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1.1 Research background 

Concerns about water resources sustainability have increased worldwide due to 

unplanned and poorly managed population growth and environmental problems 

(Carle et al., 2005; Lee Joong and Heaney James, 2003). Studies on the complexity 

of water systems and new kinds of sustainable water management concepts are 

becoming prolific in hydrological scientific research (Salvadore et al., 2015). 

Today’s conventional water management systems, where all components are 

constructed independently, do not possess the abilities for functioning effectively 

especially in terms of population growth and climate change requirements (Butler 

and Schutze, 2005; Rauch et al., 2005). Examples of a diversified approach to 

achieve an integrated water management system (IUWM) include Best 

Management Practices (BMPs) in the United States, Water Sensitive Design in 

Australia, Sustainable Drainage System (SuDS) in the United Kingdom, and 

Sponge City in China. The objectives of these systems are to: (1) pay good 

attention to all components of the system so that they work well; (2) implement 

water systems in both centralized and decentralized contexts; and (3) create 

multiple ecologically friendly services in urban zones including: water resources 

conservation, flooding disaster mitigation, relevant amenities, and micro-climate 

improvements (Bach et al., 2014; Brown et al., 2009; Nguyen et al., 2018).  

Integrated water models have been devised and their focus is on interactions 

amongst all components of water systems management. These transitions to an 

integrated water model specifically concentrate on the interactions between water 

systems, which should be the priority of development and societal factors (Rauch 

et al., 2017). As early as the 1970s, research in integrated water systems was 

undertaken in Glatt Valley, Switzerland (Gujer et al., 1982), however this research 

did not document any modelling results. At the first INTERURBA conference in 

1993, emerging research on integrated water models was initially reported that 

marked a milestone in the progress of such integrated models (Lijklema et al., 

1993).  

Integrated water models are essential tools for planning and management of 

drainage systems. In 1971, the US Environmental Protection Agency (EPA) 
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developed the Storm Water Management model (SWMM) which is the one of 

most popular tools for the evaluation of stormwater management systems (Deng 

et al., 2018). A range of commercial stormwater models such as Mike Urban, 

InfoWorks and DAnCE4Water, which were built based on SWMM, is commonly 

used worldwide. Although the development of models has brought benefits for 

planners and policy-makers, these models encounter many challenges because 

urban water systems are, in fact, very complex. Moreover, the lack of 

understanding of interactions between all components, that is, understanding the 

whole system, and the expense of data requirements, and limitations in 

computational hardware have affected the model’s performance (Candela et al., 

2011; Rauch et al., 2005; Vanrolleghem et al., 2005). Having an insufficient 

understanding of model uncertainties also contributes to the model being at risk of 

failure (Dotto et al., 2011). However, with the recent advances being made in 

software package capabilities and technologies, these models have performed 

better in recent years. Integrated models gained momentum by combining and 

improving conventional single model packages in the past few decades (Bach et 

al., 2014).  

Water infrastructure implementation promises many benefits for our society in 

general and urban and rural areas across the world (Jia et al., 2017; Mei et al., 

2018; Zhang and Chui, 2019; Zhang et al., 2018). The water infrastructure 

implementation process consists of four phases (Figure 1.1). Phase 1 is analyzing 

regional context including water issues and existing water management to identify 

the demand for the implementation. Next phase is developing scenarios based on 

climate change scenarios, population growth scenarios, and water demand 

scenarios. Phase 3 indicates the selection and development of water modelling to 

simulate water measurements performance. The final phase is the planning and 

implementation of water practices. 
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Figure 1.1 Summary of water infrastructure implementation process

To obtain the promising benefits of water infrastructure, planning and 

development of water measurements is important. However, it is difficult work as 

water systems are indeed highly complex combined with uncertain futures, as 

having a variety of aspects to be scrutinized, including water infrastructure 

planning and measurements feasibility evaluations to be conducted. An 

interdisciplinary approach to be developed for integrated models should be based 

on water infrastructure concepts in order to deal with interdisciplinary planning 

problems is necessary. In addition to this, some models were applied for assessing 

the water infrastructure performance. Storm Water Management Model (SWMM) 

and the Analytical Hierarchy Process (AHP) method, for example, served to 

quantify the benefits of LID practices (Li et al., 2019). An energy analysis and GIS 

model were combined for application to selected pivotal areas for water 

infrastructure construction (Zhao et al., 2018). In addition, spatial data like 

Landsat-8TIRS was used to evaluate the effects of LID practices on thermal 

landscapes (Hou et al., 2019). An integrated model named Uwater was innovated 

to support Sponge City development recently (Deng et al., 2018). The 

development of Uwater is based on the integration of SWMM and spatial data 

management tools such as in GIS. This model can evaluate drainage capacity of 
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the stormwater system and design water infrastructure. 

Sponge City’s construction in China is unique in many respects when compared 

to other concepts (e.g., SuDS, BPMs) since the city not only addresses storm water, 

but also tackles flooding disasters, water restoration and water purification. 

Nevertheless, the simulation and evaluation tools to predict the comprehensive 

Sponge City’s performance are still limited. This study focuses on establishing a 

new integrated conceptual model towards sustainable rural water management 

based on the Sponge City concept for not only water improvement factors, but also 

other environmental associated elements are taken into account. A new integrated 

conceptual model should be able to integrate the sub-models and include the 

following: (1) water vulnerability assessment model to identify suitable areas for 

water infrastructures construction; (2) soil moisture (SM) content prediction model 

to evaluate the performance water infrastructures on flood control; drought 

resistance; and precision irrigation decisions; (3) and agricultural soil organic 

carbon (SOC) monitoring model which serves to assess the effectiveness of 

different water strategies on soil carbon improvement to generate net zero 

emissions for the agriculture sector. 

1.2 Research scope and objectives 

Although a variety of rural water models have been proposed and applied in many 

studies, there are several challenges associated with these models: (1) model 

complexity, (2) the unavailability and inaccurately prediction variables, (3) 

limitations in applying free-of-charge spatial and temporal data from satellite 

images, (4) the unfeasibility in practical applications of the models, and (5) model 

cost-ineffectiveness. Thus, the general aim of this study is to implement an 

integrated model for rural sustainable water management using remote sensing 

data and machine learning algorithms. This research mainly focuses on applying 

free-of-charge and reliable remote sensing datasets and advanced machine learning 

to support rural water assessment and monitoring with high spatial resolution.  

The specific objectives of this study comprise as follows: 
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1) To identify the promising conceptual model for supporting rural sustainable 

water management; 

2) To develop a water vulnerability framework for rural water management; 

3) To explore next-generation spatial modelling of soil moisture for flood, 

drought monitoring, and water management strategies; and  

4) To determine the approach for agricultural soil organic carbon prediction for 

different water regimes and farming practices 

1.3 Research significance 

This study is the first attempt to implement a new assessment framework that 

considers the contribution of satellite datasets like Terra MODIS and the utilization 

of a GIS-based model for the water vulnerability assessment. Moreover, the 

present study pioneers the use of predictor features (dual polarization and 

transformed bands) from SAR remote sensing imagery (S-1), predictor variables 

derived from optical remote sensing imagery (S-2), and ALOS DSM derived 

indications with active and ensemble machine learning techniques for estimating 

soil moisture and soil carbon in rural areas). This thesis presents novel approaches 

that contribute significantly to various water vulnerability assessment, agricultural 

SM, and SOC retrieval studies globally. The innovative methods described in the 

research allow rapid and reliable estimation of the spatial variability of SM and 

SOC. More importantly, this described model framework can further support 

decision making on precision agriculture and drought resilience programs via 

water use efficiency and smart irrigation management for crop production which 

makes possible carbon neutrality for agriculture towards additional revenue via 

carbon credits. 

1.4 Thesis structure 

The thesis is structured with eight chapters, which are illustrated in Figure 1.2. 
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                        Figure 1.2 Thesis structure

Chapter 1 outlines a brief overview of existing water issues, water management 

practices, and their challenges. The research motivations, scope and significance 

are also mentioned afterwards.

Chapter 2 presents the evolution of water management strategies, the principle of 

the latest water management framework and their future perspectives. It also 

demonstrates a critical review of conventional water models for water monitoring. 

The advantages and disadvantages of each model to support water management 

strategies are illustrated in detail.

Chapter 3 introduces the adaptive research methodologies in the research 
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including materials and methods. The used materials for the present thesis include 

various satellite imagery and field survey data. The methods include field data 

collection, spatial data processing, vulnerability assessment, machine learning 

analysis, feature selection algorithm and model performance evaluation. 

Chapter 4 demonstrates of conceptual model principles for improvement of rural 

sustainable water infrastructures. 

Chapter 5 illustrates the new approach for water quantity vulnerability assessment 

using various remote sensing datasets and GIS-based model. 

Chapter 6 explores next generation spatial modelling of soil moisture based multi-

sensor data fusion and machine learning approach, which provides valuable data 

for different stakeholders like water managers, local authorities, and landholders 

to practice precision agriculture. 

Chapter 7 indicates a novel framework using free-of-charge multi-sensor Sentinel 

2 and Sentinel 1 with state-of-the-art extreme gradient boosting to predict 

agricultural SOC stocks for different water and farming practices. 

Chapter 8 summarizes the key findings, statements and conclusions from this 

study and provides recommendations for future research.  
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2.1 Introduction 

Water management is a vital factor in the sustainable development of any areas 

(Schaffer and Vollmer, 2010). Water-related problems have raised concerns 

worldwide among the scientific community (Marlow et al., 2013). Due to rapid 

population growth and the extreme weather phenomenon, water issues now include 

more floods, over-exploitation of groundwater, water shortages, the wasting of 

rainwater resources, and water pollution (Jia et al., 2015; Marlow et al., 2013). For 

instance, the over-use of grey construction such as concrete and asphalt in regional 

development has created impermeable surfaces that are not able to absorb water. 

This leads to floods. The construction of buildings has been about accommodating 

the rapidly increasing populations. This has resulted in the removal of natural 

rainwater- detaining infrastructure including woodlands, green spaces, natural lakes 

and wetlands for rainwater recycling processes. For instance, storm water has been 

discharged as wastewater rather than being absorbed into the soil that should has 

been added to groundwater reserves for water conservation, or reused as water 

resources for sustaining people’s lives and agricultural production. Another main 

reason for water flooding hazards is maladaptive drainage systems in rural regions. 

The inappropriate management of stormwater is not only detrimental to human 

health, but the aquatic ecosystems as well. The marked change in the last few 

decades has focused mainly on reducing floods, but now a number of targets need 

to be meet for water quality improvement and rainwater recycling. From an rural 

water perspective, many scientists illustrated that the current model of centralised 

drainages are inappropriate to constraints associated with climate change, the 

remarkable increase of population and social circumstances (Brown et al., 2009; 

Pahl-Wostl, 2007). Water flooding and pollution has received much attention from 

developed countries since the 1970s (Fletcher et al., 2014). A number of solutions 

are suggested to address water issues for rural areas including green infrastructures 

(Liu & Jensen, 2018). Scientists and policy-makers have proposed several concepts 

and theories for water planning. These include best management practices (BMPs), 

which were introduced in the United State in the 1970s (Fletcher et al., 2014; 

Scholz, 2006). At the same time, in the United Kingdom, sustainable urban drainage 
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systems (SUDS) were issued with the purpose of addressing water pollution and 

flood hazards (Fletcher et al., 2014). Since the 1990s, the low impact development 

(LID) strategy was accepted not only in the United States, but in New Zealand as 

well (Chui et al., 2016; Fletcher et al., 2014; Mao et al., 2017). In Australia, 

experiencing six development stages of water management, water sensitive city 

(WSC) was initiated in 21st century to bring a range of benefits which not only 

protect the degradation of water resources, but also manage and recycle stormwater 

to make cities become sustainable, liveable and resilient (Brown et al., 2009; Ashley 

et al., 2013).  However, these concepts and strategies are still being developed for 

industrial countries (Chan et al., 2018) and they have applied in small-scales like 

experimental pilots and localized areas. The developing countries like China, most 

areas have witnessed a high density of population growth, intensive expansion of 

impermeable roads and rooftops and pressures of water flood disasters in terms of 

climate change. As such, the new approach of water management is essential for 

developing countries. The Sponge City program was launched in 2013-14 to 

address and overcome the above-mentioned issues (Li et al., 2017) by delivering 

multiple advantages for communities associated with water run-off reduction, water 

quality enahancement, water storage increase and greenhouse gases (GHGs) 

emission mitigation (Wang  et al., 2018). Many pilot Sponge City programs 

commenced with the Chinese government stating that approximately 70% of 

stormwater would be recyled from implementing measures to improve permeation, 

detention, storage, purification and drainage systems (Li et al., 2017). This literature 

review chapter aims to illustrate clearly some aspects: (1) understanding the 

evolution of water management strategies in the world in general and the drivers 

for water infrastructures implementation, (2) clarifying the barriers and 

uncertainties of water infrastructure construction, (3) highlighting water 

management modelling and the roles of remote sensing and machine learning on 

water ecosystem services’ monitoring. 
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Major parts of this chapter were published in a peer-reviewed journal (A-rated 

journal):  

2.2 Evolution of water management practices  

2.2.1 Drivers for water management strategies 

Water management practices predominantly aim to prevent flood disasters. There 

are three main factors causing flooding - climate change, population growth and 

inappropriate water planning cooperation with the region’s management system 

(see in Figure 2.1) (Jiang et al., 2018). According to Jiang et al. (2018), one of the 

leading factors causing floods is climate change, which leads to heavy rainfall 

events with high intensity within a short time resulting in flooding situations. In 

addition to this, climate change means frequent precipitation extremes that increase 

flood hazards. Another reason why flood disasters are occurring is due to population 

growth (Wang et al., 2018; Wang et al., 2016; Wang et al., 2017b; Xia et al., 2017b). 

Consequently, during the increase of population, natural lands were converted to 

residential or commercial purposes, resulting in more impervious surfaces in rural 

areas that creates water runoff, thus leading to increased flooding occurrences. As 

an example, the priority for economic development is to erect skyscrapers and 

buildings, which have actually replaced and/or threatened aquatic ecosystems such 

as lakes and wetland areas, and in turn affecting the water resources balance. 

Therefore, large city areas do not have the capacity of absorption, purification and 

filtration of rainwater leading to flooding disasters or their re-occurrence (Dong et 

al., 2018; Li et al., 2018; Wang et al., 2018). Unsuitable planning strategies 

including poor and insufficient drainage systems and rural development on the 

Nguyen, T.T., Ngo, H.H., Guo, W., Wang, X.C., Ren, N., Li, G., Ding, J., 

Liang, H. 2019. Implementation of a specific urban water management - 

Sponge City. Science of the Total Environment, 652, 147-162 (IF: 7.963; 

SJR: Q1). 

Nguyen, T.T., Ngo, H.H., Guo, W., Wang, X.C. 2020b. A new model 

framework for sponge city implementation: Emerging challenges and future 

developments. Journal of Environmental Management, 253, 109689 (IF: 

6.789; SJR: Q1).  
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floodplains have somewhat created serious problems for the environment and 

simply increase the threat of flooding (Li et al., 2017; Li et al., 2016; Liu, 2016; Liu 

et al., 2017). For instance, traditional drainage systems are inconsistent with rapid 

population growth and climate change, their facilities are outdated and their design 

standards for stormwater management have failed to adapt with the growth of 

population (Jiang et al., 2018; Nkwunonwo et al., 2016). The construction and 

development of buildings and industrial areas on the floodplains on one hand 

exacerbates the risk of flooding (Nkwunonwo et al., 2016). For these reasons, it is 

necessary to construct an effective and conventional rainwater management system 

to be consistent with development plans and climate extreme events as well. 

Figure 2.1. The main causes of flooding

(Modified from Nkwunonwo et al., 2016.)

2.2.2 Evolution of water management practices

The traditional approach of stormwater management appeared as early as 3000 BC 

(Burian and Edwards, 2002) with the primary purposes of avoiding flooding and 

collecting rainwater. Drainage development system has evolved through four main 

periods of human history, these being: the ancient world; the Roman Empire; the 

post-Roman era to the 19th century; and lastly, from the 19th century to now which 

are synthesised in Table 2.1. Moreover, according David (2014), water technologies 

were divided into 4 development periods (designated Water 1.0 to 4.0) from 

2500BC to the present day. In Water 1.0, the growth of Rome’s population during 
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the Roman Empire period led to increased demand for water; therefore, Roman 

engineers constructed an initial water system for importing and its distribution to 

households and public spaces through pipe networks and then the used water 

released back into the environment. Water 2.0 began when the United States’ 

economy grew but industries contaminated river through polluted wastewater. To 

deal with this situation, American bacteriologists created an innovative wastewater 

system known as biofilm to purify the contaminated water for drinking purpose. 

During Water 3.0, the development of sewage treatment was the focus by building 

holding ponds to consolidate water and regularize the speed of sewage flow through 

filters, which controlled microbes to treat toxic waste before discharging into rivers. 

The final stage, Water 4.0, is one where the next generation of drainage system 

solves all problems of the previous three water systems by replacing outdated water 

infrastructure and making the community more aware about how to manage water 

resources (Sedlak, 2014). 

Table 2.1 A comparison of different drainage systems from 3000BC to the 

present 

No. Period Objective Achievement Limitations 

1 Ancient 

civilization 

Rainwater 

collection; 

flooding 

mitigation; and 

conveying 

wastes 

Numerous successful 

and uneconomical 

sewer systems parallel 

with social planning  

Lack of 

optimization 

and 

numerical 

standards 

before 

construction 

(Herbert, 

1961) 

 2 Roman 

Empire 

Rooftop 

rainwater 

collection; 

Uniform roadway 

drainage practices and 

Lack of 

calculation 

in balancing 
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No. Period Objective Achievement Limitations 

flooding 

mitigation; and 

water storage in 

underground 

structures 

large underground 

sewers construction 

water 

storage 

volume and 

water 

supply, 

leading to 

water 

overflowing 

into streets 

and public 

areas 

(Hodge, 

1992). 

3 Post-Roman 

era to the 

1800s 

Flooding 

mitigation and 

wastewater 

removal 

Stone roadways with 

surface and subsurface 

drainage systems 

constructed with a 

crown in the centre and 

gutters along the sides; 

and sewers made of 

wood 

Exposing 

many 

drainage 

problems 

due to the 

insufficiency 

maintenance 

of the sewers 

and then the 

spread of 

diseases. 

4 From the 19th 

century until 

now 

Integrated 

water -related 

problems  

Construction method 

and maintenance 

practices improving; 

wastewater treatment 

Methods to 

design and 

planning a 

sustainable 
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No. Period Objective Achievement Limitations 

construction; 

application of 

computer modelling for 

design and 

construction; and 

enhancing 

environmental 

awareness 

water 

management 

are still in 

the research 

and testing 

phases 

The drainage systems have evolved over many centuries during trial-and-error 

modifications and after their implementation with increasing sophistication and 

multi-purpose concepts. Whilst initially the primary objective of rainwater 

management was flood mitigation in combination with rainwater collection for 

private purposes, from the 19th century until now, this goal has expanded to 

integrate other aspects. They include water resources management, biodiversity and 

recreational and community purposes. In the 20th century, industrial countries 

developed policies and strategies to address water-related issues due to their 

industrial expansion. Strategies included: best management practices (BMPs); low 

impact development (LID) in the United State in the 1940s (Ice, 2004); water 

sensitive urban design (WSUD) in 1990s Australia (Wang et al., 2018); and 2000s 

with the sustainable urban drainage systems (SUDS) in the United Kingdom. The 

above-mentioned Water 4.0 focuses on water protection and improving local 

people’s awareness of water usage. There are various Sponge City models under 

BMPs-LID in the U.S. for rainwater collection and water quality improvement. 

BMPs-LID were divided into two broad groups: structural and non-structural. 

Structural BMPs-LID included ponds, wetlands and green rooftops (Scholz, 2006) 

that were built as multi-functional concepts for flooding mitigation, water quality 

enhancement, creating green spaces for recreation, and supporting ecosystems and 

wildlife. Water management in Australia experienced five different stages before 

implementing water sensitive cities under water sensitive urban design (WSUD) 
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with the objective of climate change resilience and ecological integrity (Brown et 

al., 2009). The purpose of these concepts is to introduce integrated water 

management strategies toward more sustainable development that ensures the 

suitable management of water supply, water treatment and limiting flooding from 

rainwater.

These initiatives involved the design of drainage systems that would be constructed 

according to a sustainable development trend by considering and balancing all 

issues including quantity, quality and amenity in stormwater management. Hence, 

these strategic designs have resulted in improving community values, biodiversity, 

educational and recreational functions and multi-purposes of space (Developer, 

2007). These strategies are different to the traditional approaches of rainwater 

management that did not balance amenity aspects in comparison with other aspects 

in terms of quality or quantity (Figure 2.2).

Figure 2.2 Differences between conventional and sustainable approaches of water

systems

Although the structural BMPs-LID, sustainable urban drainage systems (SUDS), 

water sensitive urban design (WSUD), and Water 4.0 have been applied to different 

water problems in developed countries, it is still very much a new concept in 

developing countries. It is vital to utilize the most appropriate water management 

Traditional approach Sustainable approach
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practices that are suitable for developing countries and their regions. SUDS and 

WSUD focus on natural hydrological protection and management of stormwater. 

In addition, water 4.0, which was introduced by David (2014), mainly considers 

water supply distribution and its value to society in the U.S. This type of strategies 

is difficult to address the complicated water-related problems that occur in 

developing countries like China (Ren et al., 2017). Water management problems 

first raised the concerns of scientists and authorities in China in the 1990s (Wang 

et al., 2018). Since then they have concentrated on how to design drainage systems 

as a sustainable water supply for the cities. From 2000 to 2007, the objective of 

water management in China was to recycle stormwater and treat wastewater. In the 

following 5 years, water strategies in China have increasingly focused on 

optimizing water drainage system for city water distribution and sewage 

purification. However, some water-related issues associated with flooding disasters 

and water shortages still exist in large areas of China. This started to occur when 

the Chinese government launched the “Open Door Policy” in the late 1970s and the 

country witnessed rapid population growth and socio-economic growth. For 

example, the population quadrupled from 1978 to 2015 (Chan et al., 2018). Due to 

this situation, the land use for green spaces, wetlands, forestry and agricultural land 

changed to urban areas for the purpose of commercial, residential and industrial 

development. This drastic loss in natural environment capital resulted in rainfall 

infiltration and absorption reduction, and less recharge of groundwater due to a 

lower retention capacity of rainwater in many regions in China, which results in 

water shortage in these regions (Arshad et al., 2014; Qin et al., 2013). Consequently, 

many cities in China have experienced flood disasters because of the inappropriate 

drainage system and the phenomenon of unpredictable weather. For this reason in 

2014, the Sponge City concept became a reality in China to help develop sustainable 

cities (Jia et al., 2017; Wang et al., 2018). Sponge City is considered as an integrated 

water management solution.  

A Sponge City is designed and implemented according to LID strategies that 

require the designer and builder having to mitigate the impact of construction on 

the environment including water, soil, vegetation, and biodiversity. Thus, 

respecting nature is the core value of LID strategies. Low impact development 
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strategies aim to build sustainable drainage systems, better water cycle design and 

rainwater source controls. Technical methods in LID assist water infiltrating, 

filtering, evaporating, harvesting and surface runoff reduction while mitigating 

pollution.  Therefore, the purpose of Sponge City is to absorb, store, treat 

stormwater and provide stored water for the public’s use when needed through 

green infrastructure applications, for example, green roof, raingarden or bio-

detention (Wu, 2015). These measures help to balance the water circulation system 

and create a high-quality living environment for both people and wildlife (Figure 

2.3). 

Figure 2.3 Schematic design of the Sponge City and Sponge City Ecological 

Services

There are many Sponge City objectives (see Figure 2.3). Firstly, it aims to control 

flooding disasters (Jia et al., 2017; Wang et al., 2018). In terms of climate change 

and urbanization, many cities in China face extreme flooding hazards. To overcome 

this, Sponge City has developed green infrastructure, such as, green roofs, bio-

retention and permeable pavements in order to increase water absorption and water

runoff reduction. As a result, flooding can be mitigated, however; it is recognized 

that an increase of wastewater due to population growth and industrialization results 

in serious water pollution in Chinese cities, affecting people’s health and well-

being. Secondly, the purpose of the Sponge City is to enhance water quality in urban 

areas by self-purification systems and ecological waterfronts. Therefore, a Sponge 
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City can help the water’s ecological function restoration. The next goal is to recycle 

stormwater for water supply. The purpose of Sponge City is to alter rainwater as a 

resource, with the purpose of tackling the water shortage in the cities especially 

providing water back for city in terms of drought. In the period of 2000 to 2007, the 

Chinese government implemented of green infrastructure for stormwater 

utilization, however, the efficiency of rainwater utilization was initially not high in 

this period due to the lack of optimal elements including green technologies and 

materials (Liu et al., 2013; Shi et al., 2015). Sponge City aims at improving green 

infrastructures in order to consume or utilize until 70% of stormwater regionally 

and mitigate the effect or urbanization on the ecological system through green 

infrastructures. The final aim of Sponge City is to create a pleasant regional 

microclimate. Reducing the city’s heat through increasing the green spaces with 

green rooftops, lakes and wetland areas is a one of major aspect of the Sponge City. 

Therefore, Sponge City concept can be applied for water management in both urban 

areas, sub-urban areas, and rural areas. 

2.2.3 Recent water management initiative –Sponge City 

2.2.3.1 Principle concepts 

There are four main principle concepts of a Sponge City (Figure 2.3). The first aim 

is to make the surface of the city more capable of absorbing and storing rainwater 

in order to supply water and to mitigate the water runoff, which leads to floods. The 

second principle is about water ecology management via water self-purification 

systems and the provision for ecological waterfront design. The third is concerned 

with the application of green infrastructure to purify, restore, adjust and reuse 

stormwater, which helps the cities avoid water and soil pollution.  This reduces the 

heat island effect and supports sustainable urbanization. Fourthly, using permeable 

pavements in road construction will benefit a Sponge City. 
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Figure 2.4  Sponge City’s principle concepts and objectives 

Sponge City implementation can be divided into macro-scale and micro-scale 

scenarios. In the micro-scale context, Sponge City mainly focuses on implementing 

designs for site level including rain gardens, stormwater-bio-retention and 

constructed wetlands. From maximizing the effective of micro-scale Sponge City 

in site level and localized level, Sponge City is scaled up into catchment level in 

order to enhance hydrological and bio-ecological benefits (Zhang and Chui, 2019). 

With macro-scale, stormwater infrastructure systems are integrated with natural 

hydrology systems to protect riparian corridors including grass, trees, shrubs and 

the buffer areas of these corridors. A novel model and the availability of spatial data 

(social-economic, land use, climate, green infrastructure practices and hydrological 

condition information)  play a vital role in upscaling of Sponge City technologies 

from plots and localized areas to catchments (Golden and Hoghooghi, 2018; Zhang 

and Chui, 2019). The successful implementation of a catchment-scale Sponge City 

by maximizing green infrastructure practice in large-scale contributes to the 

thorough Sponge City program. 
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2.2.3.2 Resourcing rainwater 

The rapid increase in population, growth of population and industrialization and 

excessive use water for agricultural practices have posed a threat to existing water 

resources, which damages the city’s development and the basic lives of the 

inhabitants. Therefore, an alternative water resource is required to combat the lack 

of water resources, given that sustainable water resources management plays a vital 

role in socio-economic development. Rainwater harvesting (RWH) is the most 

ancient method to address water shortage (Campisano et al., 2017). The existing 

RWH initially focused on the restoring and recycling of stormwater without paying 

attention on the multi- benefits of RWH. RWH is the approach of LID, SuDS and 

Sponge City concept, which aims at decreasing peaks, frequency and volumes of 

water runoff. The implementation of RWH systems improve water self-sufficiency 

and mitigate the impact of urbanization on water bodies (Christian Amos et al., 

2016). In order to implement a successful Sponge City for resourcing rainwater, it 

is necessary to understand the area’s hydrological characteristics including water 

surface runoff, flow time, discharge, speed, size and peak time to better connect 

between natural water networks and drainage systems to control flooding and 

enhance the water storage capacity of infrastructure systems. In addition, wetland 

ecosystem design including natural and artificial designs for RWH is considered as 

an important aspect in terms of Sponge City rainwater resourcing construction, 

which improves climate regulation, flood prevention and water purification. It also 

provides the landscape for entertainment and leisure activities that the community 

can enjoy.  

2.2.3.3 Ecological water management 

Rapid increasing of population and industrialization have threatened the water 

quality in many areas. Therefore, water pollution reduction and water quality 

enhancement is one of the important roles of Sponge City implementation. The 

Sponge City ensures the water environment being restored ecologically through a 

self-purification system and waterfront design and creates healthy water landscapes 

for people and wildlife. The water self-purification process is very complicated in 

that it includes physical, chemical and biological processes. Normally, the 
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biological purification is considered an environmentally friendly method. There are 

four factors, which significantly influence water self-purification. The first factor is 

the hydrodynamic force, which adds to a mixture of pollutants, their movement and 

the water dissolved oxygen content. Soil is the second factor and it serves to remove 

pollutants through absorption, sedimentation and filtration. The third one is plants 

that can remove heavy metal pollutants, nitrogen and phosphorus. Finally, 

microorganisms can help contaminant degradation. Another form of ecological 

water management is ecological waterfront design. Waterfront design aims to 

integrate cities and a water system in order to develop macro and micro 

environments. In the construction of a Sponge City, both natural and artificial 

ecological waterfronts are considered to protect against riverbanks’ erosion and 

consolidate the water self-purification system (Wu, 2015). 

2.2.3.4 Green infrastructure  

Green infrastructure has emerged as the solution to protect the environment and 

make environments sustainable. There are two main types of green infrastructure in 

Sponge City implementation including green roofs and bio-retention. These 

infrastructures are described in more detail below:  

 Green roofs 

Green roofs are also known as living roof or rooftop garden (Mentens et al., 2006; 

Sailor, 2008; Shafique et al., 2018; Stovin, 2010). Green roofs are constructed with 

roofs covered by vegetation and/or plants. Green roofs concept also has been 

mentioned in LID strategies and SUDS techniques. Green-roofs promote vegetation 

planting on the top of buildings. They are to reduce stormwater run-off,  mitigate 

the heat island effect; reduce energy consumption; enhance air and water quality, 

improve wildlife habitat and plant life, and boost recreational activities through 

green areas (Besir and Cuce, 2018; Brudermann and Sangkakool, 2017; Chen et al., 

2018; Coma et al., 2018; Mentens et al., 2006; Sailor, 2008; Shafique et al., 2018). 

The application of green roofs started long years ago but the modern green roof 

system started initially in Germany during the early 1960s with the initial aim of 

energy consumption reduction for buildings. Germany is considered as a leader in 
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green roof technology because its system is well developed, designed and 

implemented on a large-scale (Zhang et al., 2011). 

 Bio-retention

Bio-retention systems are also known as bio-filters or raingardens (Davis et al., 

2009; Fujita, 1997; Laurenson et al., 2013; Mangangka et al., 2015; Trowsdale and 

Simcock, 2011). Normally, a system of bio-retention consist of five main 

components, which are drainage layer, transition layer, submerged zone, filter 

media and detention layer (see figure 2.5). Each layer of the bio-retention system is 

constructed according a specific area’s condition. These help filter polluted 

stormwater and remove contaminants via biological processes using active plants 

and sandy loam layers. Bio-retention systems are considered as feasible solutions 

in sustainable rainwater management practices (Muthanna et al., 2007). 

Furthermore, these systems are designed to manage stormwater peak flow, runoff 

volume reduction, groundwater recharge enhancement and stream base flow 

maintenance (Davis et al., 2009; Randelovic et al., 2016; Rycewicz-Borecki et al., 

2017; Wang et al., 2017a). 

Figure 2.5 Bio-retention design
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2.2.3.5 Permeable pavement 

Permeable pavement is a Sponge City technology that utilizes permeable materials 

to build ground pavement with the purpose of improving rainwater infiltration, and 

purification of groundwater for water supply, reducing water runoff, cooling, 

humidification, noise reduction, and environmental and ecological soil restoration 

(Hu et al., 2018; Liu et al., 2018; Scholz and Uzomah, 2013; Yu et al., 2017) (Figure 

2.6). Pavement infrastructures includes roads, squares, parking, and rural site 

walkways (Kamali et al., 2017). Each type of pavement is designed differently 

depending on traffic quantity and road loads. There are four main types of 

permeable pavements: grass pavement (GP) permeable asphalts (PA), permeable 

concretes (PC), and permeable interlocking concrete pavers (PICP) (Woods Ballard 

et al., 1015).  The performance of PC is better than PA and PICP if without clogging 

influence (Hu et al., 2018). Such permeable pavements have been adopted in many 

regions the world over to mitigate flood disasters using urban water management 

practices, such as low impact development and best management practices (Brunetti 

et al., 2016; Hu et al., 2018). These permeable pavement parking lots may bring 

significant benefits for eco-systems because of their potential for the rapid 

infiltration of storm water to reduce a high level of water runoff (Kumar et al., 

2016). Some studies illustrated that the performance of permeabele pavements in 

terms of flooding reduction are even better and more effective than other Sponge 

City technologies, including greenroofs or rainwater resourcing (Chandana et al., 

2010; Hu et al., 2018). For example, the construction of permeable pavements 

decreased about 35.6% of total water run-off in Tianjin University campus, China 

(Huang et al., 2014) However, the construction of permeable pavement should be 

suit the local condition. In high polluted regions and unfavorable soil permeabiltiy, 

this technique is not suitable (Yu et al., 2017). 
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Figure 2.6 Difference between impervious surfaces and pervious surfaces 

2.3 Challenges and opportunities of water management strategies 

adoption 

2.3.1 Technical and physical challenges 

There are some major technical challenges in implementing the water management 

practices. There is a technical gap between developed and developing countries, 

where the latter have limited expertise or skills regarding green materials for green 

roofs or bio-detention, lack of technical guidance and training, outdated supportive 

simulation models, and insufficient performance data for planning and designing. 

In addition, operation and maintenance difficulties and some physical challenges 

including climate, soil and geographical conditions are also barriers to 

implementing a successful water management infrastructure. 

2.3.1.1 Technical gaps and limitations   

The first overall problem is the technical gap between developed and developing 

country, so developing countries find it difficult to apply or accept technologies 

from developed countries (Jia et al., 2017; Li et al., 2017; Li et al., 2016; Li et al., 
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2018; Ma et al., 2017; Xia et al., 2017a). All countries have their own distinctive 

geographical, climatic and soil conditions, so the design strategies implemented and 

the measures for construction need to be compatible with each location and or 

region, and should not be modelled incorrectly. Although the LID practices were 

introduced across the world some decade ago, large - scale developments are still 

limited due to the lack of domestic and local research. In addition, water 

management technologies and the green infrastructure industry are much more 

advanced in wealthier countries, such as, Germany, the U.K and the U.S than 

developing countries. These developed countries have industries that can provide a 

range of green materials for green infrastructure building. The unavailability and 

uncertainty of rain garden system, green roof system, tree planter, infiltration 

planter system, underground infiltration and monitoring systems can greatly affect 

the effectiveness of the water infrastructure programs (Li et al., 2017; Xia et al., 

2017). 

2.3.1.2 Lack of technical guidance and training 

The major factor that contributes to the unsuccessful adoption of the best water 

management practices is the limited design strategies that encompass relevant 

standards and codes for diverse regions. The lack of the presence of experts 

(architects and regional planners, hydraulic and environmental engineers, 

hydrogeologists and agronomists) to support the implementation of water 

management practices and the limitation of educational and training courses for the 

up-skilling of staff leads to inappropriate approaches and planning that will not 

produce successful outcomes. 

2.3.1.3 Current and relevant simulation models for rural water management design 

To assist rural water planning and assessment the correct simulation model is 

required. Computer models apply a simulated design, policy, and strategy including 

widely used or accepted measures. Computer software modelling has the ability to 

consider various factors and environmental scenarios, for example; stormwater 

management in developed countries as part of adopting the sustainable water 

management model (SWMM); stormwater quality model (SQM); and water 

modelling software (MIKE-URBAN)  (Bach et al., 2014). Enhanced models that 
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can be adapted to the complex diverse water system variables in developing 

countries must produce a good fit and align well with the objectives of rural water 

management purpose and mission.  

2.3.1.4 Unavailable rural performance data  

Creating a water management strategies is very complicated and many variable 

factors have to be accounted for: hydrology, land-use systems, regional 

development, and biodiversity (see Figure 2.7). All these aspects require evidence-

based research. Performance of data for specific locations helps us to understand 

the range of climatic conditions and/or natural precipitation data, soil data, surface 

and groundwater characteristics, existing drainage systems and information on how 

buildings are constructed (Li et al., 2017; Shao et al., 2016).   

 

Figure 2.7  Required data for water management design 
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2.3.2 Financial challenges 

Water infrastructure construction requires substantial investment. Research on cost-

benefit analysis of such projects is still limited, so the cost and benefit of water 

infrastructure projects is difficult to compare. Liang (2018) conducted a project to 

assess the socio-economic and financial or investment aspects of Sponge City 

projects in the city of Chang-De in China. The project found that the environmental 

and social benefits of the Sponge City program should be encouraged by the 

government and the wider society. However, it determined that the private sector 

would not invest in a water infrastructure project due to higher costs not being 

matched by higher revenues (Liang, 2018). As a result, the objective appears to be 

somewhat challenging in terms of the Chinese government attracting the investment 

of public-private partnerships, as this would require approximately 50% of total 

costs and may not be feasible. Nonetheless, this is only one scenario where the life 

cycle costs have to consider the design, construction costs, operation, maintenance 

costs, and compared them to the uncertain environmental, ecological and social 

benefits. Consequently, more research is required on the financial viability of water 

infrastructure projects, in which life-cycle benefits should be clearly articulated in 

terms of social wellbeing, return on investment, the value of private-public 

partnerships (PPP) and the role of local or regional organizations. 

2.3.3 Administrative fragmentation 

Local government administration system lacks cooperation between related 

functions or agencies (Jiang et al., 2017b; Li et al., 2017). As inter-connectedness 

is required to promote the water infrastructure’s aims for positive societal outcomes 

with rural planning, water management, land use and supporting eco-systems, so 

the value of community cooperation and the support from all levels of 

administration and agencies are essential for water infrastructure’s construction. 

The complexity of water infrastructure implementation requires not only 

appropriate acceptance of technologies but also strong management systems and 

governance capabilities. The complex and fragmented structure of governance 

offers less opportunity for participation and collaboration between ministries, 

public/private sectors and local government bodies. Furthermore, the objectives of 
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water infrastructures may prove too difficult to achieve without a sense of 

collaboration and the strong coordination between multiple stakeholders in sharing 

data, financial resources, etc. Having an appropriate legal framework or agency 

body that can ensure sharing of benefits between sectors will help cooperation and 

involvement of inter-agencies. 

2.3.4 Public awareness and acceptance challenges 

Community acceptance challenges is one of the strongest barriers against the 

adoption of water infrastructure. The subsidy from the central government is 

inadequate due to the high funding requirement for water infrastructure 

construction. Therefore, the mobilization of non-government sources of finance is 

very important in terms of water infrastructure planning and building especially 

when insufficient financial resources from the government make these sorts of 

projects difficult to achieve. Achieving public participation, their willingness to 

invest, and having the education, training and information dissemination methods 

to support regions should be discussed with a broad array of public groups ranging 

from political leaders to everyday citizens (Li et al., 2017; Wang et al., 2017b).  

2.3.5 Opportunities and future perspective for water infrastructure 

implementation 

The significant technical difficulties are the lack of an appropriate simulation model 

that includes the relevant factors based on evidence for implementing water 

infrastructures designs. The second serious barrier is a financial aspect in that 

building and maintaining rural water infrastructures requires a huge monetary input, 

which the central government is reluctant to provide. It is important to attract 

funding from the public-private groups and international organizations. The 

successful implementation of water management programs bases on four key 

aspects, which are illustrated in Figure 2.8. 
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Figure 2.8 Key aspects to successful implementation of water management 

practices

The various technical, physical financial, regulatory and community challenges of 

water management are summarized in the table 2.2. The presence of these 

challenges can hinder the overall uptake of the water infrastructures implementation

in rural areas.

Appropriate 
regulatorgy 
framework 

Valid 
economic 

assessment  

Public  
awareness 

and 
acceptance 

improvement

Suitable 
technical 

design
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Table 2.2  Challenges and outlook for future development of water management strategies 

No. Type Challenges Efforts for future 

development 

References 

1 Technical 

and 

physical 

challenges 

 Deficiency in technical 

standardization and  guidance for each 

region and each city 

 Lack of performance data (e.g. 

hydrological data, soil and climate data 

for technical feasibility assessment 

before project implementation). 

 Lack of simulation model for 

water measurements development 

 Unavailable materials and green 

products like pavement materials for 

water absorption and green rooftop 

system. 

 Improving 

local guidance and 

standard for each city 

 Providing 

sufficient performance 

data; Establishing an 

effective national 

database to determine 

the suitability of 

Sponge City 

 Building new 

simulation model for 

water infrastructures 

design before 

implementing it; No 

Chan et al., 

2018; Che et al., 

2015; Jia et al., 

2017; Li et al., 

2017; Ren et al., 

2017; Roy et al., 

2008; Šakić 

Trogrlić et al., 

2018; van de 

Meene et al., 

2011 
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No. Type Challenges Efforts for future 

development 

References 

 Lack of land for designing 

wetlands and ponds due to urbanization 

and industrialization 

 Litter or no maintenance and 

monitoring water infrastructures 

construction 

 Lack of the presence of experts 

(architects and planners, hydraulic and 

environmental engineers, 

hydrogeologists and agronomists) to 

support the implementation of Sponge 

City 

outdated modelling 

software for water 

strategies 

implementation 

 Developing 

suitable material and 

green products for each 

region 

 Issuing 

appropriate land use 

policy to limit land use 

change from natural 

land to residential and 

commercial areas 

 Establishing a 

suitable maintenance 

and monitoring system 
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No. Type Challenges Efforts for future 

development 

References 

 Raising the 

involvement and 

support of related 

experts; training for 

localized staff to 

implement Sponge 

City technologies 

2 Financial 

challenges 

 Requirement of a substantial 

funding for implementation and the 

unknown cost of maintenance and 

operation. 

 Insufficient data for life 

cycle economic  

feasibility assessment of 

Sponge City 

 Shortage of funding sources 

and effective market incentives 

 Establishing an 

economic feasibility 

assessment tool for Sponge 

City planning. 

 Raising financial 

resources from the private 

and community sectors 

through providing 

environmental and 

economic benefits of 

Li et al., 2017; 

Li et al., 2018; 

Liang, 2018; 

Roy et al., 2008; 

Zhang et al., 

2018a 
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No. Type Challenges Efforts for future 

development 

References 

 The high value of land for 

Sponge City construction 

 The low amount of willing 

to pay from community  

Sponge City projects for 

those sectors  

 

3 Legal and 

Regulatory 

Challenges 

 Lack of understanding, close 

cooperation between agencies 

involved in Sponge City 

implementation 

 Lack of legislative mandate, 

fragmented responsibilities, 

institutional capacity 

 Setting ambitious target 

without background knowledge 

 Strengthening 

coordination between 

agencies 

 The secret to 

success is producing clear 

and right objectives which 

are suitable for each 

location 

 Enhancing local 

legislation framework 

Chan et al., 

2018; Jiang et 

al., 2017b; Li et 

al., 2017; Li et 

al., 2018; van de 

Meene et al., 

2011; Wu et al., 

2017 
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No. Type Challenges Efforts for future 

development 

References 

4 Public’s 

awareness 

and 

acceptance 

 Lack of knowledge about 

overall significance of the water 

strategies and ineffective 

communication   

 Resistance to change, 

limited community engagement and 

missing support from public-private 

sector 

 Conducting both 

informal and formal 

education and training 

courses to enhance public 

perception and engagement 

Li et al., 2017; 

Li et al., 2016; 

Li et al., 2018; 

van de Meene et 

al., 2011; Wang 

et al., 2018 
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2.4 Water management monitoring and modelling  

2.4.1. Overview of current water modelling 

A number of water modelling and analysis approach have been developed to 

support for sustainable water management in both rural and urban areas. Integrated 

water management models might include water treatment models, wastewater 

collection models, wastewater treatment models, rainfall and surface runoff models, 

river models, water distribution models, environmental assessment models, 

economic assessment models, and social assessment models. Integrated water 

models can be divided into various groups according to their functions and their 

integration levels. According to their function, they could be classified integrated 

water management models into integrated water treatment models or integrated 

water quality models, integrated water supply models, and integrated water multi-

criteria analysis models, which describe in Figure 2.9. 
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Figure 2.9 Sub-models of integrated water modelling.

According to Bach et al. (2014), integrated urban water models were divided into 

four groups based on different integration levels. These are: (i) integrated 

component-based models (ICBMs); (ii) integrated urban drainage models (IUDMs) 

of integrated water supply models (IWSMs); (iii) integrated urban water cycle 

models (IUWCMs); and (iv) integrated urban water system models (IUWSMs) 

(Figure 2.110). While ICBMs represent the lowest level of integration, IUWSMs 

are the highest level and this emphasizes the importance of water flows in the urban 

environment. For the four groups noted above, the scope of these models is broader. 
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Figure 2.10 Classification of integrated water models (adapted from Bach et al., 

2014). 

One limitation of integrated water models is that they are not able to evaluate 

comprehensively economic, social, environmental benefits and ecosystem services 

of water strategies, while stakeholders tend to depend on this evaluation to make 

their decisions (Castonguay et al., 2018) (Figure 2.10). For example, ICBM models 

including BSM2, EPANET and Stimela are considered as a form of plant-wide 

integration that does not pay attention to flooding problems of urban water. IUDMs 

and IUWCMs such as InforWorks CS, SWMM, and MIKE-URBAN only link 

between urban development and urban water infrastructure and do not consider the 

environmental, economic and social of urban water management infrastructures 

(Schellart et al., 2010; Burger et al., 2014; DHI, 2009). Although the 

DAnCE4Water model was defined as the highest integration level model, it only 

considers partially the interactions between urban water infrastructure and 

environmental, social and economic aspects. 
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Figure 2.11 The limitation of existing integrated water management models. 

Moreover, there are several key barriers from case studies that applied the existing 

integrated water management models such as SWMM, LCA and SUSTAIN for the 

assessment of rural water infrastructure implementation’s performance (see figure 

2.11). They are (1) the uncertainty of spatial and temporal data, (2) the limitations 

in the comprehensive assessment of ecosystem services of water infrastructures, (3) 

the lack of the assessment of long-term benefits of water measurements, and (4) 

limitation in simulation with long-time series data such as rainfall data. Therefore, 

the development of a comprehensive integrated water model will be significantly 

reduced these limitations, which is summarised in Table 2.3.
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Table 2.3  Applying different integrated water modelling for water strategies assessment 

 

Case 

study 

Model 

(integration) 

Study site Description Results Barriers 

Li et al., 

2019 

SWMM, 

AHP 

Guangxi, 

China 

Simulation the 

benefits of Low 

Impact 

Development 

(LID) practices 

(bio-retention, 

grassed swale, 

sunken green 

space, 

permeable, 

storage tank) in 

Sponge City 

program 

Quantified 

environmental, 

economic, 

social benefits 

of these 

practices 

 Lack of 

assessment of 

long-terms 

benefits and 

performance of 

LID practices 

 Lack of 

assessment of 

the effect of 

climate on LID 

measurements.  

 Lack of 

comprehensive 

evaluation of 
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Case 

study 

Model 

(integration) 

Study site Description Results Barriers 

 ecosystem 

services of these 

practices. 

Zhao et 

al., 

2018 

The 

emergy-GIS 

framework 

based on 

SCS-CN 

model, L-

THIA 

model and 

energy 

balance 

model 

Shenzhen, 

China 

Identification 

of appropriate 

areas for 

Sponge City 

construction 

Selected 

Sponge City 

implementatio

n areas based 

on the degree 

of water runoff, 

water 

pollution, heat 

discharge 

 Limitat

ions in collection 

of precision 

satellite imagery 

data  

 The 

probability of 

deviations and 

errors of sub-

models 
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Case 

study 

Model 

(integration) 

Study site Description Results Barriers 

Hou et 

al., 

2019 

SWMM, 

GIS 

Yinchuan, 

China 

Simulation 

ecological 

stormwater 

processes of 

different LID 

facilities in a 

Sponge City   

Simulated 

water runoff, 

thermal 

landscape, 

purification 

process of 

Sponge City 

measurements 

 Limitat

ion in simulation 

with long-time 

series data such 

as rain-fall data 

 The 

precision of 

input data such 

as DEM data, 

pipe network 

needs to be 

higher 
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Case 

study 

Model 

(integration) 

Study site Description Results Barriers 

Deng et 

al., 

2018 

SWMM, 

GIS, CAD 

Yuelai, 

Chian 

An integrated 

stormwater 

management 

system model 

to evaluate the 

whole life 

cycle of LID 

facility  in 

Sponge City 

program  

Stormwater 

network 

system 

construction 

LID facilities 

design and 

optimization 

 Need a 

huge amount of 

data for 

calibration such 

as long-term 

climate data, soil 

infiltration 

coefficient… 

 Lack of 

the evaluation of 

economic, social 

feasibility and 

ecological 

services  of LID 

facilities in 

Sponge City 
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Case 

study 

Model 

(integration) 

Study site Description Results Barriers 

Mei et 

al., 

2018 

SWMM, 

Life Cycle 

Cost 

Analysis 

Liangshuihe 

watershed 

Integrated 

evaluation of 

green 

infrastructure 

for flood 

mitigation to 

support Sponge 

City 

implementatio

n 

Assessed 

hydrological 

performance 

assessment of 

green 

infrastructure 

(GI) practices 

Evaluated cost-

effectiveness 

of GI strategies 

 Lack of 

experimental 

data for 

calibration of the 

integrated 

assessment 

system causing 

model 

uncertainties 

  Long-

term benefits of 

GI practices are 

not evaluated 

 Lack of 

GI practices 

planning and 

limitation in 
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Case 

study 

Model 

(integration) 

Study site Description Results Barriers 

ecological 

services of GI 

practices under 

Sponge City 

program 

Mao et 

al., 

2017 

 

SUSTAIN Foshan 

New City, 

China 

Application of 

SUSTAIN 

model to assess 

the ecological 

benefits of 

aggregate LID-

BMPs in 

Sponge City 

program 

Planned LID-

BMPs facilities 

for the city 

Evaluated the 

ecological 

benefits (e.g., 

water runoff 

control 

performance) 

of LID-BMPs 

 The 

cost-

effectiveness of 

LID-BMPs 

practices is not 

calculated 

 Limitat

ion in 

assessment of 

comprehensive 

ecological 

services of LID-
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Case 

study 

Model 

(integration) 

Study site Description Results Barriers 

and the costs of 

these practice 

BMPs practice 

including 

environmental 

and social 

benefits. 
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2.4.2 Remote sensing and machine learning application for water monitoring 

Recent advances in geospatial methods using earth observation (EO) datasets and 

advanced machine learning (ML) techniques can be effective in water modelling as 

well as the monitoring of water infrastructure. Included here are soil moisture and 

carbon prediction originating from different water management practices (Vaudour 

et al., 2019). The use of multispectral, hyperspectral, or synthetic aperture radar 

(SAR) data from space-borne, air-borne remote sensing platforms, or unmanned 

aerial systems (UASs) has emerged as an innovative solution to address the issues 

of soil moisture and soil carbon prediction on farming lands. Although the 

performance of airborne RS and UAS with high spatial resolutions of hyperspectral 

images and extensive spectral information in the prediction outperforms the space-

borne sensors with multispectral bands, the scarcity and high costs of hyperspectral 

data hinder their application in large-scale soil moisture and soil carbon estimation 

(Angelopoulou et al., 2019; Guo et al., 2021; Table 2.4).  

Table 2.4  Prediction performance of agricultural SOC in the recent literature. 

Type of 

sensor 

Sensor ML Algorithm R2 Reference 

Space-borne 

 

Hyperion PLSR  0.49 (Gomez et al., 

2008) 

PRISMA PLSR 0.51 (Castaldi et al., 

2016) 

Landsat ETM+ ANN 0.63 (Mirzaee et al., 

2016) 

S2 PLSR 0.56 (Vaudour et 

al., 2019) 

Gaofen 1 ELM 0.84 (Guo et al., 

2020) 

S-1+S2 +DEM BRT 0.44 (Zhou et al., 

2020b) 

Air-borne 

 

AHS-160 SVM 0.89 (Stevens et al., 

2010) 
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Type of 

sensor 

Sensor ML Algorithm R2 Reference 

HyMap PLSR 0.85 (Vohland et 

al., 2017) 

Unmanned 

Aerial 

Systems 

Mini-MCA6 SVM 0.95 (Aldana-Jague 

et al., 2016) 

PLSR: Partial Least Squares Regression; SVM: Support Vector Machines; ANN: Artificial Neural 

Networks; ELM: Extreme Learning Machine; BRT: Boosted Regression Trees;  

 

Multispectral remote sensing sensors such as Hyperion, S-2, S-1, Gaofen 1, Landsat 

ETM+, and PRISMA have demonstrated their usefulness in agricultural SOC 

estimation. The free-of-charge multispectral images constitute an effective solution 

to address the problems concerning hyperspectral images in agricultural SOC 

monitoring. Gaofen 1 - launched by China National Space Administration – has 

great potential in estimating agricultural SOC with 0.84 R2 compared to other 

multispectral images (Guo et al., 2020). However, its spectral bands are not widely 

supported by various agencies of the Chinese government. Combining multi-

sensors in predicting agricultural SOC has been done in recent research such as: the 

integration of Sentinel 1 and Sentinel 2; and joining Sentinel 2 and Sentinel 3 (Zhou 

et al., 2020b; Zhou et al., 2021). Multi-sensor data fusion technology is a promising 

way to improve prediction performance compared to single sensor technology 

(Khaleghi et al., 2013; Le et al., 2021).  

A few studies have combined optical data (S-2) and SAR data (S-1) to estimate 

agricultural SOC and SM content (Zhou et al., 2020). Recently, Zhou et al (2020) 

explored the potential of using S-1, S2, and digital elevation model (DEM) data in 

predicting agricultural SOC by Boosted Regression Tree (BRT) machine learning 

technique. This had a prediction accuracy of 0.44 R2, which is quite low compared 

to other research (Table 2.4). This is likely due to the optimization of hyper-

parameters tuning and the selection of predictor variables during the construction 

phase of the ML techniques. A range of ML algorithms were used for agricultural 

SOC and SM monitoring which are presented in Table 2.4. ML techniques using 
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satellite datasets are considered to be effective and low-cost methods for rural water 

monitoring. Therefore, with these considerations in mind this should be integrated 

into the sustainable rural water management model. 

2.4.3 Barriers of existing integrated water planning models  

There are seven challenges associated with integrated water planning models (Lee, 

1973) that are also considered as the barriers of integrated water models according 

to the vision of integrated modellers (Tscheikner-Gratl et al., 2019). These 

challenges include (1) hyper-comprehensiveness, (2) complicatedness, (2) 

grossness, (4) hungriness, (5) mechanicalness, (6) wrongheadedness, and (7) 

expensiveness. The main challenges of a Sponge City model that the paper want to 

highlight here are: 

2.4.2.1 Model complexity 

The integrated model should be able to simulate water strategies, efficient 

hydrological performance and the assessment of catchment water and 

environmental indicators. The multiple objectives of the water model originate in 

model’s complexity due to high level of integration or too much linkage in the 

model and the remarkable amount of simulations creating the errors of model’s 

computation and coding processes so that modellers need to take into account these 

errors. The complexity of model creates a huge amount of data availability 

requirements and uncertainty problems in the model that should be addressed by 

sensitivity and uncertainty analysis to improve the effectiveness of integrated 

models (Schellart et al., 2010). For this reason, it is crucial to determine the 

adequate degree of integration and simplified solutions for each model being 

implemented to ensure issues regarding uncertainty are minimized.  

2.4.2.2 Limited knowledge about water systems  

Water networks are complicated systems, which are incorporated by various 

processes including storage, infiltration, transport and distribution of water, and 

their interactions (García et al., 2015). The process of each water management 

system is different. These factors lead to the limitations in understanding the 

interactions between water cycle components and their performance, which 
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threatens the success of any hydrology simulation model. A comprehensive 

understanding of water systems is extremely important to prevent major problems 

such as flooding, water pollution and water shortages (Marlow et al., 2013). 

Especially, integrated water management practices have emerged intending to build 

in future sustainable water systems. Therefore, the implementation of any water 

infrastructures should consider climate change, population growth, and regional 

development scenarios. At present, hydrological advances such as new technologies 

for recording and predicting rainfall in areas can support and manage water 

resources. 

2.4.2.3 The lack of stakeholders’ involvement 

Single tools or models for water management like ICBMs might be easy for 

practitioners to use if the interfaces are properly set up. Integrated modelling aims 

to simulate a range of processes and components in the system with a spectrum of 

temporal and spatial data (Tscheikner-Gratl et al., 2019). This generates complex 

links and interactions in integrated models which affects the stakeholders’ adoption 

due to a poorly established interface (Marsalek et al., 1993). Another significant 

problem causing integrated models to not be entirely user-friendly is the lack of 

training to transfer the models due to limited time and rising costs. Therefore, 

building a user-friendly interface model that is suitable for both users either with an 

immediate level of model application skill and/or an advanced modelling 

professional is essential that helps improve stakeholders’ involvement and 

participation in the modelling process (Bach et al., 2014; Heusch et al., 2010).   

2.4.2.4 Model’s cost-effectiveness 

The monetary investment is a fundamental factor in any project development, and 

the water model requires substantial investment costs.  Modellers are still required 

to cover all the costs associated with model development if they cannot obtain 

government funding or the backing of policy-makers. The required costs and efforts 

need to be able to create and manage huge data requirements; model calibration and 

building an integrated rural water model but the costs involved might exceed the 

value of the output (Ahyerre et al., 1998). For this reason, the integrated models 

work better as research models but not as practical ones (Bach et al., 2014). To 
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increase the cost- effectiveness of the rural model and retain the interest of 

practitioners, all uncertainty issues in model development have to be solved or 

minimized (Diaz-Granados et al., 2009; Sriwastava Ambuj et al., 2018). Despite 

the integrated model’s development costs, it does play an important role in assisting 

decision-makers in making investments and the development of strategies that 

support various regions.  

2.5   Conclusions 
Climate change, rapid population growth and inappropriate development policies 

in many countries have resulted in water-related problems, such as flooding 

disasters, water pollution and water shortages. To tackle these issues, water 

management strategies such as green infrastructures, low impact development 

strategies, sustainable water management, and Sponge City have been 

implemented. There are complex systems with many challenges. Uncertainties in 

water infrastructure design and planning, and financial insufficiencies are the most 

serious problems that can risk the failure of the water management concept. While 

significant barriers exist, the opportunities for implementing sustainable rural water 

systems are evident. To obtain multi-ecosystem services of water measurements, 

they should be implemented at the watershed scales and be flexible, depending on 

different decision levels or catchment characteristics. It is essential to apply an 

intelligent decision-making mechanism and consider the need for close cooperation 

between various agencies with which the central government can work. A suitable 

sized and harmonious rural water infrastructure, ensuring a good balance between 

socio-economic development and environmental conservation, is the ideal. 

More research is required to build a comprehensive computerized model using free-

of-charge satellite images and advanced machine learning model for sustainable 

rural water infrastructure design, identify appropriate technical measures including 

bio-detention systems, and green roofs. These are possibilities that can be applied 

in each locality. It is also important to improve co-ordination across government 

bureaucracies through the establishment of a rural water database system and 

experiences-sharing networks to deliver a successful, large-scale rural model. 

Finally, an economic valuation of rural water practices which highlights the whole 

life cycle benefits and risk of failure should be conducted to enhance public-private 
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knowledge and perceptions. Doing so could enhance their willingness to support 

the implementation of the rural water management practices and its sustainability 

features. Rural strategies and policies focused on promoting this concept play an 

important role in developing healthier, resilient and sustainable cities in an era of 

climate change and massive urbanization.
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3.1 Materials 

3.1.1 Spatial datasets 

Six global gridded geographic datasets, specifically GADM, ASTER GDEM, 

CHIRPS, Terra MODIS, Global Aridity datasets and Global Soil Water Balance 

datasets were used to conduct the water vulnerability assessment (Table 3.1).  The 

property characteristics of these data differ widely, so it is vital to harmonize data 

layers so that detailed spatial variables that appropriately constructing the indices 

of water vulnerability can be properly processed. 

Table 3.1  Spatial variables and datasets used in water quantity vulnerability 

assessment 

Variable Scene ID Dataset Spatial 

Resolution 

Tempor

al 

Resolut

ion 

Administrative 

boundaries  

(all levels of sub-

division) 

GADM Gadm36_VNM 

version 3.6 

  2018 

Elevation ASTERGDE

MV003 

ASTER GDEM 

v3 

30m 2000 

Precipitation CHIRPS-v2.0  Climate Hazards 

Group InfraRed 

Precipitation 

4.8-km 

grid (1/20 

degree) 

Yearly, 

1981-

2018 

Net Evapo-

transpiration 

MOD16A3G

F.006 

Terra MODIS 500m  Yearly, 

2000-

2019 
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Soil Water Stress SWC_fr Global Soil-

Water Balance 

datasets 

1000m Montly,

1970-

2000 

Priestley–Taylor 

alpha coefficient 

alpha Global Soil-

Water Balance 

datasets 

1000m Yearly, 

1970-

2000 

Aridity Index Ai_et0 Global-Aridity 

datasets 

1000m,  Yearly, 

1970-

2000 

Leaf Area Index MOD15A2H.

006;  

Terra MODIS 500m 8 day, 

2000-

2019 

Net Primary 

Production 

MOD17A3H

GF.006 

Terra MODIS 500m yearly, 

2000-

2019 

 

Satellite images were generated from S-2 multispectral satellite data, S-1 C-band 

dual polarimetric SAR imagery, and ALOS DSM (table 3.2) for soil carbon and soil 

moisture estimation. While Sentinel 1 and Sentinel 2 images were generated from 

the Copernicus Open Access Hub from European Space Agency (ESA), the ALOS 

DSM 30m imagery was acquired from JAXA Earth Observation Research Centre. 

The SNAP Sentinel Application Platform toolbox were used for both Sentinel 

datasets processing, whereas ArcGIS 10.4 was employed to process ALOS imagery 

and compute the ALOS-DSM derived features. All images were resampled to a 

ground sampling distance (GSD) of 10 m and geocoded in the same projection of 

World Geodetic System (WGS84) - Universal Transverse Mercator (UTM) zone 

50 South (50S). 
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Table 3.2  Remote sensing data acquisition for the study areas  

Source: European Space Agency ESA, 2021 and JAXA Earth Observation Research 

Centre 

3.1.2 Statistical data 

The study also used data from statistical sources and other documents. 

Administration unit, land use types, education, socioeconomic conditions and water 

supply systems were collected from Vietnam’s national statistical yearbook for 

2018. Water damage data, economic loss and flood risk index were recently 

provided by Luu et al. (2019) and the Central Committee for Flood and Storm 

Control (CCFSC) of Vietnam. 

3.1.3 Field survey data 

Soil samples were collected the Wests, Goomalling shire (latitude coordinate: -

31°18'S and longitude coordinate: 116° 49' E), and Cookies area - Northam shire 

(latitude: -31° 39' S, and longitude: 116° 39' E) in the agricultural region of Western 

Sensor Scene / 

Tile ID 

Acquisition date 

(month/day/year) 

Processin

g level 

Spatial 

resolution 

(m) 

Spectral band/ 

polarization 

 

S-2  50JML  04/17/2021 1C 10 – 20  13 

multispectral 

bands 

S-1    S-

1B_IW

_GRD

H1SDV 

 04/27/2021 GRD 10 Dual- 

polarization  

(VV and VH) 

ALOS-

DSM 

AW3D

30 

04/01/2021  30m  
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Australia (WA).

3.2 Methods

3.2.1 Spatial data processing

ESRI ArcMap v10.4 was employed to process spatial data. Administrative 

boundaries from GADM served to clip or extract elevation, precipitation and other 

remote sensing data to the GADM country codes. ModelBuilder in ArcGIS 10.4 

helped to convert spatial datasets to Excel datasets for further calculations. All 

spatial and statistical datasets were compiled according to the study site’s provincial 

and ecological areas (Figure 3.1). 

Figure 3.1 Incorporation of spatial datasets, statistical data set and the study site

3.2.1.1 Sentinel images processing

The S-2 image was processed via four main steps which presented in the Figure 3.3. 

Ten multispectral bands were extracted for the study including B2, B3, B4, B5, B6, 

B7, B8, B8A, B11, and B12. Vegetation indices, soil indices, and water index were 
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computed by thematic land processing function in the SNAP toolbox (Pasqualotto 

et al., 2019). Vegetation, soil and water indicators are presented as being sensitive 

to soil moisture content which recently were used for soil moisture properties 

estimation (Jin et al., 2017). Predictor variables derived from S-2 were illustrated 

in table 2 below. A total of 22 indicators were computed from S-2 for the SM 

prediction.

Figure 3.2 The steps of Sentinel images processing using SNAP Toolbox
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Table 3.3  Vegetation, soil, and water predictor variables derived from Sentinel 2 (modified from (Pham et al., 2020)) 

Vegetation and Soil Index Acronyms  S-2 band wavelengths References 

Ratio Vegetation Index RVI NIR

Red
 (Tucker, 

1979) 

Normalized Difference 

Vegetation Index  

NDVI NIR − Red

NIR + Red
 

(Rouse et 

al., 1973) 

Green Normalized 

Difference Vegetation 

Index 

GNDVI NIR − Green

NIR + Green
 (Gitelson et 

al., 1996) 

Normalized Difference 

Index using Bands 4 & 5 of 

S-2 

NDI45 RE1 − Red

RE1 + Red
 

(Delegido et 

al., 2011) 

Soil Adjusted Vegetation 

Index 

SAVI 
(1 + 𝐿)(

NIR − Red

NIR + Red + L
) 

L = 0.5 in most conditions 

(Huete, 

1988) 

Inverted Red-Edge 

Chlorophyll Index 

IRECl RE3 − Red

RE1/RE2
 

(Frampton 

et al., 2013) 

Modified Chlorophyll 

Absorption in Reflectance 

MCARI [(RE1 − Red) − 0.2 × (RE1 − Green)] × (RE1 

− NIR)  

(Daughtry 

et al., 2000) 
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Vegetation and Soil Index Acronyms  S-2 band wavelengths References 

Index  

Brightness index BI √(Red × Red) + (Green × Green)

2
 

(Escadafal, 

1989) 

Brightness index 2 BI2 √(Red × Red) + (Green × Green) + (NIR x NIR)

2
 

(Escadafal, 

1989) 

Redness index RI Red × Red

Green × Green × Green
 

(Mathieu et 

al., 1998) 

Colour index CI Red − Green

Red + Green
 

(Mathieu et 

al., 1998) 

Normalized difference 

water index 

NDWI (NIR − SWIR)/(NIR + SWIR)  (Gao, 1996) 

Note: Band wavelengths of S-2: B2: Blue (492 nm), B3: Green (560 nm), B4: Red (665 nm), B5: Red-edge 1 (RE1) (704 nm), B6: Red-

edge 2 (RE2) (740 nm), B7: Red-edge 3  (RE3) (783nm), B8: near-infrared (NIR) (833 nm), B8A: Narrow-NIR (865 nm),  B11: short-

wavelength infrared (SWIR1) (1614 nm), and B12: SWIR2 (2202 nm). 
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The extraction of Sentinel 1 data included eight steps which were conducted in the 

SNAP application using the Radar toolset to convert the S-1 C-band SAR raw 

intensity signal data to scale backscatter coefficient (σ0) in decibel (dB) as 

suggested by Pham et al.,(2020). The steps includes: (1) Correct the orbit file; (2) 

Thermal and border noise removal; (3) Radiometric calibration; (4) Speckle 

filtering; (5) Range Doppler terrain correction; (7) Normalized radar backscattering 

coefficient by the equation 1 below; (8) S-1 SAR band transformation to create five 

predictor features including VV/VH; VH/VV; VV-VH; VH-VV; (VV+VH)/2; and 

(9) computation of 20 features using grey level co-occurrence matrix (GLMC) from 

S-1 VV and VH Polarizations (Fig 3.3). 

 

 
Figure 3.3 Steps of Sentinel 1 pre-processing and processing 

A total of 27 features were extracted and computed from Sentinel 1. These features 

contained: the two bands from dual polarization (VH and VV); the five SAR 

transformed bands (VV/VH; VH/VV; VV-VH; VH-VV; (VV+VH)/2); and the 20 

new features extracted from VV and VH using the GLMC algorithm (VV_Contrast, 

VV_Dissimilarity, VV_Homogeneity, VV_Angular Second Moment, VV_Energy, 

VV_Maximum Probability, VV_Entropy, VV_GLCM Mean, VV_GLCM 

Variance, VV_GLCM Correlation, VH_Contrast, VH_Dissimilarity, 

VH_Homogeneity, VH_Angular Second Moment, VH_Energy, VH_Maximum 

Correct the orbit file Thermal and border 
noise removal

Radiometric 
calibration

Speckle filtering Range Doppler 
terrain correction

Normalized radar 
backscattering 

coefficient

S1 band 
transformation (5 

features)

Grey level co-occurrence matrix 
(GLCM) feature extraction (20 

features)
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Probability, VH_Entropy, VH_GLCM Mean, VH_GLCM Variance, and 

VH_GLCM Correlation). 

3.2.1.2 ALOS image processing 

The Advanced Land Observing Satellite (ALOS) was introduced by the Japan 

Aerospace Exploration Agency (JAXA) in 2006. JAXA recently provided the 

product of ALOS-DSM which is one of the newest remote sensing-based DEM. 

The ALOS-DSM has two kinds of resolution. ALOS-DSM with the resolution of 

30m is a free-of-charge dataset and higher prediction performance compared to 

Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) ASTER 

GDEM and Shuttle Radar Topography Mission Digital Elevation Model (SRTM-

DEM) (Nikolakopoulos, 2020). DEM and SLOPE derived indicators were 

generated by raster processing and calculation in ArcGIS 10.4. Figure 3.4 shows 

the elevation of the study sites which ranges from 139 m to 480 m and slope is 

between 0 and 87 degree.  
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Figure 3.4 Indices generated from ALOS DSM: (a) DEM and (b) SLOPE

Topographic Wetness Index (TWI) generated from digital elevation model (DEM) 

have been used for soil moisture estimation because TWI is helpful to identify the 

place where water is accumulated in the specific area with the differences of 

elevation (Figure 3.5). TWI highlights the terrain-driven balance of the catchment 
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water supply and the water drainage of specific local areas. However, there are 

various algorithms such as a flow accumulation, a flow width, or a slope algorithm 

can be employed to compute TWI. It should be select the best one that the TWI 

obtain the high correlation with soil moisture content. The best TWI for soil 

moisture prediction is Freeman flow algorithm, local slope, and the equal cell size 

of flow width which was generated by the following equation (Kopecký et al., 

2021).

TWI =ln 
𝑇𝑜𝑡𝑎𝑙 𝑐𝑎𝑡𝑐ℎ𝑚𝑒𝑛𝑡

𝐹𝑙𝑜𝑤 𝑊𝑖𝑑𝑡ℎ⁄

tan(𝑠𝑙𝑜𝑝𝑒)
(1)

Figure 3.5 TWI mapping in the study site

3.2.2 Vulnerability assessment

One of the most popular concepts of vulnerability was presented in the 2001 IPCC 

report (Thornes, 2002). There are six steps in the vulnerability assessment process. 

The most important step is to determine appropriate indicators or variables through 

consultations with experts, conducting a literature review or a field survey. Next is 

the collection of input data for those indicators by a variety of sources such as field 

survey, statistical data and remote sensing datasets. The third step is normalization 
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of input datasets via the formula involving the UNDP’s Human Development Index 

(HDI) (Duong et al., 2017; McNicoll, 2007).  

𝑋𝑖𝑗 =
𝑋𝑖𝑗−𝑀𝑖𝑛𝑋𝑖𝑗

𝑀𝑎𝑥𝑋𝑖𝑗−𝑀𝑖𝑛𝑋𝑖𝑗
                                                                                                   (2) 

Where 𝑋𝑖𝑗 represents for normalized score of the j indicator for the ith area. 

The next one is to calculate the indicators’ weight according to the Iyengar and 

Sudarshan method (Iyengar and Sudarshan, 1982) method as stated here: 

𝑊𝑗 =
𝐶

√𝑉𝑎𝑟(𝑋𝑖𝑗)
                                                                                                       (3) 

𝐶 = ∑
1

√𝑉𝑎𝑟(𝑋𝑖𝑗)

𝐾
𝑗=1                                                                                                 (4) 

Where K is the number of indicators, C is a normalizing constant, and 𝑊𝑗 is the 

weight of indicator j (0<1<𝑊𝑗) 

The index for each indicator for in each area was estimated with the calculated 

weight in the previous step via the following formula:  

𝑀𝑖𝑗 = 𝑊𝐽 × 𝑋𝑖𝑗                                                                                                  (4) 

Where 𝑀𝑖𝑗 is the index of j factor in ith area 

After establishing the indices of indicators, the index of exposure, sensitivity, 

adaptive capacity and water vulnerability are estimated using the equations below: 

𝑉ℎ = 
∑ 𝑀𝑖𝑗

𝑛
1

𝑛
                                                                                                          (5) 

𝑊𝑉𝐼 =
(𝑉𝐸 + 𝑉𝑆 + (1 − 𝑉𝐴𝐶))

3
⁄                                                                       (6) 

Where 𝑉ℎ is the index of E, S and AC component (h=E, S, AC); n is the total number 

of indicators for each E, S and AC; and WVI represents the water vulnerability 

index. 

All vulnerability indicators are integrated and visualized by ArcGIS 10.4 software. 

Vulnerability maps are constructed according to ecological and provincial scale. 
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There are five level of vulnerability including: very low, low, medium, high and 

very high. 

3.2.3 Field data collection 

From very high spatial resolution Google Earth imagery and Sentinel 2 imagery, a 

total of 266 digitizing points for both vegetation and bare soil locations were 

selected to generate land-use binary maps (Figure 3.6). An Advanced ML technique 

with five-fold cross validation (CV) method were applied for binary land-use 

classification mapping. The classification accuracy of the XGBoost model were 

compared with the two well-known ML algorithm such as the RF and SVM 

technique. The overall accuracy, kappa coefficient, precision, recall and F1_score 

served as evaluation metrics. The best model with the highest value of overall 

accuracy, F1 score and Kappa coefficient was chosen to produce the binary land-

use map. The binary land use classification map devised in the study areas served 

to identify bare-soil points for soil sampling. The active learning technique in 

remote sensing classification was employed to assist in designing and sampling soil 

carbon, which helps minimise effects of vegetation on SOC contents (Fu et al., 

2010; Tuia et al., 2011).  

 
Figure 3.6 Flow chart of land-use binary mapping and SOC samples selection using 

an active learning method. 

The agricultural SOC field survey was carried out in April 2021. Forty bare-soil 

sampling locations with a pixel (size of 10m x 10m) across the study areas (20 

points for each area) were selected based on the binary map (Figure 3.7). A 

Differential Global Positioning System (DGPS) - a refined version of the Global 

Positioning System (GPS) - was used to identify precisely the samples’ location 

with an accuracy of 1-3 cm (Michalski and Czajewski;  2004). Four soil cores were 

taken in each sampling plot. The dimensions of the core was 7 cm in depth and 7.3 

cm in diameter. The total agricultural SOC of soil samples was analysed in the 

Select 
digitizing 

points

ML models for 
the binary land 

use 
classification 

mapping 

Binary 
classification 

map from 
the best 
model

Select bare 
soil points 

for 
agricultural 

SOC 
sampling
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laboratory by Rayment and Lyons Method 6B1 (Heanes, 1984).  

  
                   (a)Wests                                                      (b) Cookies 

Figure 3.7 Study areas and digitizing point selection: (a) Wests, and (b) Cookies 

3.2.4 Machine learning algorithms 

3.2.4.1 Extreme gradient boosting (XGBoost) 

The XGBoost technique was introduced by Chen and Guestrin (2016). It shares the 

same theory with other gradient tree boosting algorithms. The XGBoost algorithm 

is described as a scalable end-to-end tree boosting which is a highly accurate 

machine learning technique and has widely applied to solve data mining problems 

(Chen and Guestrin, 2016). The novelty of XGBoost is its scalability in all scenarios 

so it can handle sparse data challenges. This advanced ML techniques is able to 

handle both classification and regression tasks (Ha et al., 2021b). The further merits 

of the XGBoost are parallelization, out-of-core computation, and cache 

optimization, which help the training process of the system more quickly than 

existing gradient boosted regression tree methods. This technique can easily deal 

with the problem of a model’s complexity especially if it has a large dataset. 

Moreover, the XGBoost method can use integrated optimization algorithms to tune 

important hyper-parameters such as the number of trees and the rate of learning to 

suit a specific dataset. In this study, the best structure with 100 trees, and a learning 

rate set at 0.5 and gamma value of 5 was found the highest performance in the 
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XGBoost model. 

3.2.4.2 Random forest (RF) 

The RF algorithm is one of the most popular machine learning algorithms, and it 

can be used effectively for a wide range of applications (Breiman, 2001; Pham et 

al., 2020). This technique includes a large number of regression trees. Each 

regression tree is built by the unique bootstrap sample from the original dataset, 

which decreases the sensitivity of the RF method to overfitting problems. Normally, 

the dataset will be divided with about two-thirds of the samples (in-bag data) for 

the training sets and the remaining samples for the test sets (Out-Of-Bag (OBB 

data). Two essential parameters including the number of regression trees and 

number of predictor variables must be defined in the RF model. In the current work, 

the RF model with 100 trees and the maximum number of 11 features had the 

highest performance for this study area. 

3.2.4.3 Support vector machine (SVM) 

Developed by Cortes and Vapnik (1995), the SVM algorithm is a well-known 

supervised learning technique based on the kernel approach and statistical theory, 

which can applied for classification, regression and outliers’ detection (Cortes & 

Vapnik, 1995; Cristianini & Ricci, 2008). While the SVM can help solve non-linear 

dataset, this method is not effective with a noisy and overlapped dataset. One of the 

advantages of SVM is that it can work accurately with a small number of training 

datasets. The SVM algorithm’s performance is based on the selection of kernel 

functions and their parameters. There are three hyper-parameters in the SVM 

method including regularization parameter, the kernel function, and gamma 

controlling the overfitting. The hyper-parameters of the SVM method are fewer 

than other machine learning algorithms. Four kernel function types include 

polynomial, sigmoid, linear and radial basis function. In this study, the grid search 

with a five-fold CV was used to determine the optimal hyper-parameters of each 

ML algorithm in the Python environment. In this work, the SVM algorithm with 

the radial basis function (RBF) kernel and the C value of 10000 was used, and the 

epsilon value of 0.01 as the best values for tuning hyper-parameters of the SVM 

model.  
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3.2.4.4 CatBoost gradient boosting regression (CBR) 

CBR is known as a family member of gradient boosted decision trees (GBDT’s). It 

is an interdisciplinary approach for classification and regression tasks in time-series 

and big data (Hancock & Khoshgoftaar, 2020). It can also solve and minimize the 

issue of over-fitting by identifying the best tree structure for the calculation of the 

leaf values (Dorogush et al., 2018). CBR have recently been employed for soil 

parameters and soil carbon estimation (Xu et al.). Max depth, learning rate, and the 

number of iterations is the key hyper-parameters of the CBR model. It is similar to 

XGBR, important hyper-parameters were tuned by hyper-parameter tuning using 

grid search with five-fold CV to select optimal ones which helps improve the CBR 

model performance. 

3.2.5 Genetic Algorithm (GA) optimizer for optimal feature selection 

Features selection is vital for the ML model’s performance. It also helps simplify 

the models, reduce the time for training and testing model, and address overfitting 

issues. A genetic algorithm method was employed to determine automatically 

optimal indicators for the SM content retrieval in the study from the total of 52 

variables derived from selected RS missions. GA implementation includes the 

following stages: (1) population formation from soil samples; (2) generation of a 

mating pool based on the highest fitness individual values; (3) the selection of 

parents from the mating pool by random selection methods; and (4) the generation 

of parents’ offspring using crossover and mutation operators. The prediction 

accuracy of ML models for soil properties can be improved with the use of the GA 

for the selection of predictor variables (Xie et al., 2015).  

3.2.6 Model evaluation 

To assess the model performance of binary land-use classification, five evaluation 

criteria have been used including overall accuracy (OA), kappa coefficient (KC), 

precision (P), Recall (R), and F1 score (F1) (Chicco & Jurman, 2020; Ha et al., 

2021). 

For agricultural SOC, and SM retrieval, two common validation criteria were 

employed to assess the performance of machine learning techniques with different 

scenarios including: the root mean square error (RMSE), and the coefficient of 
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determination (R2). Superior model performance illustrates the higher R2 and lower 

RMSE. These criteria are evaluated using the equations below: 

RMSE = √
1

n
∑ (Pi − Oi)

2n
i=1                                                                                                   (7)          

𝑅2 =
∑ (n

i=1 Pi−Oi̅̅ ̅)

∑ (Oi−Oi)̅̅ ̅̅n
i=1

                                                                                                              (8) 

Where: n indicates the number of soil samples; Pi and Oi illustrate the predicted 

value and measured value of the i sample, respectively. 
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 4.1 Introduction 

The majority of integrated water models have focused on evaluating potential 

hydrological performance, and water quality assessment of water management 

solutions. However, in the meantime they have neglected their full assessment of 

environmental, economic, and social benefits such as better human health and 

economic growth (Zomorodian et al., 2018). Numerous countries have developed 

their own models to support their water management programs. The United States 

implemented many models including SWMM, MIKE, SUSTAIN, MapShed, 

SWAT, PondNet, etc., to support the Best Management Practices program. Some 

models were also devised in the United Kingdom such as UWOT, Sobek-Urban, 

and WaterMet2 to assist that nation’s Sustainable Urban Drainage Systems. To 

improve the efficiency of its Water Sensitive Urban Design program, Australia has 

devised some effective integrated models including DAnCE4Water, Urban Bests, 

UrbanCycle, UrbanDeveloper, and Aquacycle. DAnCE4Water is able to assess a 

range of integrated planning, various urban water infrastructure systems, and in 

conjunction with the dynamics of various social systems (Löwe et al., 2017; Rauch 

et al., 2017; Zischg et al., 2019; Urich et al., 2013). 

There are three general methods in which to develop integrated models: (1) 

modifying conventional integrated models; (2) combining existing sub-integrated 

models into more comprehensive as well as integrated ones; and (3) innovating new 

integrated models. Integrated water models are normally constructed by 

computationally linking a sequence of two or more sub-models that illustrate the 

different components of water bodies (Rauch et al., 2002). Each integrated model 

has developed its own distinct approaches and methods according to Bach et al. 

(2014). A variety of processes are involved in water management and these include: 

hydrology; hydraulics; pollution; treatment; downstream impact; storage-

behaviour; water consumption; groundwater interaction and flooding; different 

water components, i.e., water transportation network, treatment plants, 

decentralized technologies, receiving water bodies and built environments. All 

these processes need to be taken into account when building an integrated model 

(Bach et al., 2014). Integrated modelling is based on several types of model 
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applications including: life cycle assessment; operations and control; risk and 

impact assessment; social implications; economic issues; ecological implications; 

conceptual design; and strategic planning. 

A range of papers illustrates the development, barriers, and opportunities of 

integrated water models. Bach et al. (2014) reviewed 30 years of research on the 

adoption of integrated water models and classified these models into four groups 

according to their level of integration. Their review paper did note that user-

friendliness, administrative fragmentation, model complexity, and communication 

are crucial factors, which guide the uptake of integrated water models (Bach et al., 

2014). Zomorodian et al. (2018) analyzed the feasibility of System Dynamics (SD) 

application on addressing the complexity of integrated water management 

modelling. Salvadore et al. (2015) compared 43 hydrological modelling approaches 

and identified a blueprint for future hydrological modelling development. The study 

ascertained that a high degree of uncertainty will be reduced if remote sensing data, 

measurement model parameters, and spatial calibration methods are applied.  

This study aims to build a new integrated conceptual model framework to better 

address the multiple sustainability objectives of water infrastructure concepts 

including water vulnerability improvement, soil moisture enhancement, soil carbon 

sequestration of different water strategies, and agricultural practices. 

4.2. Conceptual model principles  

4.2.1 Selection of model’s features 

The features of integrated water models do vary as a consequence of the diverse 

requirements at each level of integration. There are six components that need to be 

considered as being essential to a specific model’s features: data requirement and 

availability; computational power and software development; process methods; 

spatial and temporal detailing; simulation configuration; and model structure (Bach 

et al., 2014). The key model features of the rural water management model are 

summarized in Table 4.1. 

Table 4.1 Key model features of the rural water model 
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Category Model features selection Challenges 

Data 

requirement 

and 

availability 

Both qualitative and 

quantitative data, both 

spatial and temporal data 

Difficult to collect all 

types of data; data 

uncertainty problems  

Model 

structure 

Conceptual Model computational 

burden due to high 

level of integration 

Simulation 

configuration 

Both parallel and 

sequential 

The inaccuracy of 

each sub-models 

affect the overall 

result of model 

Spatial 

detailing 

Both branched and 

looped 

Basing on considered 

interactions in 

models 

Temporal 

detailing 

Continuous simulation 

and uniform time step 

Huge data 

requirement and 

challenges in 

collection the 

historical data. 

Process nature Quantity: Hydrology 

performances 

Quality: Both biological 

and physical  

Hydrology/hydraulic 

systems is very 

complex and 

different between 

watersheds. 

Computational 

power 

 

 

 

Software 

development 

Multi-core processing, 

optimisation and scenario 

analysis 

 

 

Supermodel, interface 

and hybrid 

Uncertainties in 

model parameters, 

the big size of 

integration model 

and doubtful 

mathematical 
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Category Model features selection Challenges 

formulation of 

processes 

Model complexity  

 

Problems concerning the features of this model can range from data uncertainty 

issues to doubtful mathematical formulation of processes given that these complex 

integrated models are so complex and could be prone to error. Challenges in model 

structure and the nature of processes (hydrodynamic, biological and physical) 

should be given priority in any rural water model’s development. Data collection 

and data reliability are fundamental variables that encompass the requirements for 

building, testing and calibration (Bach et al., 2014; Deletic et al., 2012; Elliott and 

Trowsdale, 2007; Nguyen et al., 2007).  

4.2.2 Selection of relevant sub-models  

A developed integrated rural water model should consider incorporating three 

models: water vulnerability assessment; soil moisture prediction; and carbon 

sequestration estimation. The excessive, wasteful and inappropriate use of water 

resources has increased dramatically throughout the world. According to the Global 

International Geosphere-Biosphere Programme (IGB), total water global 

freshwater withdrawals amounted to 4 trillion m3 in 2014, representing a six-fold 

increase between 1900 to 2014 (Alcamo et al., 2003; aus der Beek et al., 2010; 

Flörke et al., 2013). Water use per capita throughout the world varies greatly 

depending on the latitude, climate, and level of countries’ or regions’ economic 

development. Appropriate evaluation of water vulnerability is vital if we are to 

understand the impacts of climate change and human activities on water resources. 

As well, the information from the water vulnerability assessment projects can 

support managers and decision-makers to select suitable areas for water 

infrastructure implementation. Therefore, the important sub-component of a 

proposed conceptual model for sustainable rural water management should be the 

water vulnerability assessment model.  
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Linking these sub-models should help support water management systems to 

interact effectively. The in-built key innovation is created by the integration and 

simplification of these models and their features. The proposed sustainable rural 

water model below is better able to predict actual effectiveness of water 

management practices in reducing water vulnerability, improving soil organic 

carbon, and enhancing soil moisture content (Figure 4.1). Moreover, it provides 

valuable data for different stakeholders including the following: water systems 

managers, local authorities, and landholders. They need to be able to implement 

appropriate water management strategies and practice precision agriculture, which 

would increase revenue for landholders via carbon credits and crop production. The 

last point could see a marked improvement in climate, soil and air quality, as well 

as better hydrological performance through water runoff and flooding disaster 

reduction. Appropriate rural water strategies are selected through the harmonization 

of economic, and environmental feasibility of rural water infrastructure. These 

desirable attributes of the proposed rural water management model will require an 

effective support system for managing water-related problems, where decisions are 

based on continuous cooperation (consensus) between modellers and policy-makers 

throughout water infrastructure development processes (Liu et al., 2008; 

Makropoulos et al., 2008). Nonetheless, ensuring strong communication and 

collaboration with stakeholders will help support and build an integrated rural water 

simulation model. 
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Figure 4.1 Overall development proposal of the sustainable rural water 

management model

The most difficult challenge for devising a model is to answer the question of how 

to incorporate sub-models into a complete one for testing and application. 

Therefore, the main methods used in the newly integrated models could be: (i) the 

construction of an integrated database system; (ii) identifying the integration of 

multiple data sources, geo-spatial data computing; and (iii) design and visualization 

methods (Zhang et al., 201; Xu and Yu, 2017; Deng et al., 2018). Real-time 

monitoring and warning systems can be built based on modern technologies, for 

instance the Internet of Things, Big Data, and Cloud Computing (Deng et al., 2018).

4.2.3 Selection of model variables

Each sub-model requires a range of variables. For example, the water vulnerability 

model database system includes data on population and technologies scenarios,

social characterization, surface characteristics, and climate information data. The 

inaccuracy of input data results in model uncertainties and subsequently serious 

errors (Deletic et al., 2012; Bach et al., 2018, Wijesiri et al., 2016). An adequate 

and reliable database system is hugely important for any kind of integrated water 

management model including the proposed integrated model. The capabilities of 

the variables regarding the integrated model according the framework in Fig. 1 can 

be divided into five components: (1) climate indicators, for example the history of 

daily precipitation, temperature, and solar radiation; (2) social indicators like 
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population, living standards, poverty rate, economic loss; (3) environmental 

indicators such as soil moisture, soil properties, and carbon sequestration; (4) water 

indicators such as water demand, flood index, normalized difference water index, 

and aridity index; and (5) geo-database including soil and elevation map, surface 

coverage, land use map, administration map, vegetation indices, and soil indices. 

4.3 Validation and calibration process of integrated model 

The first step in generating the integrated model is to develop the conceptual basis 

based on scenarios about rural water management practices, climate, and 

development plans where data are available. The conceptual model will apply 

mathematical or computational methods to solve the problems noted above. The 

second step is to implement the integrated simulation model as a computer-based 

project. This integrated simulation model will predict the feasibility of relevant 

water practices in terms of addressing rural water issues, and maximizing water 

ecosystem services according to different scenarios. Here the validation and 

calibration steps are emphasized and they are the most complex tasks to perfect 

(Bach et al., 2014; Deletic et al., 2012; Rauch et al., 2002). The model validation 

comprises three dimensions, these being: conceptual validation; operational 

validation; and data validation (Sargent, 1991) (Fig. 4.2). Conceptual validity seeks 

to verify the accuracy of theories and assumptions in the conceptual model. 

Operational validity aims to ascertain the reliability of the model's output (Sargent, 

1991). Data validity aims to ensure quantitative data is available for model testing, 

model calibration, and model simulation. Model calibration is defined as ensuring 

the accuracy of the model's output by comparing its output with actual data from 

measurement, observation, and collection. 
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Figure 4.2 A generic framework of the integrated rural water model development 

(modified from Sargent, 1991).

4.4 Mapping model uncertainties

Some models or software packages are still used although uncertainties will exist 

amongst these (Schellart et al., 2010). For example, regarding the output of such 

models, it may not always be reliable. Although it is vital to solve the sources and 

outcomes of uncertainty in drainage models, not much research addresses these 

sorts of problems in rural water management modelling (Harremoës & Madsen, 

1999; Schellart et al., 2010). Advanced water management models need to identify 

uncertainties and challenges from different perspectives. Uncertainties in 

hydrological models are caused by input data, model parameters, and model 

structure uncertainties (Guzman et al., 2015). The models without sufficient 

uncertainties being properly accounted for have led to incorrect simulation and this 

then has serious implications for strategic management and planning where errors 

can occur (Mannina and Viviani, 2010; Voinov and Shugart, 2013; Ahyerre et al., 

1998). Accurate model predictions might be achieved if the measured and observed 

data are enhanced (Dotto et al., 2011). There are three main components causing 

model uncertainties and these are: model input uncertainties; model structure 

uncertainties; and model calibration uncertainties (Deletic et al., 2012) (Fig. 4.3).
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Figure 4.3 The main components of uncertainties in the integrated rural water 

model (modified from Deletic et al., 2012). 

Firstly, the highest level of integration in the rural water model requires a vast 

temporal and spatial scale of data, and where components of sub-models are 

intricately linked, as these may result in model input uncertainties. Secondly, the 

uncertainty comes from the model structure itself where any inaccuracies in the 

scale and selection of key processes selected could lead to conceptualization errors 

being inherent within these models. The application of wrong equations or 

numerical methods and boundary conditions creates inaccurate outputs and 

solutions. Finally, calibration uncertainty represents another source of uncertainty. 

It is caused by the errors in measurement or monitoring of both input and output 

data, and this affects the selection of variables for the calibration process and related 

methods (Deletic et al., 2012; Dotto et al., 2014; Seppelt et al., 2009). To evaluate 

overall uncertainty, the Generalised Likelihood Uncertainty Estimation (GLUE) 

method developed by Beven and Binley (1992) has been applied in many studies 

(Freni et al., 2009; Mannina et al., 2006; Thorndahl et al., 2008). Attempts to 

mitigate a model's uncertainties include: model simplification; detail reduction; 

maximum application of computational or equation resources; and selection of 

appropriate calibration and validation methods (Jamali et al., 2018). 
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4.5 The proposed model’s structure 

The new model is built for multiple stakeholders who include: researchers; 

engineers; policy-makers; and other practitioners. It will assist them in the provision 

of appropriate decisions for rural water infrastructure implementation. The model 

is able to assess the efficiency of water infrastructure including LID practices, and 

green infrastructure practices. Environmental aspects of these practices will be 

assessed. The model is developed based on the structure language of Python, GIS 

and R with the idea of simplification, and integration. There are five layers in the 

integrated model and they are: sub-model layer; input layer; module layer; output 

layer; and programming language layer which is illustrated in Figure 4.4. Each 

component of the system is designed throughout the identification of each 

component’s function. Then, the corresponding modules are formed based on their 

functions. This establishes the simulation process for the whole system.  

Key aspects that need to be considered for sustainable model development include: 

database construction; data integration; temporal and spatial data computing; and 

the visualization process (Deng et al., 2018). The post-implementation monitoring 

system is made possible by cooperation between the Internet of Things, Big Data, 

Cloud Computing technologies, and the related standards associated with water 

infrastructure (Deng et al., 2018). 
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Figure 4.4 The possible structure of integrated rural water model



 

84 

 

4.5 Conclusions 

The uptake of integrated models to deal with environmental problems has increased 

in recent times. Although, many models have been developed recently, and are now 

incorporated into wider ranging water management practices to address such water 

issues, at present there is a lack of an effective overarching model that supports 

rural water infrastructure implementation. This is due to its multiple objectives and 

complexity. Therefore, it will be inevitable to essentially build the sustainable rural 

model based on the current conventional integrated sub low-cost models including 

ML models and feature selection models. This chapter critically highlights the 

importance of the comprehensive rural water model where the combined format can 

properly evaluate the challenges that include the model’s cost-effectiveness, 

ambiguous data, etc. 

In this chapter, a novel framework for the rural sustainable water management 

model was identified to simulate the efficiency of water management practices. The 

framework of the integrated model developed here was based on integrating four 

important sub-models, i.e. soil moisture model, soil carbon model, water 

vulnerability assessment model, machine learning model, and feature selection 

model. This model not only predicts the multi-benefits of rural water management 

measures in terms of water vulnerability improvement, but includes soil moisture 

enhancement and the increase of soil organic carbon for agricultural prediction. 

With these in place it can identify the most appropriate rural water management 

strategy. 

Applying the integrated model requires different scenarios being taken into account 

and a large amount of required data. In this way, it will demonstrate that water 

management practices, development patterns and the dynamics of natural processes 

including hydrological systems are working properly or where changes need to be 

made. Uncertainties associated with this model can be overcome through the 

improvement of spatial data-sharing systems, the implementation of efficient 

computation and software design, and inter-disciplinary work. Finally, the novel 

model framework described in this research will assist modellers to develop a 
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comprehensive sustainable rural water model for future applications. The model 

development specifically focuses on assisting the sustainable rural water program, 

but in the future, it should be broadened in scope for catchment areas. 
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New approach of water quantity 

vulnerability assessment using 

satellite images and GIS-based 

model
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5.1 Introduction 

Water is a vital resource for people and many industries including agricultural, 

industrial and domestic applications (Anandhi & Kannan, 2018; Vorosmarty et al., 

2010). It helps to sustain ecosystems but it causes disasters like floods or droughts 

for human communities (Brown et al., 2015). Water stress levels vary greatly in the 

world’s regions and countries. The Middle East and North Africa regions have 

experienced extremely high rates of water stress when their freshwater withdrawals 

are greater than 80% (Ritchie and Roser, 2020). Several countries throughout South 

Asia and East Asia are experiencing medium to high levels of water stress (Ritchie 

and Roser, 2020). Nearly 80% of people on our planet have suffered high threats 

regarding water security (Vörösmarty et al., 2010). Water security has been 

influenced by abiotic factors like climate, and anthropogenic factors such as 

population and changes in land cover. Their relationships are explored when a water 

vulnerability assessment is conducted (Plummer et al., 2012). Identifying 

appropriately the list of indicators with sufficient input data is crucial and these 

contribute to a proper vulnerability assessment. Figure 5.1 illustrates a summary of 

water vulnerability components and sub-components. There are five main 

components, namely water resources, physical environment, economic, social and 

institution with several sub-components which are also depicted in this figure. 

Those sub-components or indicators are then categorized into three vulnerability 

assessment components (Exposure, Sensitivity and Adaptive Capacity). In general, 

the assessment of vulnerability is a very complicated process due to the multi-

disciplinary nature of the problem, lack of knowledge and understanding of 

vulnerability theoretical frameworks and input data for required indicators related 

problems (Anandhi and Kannan, 2018; Gain et al., 2012).  
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Figure 5.1 List of potential water vulnerability indicators (modified from (Plummer 

et al., 2012))

Previous studies have applied econometric methods by collecting information from 

surveys and questionnaires or index-based methods. These are derived from 

indicators and quantitative analyses of water vulnerability assessments (Bär et al., 

2015). Indicators are identified by systems thinking approaches developed by 

experts in working in the water sector. The variables of vulnerability assessment 

can be selected through the Driver – Pressure – State - Impact – Response (DPSIR) 

framework (Jun et al., 2011). Satellite remote sensing datasets like MODIS, 

Sentinel or Landsat have been utilized to monitor water resources and to acquire 

input data for water assessment over the world (Khosravi et al., 2018; Sheffield et 

al., 2018).

A variety of methods and frameworks for vulnerability assessment have been 

proposed and applied in many studies. For example, the DRASTIC model and 

Catastrophe Theory have been used to assess groundwater vulnerability (Khosravi 

et al., 2018; Sadeghfam et al., 2016). However, there are several challenges 

associated with these methods: (1) not enough variables for water vulnerability 
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assessment, 2) the unavailability and inaccurately input data for indicators, (3) 

limitations in applying spatial and temporal data from satellite images, (4) the 

practical applications of the framework, and (5) tools being limited in supporting 

water managers with their required water planning and management needs. This 

study aims to address these issues. Specifically, the research attempts to build a new 

spatial approach framework for water quantity vulnerability assessment based on 

mainly time series remote sensing data. Those spatial data were integrated with 

statistical data for water quantity vulnerability assessment. The novelties of the 

study are: (1) applying updated spatial-temporal satellite images from reliable 

datasets as important vulnerability indicators such as elevation from ASTER 

GDEM version 3, leaf area index and net primary production from MODIS datasets, 

and soil water stress from Consortium for Spatial Information; (2) utilizing GIS-

based model for assessment; (3) incorporating different satellite datasets and 

statistical datasets in the ArcGIS 10.4 platform to construct spatial distribution of 

water vulnerability across ecological and provincial contexts. Overall, the 

evaluation of water quantity vulnerability is of vital importance for water managers 

in making the best decisions that improve the sustainability of water resource 

withdrawals.  

Major parts of this chapter were published in a peer-reviewed journal (A-rated 

journal):  

 

5.2 Materials and methods 

5.2.1 Study area 

The study area is the country of Vietnam. Vietnam’s climate is strongly influenced 

by a monsoon-influenced tropical system with average temperature, precipitation 

Nguyen, T.T., Ngo, H.H., Guo, W., Nguyen, H.Q., Luu, C., Dang, K.B., Liu, 

Y., Zhang, X. 2020a. New approach of water quantity vulnerability assessment 

using satellite images and GIS-based model: An application to a case study in 

Vietnam. Science of The Total Environment, 737, 139784 (IF: 7.963; SJR: 

Q1). 



 

90 

 

and humidity ranging from 22-27oC, 1500-3300 mm, and 70% - 85%, respectively. 

Based on the similarity of geographical and climatic conditions, Vietnam comprises 

eight ecological zones and these are the Northeast (NE), Northwest (NW), Red 

River Delta (RRD), South Central Coast (SCC), North Central Coast (NCC), 

Central Highland (CH), South West (SW) and Mekong Delta (MD) (Figure 5.2). 

Water sources in Vietnam mainly originate from its river basin system. There are 

2,360 rivers in Vietnam with a length greater than 10km. Red River, Mekong River 

and Dong Nai River are the three main river watersheds where about 65% of the 

country’s population living along these rivers (Le Luu, 2019). Water resources 

management in Vietnam has historically focused on freshwater conservation for 

agricultural production for hundreds of years. According to the data of FAOSTAT, 

Vietnam is one of the world’s main agricultural water users with around 77.75 

billion m3 per year and, importantly, water stress reached a medium-to-high level 

in 2007 (Ritchie and Roser, 2020). In recent years there has been no data for water 

stress in Vietnam yet. 

 

Figure 5.2 Location map of the study area 
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Since the late 1980s, Vietnam has experienced many water-related problems like 

water pollution, flood disasters and water shortages which have compromised the 

economic transition process and highlighted the dangers posed by climate change 

(Dang et al., 2019; Ngo et al., 2018; Norrman et al., 2008). A comprehensive 

understanding of water vulnerability not only minimizes the future vulnerabilities 

but also reduces the damage caused by water disasters on fragile ecosystems. 

Specially, it contributes to implementing an effective integrated water management 

system for Vietnam which not only addresses water problems but also introduces 

other environmental benefits like recognition of climate change and being prepared 

for natural disasters. 

5.2.2 Data acquisition 

The spatial variables and statistical data used in water quantity vulnerability 

assessment are presented in Chapter 3, Section 3.1.1. 

5.2.3 Data analysis  

5.2.3.1 Images processing 

Methods for images processing in this chapter is illustrated in Chapter 3, Section 

3.2.1. 

5.2.3.2 Vulnerability assessment  

Vulnerability assessment method is described in Chapter 3, Section 3.2.2. 

5.3 Results and Discussion  

5.3.1 Water quantity vulnerability assessment framework 

The new water vulnerability assessment framework is built based on the general 

vulnerability assessment of IPCC, while the quantitative vulnerability assessment 

is devised by applying the index calculation method, normalization method, and 

weight evaluation method devised by Iyengar and Sudanrshan (Duong et al., 2017). 

The availability and accurately of input data for identified indicators is an integral 

part of this framework. The calculated results will help researchers in water 

resource management strategies to develop models for mitigating or adapting to 
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climate change in the context of population growth and the drivers of economic 

development.

The water quantity vulnerability assessment framework is divided into three main 

layers (Figure 5.3): a data collection layer, a calculation layer and an output layer. 

The data collection layer will provide input data for the calculation layer. The major 

sources including satellite data, national or regional statistical data and information 

from experts, journals and regional documents will be used to collect data for their 

variables. Collected input data are stored in a database system, while statistical data 

can be displayed in Microsoft Excel and spatial data is processed by ArcGIS 10.4.

Figure 5.3 The framework of water vulnerability assessment

The calculation layer comprises five steps. The first step is to process satellite 

images by a GIS-based ModelBuilder function. The other steps including 

normalization of input data, calculating the weight of these data and the calculation 

of components and indications follow the vulnerability assessment method. The 

output layer will display results of the water vulnerability assessment in the form 

of tables, maps and graphs; this entails integration with Excel program and ArcGIS 
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10.4. This module is able to demonstrate the calculated outputs of exposure, 

sensitivity and adaptive indices for each province or each ecological zone. It also 

makes it possible to present calculated water quantity vulnerability index (WVI) of 

the study site for specific time periods. The results can be illustrated by maps so 

that policy-makers or local authorities can easily identify the degree of water 

vulnerability for their regions in order to implement the best strategies for water 

management. 

5.3.2 Selection of water vulnerability indicators  

Indicators collected are divided into three groups, i.e. Exposure (E), Sensitivity (S) 

and Adaptive Capacity (AC) (Table 5.1). A greater number of indicators which can 

be acquired will create more appropriate results for understanding vulnerability 

assessment. Through a literature review and the limitation of data at the study site, 

the total number of variables is 27 indicators including 9 for exposure components, 

6 for sensitivity components and 12 for adaptive components. These indicators 

originate from many sources. Spatial data are collected from satellite datasets such 

as MODIS images, ASTER GDEM and Consortium for Spatial Information. Other 

data are derived from national and provincial statistical yearbooks and relevant 

journal papers.  

 

Table 5.1  The selected indicators for water vulnerability assessment 

Component Indicator Code Unit Period Data Source 

Exposure  Evapotranspiration  E1 mm 1981-2018 Trabucco 

and 

J.Zomer, 

2018 

Annual rainfall  E2 mm 1981-2018 Climate 

Hazards 

Group 
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Component Indicator Code Unit Period Data Source 

InfraRed 

Precipitatio

n (CHIRPS) 

Aridity index E3   1970-2000 Consortium 

for Spatial 

Information 

Flood index E4   1989-2015 (Luu, von 

Meding, & 

Mojtahedi, 

2019) 

 

Elevation  E5 m 2016 ASTER 

GDEM 

version 3 

Priestley–Taylor 

alpha coefficient 

E6   1970-2000 Consortium 

for Spatial 

Information 

Impervious surface 

ratio 

E7 % 2000-2018 Vietnam 

statistical 

yearbook  

Population density  E8 perso

n/km2 

2000-2019 Vietnam 

statistical 

yearbook  
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Component Indicator Code Unit Period Data Source 

Population growth 

rate  

E9 % 2000-2020 Vietnam 

statistical 

yearbook  

Sensitivity Irrigation -Eroded 

earth, rock 

S-1 m3 1989-2015 (Luu et al., 

2019) 

 

Economic loss S2 Millio

n 

VND 

1989-2015 (Luu et al., 

2019) 

Soil Water Stress S3   1970-2000 Consortium 

for Spatial 

Information 

Agricultural 

production land 

S4 km2 2000-2018 Vietnam 

statistical 

yearbook  

Female  S5 Thous

-and 

peopl

e 

2000-2018 Vietnam 

statistical 

yearbook  

Poverty rate S6 % 2000-2018 Vietnam 

statistical 

yearbook  
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Component Indicator Code Unit Period Data Source 

Adaptive 

Capacity 

Water Use 

Efficiency 

AC1 g/Cm
2 mm 

2000-2019 Calculated 

from NPP 

and 

evapotransp

iration 

Rain Use 

Efficiency 

AC2 g/Cm
2 mm 

2000-2019 Calculated 

from NPP 

and 

precipitatio

n 

Leaf area index 

(LAI) 

AC3 m2/m2 2000-2019 MODIS 

data 

(MOD15A

2) 

River density  AC4 m/km
2 

2010 Hanoi 

University 

of Science 

Road density  AC5 m/km
2 

2010 Hanoi 

University 

of Science 

Pervious surface AC6 % 2000-2018 Vietnam 

statistical 

yearbook  
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Component Indicator Code Unit Period Data Source 

Percentage of 

trained employed 

workers at 15 years 

of age and above 

AC7 % 2000-2018 Vietnam 

statistical 

yearbook  

Total foreign direct 

investment until 

2018  

AC8 Mil.U

SD 

2000-2018 Vietnam 

statistical 

yearbook  

Number of health 

establishments 

AC9 Establ

ish-

ments 

2000-2018 Vietnam 

statistical 

yearbook  

Percentage of 

urban population 

provided with clean 

water by 

centralized water 

supply system 

AC10 % 2000-2018 Vietnam 

statistical 

yearbook  

Percentage of 

household having 

hygienic water 

AC11 % 2000-2018 Vietnam 

statistical 

yearbook  

Annual income  AC12 Thous

and 

VND 

2000-2018 Vietnam 

statistical 

yearbook  

The water vulnerability assessment was determined by combining important spatial 

indicators that include the evapotranspiration, annual precipitation, aridity index, 

soil water stress, Priestley–Taylor alpha coefficient, leaf area index, water use 
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efficiency and rain use efficiency. Annual precipitation data was collected from 

Climate Hazards Group Infrared Precipitation with Station data (CHIRPS) for the 

years 1981-2018 when floods and droughts were studied (Isundwa and Mourad, 

2019). Aridity index (AI) was evaluated from mean annual precipitation and mean 

annual reference evapo-transpiration (Trabucco and J. Zomer, 2018). It can be 

acquired from the Consortium for Spatial Information. Higher aridity index 

indicates less aridity and this data can be applied for research on environmental 

conservation, sustainable water development and climate change projects. 

The annual soil water stress was estimated by the average of monthly soil water 

stress. Soil stress coefficient (Ksoil) represents soil water stress (SWS) which was 

calculated by the ratio of monthly soil water content (SWCm) and the maximum 

amount of soil water content for evapotranspiration process (SWCmax) according 

to this formulation (Trabucco, 2010):  

Ksoil = SWCm/ SWCmax 

SWS = Ksoil * 100 

Leaf Area Index (LAI) is defined as the leaf occupied area in a unit of land (Fang 

and Liang, 2014). The research used the annual LAI values in standard deviation of 

the leaf area index (LAI) for the 19 years from February 2000 to December 2019, 

which processed the MODIS images – MOD15A2 version 6 product. This dataset 

is the acquisition of the Terra sensor in an 8-day composite dataset with a 500m 

resolution. The version 6 product is of superior quality compared to other versions 

of 1000m resolution. MODIS land products were validated by the MODIS Land 

Team and Earth Observing System Validation Program Office (Justice et al., 2002; 

Morisette et al., 2002). 

Water Use Efficiency (WUE) is presented as the amount of biomass produced 

(gram of carbon mass per m2) per mm of water used by crops (Hatfield and Dold, 

2019). Annual water use efficiency is calculated as the ratio of net primary 

production (g C/m2/mm) per amount of water loss which were defined by units of 

annual evapotranspiration (mm). Rain Use Efficiency (RUE) is identified by the 

ratio of the net primary production and amount of annual precipitation (Dardel et 
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al., 2014). Net primary production (NPP) is identified as total amount the carbon 

which ecosystems receive through the photosynthetic reduction of CO2 discounted 

for plant autotrophic respiration (Chapin and Eviner, 2007; Running et al., 2000). 

Photosynthesis is affected by droughts, floods and other types of extreme climate 

patterns (Zhang et al., 2017). NPP has the negative correlation with water disasters. 

So, the estimation of NPP plays an important role in predicting climate change and 

its impact on water issues that increasingly threaten the ecosystem. This paper used 

NPP as an indicator to assess water vulnerability index. NPP datasets were acquired 

from Terra MODIS 17A3H with a resolution of 500m for the study site covering 

the period 2000-2019. 

5.3.3 Mapping of satellite data 

Spatial data after collecting were processed in ArcGIS 10.4 using ModelBuilder 

function. Leaf Area Index, Precipitation or Net Primary Production are displayed 

as time series spatial raster image. ModelBuilder makes it possible to analyse these 

data through analytical procedures. The model created from this function can be 

transferred into the tool and then allowed to share and be applied in other studies 

that examined different regions. ModelBuilder is a visual programming tool that 

serves to build workflows with a sequence. Figure 5.4 presents the explicit 

modelling process of extracting precipitation from remote sensing datasets. Other 

spatial data are analysed with a similar process. The blue blocks are primary input 

data, the yellows ones are geo-processing tools and the green blocks are the results 

of one geo-processing tool and subjected to the input of another tool in the model. 

The model in Figure 5.4 consists of five steps each one using a processing tool: (1) 

evaluating the world’s average precipitation from 1970 to 2018 by raster calculation 

tool or cell calculation tool; (2) extracting data for study area by extract by mask 

tool; (3) determining statistic values for each region or area by zonal statistic tool; 

(4) reporting the results on a table by zonal statistic; and (5) converting these data 
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into an Excel spreadsheet. Extracted data from satellite images are analysed in the 

following steps using Excel and R programming. 

 

 Figure 5.4 The example of a GIS-based model for precipitation data processing  

Yearly actual evapotranspiration data was estimated by the average of 

evapotranspiration from 1950 to 2000 (Trabucco, 2010). The annual precipitation 

in Vietnam ranges from about 1480 mm to 3270 mm and the mean annual 

evapotranspiration is about 810 mm to 1220 mm (Figure 4.5). While annual 

precipitation is higher in the central region and lower in the north area of Vietnam, 

the provinces in the country’s south west region represent have more annual 

evapotranspiration. Figure 5.5 illustrates the Vietnam aridity index which is 

extracted from the Global Aridity Index dataset with high-resolution (30 arc-

seconds) global raster climate data from 1970 to 2000. The aridity index for all 

provinces in Vietnam is higher than 0.65 which means Vietnam belongs to the 

humid climate class according to Table 5.2. The most humid area in Vietnam is the 

central coast region with an aridity index of nearly 1.5. 
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Table 5.2 The Classification of climate types based on aridity index (adapted from 

(Trabucco and J. Zomer, 2018))   

Aridity Index Climate type 

< 0.03 Hyper Arid 

0.03-0.2 Arid 

0.2-0.5 Semi-Arid 

0.5-0.65 Dry sub-humid 

> 0.65 Humid 

Provinces in Vietnam’s south central coast region have the highest value of soil 

water stress with more than 80% of water available for evapotranspiration, 

indicating high water content in soil so there is less water vulnerability in this area. 

In contrast, Khanh Hoa and Ninh Thuan provinces experience less soil water stress 

and higher water vulnerability with SWS value ranging from 61% to 67%. The 

Priestley–Taylor alpha coefficient (PAC) was calculated by the fraction of annual 

actual evapotranspiration and the annual potential evapotranspiration (Trabucco, 

2010). The value of PAC ranges from 0-100%. The higher value of PAC illustrates 

lower water vulnerability so consequently, PAC was selected as one of the 

indicators for assessing water vulnerability. It can be seen in the figures below that 

while the north of Vietnam has higher PAC values than other regions, the central 

highland and south central coast experience lower PAC values.  

Low values of LAI can be seen in the southeast area and Mekong Delta, followed 

by the Central Highlands zone. Hau Giang and Long An provinces had a LAI index 

below 30 m2/m2, while in comparison, Ca Mau and Bac Kan experienced higher 

LAI values with nearly 115 m2/m2 (Figure 4.5). LAI are influenced by natural 

factors, for example climate but there are also human factors involved such as 

farming and deforestation activities. LAI is deemed to be an indicator which 
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impacts on water resources. This is due to the processes of evapotranspiration, 

water flow and infiltration, and aquifer recharge (Taugourdeau et al., 2014). Higher 

level of LAI value results in a much reduced water risk (Isundwa and Mourad, 

2019). 

Higher WUE and RUE values can be observed in the Mekong Delta. In contrast, 

the Central Coast area and Central Highlands have experienced lower levels of 

WUE and RUE. The country’s northwest region also suffered from poor water use 

efficiency. The provinces Lam Dong, Kon Tum and Dak Nong in the Central 

Highlands area have the lowest value of NPP; about 50 g C/m2 resulting in lower 

WUE and RUE. In contrast, Mekong Delta and Red River Delta experienced higher 

levels of NPP. Ca Mau province witnessed the highest value of NPP with 230 g 

C/m2 and it had the highest level of WUE and RUE, followed by Bac Lieu province.   
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Figure 5.5 Mapping of spatial distribution for Vietnam’s provincial remote sensing 

indicators 
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5.3.4 The weights of indicators 

The weights of selected indicators are identified in Table 5.3 that represent their 

contribution to the issue of water quantity vulnerability. There are four main 

methods to evaluate indicators’ weights: (1) identifying the weights by expert 

consultants and interviews; (2) assumption of the equal weight for all variables; (3) 

applying multivariate statistical techniques; and (4) using the Iyengar and 

Sudarshan method. The fourth method is the easiest to apply and the most feasible 

for this study. The indicators’ weights were determined by the Iyengar and 

Sudarshan method via the Excel function. These weights were calculated 

independently for each component of exposure, sensitivity and adaptive capacity 

that are illustrated in Table 5.3. Impervious surface ratio, female ratio, population 

density and river density were identified as having higher relative importance 

compared to other indicators in this vulnerability assessment. 
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Table 5.3 Results of the weight calculation 

Component Indicator Code Weight 

Exposure  Evaporation  E1 0.135 

Annual rainfall  E2 0.0951 

Aridity index E3 0.0908 

Flood index E4 0.0877 

Elevation  E5 0.079 

Priestley–Taylor 

alpha coefficient 

E6 0.1013 

Impervious surface 

ratio 

E7 0.1709 

Population density  E8 0.1433 

Population growth 

rate  

E9 0.097 

Sensitivity Irrigation -Eroded 

earth, rock 

S-1 0.1666 

Economic loss S2 0.1482 

Soil Water Stress S3 0.1851 

Agricultural 

production land 

S4 0.1276 
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Component Indicator Code Weight 

Female ratio S5 0.215 

Poverty rate S6 0.1575 

 

 

 

 

Adaptive 

Capacity 

Water Use 

Efficiency 

AC1 0.0833 

Rain Use Efficiency AC2 0.0939 

Leaf area index 

(LAI) 

AC3 0.0703 

River density  AC4 0.1325 

Road density  AC5 0.1062 

Pervious surface AC6 0.0665 

Percentage of 

trained employed 

workers at 15 years 

of age and above 

AC7 0.079 

Total foreign direct 

investment until 

2018  

AC8 0.0816 

Number of health 

establishments 

AC9 0.0897 

Percentage of 

population provided 

AC10 0.0729 
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Component Indicator Code Weight 

with clean water by 

centralized water 

supply system 

Percentage of 

household having 

hygienic water 

AC11 0.0468 

Annual income  AC12 0.0773 

 

5.3.5 Spatial distribution of water vulnerability  

The indices of E, S, AC and WVI were then calculated and ranked for ecological 

zones and provincial areas as well. Of the eight ecological zones, the northeast area 

experienced both the lowest level of exposure, sensitivity and adaptive capacity 

which are indicated in Table 5.4. Very low vulnerability occurs in Southeast area. 

The Mekong Delta although has the highest level of sensitivity, it exposes low 

vulnerability due to exhibiting very high level of adaptive capacity compared to the 

other ecological zones. The South Central Coast area is greatly influenced by flood 

disasters and extreme climate events (Luu et al., 2019). It is one reason causing the 

highest level of water vulnerability sensitivity in the South Central Coast (Table 

5.4). The study results suggest that the very high vulnerable area are the South 

Central Coast and Northeast, followed by Red River Delta and Central Highlands. 

Table 5.4  Results of water quantity vulnerability assessment for the ecological 

zones 

EZ Exposure Sensitivity 
Adaptive 

Capacity 
WVI 

Vulnerability 

level 

Northeast 0.3193 0.1671 0.1671 0.4398 Medium 
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Northwest 0.3323 0.1698 0.1764 0.4419 Very high 

Red River 

Delta 

0.3229 0.1681 0.1701 0.4403 High 

North Central 

Coast 

0.3270 0.1795 0.1885 0.4393 Low 

South Central 

Coast 

0.3401 0.1763 0.1861 0.4435 Very high 

Central 

Highlands 

0.3280 0.1695 0.1757 0.4406 High 

Southeast 0.3202 0.1713 0.1816 0.4366 Very low 

Mekong 

Delta 

0.3269 0.1801 0.1891 0.4393 Low 

The indices for exposure, sensitivity and adaptive capacity at the provincial level 

were also established (see Figure 5.6). The most vulnerable provinces are Yen Bai, 

Binh Dinh, Khanh Hoa, Ho Chi Minh, Ninh Thuan, Da Nang and Quang Nam. In 

contrast, Binh Duong, Hoa Binh, Tay Ninh, Nghe An, An Giang, Ha Tinh 

experienced a low level of water vulnerability (Figure 5.7a). Results concerning 

provincial water vulnerability indices can help local authorities with their water 

systems planning and deciding on what is the best strategy to implement. 
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Figure 5.6 Spatial distribution for provincial exposure index (a), sensitivity index (b) and adaptive capacity index (c) 
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Figure 5.7 Spatial distribution of provincial water quantity vulnerability index (a), 

and ecological water quantity vulnerability index (b)  

The vulnerability index is influenced by all three components of exposure, 

sensitivity and adaptive capacity. The spatial distribution of water quantity 

vulnerability for Vietnam’s eight ecological zone is provided in Figure 5.7b. This 

picture clearly indicates the most vulnerable ecological zones which are the South 

Central Coast and the North West. Those areas also experienced poor water use 

efficiency levels. The South Central Coast area has a higher exposure index with 

lower adaptive capacity and it suffers the highest vulnerability index. It is also 

evident that the South East is the least vulnerable due to the lower level of exposure 

and the fact that the Mekong Delta is highly resilient because adaptive capacity 

there is very high.  

 

 



 

111 

 

 

5.4 Overall discussion  

The approach can be applied easily for other studies and regions with freely 

accessible spatial data sources. Assessing water quantity vulnerability is to identify 

regions and communities that need to prioritize planning and implementing water 

strategies in terms of water stress across the world. The finding indicates the South 

Central Coast has very high level of water quantity vulnerability. The South Central 

Coast area also was identified as the highest vulnerable area to typhoons and floods 

(Nguyen et al., 2019; Luu et al., 2019). The Northwest region was illustrated as 

very high vulnerable area in the study due to the lower level of community’s 

resilience which was presented in the other studies of vulnerability assessment for 

Vietnam (Few & Tran, 2010; Thanh Thi Pham et al., 2020). The framework 

employed 27 important spatial-temporal indicators, however; it did not explore 

other influential factors such as freshwater availability, water stress, water 

withdrawal for different reasons or other institutional indicators due to the 

unavailability of data in the study area. In addition, water related hazards like water 

pollution and contamination should be undertaken in the research. These aspects 

should be incorporated in further water vulnerability assessment studies. 

Uncertainties in the study should be addressed through verification processes by 

survey, questionaries and a communication between experts from different fields 

such as social, technical and political fields. For example, indicator’s selection and 

indicator’s weight should be cross-checked through consultations with scientists 

and local officials so that it will help the current framework become more refined. 

In the scope of the study, the verification of the results were carried out on the total 

number of human affected (deaths, injured, missing) by flood, flash-flood, rain, 

storm and typhoon and water quality vulnerability index using a multiple linear 

regression analysis in R. Human affected data were collected from Sendai 

Framework for Disaster Risk Reduction the Central Committee for Flood and Storm 

Control (CCFSC) of Vietnam from 1989 to 2015. The coefficient of determination 

(R2) is one of statistical measures which is applied to assess the model performance 

(Anandhi and Kannan, 2018).  If the R-squared is greater than 60%, it is considered 
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acceptable for hydrological simulation and prediction (Anandhi and Kannan, 2018; 

Moriasi et al., 2007; Santhi et al., 2001). There was a linear relationship between 

the water quantity vulnerability and the observations of human affected by water 

related hazards with the multiple coefficient of determination (R-squared) of 0.6463 

and residual standard error of 0.6406. It can be seen from figure 5.8 that the results 

of new approach are reasonable as residuals are close to straight dashed lines. 

 

 

Figure 5.8 Linear regression plots 

Furthermore, the further water vulnerability assessment should consider the concept 

of sustainability in the DPSIR (Driver-Pressure-State-Impact-Response) 

framework for the selection of vulnerability’s indicators. Moreover, it should be 

applied machine learning methods like Analytical Hierarchy Process (AHP), the 

Fuzzy Logic, Weights of Evidence (WOE) and Logistic Model Tree (LMT) to 

improve the results of the framework (Khosravi et al., 2018). Finally, the accepted 

framework should integrate climate change and population growth scenarios so that 

a future water vulnerability index can be predicted. 

The results of the study are still beneficial although its limitations and uncertainties. 

Firstly, it can be used for water quantity vulnerability adaptation and mitigation 

research by providing standardized input data for site selection of alternative water 

practices. Secondly, it helps practitioners and administrators identify influencing 
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factors to water quantity vulnerability in order to support them more understanding 

the water system. In addition, it allows policy makers appreciate baseline data and 

wide range of information for water implementation practices. Finally, the water 

quantity vulnerability framework of the study employing updated spatial datasets is 

an indispensable approach for countries where lack of efficient data for conducting 

vulnerability and impact analyses. 

5.5 Conclusions 

Appropriate evaluation of water vulnerability is vital if we are to understand the 

impact of climate change and human activities on water resources. Water managers 

must have the most effective water management strategies in the future where 

climate change will influence much of what human societies do. Several methods 

and frameworks of vulnerability assessment are available, but their performance 

can be compromised by several obstacles due to the unfeasibility and unavailability 

of input data. This study developed a new assessment framework that considered 

the contribution of satellite datasets like Terra MODIS and the utilization of GIS-

based model. The integration is very useful and flexible for the complexity of 

vulnerability assessment. Moreover, this study calculated the indices of water 

quantity vulnerability components and constructed spatial distribution maps of 

water exposure, sensitivity and adaptive capacity in different scales for a case study. 

This part of the study was based on 27 chosen time series indicators. The findings 

indicated that the South Central Coast experiences extremely vulnerable, while the 

South East region is the least vulnerable region. Yen Bai, Binh Dinh, Khanh Hoa, 

Ho Chi Minh, Ninh Thuan, Da Nang and Quang Nam provinces are classified as 

very high vulnerability. Through the calculation of indicators’ weight, it can be 

concluded that more responsible variables for high level of water vulnerability are 

impervious surface ratio, population density, healthcare establishment, water use 

efficiency and river density. Vietnam’s growing population is accompanied by an 

increase in the impervious surface infrastructures like high-rise building and 

deforestation. These activities are triggering a high rate of water quantity 

vulnerability. A future work should be considered scenarios namely population, 
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water availability, climate change to enhance water vulnerability evaluation and 

increase the resolution of the framework in identifying vulnerable hotspots. In 

addition, the machine learning methods and field observations should be integrated 

to increase the accuracy of such framework. 
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6.1 Introduction 
Soil moisture (SM) has played vital roles in hydrological state and ecological 

processes which affects energy, water, and carbon cycles such as evaporation, 

transpiration, diversity and rainfall-runoff of various ecosystems (Ågren et al., 

2021; efBabaeian et al., 2021; Robinson et al., 2008). Soil moisture is also a crucial 

predictor indicator for identify crop water stress, which helps agricultural drought 

monitoring. Thorough knowledge about the spatiotemporal patterns of SM is of 

essential importance for understanding water budgets in hydrological systems 

which helps prevent agricultural drought problems, water vulnerability, the issues 

of water shortage, and improve properly crop production across the world 

(Chaudhary et al., 2021; Tuller et al., 2019). Traditional ground techniques of soil 

moisture based on field experiments, in-situ soil sensing instrumentation, and 

geophysical and mobile sensing (Cheng et al., 2022; Robinson et al., 2008). The 

disadvantages of these method are high cost with small-scale monitoring. Remotely 

sensed measurements including active remote sensing and passive remote sensing 

recently have employed effectively for SM monitoring globally (Chaudhary et al., 

2021; Cheng et al., 2022; Dubois et al., 2021; Prasad et al., 2018; Warner et al., 

2021). At present, various satellite systems via microwave remote sensing like Soil 

Moisture Active Passive (SMAP) (Entekhabi et al., 2010), Advanced Scatter Meter 

(ASCAT) (Wagner et al., 2013), and Soil Moisture and Ocean Salinity (SMOS) 

(Kerr et al., 2001) have been explored for global SM monitoring with spatial 

resolutions of 10km, 50km, and 35km, respectively. With the low spatial resolution, 

SM data obtained from these aforementioned missions have not been used widely 

in farm scales for agricultural management.  

Recent advances in earth observation technology such as using active and passive 

remote sensing (RS) imagery have been dedicated to solving the problems of SM 

dynamics retrieval on farming lands. Active remote sensing like Unmanned Aerial 

System (UAS) with highly flexible flight schedules and high spatial resolutions of 

images offer a great opportunity to estimate the SM for farm-scales (efBabaeian et 

al., 2021). The application of high-resolution about 2m images from airborne 

LIDAR can accurately estimate the SM dynamics to support precision agriculture 

production (Ågren et al., 2021). However, the deployment of UAS and LIDAR have 
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struggled with some obstacles such as limited fight time, high operation cost, and 

challenges with hyperspectral images processing which limits the application of 

active RS for SM monitoring (Gago et al., 2015). 

Multispectral remote sensing sensors such as Sentinel 1 and Sentinel 2 datasets 

from European earth observation program Copernicus have employed recently to 

capture effectively the SM content in several agricultural areas across the world 

with the spatial resolution of 10-100m (El Hajj et al., 2017; Georganos et al., 2018). 

The free-of-charge imagery from Sentinel date at high spatial and temporal 

resolutions are a proper solution to address the challenges of hyperspectral images 

in agricultural SM prediction. The C-band of the Sentinel-1A and-1B Synthetic 

Aperture Radar (SAR), and vegetation and soil indices from Sentinel -2A and -2B 

have been generated to estimate SM properties at high spatial resolution in the pilot 

scale (Aksoy et al., 2021; El Hajj et al., 2017; Karthikeyan & Mishra, 2021; Ma et 

al., 2021; Prasad et al., 2018; Schönauer et al., 2021; Senanayake et al., 2021). In 

addition, terrain indices from digital elevation (DEM) models such as slope, 

topographic wetness index (TWI), and death-to-water (DTW) index have also been 

used to predict the agricultural SM (Ågren et al., 2021; Murphy et al., 2008). Topo-

hydrological indicators generated from high-resolution DEM data illustrated high 

correlations with soil properties and soil moistures by capturing the hydrological 

processes’ characteristics of specific sites (Zhao et al., 2021; Zhou et al., 2020). 

According to Florinsky et al., (2002), soil properties including soil moisture have a 

significant relationship with topographic attributes, especially in agricultural 

landscapes. 

Machine learning techniques are already commonly applied to handle diverse and 

large volumes of remote-sensing datasets, with very high performances (Carranza 

et al., 2021; Gómez et al., 2020; Gómez et al., 2021; Hosoda et al., 2020; 

Karthikeyan & Mishra, 2021; Ma et al., 2021; Prasad et al., 2018; Schmidt et al., 

2020). Artificial intelligence techniques such as random forest regression (RFR), 

support vector machine (SVM), extreme gradient boosting regression (XGBR), 

CatBoost gradient boosting regression (CBR) have been employed widely to 

estimate soil moisture products with high prediction accuracy (Ågren et al., 2021; 

Carranza et al., 2021; Senanayake et al., 2021). The RFR algorithm performed well 
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to predict the field-scale of soil moisture in China using unmanned aerial vehicle 

(UAV) imagery with coefficient determination (R2) of 0.91 (Ge et al., 2019). The 

XGBR technique was used to estimate the SM dynamics in Swedish forest 

landscape using multiple LIDAR derived digital terrain indices with high 

performance values compared to RFR and SVM (Ågren et al., 2021). In general, 

ML algorithms provide a substantial potential for the SM estimation accurately. In 

this study, a new approach for soil moisture monitoring using the combination of 

three free-of-charge and high-resolution remote sensing datasets including Sentinel 

1, Sentinel 2, and ALOS DSM was presented to estimate the soil moisture in field-

scale. Four well-known ML algorithms including RFR, SVM, XGBR, and CBR 

were employed to test the performance of predictor variables from these datasets. 

The optimisation of hyper-parameters tuning and the selection of predictor 

variables during the construction phase of the ML techniques was applied to 

improve the performance of ML models. The study aims to: (1) assess the 

correlation of prediction indicators derived from multi-spectral images, SAR 

datasets, and ALOS DSM in the SM retrieval; (2) select and optimize features from 

these indicators using genetic algorithm (GA); (3) evaluate the prediction 

performance of the selected ML model (XGBR) with various scenarios of data-

fusion level in the SM prediction while exploring the effectiveness of GA feature 

optimization on the ML model in mapping the SM content at 10 m spatial 

resolution; and (4) compare the estimation accuracy of XGBR model with other 

three well-know ML models using optimal features. The novel framework will be 

expanded to other field-scales or regional scales to build the SM map, which 

provides valuable data for different stakeholders like water managers, local 

authorities, and landholders to practice precision agriculture. 
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Major parts of this chapter were under revision in a peer-reviewed journal (A-rated 

journal):  

 

6.2 Materials and methods 

6.2.1 Study area and soil sample collection 

The study sites are located in the Wests, Goomalling shire (latitude coordinate: -

31°18'S and longitude coordinate: 116° 49' E), and Cookies area - Northam shire 

(latitude: -31° 39' S, and longitude: 116° 39' E) in the agricultural region of Western 

Australia (WA) (Figure 6.1). The WA has a diverse type of agricultural production 

including vegetable industries which contributes a majority of total value of 

agricultural production in the region. Pastoral and cropping are two key agricultural 

practices in the WA (Kingwell et al., 2020). According to Australian Bureau of 

Agricultural and Resource Economics, high-rainfall, wheat-sheep, and pastoral 

zones are the main agricultural climatic zones in Australian (Salim & Islam, 2010). 

The type of climate in the WA is a Mediterranean climate where is hot and dry in 

summer, and cool and wet in winter seasons. The rainfall season is from April and 

October which ranges between 300 and 600 mm (Kingwell et al., 2020). 

 

Nguyen, T.T., Ngo, H.H., Guo, W., Chang, S.W., Nguyen, D.D., Nguyen, 

C.T., Zhang, J., Liang, S., Bui, X.T., Hoang, N.B. 2022. A low-cost 

approach for soil moisture prediction using multi-sensor data and machine 

learning algorithm. Science of The Total Environment, 833, 155066. 
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Figure 6.1   Location of the study sites and sampling points in Wests and Cookies 

area

Soil sampling points were selected from a binary land-use classification map which 

was produced by extreme gradient boosting classification from very high spatial 

resolution Google Earth imagery and Sentinel 2 imagery which described in detail 

in Chapter 3.

6.2.2 Research framework

The research framework consists of five main steps (Fig. 6.2): (1) collecting surface 

soil dataset (0-10cm) from the binary land-use classification map; (2) generating 

predictor indicators from optical (Sentinel 2), synthetic aperture radar (Sentinel 1), 

and terrain indices derived from ALOS DSM; (3) computing Pearson’s correlation 

analysis and feature selection using genetic algorithm; (4) evaluating the 

performance of the XGBR model with five different scenarios developed from 

features derived from S1, S2, and ALOS DSM with 70% of SM measured dataset 

used for models’ training and 30% for models’ validation; and (5) comparing the 

performance of the XGBR model with other ML techniques using optimal features 

and building the SM dynamics map for the study areas. 

The prediction accuracy of ML techniques was tested with different scenarios 

which were developed based on the level of S-1, S-2, and ALOS DSM data fusion 
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and the results from feature selection and optimization using GA. The five scenarios 

were presented in Table 3. While SC1 comprises of 22 indicators derived from S-2 

and 3 indicators from ALOS-DSM, SC2 includes 27 S1 features, and three features 

derived from ALOS-DSM. SC3 consists of 22 S-2 predictor variables and 27 S1 

variables. SC4 contains the total 52 features generated from both S-1, S-2, and 

ALOS DSM. The potential of 21 optimal features from GA selection for SM 

prediction was evaluated in SC5. The scenarios were presented in Table 6.2 below. 

The aim of scenarios development was to evaluate the impact of the level of 

different features combinations and the application of feature selection algorithm 

on how well the SM dynamic prediction went. 

Table 6.1 Lists of developed scenarios for soil moisture estimation 

Scenario Data fusion Number of features 

SC1 S-2+DEM 25 

SC2 S-1+DEM 30 

SC3 S-1+S-2 49 

SC4 S-1+S-2+DEM 52 

SC5 S-1+S-2+DEM with feature selection 21 

 

6.2.4 Machine learning algorithms 

6.2.4.1 Extreme gradient boosting (XGBR) 

This algorithm is described in Chapter 3, Section 3.2.4.1. 

6.2.4.1 Random forest regression (RFR) 

This algorithm is described in Chapter 3, Section 3.2.4.2. 

6.2.4.2 Support vector machine (SVM) 

 This algorithm is described in Chapter 3, Section 3.2.4.3. 

6.2.4.3 CatBoost gradient boosting regression (CBR) 

This algorithm is described in Chapter 3, Section 3.2.4.4. 

6.2.5 Genetic algorithm (GA) for feature selection 

This algorithm is described in Chapter 3, Section 3.2.5. 
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6.2.6 Model performance evaluation 

To assess the model performance of the soil moisture estimation, two stardard 

testing criteria were used to evaluate the performance of ML techniques with 

various scenarios including: the root mean square error (RMSE), and the coefficient 

of determination (R2). These indicators are presented in Chapter 3, Section 3.2.6. 

6.3 Results and discussion 

6.3.1 Correlation analysis of predictor indicators and measured SM 

The relationship between the input features derived from S-1, S-2, ALOS-DSM and 

measured SM content was computed by Pearson’s correlation coefficient method. 

According to Table 6.3, indicators derived from ALOS imagery have a higher 

correlation with the SM content compared to other indicators. While DEM and 

Slope obtained negative correlations, TWI illustrated a positive correlation with the 

SM. All vegetation indices generated from S-2 demonstrated negative correlation 

with the SM content. Some these indices revealed higher correlations with the SM 

content including NDVI, SAVI, and IRECI. Colour index from soil indices had a 

higher correlation to the SM compared to another SIs. NDWI confirmed a negative 

and high relationship with the estimation of SM. Regarding to the S-1 derived 

indicators, most transformation bands obtained weak correlations with the SM 

content, however; VV, VH, and most GLCM textures from VV confirmed strong 

relationships with the measured SM. 

Table 6.2 Pearson’s correlation analysis of input variables and measured SM 

Input 

variables 

Correlation 

coefficient 

(r) 

Input variables Correlation 

coefficient 

(r) 

B2 0.005 

 

VV-VH 0.076 

B3 -0.046 

 

VV/VH -0.045 

B4 0.087 

 

VH/VV 0.045 

B5 0.064 VH_Contrast -0.073 
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Input 

variables 

Correlation 

coefficient 

(r) 

Input variables Correlation 

coefficient 

(r) 

 

B6 -0.155 VH_Dissimilarity -0.045 

 

B7 -0.247 VH_Homogeneity 0.022 

 

B8 -0.279 VH_Angular 

Second Moment 

-0.037 

B8A -0.355 VH_Energy -0.002 

B11 0.049 VH_Maximum 

Probability 

-0.009 

NDWI -0.366 VH_Entropy -0.014 

B12 0.125 VH_GLCM Mean -0.437 

RVI -0.389 VH_GLCM 

Variance 

-0.440 

 

NDVI -0.402 VH_GLCM 

Correlation 

0.042 

GNDVI -0.249 VV_Contrast -0.328 

NDI45 -0.055 VV_Dissimilarity -0.382 

SAVI -0.499 VV_Homo-

geneity 

0.401 

MCARI -0.070 VV_Angular 

Second Moment 

0.332 

IRECI -0.568 VV_Energy 0.352 

BI 0.031 VV_Maximum 

Probability 

0.311 

BI2 -0.111 VV_Entropy -0.377 

CI -0.329 VV_GLCM Mean -0.415 

RI 0.142 VV_GLCM -0.414 
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Input 

variables 

Correlation 

coefficient 

(r) 

Input variables Correlation 

coefficient 

(r) 

Variance 

VH -0.414 VV_GLCM 

Correlation 

0.311 

VV -0.347 

 

DEM -0.616 

(VH+VV)/2 -0.403 Slope -0.495 

VH-VV -0.083 TWI  0.368 

 

6.3.2 Evaluation and comparison of scenarios and different ML models 

The proposed XGBR model was trained and tested with five scenarios which were 

developed by various features extracted from S-1, S-2 and ALOS DSM (Table 6.4). 

The SC5 with optimal number of features including seven vegetation indices ( 

NDWI, RVI, NDVI, GNDVI, SAVI, MCARI, IREC1), 11 S-1 derived indicators 

(VH, VV, MeanVHVV, VV_Contrast, VV_Dissimilarity, VV_Homogeneity, 

VV_Angular Second Moment, VV_Energy, VV_Maximum Probability, 

VV_Entropy,  VV_GLMC Correlation), and both three variables from ALOS DSM 

yielded the highest SM estimation accuracy with the highest R2 of 0.891 in the 

validation phase and the lowest RMSE of  0.875% , followed by SC4 with the 

maximum number of features extracted from selected sensors.. A combination of 

S-2 and ALOS DSM derived predictor features illustrated a higher performance 

than the combination of S1 and DEM and S-1 and S-2 generated indicators.  

Three well-known ML techniques including CBR, RFR, and SVM were employed 

to compare the accurate estimation of the SM content with the proposed XGBR 

model using multi-source EO data fusion. The comparison of ML techniques was 

conducted with optimal features derived from S-1, S-2, and ALOS DSM. 

According to table 6.5, gradient boosting regression algorithms (XGBR) 

outperformed RFR and SVM. While XGBR achieved a highest prediction accuracy 

with R2 = 0.891 and RMSE = 0.875, followed by CBR with R2 = 0.789 and RMSE 

= 1.217 and SVM with R2 = 0.493 and RMSE = 1.850. The RFR produced a lowest 
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prediction performance with R2 = 0.368 and RMSE = 2.491.   

Table 6.3 Performance comparison of ML algorithms on agricultural SM 

estimation 

No Machine learning model R
2
 testing 

(30%) 

RMSE 

(%) 

1  Extreme gradient boosting regression 

(XGBR)  

0.891 0.875 

2 CatBoost gradient boosting regression 

(CBR) 

0.789 1.217 

3 Random Forests (RFR)  0.368 2.491 

4 Support Vector Machine (SVM)  0.493 1.850 

 

Figure 6.3 presents the scatter plots of the estimated versus measured the SM 

content from four well-known ML techniques in testing phase. The XGBR yielded 

a better prediction with optimal variables extracted from these multiple sensors 

using the genetic algorithm compared to CBR, RFR, and SVM. The proposed 

model using XGBR and GA indicates an R2 value of 0.891, showing a higher 

prediction result compared to recent SM monitoring studies with R2 reached 0.83 

in SM prediction study using S1 and Landsat-7 data in Egypt (Mohamed et al., 

2020) and R2 of 0.72 in surface soil moisture estimation using S1 and S2 in India 

(Tripathi & Tiwari, 2020). 
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Figure 6.2  Scatter plots of the measured SM and estimated SM using (a) XGBR-

GA, (b) CBR, (c) RFR, (d) and SVM. 

6.3.3 Spatial distribution patterns of SM maps 

Based on scenario 5, the spatial dynamics of SM maps built for the Wests and 

Cookies areas using S-1, S-2, and ALOS DSM data fusion by the XGBR-GA model 

are revealed in Fig. 6.4. The XGBR model for the SM prediction in bare-soil pixels 

obtained the low level of uncertainty and stable prediction capabilities with the low 

standard deviation value. The proposed moisture prediction model using the 

XGBR-GA should be calibrated and tested with large-scale earth observation data, 

over several of land-use types, and various soil-depths. 
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Figure 6.3 Maps of SM content in study areas: (a) Wests and (b) Cookies using 

XGBR and multiple data fusion. 

6.3.4 Relative importance of SM prediction indicators 

The estimation accuracy of the SM content has been greatly affected by predictor 

indicators selection and machine learning algorithm. The higher level of data fusion 

(

a

) 

(

b

)  
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with optimal feature selection using the GA illustrated better prediction 

performance for retrieving the SM content. The XGBR had a higher capability to 

predict the SM pattern. The study also indicated that the GA could help improve 

the prediction accuracy of the SM estimation which is similar with the results from 

recent studies using ML models and GA for soil properties estimation (Xie et al., 

2015). The successful application of ML models and big data from RS imagery in 

the SM prediction has been presented in much research at the regional, national and 

global scale (Carranza et al., 2021; Chaudhary et al., 2021; Cheng et al., 2022; Fang 

et al., 2021; Ma et al., 2021; Senanayake et al., 2021). The relative importance of 

optimal features using the GA is presented in Fig. 8. ALOS DSM-derived terrain 

indices played important roles in the SM prediction. Terrain variables were also 

mentioned as important indices for the SM prediction in previous studies (Ågren et 

al., 2021; Leempoel et al., 2015; Zhao et al., 2021). In addition, dual polarization 

VV, VH, and GLCM textures derived from S-1 are also crucial indices for the SM 

prediction. The SAR-based prediction indices can improve the estimation of soil 

moisture (El Hajj et al., 2017; Ma et al., 2020; Zhao et al., 2021). VH was illustrated 

as the most sensitive index for the SM retrieval in this study. Vegetation indices 

were selected as optimal features for the SM prediction such as the normalizer 

difference vegetation index (NDVI), and soil adjusted vegetation index (SAVI) 

which have been applied for not only vegetation classification, but also further 

indirectly the SM estimation (Kogan, 1995; Reza et al., 2020). Normalized 

difference water index (NDWI) from Sentinel 2 also highly correlated with the SM 

content (Ma et al., 2020). The soil moisture prediction model using the XGBR-GA 

should be calibrated and tested with large-scale earth observation data, over several 

of land-use types, and various soil-depths. 
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Figure 6.4 Variable importance of optimal features derived from multi-source EO 

data. 

6.4 Conclusions 
 

The present work presented a novel framework using the predictor variables from 

Sentinel datasets at 10m and ALOS DSM at 30m spatial resolution with a state-of-

art machine learning technique (XGBR) and GA for the SM prediction. It is used 

for estimating the SM content in study sites of Western Australia. It can be seen 

that the combination of the selected remote sensing dataset illustrated to be very 

effective for the SM prediction. High level of data fusion and the GA method for 

optimal features selection showed remarkably better prediction accuracy than single 

sensor derived features or scenarios without feature optimization. The XGBR 

model with 21 optimal prediction variables using genetic algorithm approach 

illustrated the highest prediction performance (R2=0.891, RMSE= 0.875%). In 

addition, the proposed XGBR model combined with GA algorithm for variables 

selected can produce SM maps at 10m spatial resolution using freely remote sensing 
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datasets with a precise accuracy at different scales from field plots to region areas. 

VH and DEM had the highest relative importance in predicting the SM dynamics. 

The proposed model should be tested in large-scale areas with various land-use 

characteristics in further studies. In conclusion, this SM pattern monitoring 

approach can assist agricultural drought monitoring, the development of 

appropriate water management strategies, and precision agriculture in terms of 

climate change.  
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7.1 Introduction 
Soil is one of the largest carbon pools in terrestrial ecosystems, and it plays a vital 

role in the global carbon cycles and care of the ecosystem (Lal, 2008; Zhou et al., 

2020b). Agricultural soil organic carbon (SOC) contributes significantly to soil 

quality, soil fertility, agriculture and greenhouse gas emissions reduction by carbon 

sequestration in the agricultural SOC stock (Guo et al., 2021; Navarro-Pedreño et 

al., 2021; Venter et al., 2021). The agricultural SOC depends on land management 

practices, soil property and differs among rainfall zones (Guo et al., 2021; Six et 

al., 1998; Venter et al., 2021). Understanding the agricultural SOC distribution 

spatially is necessary to ensure food security and improve carbon sequestration in 

soil due to the increasing climate change problems (Gholizadeh et al., 2018). High-

precision agricultural SOC data can help local authorities and governments 

establish appropriate strategies for water management and various farmland 

activities (Guo et al., 2021). Climate, ecological processes, agricultural production 

activities, water conditions, soil characteristics, and land management are the key 

factors greatly influencing agricultural SOC.  

The monitoring of agricultural SOC is complex due to the uncertainty of the above 

factors. Conventional SOC monitoring methods based on field experiments are 

time- and labour-consuming and subsequently, SOC mapping in large-scale areas 

is expensive (Forkuor et al., 2017). It is necessary to develop alternative approaches 

that are more cost-effective and accurate in predicting SOC. Numerous studies have 

attempted to solve this problem such as developing environmental models to 

improve the SOC estimation and applying remote sensing sensors to build digital 

SOC maps (Guo et al., 2021a; Guo et al., 2021b; Ha et al., 2021; He et al., 2021; 

Le et al., 2021; Mondal et al., 2017; Zhou et al., 2020). While developed SOC 

prediction models like a Full Carbon Accounting Model (FullCAM) or De-

Nitrification De-Composition (DNDC) need a large amount of information from 

soil type, farming practices, and climate, they have illustrated their limitations in 

the prediction.  

The XGBoost was used in many studies due to its high predictive performance and 

being an effective supervised learning algorithm for addressing various 

classification and regression tasks with promising results (Chen and Guestrin, 
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2016), however; it has not been applied for agricultural SOC monitoring. For these 

reasons, the present study aims to develop a novel framework using free-of-charge 

multi-sensor Sentinel 2 and Sentinel 1 with state-of-the-art extreme gradient 

boosting (XGBoost) to predict agricultural SOC stocks. The specific objectives are 

to: (1) assess the feasibility of using multi-spectral images and SAR dataset in 

estimating agricultural SOC; (2) compare the prediction performance of the 

XGBoost to two other well-known ML techniques (random forest (RF) and support 

vector machine (SVM)) with various scenarios of data-fusion level in agricultural 

SOC prediction; and (3) highlight important predictor features in mapping 

agricultural SOC stock at 10 m spatial resolution. The novel agricultural SOC 

prediction framework will then be expanded so that relevant stakeholders are aware 

of the many advantages for agricultural management, climate change mitigation 

and landholders wanting to make more profit via carbon markets. 

Major parts of Chapter 7 was illustrated in were published in peer-reviewed 

journals:  

 

7.2 Materials and methods 

7.2.1 Study area  

The study sites are the Wests area which belongs to Goomalling shire (latitude 

coordinate: -31°18'S and longitude coordinate: 116° 49' E), and Cookies area which 

belongs to Northam shire (latitude: -31° 39' S, and longitude: 116° 39' E). These 

Nguyen, T.T., Pham, T.D., Nguyen, C.T., Delfos, J., Archibald, R., Dang, 

K.B., Hoang, N.B., Guo, W., Ngo, H.H. 2022. A novel intelligence 

approach based active and ensemble learning for agricultural soil organic 

carbon prediction using multispectral and SAR data fusion. Science of The 

Total Environment, 804, 150187 (IF: 7.963; SJR: Q1). 

Nguyen, T.T. 2021. Predicting agricultural soil carbon using machine 

learning. Nature Reviews Earth & Environment, 2(12), 825-825. 
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areas are located in the agricultural lands of Western Australia (WA). The 

agricultural sector plays an essential role in the WA’s economy. Pastoral and 

cropping are two main agricultural activities in the WA. According to Australian 

Bureau of Agricultural and Resource Economics, there are three key agricultural 

climatic zones in Australian, which are High-rainfall, Wheat-sheep, and Pastoral 

zones (Salim & Islam, 2010). While 95 per cent of gross value of agricultural 

production in the WA comes from the high-rainfall and wheat-sheep zones, only 

5% of agricultural products is produced from pastoral zones. As the agricultural of 

the WA bases totally on rainfall, the main season for crop production in the WA is 

from April to October. The rainfall in growing season ranges between 146 to 294 

mm (Petersen & Hoyle, 2016).  

7.2.2 Soil samples collection 

The methods to collect soil samples is described in detail in Chapter 3, Section 

3.2.3.  

7.2.3 Research framework 

The research process includes four main phases (Fig. 7.1): (1) collection of surface 

soil dataset (0-10cm) based on the binary land-use map; (2) computation of 

predictor variables from optical (Sentinel 2) and synthetic aperture radar (Sentinel 

1) remote sensing data; (3) spatial modelling of agricultural SOC based on 

advanced machine learning techniques including XGBoost, RF and SVM model; 

and (4) evaluating the model’s performance with 70% of SOC dataset generated for 

models’ training and 30% for models’ testing. This was done to select the most 

accurate model for SOC prediction and mapping the spatial patterns of agricultural 

SOC. 
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Figure 7.1 A novel established framework of agricultural SOC prediction using 

multi-sensor data fusion

7.2.4 Remote sensing data acquisition and image processing

7.2.4.1 Data acquisition 

Sentinel images were acquired from the Copernicus Open Access Hub from 

European Space Agency (ESA), which are described in Chapter 3, Section 3.1.1.

7.2.4.2 Image transformation of Sentinel imagery

Sentinel imagery was processed and transformed by SNAP toolbox, which are 

presented in detail in Chapter 3, Section 3.2.1.1.

7.2.5 Scenarios development

Scenarios were constructed based on the different number of predictor features and 

the combinations of sensors. While Scenario 1 and Scenario 2 were developed from 

S-2 derived predictors, Scenario 3 and Scenario 4 were built from S-1 derived 

predictors. Scenario 1 (SC1) included only 10 features from 10 S-2 bands. Scenario 

2 (SC2) consisted of a total of 21 S-2 derived predictors including 10 S-2 bands, 7 

VIs bands, and 4 SIs bands. Scenario 3 (SC3) and Scenario 4 (SC4) comprised 7 

and 27 predictor features from the S-1 sensor, respectively. Scenario 5 (SC5) 

included all features based on the combination of S-2 and S-1. The purpose of 

scenarios development was to assess the impact of the type of predictor variables 
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and the level of different features combinations on how well agricultural SOC 

prediction went. 

7.2.6 Machine learning techniques 

7.2.6.1 Extreme gradient boosting (XGBoost) 

The extreme gradient boosting technique is presented in Chapter 3, Section 3.2.4.1. 

In this SOC estimation study, the XGBoost method can use integrated optimization 

algorithms to tune important hyper-parameters such as the number of trees and the 

rate of learning to suit a specific dataset. In this study, the best structure with 100 

trees, and a learning rate set at 0.5 and gamma value of five was found the highest 

performance in the XGBoost model. 

5.2.6.2 Random forest (RF) 

This machine learning algorithm is described in Chapter 3, Section 3.2.4.2. In the 

current work of the chapter, the RF model with 100 trees and the maximum number 

of 11 features had the highest performance for this study area. 

5.2.6.3 Support vector machine (SVM) 

Developed by Cortes and Vapnik (1995), the SVM algorithm is described in 

Chapter 3, Section 3.2.4.3. In this work, the SVM algorithm with the radial basis 

function (RBF) kernel and the C value of 10000 was used, and the epsilon value of 

0.01 as the best values for tuning hyper-parameters of the SVM model.  

7.2.7 Model performance evaluation 

To assess the model performance of binary land-use classification, five evaluation 

criteria have been used including overall accuracy (OA), kappa coefficient (KC), 

precision (P), Recall (R), and F1 score (F1) (Chicco & Jurman, 2020; Ha et al., 

2021). 

For agricultural SOC retrieval, two common validation criteria were employed to 

assess the performance of machine learning techniques with different scenarios, 

which are described in Chapter 3, Section 3.2.6. 

7.3 Results 

7.3.1 Land-use binary mapping 

Land-use classification results found by the XGBoost, the RF and the SVM 
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algorithms are indicated in Table 7.2 below. The results present the high accuracy 

of land-use binary mapping at study sites using the S-2 dataset. The XGBoost 

algorithm produced the highest accuracy and performed better than the RF and the 

SVM with 0.94 OA, 0.89 KC, 0.96 P, 0.91 R and 0.93 F1. 

Table 7.1  Model’s performance of land-use binary mapping using S-2 dataset 

No  Machine learning model  OA KC P R F1 

1  Extreme Boosting  

(XGBoost)  

0.94 0.89 0.96 0.91 0.93 

2  Random Forests  (RF)  0.92 0.85 0.88 0.87 0.91 

3  Support Vector Machine 

(SVM)  

0.86 0.79 0.84 0.82 0.85 

 

The land use binary classification maps were created for the Wests and Cookies 

area using the XGBboost model using S-2 dataset and Google Earth imagery (Fig. 

7.2). The classified map includes only bare soil and vegetation classes. Based on 

the binary classification maps, the precise locations belonging to the bare-soil pixels 

were used as a guide for sampling agricultural SOC field collection. 
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Figure 7.2  Land use binary classification map derived from the XGBoost model 

using S-2 and sampling points selection: (a) Wests, and (b) Cookies

(a) Wests 

(b) Cookies 
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The correlation coefficient between the input features derived from S2 data, VIs, 

and SIs with measured agricultural SOC was computed and illustrated in table 7.3.  

According to Table 7.3, the Ratio Vegetation Index (RVI), the Normalized 

Difference Vegetation Index (NDVI), and the Soil Adjusted Vegation Index (SAVI) 

presented the highest correlation with measured agricultural SOC among 21 

predictor features derived from the S-2 image. These indices revealed positive 

correlations with agricultural SOC. In contrast, the lowest correlations were 

observed between Brightness Index 2 (BI2) and agricultural SOC. Vegetation and 

Soil Indices confirmed a higher correlation with agricultual SOC than ten S-2 

multispectral bands. While vegetation indices illustrated positive correlations with 

agricultural SOC, most soil indices including BI, CI, and RI demonstrated negative 

correlations. 

Table 7.2 Pearson’s correlation analysis of S-2 derived predictor indicators and 

measured SOC   

S2_Bands_Index Correlation 

coefficient 

S2_VI_BI_Index Correlation 

coefficient 

B2 -0.056 RVI 0.409 

B3 -0.043 NDVI 0.419 

B4 -0.162 GNDVI 0.167 

B5 -0.131 NDI45 0.116 

B6 -0.011 SAVI 0.470 

B7 0.059 MCARI 0.088 

B8 0.125 IRECI 0.377 

B8A 0.170 BI -0.113 
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S2_Bands_Index Correlation 

coefficient 

S2_VI_BI_Index Correlation 

coefficient 

B11 -0.022 BI2 0.005 

B12 -0.025 CI -0.296 

  
RI -0.059 

 

Table 7.3 shows the Pearson’s correlation analysis of S-1 derived predictor 

indicators and measured agricultural SOC. VV, (VV+VH)/2, VH_GLCM Mean, 

VH_GLCM Variance, VV_Dissimilarity, VV_Homogeneity, VV_Angular Second 

Moment, VV_Entropy, VV_GLCM Mean, VV_GLCM Variance demonstrated the 

highest correlation with agricultural SOC compared to other predictor features 

generated from S-1 data. Most GLCM textures showed strong correlations with 

agricultural SOC content. Four out of five S-1 SAR transformation bands (VH-VV; 

VV-VH; VV/VH; and VH/VV) had weak relationships with agricultural SOC. 

Table 7.3 Pearson’s correlation analysis of S-1 derived predictor indicators and 

measured SOC   

S1 

Index 

Correlation 

coefficient 

S-1_Index Correlation 

coefficient 

S-1_Index Correlation 

coefficient 

VH 0.389 VH_Homo

geneity 

-0.100 VV_Dissimil

-arity 

0.417 

VV 0.433 VH_Angul

ar Second 

Moment 

-0.047 VV_Homo-

geneity 

-0.416 

(VH+V

V)/2 

0.439 VH_Energ

y 

-0.083 VV_Angular 

Second 

Moment 

-0.431 

VH-VV 0.251 VH_Maxi

mum 

Probability 

-0.067 VV_Energy -0.349 
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VV-VH -0.243 VH_Entrop

y 

0.106 VV_Maximu

m Probability 

-0.363 

VV/VH -0.118 VH_GLC

M Mean 

0.434 VV_Entropy 0.432 

VH/VV 0.118 VH_GLC

M Variance 

0.437 VV_GLCM 

Mean 

0.476 

VH_Con

-trast 

0.243 VH_GLC

M 

Correlation 

-0.211 VV_GLCM 

Variance 

0.468 

VH_Dis

sim-

ilarity 

0.168 VV_Contra

st 

0.359 VV_GLCM 

Correlation 

-0.328 

7.3.2 Evaluation and comparison of scenarios and different ML models 

Five scenarios with varied features generated from S-2 and S-1 sensor were tested 

using the XGBoost technique (Table 7.4). The SC5 with the best possible number 

of features derived from multi-sensor S-1 and S-2 produced the highest prediction 

accuracy compared to the others SCs. However, the SC3 with only seven predictor 

variables from S-1 yielded the worst prediction performance. A combination of S-

2 and S-1 derived predictor features showed the highest R2 of 0.870 in the validation 

phase and the lowest RMSE of 1.818 tonC/ha. 

Table 7.4 Model performance of the XGBoost technique in five scenarios 

Scenario (SC) Number of features  R2 

training 

(70%) 

R2 

validation 

(30%) 

RMSE 

(Ton 

C/ha) 

SC1 10 features (10 S-2 bands 

only) 

0.713 0.443 3.160 

SC2 21 features (10 S-2 bands, 

7 bands VIs, and 4 bands 

SIs) 

0.891 0.625 2.370 

SC3 7 features (2 bands from 

dual polarization, 5 SAR 

0.559 0.254 3.004 
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transformed bands) 

SC4 27 features (2 bands from 

dual polarization, 5 SAR 

transformed bands, and 20 

bands created from 

GLMC) 

0.998 0.584 2.471 

SC5 48 features (21 S-2 bands 

and 27 S-1-bands) 

0.927 0.870 1.818 

To compare the effectiveness of the proposed XGBoost model using multi-source 

EO data fusion, two other well-known ML algorithms were selection for the 

comparison. The performance of the three ML algorithms on agricultural SOC 

retrievals are presented in Table 7.5. The SVM model performance in the 

agricultural SOC prediction was the lowest (R2 = 0.661) and the RMSE value (4.396 

ton/ha) was higher than those produced the XGBoost and the RF model. The 

XGBoost model with 48 predictor variables derived from a combination of S-2 

image and S-1 image yielded the most accurate for agricultural SOC prediction in 

the validation phases (R2 = 0.870, and RMSE = 1.818 ton/ha), followed by the RF 

model (R2 = 0.724 and RMSE= 2.289 ton C/ha, and the SVM model (R2 = 0.661 

and RMSE= 4.396).  

Table 7.5 Performance comparison of ML algorithms on agricultural SOC 

estimation 

No Machine learning 

model 
R

2
 training 

(70%) 

R
2
 testing 

(30%) 

RMSE 

(Ton C/ha) 

1  Extreme Boosting 

(XGBoost)  

0.927 0.870 1.818 

2  Random Forests 

(RF)  

0.827 0.724 2.289 

3  Support Vector 

Machine (SVM)  

0.999 0.661 4.396 

Figure 7.3 indicates the scatter plots of the estimated versus measured agricultural 

soil organic carbon using three well-known ML techniques in testing phase. The 
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proposed ML models with auxiliary variables from S-2 multispectral imagery and 

S-1 SAR data can successfully estimate the agricultural SOC. The XGBoost is 

better at prediction than the RF and SVM. 

 
Figure 7.3  Scatter diagrams of the measured SOC and estimated SOC by (a) 

XGBoost, (b) RF, (c) and SVM. 

7.3.3 Spatial distribution patterns of agricultural SOC maps 

Based on scenario 5, the spatial distribution of agricultural SOC maps generated for 

the Wests and Cookies areas using a combination of S-1 and S2 datasets integrated 

by the XGBoost model are demonstrated in Fig. 7.4. The max, min, mean and 

standard deviation (SD) values of the predicted agricultural SOC were 15.899 ton 

C/ha, 5.42 ton C/ha, 6.936 ton C/ha, and 0.45 ton C/ha, respectively. The XGBoost 

model produced the low level of uncertainty and stable prediction capabilities with 

the low average value of SD.
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Figure 7.4  Spatial distribution characteristic of agricultural SOC in study areas: 

(a) Wests (a) and (b) Cookies using the proposed XGBoost combined data fusion. 

 

 

 

 

(a)Wests 

(b) Cookies 
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7.4 Discussion  

7.4.1 Performance of agricultural SOC prediction models 

The prediction accuracy of agricultural SOC has been greatly influenced by the 

selection of predictor variables, ML algorithms, and level of data fusion (Table 7.4). 

The higher level of data fusion with more predictor features derived from Sentinel 

2 and Sentinel 1 illustrated better prediction accuracy for retrieving agricultural 

SOC. This outcome is consistent with what Zhou et al (2020) and Castaldi et al 

(2019) reported. They indicated that the type of remote sensing data, predictor 

variables selection and the choice predictive models play important roles in SOC 

estimation (Castaldi et al., 2019). As well, combining S-2 and S-1 free-of-charge 

EO data can improve SOC prediction performance. Recent studies also stated that 

the multi-sensor data fusion has proved to be more effective than the single sensor 

approach in quantifying SOC for both mangrove SOC stocks and agricultural SOC 

content (Le et al., 2021; Zhou et al., 2020b).  

The XGBoost predictive model is an efficient and effective gradient boosting 

algorithm which can be applied successfully for predictive modelling in SOC stocks 

research. The performance of the proposed XGBoost model combined with data 

fusion in the study performed well and outperformed the two well-known ML 

algorithms i.e. the RF and the SVM. The XGBoost algorithm is powerful and an 

advanced ML technique in predicting SOC stocks which is backed up in other 

recent studies (Ha et al., 2021; Ibrahem Ahmed Osman et al., 2021). The prediction 

results of the XGBoost in the study shows superior results (R2 =0.87, RMSE = 1.818 

tonC/ha) which are very much higher than the results of other studies noted in Table 

1. The proposed framework using the 48 predictor features (10 multispectral bands, 

7 vegetation indices, 4 soil indices, 2 bands from dual polarization, 5 SAR 

transformed bands, and 20 bands created from GLMC) derived from S-1 and S2 

combined with the XGBoost ML technique were powerful in agricultural SOC 

prediction. Importantly, the novel framework developed in this work is able to 

handle a small number of agricultural SOC samples, reflecting the robustness and 

cost-effectiveness of the model development for future and long-term agricultural 

SOC monitoring. However, more studies must be done on more sites, incorporating 

a wider geographical area.  
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7.4.2 Relative importance of predictor variables 

The successful application of satellite RS images in predicting agricultural SOC has 

been proved in much research at the regional, national and global scale (Croft et al., 

2012; Dvornikov et al., 2021; Hamzehpour et al., 2019; Mirzaee et al., 2016; Paul 

et al., 2020; Zhou et al., 2020a). However, most studies on this topic concentrated 

on mapping agricultural SOC based on optical imagery like S-2 imagery, which is 

due to the close relationship of Sentinel 2 derived indicators and SOC distribution. 

The present study illustrated that the predictor variables derived from both optical 

and SAR dataset are effective in estimating agricultural SOC. Similar observations 

were demonstrated by Yang and Guo (2019) (Yang & Guo, 2019). The relative 

importance of prediction features is presented in Fig. 7.5. Only 24 variables (10 

features derived from S-2 and 14 features derived S-1) out of 48 variables were 

shown the high relative importance in the agricultural SOC. 

Soil Adjusted Vegetation Index (SAVI) was identified as the most important 

predictor feature for agricultural SOC retrieval. It is due to its high sensitivity to 

soil characteristics (Huete 1988). The SAVI computed from the NIR and the Red 

bands also shows the strongest correlation coefficient (0.47) in Table 7.3, reflecting 

a high sensitivity to soil backgrounds and allowing to quantify the agricultural soil 

texture and SOC. The result is similar to the finding reported by Xue and Su (2017). 

The GLCM indicators, and dual polarization VV and VH derived from S-1 are also 

influential features. The contribution of the predictor variables computed from SAR 

data on determining agricultural SOC are more significant than S-2 derived 

variables. This is due to the capture ability of vegetation short-term variation 

characteristics of the Sentinel 1 sensor. Remarkably, the GLMC textures derived 

from Sentinel 1 were not previously selected as the predictor features for 

agricultural SOC prediction. Nonetheless, it can be seen from Fig. 7.5 that GLMC 

bands from the VV polarization have been illustrated as being satisfactory predictor 

variables for estimating agricultural soil organic carbon. Future studies focusing on 

the SAR mechanism on agricultural SOC should be further investigated. 
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Figure 7.5. Variable importance of optimal features derived from multi-source EO 

data.

7.5 Conclusions

The present study pioneers the use of predictor features (dual polarizations and 

transformed bands) from SAR remote sensing imagery (S-1) and the fusion of 

predictor variables derived from optical remote sensing imagery (S-2) with a state-

of-art machine learning technique (XGBoost). It is applied for predicting 

agricultural SOC in Western Australia. Overall, the combination of S-1 C-band dual 

polarimetric SAR and optical S2 datasets proved to be very useful for agricultural 

SOC prediction. High level of data fusion or multi-source sensor derived predictive 

variables illustrated significantly better prediction performance than a low level of 

data fusion or single sensor derived features. The proposed XGBoost model using 

multi-sensor data fusion demonstrated the highest prediction accuracy (R2=0.870, 

RMSE= 1.818 ton/ha). In addition, the proposed model is able to derive agricultural 

SOC maps at 10m spatial resolution on regional scale with a precise accuracy. The 

binary land-use classification mapping using active learning to select bare soil 
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sampling points and DPGS play important roles in the improvement of agricultural 

SOC prediction accuracy. Combining ensemble-based learning and active learning 

can enhance the estimates of agricultural SOC with only a small soil sample dataset. 

In short, this SOC prediction approach makes possible carbon neutrality for 

agriculture towards additional revenue via carbon credits. 
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8.1 Conclusions 
Climate change, rapid population growth, and inappropriate regional planning 

policies in many countries have resulted in large-scale rural water-related problems, 

such as flood disasters, water pollution, and water shortages. To tackle these issues, 

the specific water management as employed in the Sponge City concept has 

operated in China since 2013. The Sponge City concept is emerging as a new type 

of integrated regional water system, which can address water problems in both 

urban and rural regions. However, its implementation has encountered a variety of 

challenges. The lack of models to assist Sponge City planning and implementation, 

and other water infrastructure strategies is one of the most challenging factors. This 

thesis aims to address these issues by implementing a new integrated conceptual 

model concerning rural sustainable water management comprising of: (1) water 

vulnerability assessment model; (2) soil water model to assist the evaluation of rural 

water management strategies; and (3) agricultural soil carbon model to support 

monitoring soil carbon sequestration from various water management practices and 

different farming measurements. The specific findings of the study are summarized 

below.  

A new approach for water quantity vulnerability assessment based on remote 

sensing satellite data and GIS ModelBuilder is proposed. The developed approach 

has three layers: (1) data acquisition mainly from remote sensing datasets and 

statistical sources; (2) calculation layer based on the integration of GIS-based model 

and the Intergovernmental Panel on Climate Change’s vulnerability assessment 

framework; and (3) output layer including the indices of exposure, sensitivity, 

adaptive capacity, water vulnerability, and spatial distribution of remote sensing 

indicators where these indices at the provincial and regional scales. In total, 27 

indicators were incorporated into the case study in Vietnam based on their 

availability and reliability. The novel approach is based on reliable and updated 

spatial-temporal datasets (soil water stress, aridity index, water use efficiency, rain 

use efficiency, and leaf area index), and the incorporation of the GIS-based model. 

This framework can then be applied effectively for water vulnerability assessment 

of other regions and countries. 

Next generation of soil moisture modelling using advanced machine learning (ML) 
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models, and multi-sensor data fusion including Sentinel-1(S1) C-band dual 

polarimetric synthetic aperture radar (SAR), Sentinel-2 (S2) multispectral data, and 

ALOS Global Digital Surface Model (ALOS DSM) to predict precisely soil 

moisture at 10m spatial resolution across research areas in Australia was presented. 

A total of 52 predictor variables were generated from S1, S2, and ALOS DSM data 

fusion, including vegetation indices, soil indices, water index, SAR transformation 

indices, ALOS DSM derived indices like digital model elevation (DEM), slope, and 

topographic wetness index (TWI). The field soil data from Western Australia was 

employed. The performance capability of extreme gradient boosting regression 

(XGBR) together with the genetic algorithm (GA) optimizer for feature selection 

for soil moisture prediction in bare lands was examined and compared with various 

scenarios and ML models.  

The proposed model XGBR with 21 desirable features obtained from GA yielded 

the highest performance (R2 = 0. 891; RMSE= 0.875%) compared to random forest 

regression (RFR), support vector machine (SVM), and CatBoost gradient boosting 

regression (CBR). VH and DEM illustrated the most crucial predictor features for 

SM estimation using the XGBR. It can be concluded that this innovative method 

using XGBR, coupled with GA possessing feature from a combination of reliable 

free-of-charge remotely sensed data from Sentinel and ALOS imagery, can 

effectively estimate the spatial variability of soil moisture. The described 

framework can further support precision agriculture and drought resilience 

programs via better water use efficiency and intelligent irrigation management for 

crop production. 

This work explores the use of Sentinel-1 (S1) C-band dual polarimetric synthetic 

aperture radar (SAR), Sentinel-2 (S2) multispectral data, and an innovative machine 

learning (ML) approach using an integration of active learning for land-use 

mapping and advanced Extreme Gradient Boosting (XGBoost) for robustness of 

the SOC estimates. Numerous features computed from optical and SAR data fusion 

were employed to build and test the proposed model’s performance. The 

effectiveness of the proposed machine learning model was assessed by comparing 

the two well-known algorithms, these being Random Forests (RF) and Support 

Vector Machine (SVM), to predict agricultural SOC. Results suggest that a 



 

152 

 

combination of S1 and S2 sensors could effectively estimate SOC in farming areas 

using ML techniques. Satisfactory accuracy of the proposed XGBoost with optimal 

features was achieved using the highest performance (R2 = 0.870; RMSE = 1.818 

ton C/ha), which outperformed RF and SVM. Thus, multi-sensor data fusion 

combined with the XGBoost led to the best prediction results for agricultural SOC 

at 10m spatial resolution. In short, this novel approach could significantly 

contribute to various agricultural SOC retrieval studies globally. 

 

8.2 Recommendations 

For making progress in rural water modelling, several future perspectives are 

emphasized here:  

(1) Uncertainty analysis and the assessment of integrated water modelling 

should be carried out in parallel with the model’s development, testing, and 

application so that practitioners can rely on the model’s output and thereby make 

good policy decisions. Global Assessment of Modelling Uncertainties could be 

applied to negate any uncertainties and improve the accuracy of modelling results 

(Deletic et al., 2012). 

(2) The availability of online spatial and attributed data-sharing systems 

constitutes a fundamental factor in integrated modelling development. The lack of 

spatial and temporal data creates incomplete knowledge of how integrated models 

work. Spatial and attribute data-sharing systems can be established based on remote 

sensing and GIS systems. Remote sensing data should be used much more in the 

upcoming decades because such data will be very reliable. A better application of 

remote sensing data might reduce model uncertainties. The spatial data and 

measurement data should be incorporated into the integrated water management 

model. 

(3) Inter-disciplinary work on integrated rural water modelling research is an 

essential factor when it comes to building an integrated, comprehensive rural water 

management model. Water infrastructure implementation in rural areas is a 

challenging task that requires a multidisciplinary effort to address complex issues 

and an unforecastable future. A reasonable explanation for the lack of integration 
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in rural drainage models is that the responsibilities in rural water management have 

been broken up or isolated from each other (Rauch et al., 2002). Rural water 

simulation and system analysis include interdisciplinary fields of research such as 

environment, society, and the economy. A comprehensive rural water management 

model should incorporate the multi-science field approach. Consequently, reliable 

simulations of complex interactions in the rural water model will address 

stakeholders’ requirements in solving rural water management problems. 

(4) A further effort needs to focus on developing an online and integrated rural 

water management tool for the best management of rural water operations. This 

online tool helps decision-makers use the integrated models better. Obtained results 

from modelling work could enhance the knowledge of how to: firstly, implement 

and develop integrated rural water management practices; and secondly, estimate 

the effectiveness of investing in rural water development projects. 

(5) There are some areas for rural water model, including the links existing 

between automatic calibration models and the integrated rural water model to deal 

with uncertainty and various problems (Elliott and Trowsdale, 2007). In addition, 

enhancing the adoption of the rural water model by improving the model’s 

communication system is very important (Bach et al., 2014). By being fully 

informed and disclosing all that is necessary, these model developers will then be 

able to convince decision-makers about the cost-effectiveness of integrated models 

and provide accurate and comprehensive results. Further research into the spatial-

temporal dynamics of rural rainfall for predictions and improving the spatial 

simulation of ecological/environmental processes of water strategies is essential 

(Fletcher et al., 2013; Hou et al., 2019). Finally, an effective rural water 

management model is likely to support drought, flood, and hydrologic warning 

systems in releasing more precise information for communities and what they 

require. 
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Appendix 
Check correlation between soil moisture and 21 bands from Genetic Algorithm 
optimizer using Pearson method 
Coefficient of cor. between SM and RVI 
-0.38912423970947996 
Coefficient of cor. between SM and NDVI 
-0.40155658771960934 
Coefficient of cor. between SM and GNDVI 
-0.24923957987188916 
Coefficient of cor. between SM and SAVI 
-0.4996274357238523 
Coefficient of cor. between SM and MCARI 
-0.07048246430859731 
Coefficient of cor. between SM and IRECl 
-0.5684716701919917 
Coefficient of cor. between SM and VH 
-0.4135030521838582 
Coefficient of cor. between SM and VV 
-0.3466834725915791 
Coefficient of cor. between SM and MeanVHVV 
-0.40313845774971785 
Coefficient of cor. between SM and b1_VV_GLCM 
-0.32750946927696445 
Coefficient of cor. between SM and b2_VV_GLCM 
-0.3817347601647576 
Coefficient of cor. between SM and b3_VV_GLCM 
0.40077800241505585 
Coefficient of cor. between SM and b4_VV_GLCM 
0.3321303804303876 
Coefficient of cor. between SM and b5_VV_GLCM 
0.35191870985308066 
Coefficient of cor. between SM and b6_VV_GLCM 
0.3111939550945679 
Coefficient of cor. between SM and b7_VV_GLCM 
-0.37735842031841016 
Coefficient of cor. between SM and b10_VV_GLC 
0.3106859627766614 
Coefficient of cor. between SM and DEM 
-0.61578668107054 
Coefficient of cor. between SM and Slope 
-0.4954060408813305 
Coefficient of cor. between SM and TWI 
0.3679195923006985 
Coefficient of cor. between SM and NDWI 
-0.3661351269701774 
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