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ABSTRACT 

Electrocatalytic water splitting (EWS) is a promising route to produce green 

hydrogen, which is centrally hindered by the anodic oxygen evolution reaction 

(OER) due to its sluggish kinetics. To advance the OER process, substantial efforts 

have been put into exploring high-performance catalysts. Recently, transition 

metal-based sulfide (TMS) and boride (TMB) catalysts have attracted enormous 

attention, while the design of novel TMSs/TMBs with high cost-effectiveness is 

an ongoing challenge. Hence, in this thesis, useful catalyst design strategies are 

developed for the construction of cost-effective TMS/TMB electrocatalysts. 

The P and W dual-doping strategy was first used to design OER 

electrocatalysts from FeB with accelerated surface reconstruction and regulated 

intrinsic activity of evolved FeOOH. The obtained catalyst demonstrates an 

excellent OER activity (an overpotential of 209 mV to achieve 10 mA cm–2), 

surpassing most boride-based catalysts. Specifically, anion etching facilitates 

surface reconstruction and W doping enhances intrinsic catalytic activity. 

Moreover, the hierarchical structure and amorphous features also benefit OER. 

This study provides a powerful strategy to construct efficient OER catalysts.  

A morphology control strategy was then performed to construct nickel 

sulfides for overall water splitting (OWS). By taking advantage of small size, large 

electrochemical surface area, and good conductivity, the nanoworm-like nickel 

sulfides exhibit better performance for OWS than the nanoplate-like analogues. 

This study provides a facile strategy to design sulfide-based electrocatalysts for 

diverse applications. 

Designing catalysts from wastes can further enhance catalysts' cost-

effectiveness. Herein, a boriding method is developed to turn waste printed circuit 

boards into OER catalysts (FeNiCuSnBs). High metal recovery rates (> 99%) are 

attained, and the optimal FNCSB-4 attains 10 mA cm–2 at an overpotential of 199 

mV. The in-depth study suggests that the superior OER performance arises from 

accelerated surface self-reconstruction by B/Sn co-etching, and the newly formed 

multimetal (oxy)hydroxides are OER active species.  
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The boriding strategy was further implemented to convert spent adsorbents 

into heterostructural OER catalysts (NiCuFeB/SA) which outperforms many state-

of-the-art catalysts. Comprehensive analyses suggest the high catalytic efficiency 

mainly attributed to the porous biochar confined well-dispersed metallic borides 

and the in situ evolved metal (oxy)hydroxides.  

This thesis has realized the design of cost-effective TMS and TMB-based 

electrocatalysts for EWS, which provides guidelines for further design of novel 

catalysts for advanced electrochemical applications from earth abundant resources. 

In addition, the boriding strategy presented here may open up a new avenue to 

design functional materials from wastes. 
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