflicts, particularly on the intimate relationship that exists
between security and usability”.

Given the above context we are motivated to perform an
investigation into the conflicts among NFRs, particularly the
security-usability relative conflicts in order to increase our
understanding about how these two NFRs conflict with and
affect one another and how this conflict might be managed.
Our research questions have been formulated as follow:

“With respect to the NFRs relative characteristic:
(1) Can we create a conceptual model of the conflicts

between security and usability requirements?
(2) Can software developer use this model to manage

(identify, characterize, and find the potential
strategy to resolve) the conflict?”

III. FRAMEWORK DEVELOPMENT

By adopting the IEEE Standard and ISO/IEC 9126, this
research considers security requirements as the requirements
that concern the protection of system, program and data from
unauthorized access or malicious harm; and usability
requirements as the requirements that specify the capability
of the software product to be understood, learned, used, and
attract the user [32, 33]. With respect to the NFRs relative
characteristic, the term “NFRs conflict” is defined as a case
where the satisfaction of a pair of NFRs is not possible
within a specific context of the system being developed.

An iterative ontological engineering approach will be
used as a basis of the framework. The reasons are ontology
offers many benefits such as presenting an explicit semantic
and taxonomy [34]; providing a clear link between concepts
and their relationships [34]; assisting people in developing
the representations or images of reality [35]; and facilitating
knowledge sharing in the community [36, 37]. Thus, we
believe that ontology will enable us to conceptualize the
knowledge of security and usability conflicts. Ontology will
assist us in investigating the conflicts phenomena, collecting
the relevant information, conceptualizing the knowledge, and
representing the conceptualization. Therefore, in this
research, an ontological model of the security and usability
conflicts with respect to NFRs relative characteristic will be
developed. This ontology then will be used as the basis of the
framework to manage the conflicts between security and
usability requirements.

In building the framework and its ontology, we follow
the Helix-Spindle Model for ontological engineering [38].
The reasons are:

(1) It has been recognized (e.g. [39]) that ontology is
never complete. Thus, successful development of
ontology is an iterative and incremental process [40].
The Helix-Spindle model reflects this iterative
incremental development process through its three
major phases: conception phase, elaboration phase,
and definition phase.

(2) Helix-Spindle model combines both the theoretic and
the pragmatic approaches to ontology development.
Thus, it will increase the likelihood of maturity of the
ontology

Figure 2 - sureCM Framework Development Process

As shown in Figure 2, the framework and its ontology

will be developed in three major phases: conception phase,
elaboration phase, and definition phase, following the Helix-
Spindle model of ontological engineering. In the conception
phase, the framework and its ontology will be
conceptualized. Concepts, relationships, and behaviors of the
ontology will be identified. An abstract level of the ontology
will become the output of this phase. Then, each concept in
the ontology will be elaborated in the elaboration phase. The
hierarchy of security requirements meaning, usability
requirements meaning, the conflicts impact, and the potential
resolution strategies are created within this phase. Literature
will be used as the main source for developing this ontology.
Furthermore, in order to triangulate and enrich the ontology,
a survey of practice will also be conducted. In definition
phase, the ontology will be revised and formalized by using
an ontological representation. Finally, the proposed
ontological framework will be realized through the
development of a proof of concept software tool that will be
evaluated using experimentation.

IV. THE FRAMEWORK

A preliminary model of the security-usability
requirements conflicts management (sureCM) framework is
shown in Figure 3. The framework is specifically designed to
identify and to characterize the conflicts between security
and usability requirements and to discover the corresponding
strategy for conflicts resolution. This framework consists of
four types of input (i.e. security requirements, system
context, application domain, usability requirements); four-
layer process (i.e. P1, P2, P3, P4); and three types of output
(i.e. list of conflict, nature of conflict, conflict resolution
strategy). The security-usability conflicts ontology will be
used as the basis to execute the four-layer process of the
framework.

Figure 3 - Security-Usability Requirements Conflicts

Management Framework

Figure 4 shows a preliminary conceptual model of the

security-usability conflicts ontology. With respect to NFRs
relative characteristic, two key-parameters are used to
identify the existence of conflict: (1) the meaning of NFRs;
and (2) the system context. The meaning of NFRs refers to
the interpretation of NFRs in the system being developed
while the system context refers to the context within which
the system is being developed, that is characterized as the
system type. The nature of conflicts is characterized as the
impact of the conflicts against various components in the
software development, e.g. personnel and schedule. Based on

the nature of this conflict, then the corresponding strategies
for conflict resolution will be identified with respect to the
system’s application domain.

Figure 4 - Security-Usability Conflicts Ontology

As shown in Figure 4, this ontology has five concepts:
security meaning; usability meaning; security-usability
conflict; impact of conflict; and resolution strategy. The
ontology behavior is represented by 3 types of relationships:
is conflict; has; and associate. “Is conflict” represents which
pair of security meanings are in conflict with usability
meanings considering the system context. For each defined
conflict, the corresponding potential consequences are then
identified and linked by “has” relationship. Finally, with
respect to the application domain, the conflict and its
consequences are associated to the particular conflict
resolution strategies through “associate” relationship.

The ontology illustrated in Figure 4 then will be
elaborated by characterizing the meaning of security and
usability requirements in term of the existence of conflicts
among them; the impact of the conflicts; and the potential
strategy to resolve the conflicts. From this elaboration, a
security-usability conflicts knowledge-based will be
developed. This knowledge-based is a combination of
concepts and values deriving from the security-usability
conflicts ontology. Some key-components of this
knowledge-based are listed in Table 1.

Table 1 - Security-Usability Conflicts Knowledge-based

The sureCM framework represents both a process for
identifying, characterizing, and discovering resolution
strategy of the conflicts between security and usability; and
the ontology of the security-usability conflicts. The process
model for the entire framework can be illustrated as shown in
Figure 5.

Figure 5 - Framework Process Model

As shown in Figure 5, the conflicts management process

begin with the identification of the security and usability
requirements meanings, the system context and the
application domain. The ontology of security meaning,
usability meaning, system context, and application domain
will be used as the basis of identification. The second
process is identifying the existence of conflicts. This process
utilizes some outputs in the previous process: the security
requirements meaning; the usability requirements meaning;

and the context of the system, as the parameter identification.
Next process is when conflicts are characterized by their
impacts, leading to the identification of the corresponding
resolution strategies within the system application domain.

V. CONCLUSION

This paper describes a proposed framework to manage
the relative conflicts among NFRs, particularly the relative
conflicts between security and usability requirements. The
framework uses an ontological approach as the basis to
manage the conflicts. An ontological model of the security-
usability requirements conflicts has been developed and
presented. This ontology shows when security and usability
are in conflict, what the impacts of the conflicts are, and
what the relevant strategies to resolve this conflict are.
Therefore, this proposed framework can be used to identify
not only the existence of conflict, but also the type and
significance of conflict, as well as the appropriate potential
strategy to resolve the conflict.

Although the conceptual model of the framework has
been established; a number of conference papers on
investigating the notion of NFRs, the conflicts among NFRs,
and the catalogue of conflicts among NFRs with respect to
NFRs relative characteristic have also been published [9, 15,
26], however, several important tasks remain to complete the
framework:

1) Elaborate the security-usability conflicts ontology
In the next step, we are going to continue developing the

framework by elaborating the conflicts ontology through
collecting information from literature. We will characterize
the meaning of security and usability requirements in term of
the conflict relationships among them with respect to the
context of the system being developed; the impact of the
conflicts; and the potential strategy to resolve the conflicts. A
knowledge-based of security-usability conflicts will be the
outcome of this step.

2) Enrich and refine the ontology
To enrich the ontology and to discover the insight from

practitioners, we also plan to do the survey of practice. This
survey of practice will be conducted to perform a
triangulation of the existing potential conflict models and the
framework to manage the conflicts among NFRs,
particularly security-usability conflicts with respect to NFRs
relative characteristic.

3) Develop tool support
To facilitate the framework utilization, we also plan to

develop a tool that can assist software developers,
particularly requirements engineers to perform managing
conflicts between security and usability requirements.

4) Framework empirical evaluation
The framework will be evaluated through controlled

experiments. The reason is because “controlled experiments
make possible the careful observation and precise
manipulation of independent variables (e.g. proposed
framework), allowing for greater certainty, and encourage
the researcher to try out novel frameworks in a safe and
exploratory environment before implementing them in the
real world settings” [41]. Effectiveness and efficiency will be

used as the evaluation criteria. Effectiveness represents that
this framework can be used to manage the NFRs conflicts,
i.e. security-usability conflicts, by considering NFRs relative
characteristic while efficiency represents how fast people can
identify the conflicts using the framework.

ACKNOWLEDGMENT

We would like to thank The International Schlumberger
Foundation Paris for funding this research through Faculty
for the Future Award Program.

REFERENCES

[1] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos,

Non-functional requirements in software

engineering. Massachusetts: Kluwer Academic

Publishers, 2000.

[2] C. Ebert, "Putting requirement management into

praxis: dealing with nonfunctional requirements,"

Information and Software Technology, vol. 40, pp.

175-185, 1998.

[3] D. Firesmith, "Using quality models to engineer

quality requirements," Journal of Object

Technology, vol. 2, pp. 67-75, 2003.

[4] G. Kotonya and I. Sommerville, Non-functional

requirements, 1998.

[5] R. T. Mittermeir, N. Roussopoulos, R. T. Yeh, and

P. A. Ng, Modern software engineering,

foundations and current perspectives. New York,

NY, USA: Van Nostrand Reinhold Co, 1989.

[6] K. K. Breitman, J. C. S. Prado Leite, and A.

Finkelstein, "The world's a stage: a survey on

requirements engineering using a real-life case

study," Journal of the Brazilian Computer Society,

vol. 6, pp. 1-57, 1999.

[7] B. Boehm and H. In, "Identifying quality-

requirements conflict," IEEE Software, vol. 13, pp.

25-35, 1996.

[8] N. G. Leveson and C. S. Turner, "An investigation

of the Therac-25 accidents," IEEE Computer, vol.

26, pp. 18-41, 1993.

[9] D. Mairiza, D. Zowghi, and N. Nurmuliani, "An

investigation into the notion of non-functional

requirements," in 25th ACM Symposium On Applied

Computing Switzerland, 2010.

[10] K. E. Wiegers, Software requirements, 2nd ed.

Washington: Microsoft Press, 2003.

[11] D. J. Grimshaw and G. W. Draper, "Non-functional

requirements analysis: deficiencies in structured

methods," Information and Software Technology,

vol. 43, pp. 629-634, 2001.

[12] N. Heumesser, A. Trendowicz, D. Kerkow, H.

Gross, and L. Loomans, "Essential and requisites

for the management of evolution - requirements and

incremental validation," Information Technology

for European Advancement, ITEA-EMPRESS

consortium 2003.

[13] N. Yusop, D. Zowghi, and D. Lowe, "The impacts

of non-functional requirements in web system

projects," International Journal of Value Chain

Management vol. 2, pp. 18-32, 2008.

[14] S. Lauesen, Software requirements: styles and

techniques: Addison-Wesley, 2002.

[15] D. Mairiza, D. Zowghi, and N. Nurmuliani,

"Managing conflicts among non-functional

requirements," in 12th Australian Workshop on

Requirements Engineering (AWRE '09), Sydney,

Australia, 2009.

[16] L. Chung, B. A. Nixon, and E. Yu, "Dealing with

change: an approach using non-functional

requirements," Requirements Engineering, vol. 1,

pp. 238-260, 1996.

[17] B. Curtis, H. Krasner, and N. Iscoe, "A field study

of the software design process for large systems,"

Communication of the ACM, vol. 31, pp. 1268-

1287, 1988.

[18] B. Boehm and A. Egyed, "WinWin requirements

negotiation processes: a multi-project analysis," in

5th International Conference on Software

Processes, 1998.

[19] A. Egyed and B. Boehm, "A comparison study in

software requirements negotiation," in 8th Annual

International Symposium on Systems Engineering

(INCOSE’98), 1998.

[20] W. N. Robinson, S. D. Pawlowski, and V. Volkov,

"Requirements interaction management," ACM

Computing Surveys, vol. 35, pp. 132-190, 2003.

[21] B. Paech and D. Kerkow, "Non-functional

requirements engineering - quality is essential," in

10th International Workshop on Requirements

Engineering: Foundation for Software Quality,

2004, pp. 27-40.

[22] B. Boehm and H. In, "Aids for identifying conflicts

among quality requirements," IEEE Software,

March 1996, 1996.

[23] H. In, B. Boehm, T. Rodgers, and M. Deutsch,

"Aplying WinWin to quality requirements: a case

study," in 23rd International Conference on

Software Engineering, Toronto, Ontario, Canada,

2001, pp. 555 - 564.

[24] A. Egyed and P. Grünbacher, "Identifying

requirements conflicts and cooperation: how quality

attributes and automated traceability can help,"

IEEE Software, vol. 21, pp. 50 - 58, 2004.

[25] Y. Guan and A. K. Ghose, "Use constraint

hierarchy for non-functional requirements analysis,"

Lecture Notes in Computer Science, vol.

3579/2005, pp. 104-109, 2005.

[26] D. Mairiza, "Towards a catalogue of conflicts

among non-functional requirements," in 5th

International Conference on Evaluation of Novel

Approaches to Software Engineering (ENASE

2010) Athens, Greece: INSTICC, 2010.

[27] K. Yee, "Aligning security and usability," IEEE

Security & Privacy, vol. 2, pp. 48-55, 2004.

[28] L. F. Cranor and S. Garfinkel, "Secure or usable?,"

IEEE Security & Privacy, vol. 2, pp. 16-18, 2004.

[29] P. Gutmann and I. Grigg, "Security usability," IEEE

Security & Privacy, vol. 3, pp. 56-58, 2005.

[30] A. J. DeWitt and J. Kuljis, "Is usable security an

oxymoron?," Interaction, vol. 13, pp. 41 - 44, 2006.

[31] C. Braz, A. Seffah, and D. M. Raihi, "Designing a

trade-off between usability and security: a metrics

based-model," Lecture Notes in Computer Science,

vol. 4663, pp. 114-126, 2007.

[32] ISO/IEC, "Software engineering - product quality -

part 1: quality model." vol. ISO/IEC 9126-1: 2001

(E) Switzerland: ISO/IEC, 2001.

[33] "IEEE Std 830-1998: IEEE recommended practice

for software requirements specifications," I. The

Institute of Electrical and Electronics Engineers,

Ed. USA, 1998.

[34] D. M. Pisanelli, A. Gangemi, and G. Steve,

"Ontologies and information systems: the marriage

of the century?," in LYEE Workshop, 2002.

[35] C. Calero, F. Ruiz, and M. Piattini, Ontologies for

software engineering and software technology:

Springer, 2006.

[36] M. Uschold and M. Gruninger, "Ontologies:

principles, methods, and applications," Knowledge

Engineering Review, vol. 11, pp. 93 - 115, 1996.

[37] M. Uschold and R. Jasper, "A framework for

understanding and classiying ontology

applications," in IJCAI Workshop on Ontologies

and Problem-Solving Methods, 1999.

[38] R. Kishore, H. Zhang, and R. Ramesh, "A helix-

spindle model for ontological engineering,"

Communication of the ACM, vol. 47, pp. 69 - 75,

2004.

[39] R. Kishore and R. Sharman, "Computational

ontologies and information systems I: foundations,"

Communications of the Association for Information

Systems, vol. 14, pp. 158 - 183, 2004.

[40] A. M. Hickey and A. Davis, "An ontological

approach to requirements elicitation technique

selection," in Ontologies: a handbook of principles,

concepts and applications in information systems,

R. Sharman, R. Kishore, and R. Ramesh, Eds.:

Springer Science+Business Media, LLC, 2007, pp.

403 - 431.

[41] D. Damian, "Empirical studies of computer support

for distributed requirements negotiation,"

University of Calgary, 2001.

