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ABSTRACT

Anomaly detection (a.k.a. outlier detection) is a challenging task in many realistic
applications. However, there exist some major issues for anomaly detection: (1)
Nowadays, more and more data tend to be collected from multiple sources or views.

As a result, multi-view learning emerges as an approach to leverage the information
across diverse views to discover intrinsic property of multi-view data. Although the tradi-
tional problem setting of anomaly detection focuses on single-view data, multi-view data
pose challenges for anomaly detection, since the anomalies now possess more complex
patterns and characteristics. Current methods for multi-view anomaly detection identify
anomalies by mining the inconsistent features across different views. However, these
detectors have their issues correspondingly, for example, they often rely on assumptions
on data distribution. In these methods, the data are usually assumed to be categorized
into group in each view, which limits the flexibility and application of such multi-view
anomaly detectors. There is lack of more efficient and flexible approaches for multi-view
outlier detection. (2) In recent years, deep learning has shown remarkable capabilities
in learning expressive representations of complex data. Deep neural networks (DNN)
have also been broadly used in detecting anomalies and a large number of deep anomaly
detector have been developed. For example, AutoEncoder (AE) and its variants are intro-
duced to learn informative representation of data with no or little supervision, which
is then used for detecting anomalies. However, DNN has a powerful approximation
capability that easily fits both normal and anomalous data simultaneously, which results
in an unsatisfactory performance and less reliability during anomaly detection. The
mainstream optimization and learning strategies in DNN exacerbate this issue. There is
a need for more advanced and reliable optimization framework for DNN-based anomaly
detection.

In this thesis, we propose innovative deep representation learning models to tackle
anomaly detection problem from aspects of multi-view data and model optimization. We
first introduce related work and literature review. The related work includes existing
models for general anomaly detection, multi-view anomaly detection and aggregation
schemes for DNN optimization. In following chapters, we studied multi-view anomaly
detection together with traditional anomaly detection. Firstly, we investigate semi-
supervised multi-view anomaly detection via variational generative model, which is
applicable to the situation where labelled normal data is available. Then we studied
unsupervised multi-view anomaly detection by exploring latent spaces, which is designed
for detecting anomalies in data that include both normal and anomalous data. Finally, we
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turn to a more general application scenario, which is traditional unsupervised anomaly
detection. We investigate more advanced and reliable optimization strategy for DNN-
based detectors.

In Chapter 3, we concentrate on the information provided by multiple views in
anomaly detection. By means of using the representation learning power of Variational
AutoEncoder and controlling the latent spaces in a novel manner, we propose an inno-
vative Bayesian generative latent variable model to classify multi-view abnormal data.
The core idea is to model the correlation between multiple views by generating one view
from another view. Multi-view anomalies are then detected by higher reconstruction
loss comparing to normal instances. The empirical outcome shows that the novel model
outperforms the baselines among popular datasets.

In Chapter 4, we further explore the latent spaces by representation learning to pro-
vide crucial information for detecting various multi-view anomalies in an unsupervised
manner. We develop a novel Cross-aligned and Gumbel-refactored AutoEncoders (CGAEs)
architecture, which has the core idea of learning separate latent spaces for different
types of anomalies. In CGAEs, we devise a cross-reconstruction module to detect class
anomaly by recovering one view from another view. Further, we design a view-alignment
module to detect attribute anomaly by the alignment distance among multiple views in
latent space. To handle the robustness problem, we put forward a Gumbel-refactored
reconstruction loss to replace traditional mean square error in AutoEncoders. Experi-
mental outcomes validate the efficacy of CGAEs model on both benchmark datasets and
real-life datasets.

In Chapter 5, we explore the optimization procedure in anomaly detection. We iden-
tify issues with widely used deep neural networks and Empirical Risk Minimization
optimization strategy on anomaly detection tasks. Existing DNN and Empirical Risk
Minimization scheme suffer from overfitting the outliers and generalization issue in unsu-
pervised anomaly detection, resulting in an unsatisfactory and less reliable performance.
We propose a novel Diminishing Empirical Risk Minimization (DERM) framework to
break the limit. In DERM, the adverse effect of the potential anomalies is suppressed in
a dynamic and controllable manner. Analysis and experiments reveal that DERM can
directly modify the gradient contribution of each individual loss and perform better than
most benchmarks.

Chapter 6 concludes principal content in thesis and discusses potential future re-
search based on this thesis.
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