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Compilation of parasitic 
immunogenic proteins 
from 30 years of published research 
using machine learning and natural 
language processing
Stephen J. Goodswen1, Paul J. Kennedy2 & John T. Ellis1*

The World Health Organisation reported in 2020 that six of the top 10 sources of death in low-income 
countries are parasites. Parasites are microorganisms in a relationship with a larger organism, the 
host. They acquire all benefits at the host’s expense. A disease develops if the parasitic infection 
disrupts normal functioning of the host. This disruption can range from mild to severe, including 
death. Humans and livestock continue to be challenged by established and emerging infectious 
disease threats. Vaccination is the most efficient tool for preventing current and future threats. 
Immunogenic proteins sourced from the disease-causing parasite are worthwhile vaccine components 
(subunits) due to reliable safety and manufacturing capacity. Publications with ‘subunit vaccine’ in 
their title have accumulated to thousands over the last three decades. However, there are possibly 
thousands more reporting immunogenicity results without mentioning ‘subunit’ and/or ‘vaccine’. 
The exact number is unclear given the non-standardised keywords in publications. The study aim is 
to identify parasite proteins that induce a protective response in an animal model as reported in the 
scientific literature within the last 30 years using machine learning and natural language processing. 
Source code to fulfil this aim and the vaccine candidate list obtained is made available.

Microorganisms exhibit diverse complex relationships with larger forms of life that harbour  them1. These sym-
biotic relationships encompass a spectrum governed by the benefits or detriments experienced by the microor-
ganism and host. At the extreme end of this spectrum is parasitism, in which the microorganism acquires all the 
benefits at the host’s  expense2. Parasitism is thought to be the most common mode of life on this  planet3. Parasitic 
relationships can vary between asymptomatic infections to one that kills the  host4. Organisms known to display 
parasitic relationships by living on or in a host include bacteria, viruses, fungi, protozoa, and helminths. In this 
study, the term parasite refers only to protozoa, helminths and ectoparasites (parasites that exist on the external 
surface of hosts); and the hosts of interest are humans and livestock.

Humans and livestock have evolved over millennia in a constant balance between their immune-system 
defences and parasite virulence. Infection occurs when the balance shifts in favour of parasites as they multiply 
within or on the host’s body. A disease develops if the infection disrupts the normal functioning of the host. This 
disruption can range from mild to severe. Table 1 lists notable parasites of medical and veterinary importance 
and their associated infection/disease. Due to progressively improving methods for treatment and control of 
infectious diseases, human mortality and morbidity especially in the developing world has significantly declined 
over the last 50  years5. Despite the global decline, the World Health Organisation (WHO) reported in December 
2020 that six of the top 10 causes of death in low-income countries are infectious diseases. These countries are 
mainly in tropical regions, with marginalized populations living in impoverished  conditions6. Malaria tops the 
list of parasitic induced diseases that cause the greatest burden. WHO in 2019, estimated that there were 229 
million cases of malaria worldwide with 409,000 deaths. The list of burdensome parasites and diseases is not 
 static7. Rapid population growth in areas with weak health systems, urbanization, globalization, climate change, 
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Parasite (Genus)a Classb Phylum Diseasec Priorityd

Babesia Protozoa Apicomplexa Babesiosis

Cryptosporidium Protozoa Apicomplexa Cryptosporidiosis F,W

Cyclospora Protozoa Apicomplexa Cyclosporiasis F

Eimeria Protozoa Apicomplexa Coccidiosis

Neospora Protozoa Apicomplexa Neosporosis

Plasmodium Protozoa Apicomplexa Malaria

Sarcocystis Protozoa Apicomplexa Sarcocystosis F

Theileria Protozoa Apicomplexa Theileriosis

Toxoplasma Protozoa Apicomplexa Toxoplasmosis F,W

Trypanosoma Protozoa Euglenozoa Trypanosomiasis, dourine, surra F,G,W

Balantidium Protozoa Ciliophora Balantidiasis F

Ichthyophthirius Protozoa Ciliophora White spot

Entamoeba Protozoa Evosea Amebiasis F,W

Leishmania Protozoa Euglenozoa Leishmaniasis G,W

Dientamoeba Protozoa Metamonada Dientamoebaisis

Giardia Protozoa Metamonada Giardiasis F,W

Histomonas Protozoa Metamonada Histomoniasis

Trichomonas Protozoa Metamonada Trichomoniasis

Ancylostoma Helminthic Nematoda Ancylostomiasis, hookworm G,W

Angiostrongylus Helminthic Nematoda Angiostrongyliasis

Ascaris Helminthic Nematoda Ascariasis F,G,W

Baylisascaris Helminthic Nematoda Baylisascariasis

Cooperia Helminthic Nematoda Infection only

Dirofilaria Helminthic Nematoda Dirofilariasis/heartworm

Dracunculus Helminthic Nematoda dracunculiasis, guinea worm G,W

Enterobius Helminthic Nematoda Enterobiasis

Gnathostoma Helminthic Nematoda Gnathostomiasis

Haemonchus Helminthic Nematoda Haemonchosis

Loa Helminthic Nematoda Loiasis

Necator Helminthic Nematoda Necatoriasis, hookworm G,W

Onchocerca Helminthic Nematoda Onchocerciasis G,W

Pseudoterranova Helminthic Nematoda Anisakiasis F

Strongyloides Helminthic Nematoda Strongyloidiasis

Teladorsagia Helminthic Nematoda Teladorsagiosis

Toxocara Helminthic Nematoda Toxocariasis

Trichinella Helminthic Nematoda Trichinellosis F,W

Trichostrongylus Helminthic Nematoda Trichostrongylosis

Trichuris Helminthic Nematoda Trichuriasis F,G,W

Wuchereria Helminthic Nematoda Filariasis G,W

Clonorchis Helminthic Platyhelminthes Clonorchiasis W

Diphyllobothrium Helminthic Platyhelminthes Diphyllobothriasis F

Dipylidium Helminthic Platyhelminthes Infection only

Echinococcus Helminthic Platyhelminthes Echinococcosis F,W

Fasciola Helminthic Platyhelminthes Fascioliasis F,W

Fasciolopsis Helminthic Platyhelminthes Fasciolopsiasis

Hymenolepis Helminthic Platyhelminthes Hymenolepiasis

Moniezia Helminthic Platyhelminthes Infection only

Opisthorchis Helminthic Platyhelminthes Opisthorchiasis F,W

Paragonimus Helminthic Platyhelminthes Paragonimiasis F,W

Schistosoma Helminthic Platyhelminthes Schistosomiasis G,W

Taenia Helminthic Platyhelminthes Cysticercosis F,W

Haemaphysalis Ectoparasite Arthropoda Disease vector

Ixodes Ectoparasite Arthropoda Paralysis

Lucilia Ectoparasite Arthropoda Flystrike
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civil conflict, antimicrobial resistance, and the changing nature of pathogen transmission between human and 
animal  populations8 entails that the world will continue to be challenged by established, unknown, neglected 
tropical diseases (NTDs), emerging, and re-emerging infectious disease threats. Infectious diseases also cost the 
livestock industries billions of dollars annually, aside from substantial animal  suffering9,10.

Vaccination is considered the most efficient tool for preventing current and future infectious disease  threats11. 
The millions of lives saved due to vaccines against polio, smallpox, measles, diphtheria, tetanus, and  rabies12 is 
testament to their effectiveness and future potential. An effective vaccine induces a pathogen-specific immune 
response providing long-lasting protection against  infection13. The most effective type of vaccine so far has been 
live but attenuated whole-organisms with reduced  virulence11,14. However, live attenuated vaccines have the 
potential to cause disease in immunosuppressed individuals; and/or are impracticable to grow in culture; and/
or contain components likely to trigger detrimental side-effects, allergenic and/or reactogenic  responses15; and/
or present the possibility of reversion to a virulent  form16.

Subunit vaccines contain only antigenic components sourced from the disease-causing  organism17, such as 
specific proteins and/or polysaccharides. Although these non-living components on their own have generally 
proven to be less immunogenic than attenuated organisms, their safety superiority and easier manufacturing 
capacity without having to culture the  pathogen16 makes them worthwhile endeavours for vaccine developers. 
Moreover, subunit components supported by appropriate vectors and adjuvants have the potential to enhance 
the  efficacy18. Subunit vaccines can be further categorized into protein-based (e.g., acellular pertussis, hepatitis 
B, and human papillomavirus vaccines); polysaccharide (e.g., meningococcal vaccine); and conjugate (e.g. Hae-
mophilus influenza type b vaccine)7. In this study, the subunit components of interest are proteins that possess 
immunogenic properties, which are expected to be proteins accessible to the immune  system19.

The traditional approach to identifying subunit vaccine components involves first cultivating and dissecting 
the pathogen in the laboratory; followed by the identification of each isolated component. In 2000, reverse vac-
cinology was first proposed as a revolutionary idea to identify protein antigens in  silico20. Previous studies detail 
the in silico vaccine discovery approach inspired by reverse vaccinology for  parasites21,22, and for  bacteria23. The 
following summarises this approach. Protein sequences, at the heart of the in silico approach, have been shown 
to encode signals that provide informative characteristics about the source protein, such as its destined subcel-
lular location, the presence of transmembrane domains and epitopes, or whether it is anchored to a membrane. 
As to date however, there has been no detection of a sequence-derived characteristic of a parasitic protein indi-
cating protective immunity in a host. Some predicted characteristics such as epitopes suggest immunogenicity, 
although direct methods of predicting epitopes recognised by T-cells and B-cells remain  problematic24,25 (indirect 
prediction methods focusing on peptide binding to major histocompatibility complex (MHC) molecules have 
proved more computationally practicable but requires training data containing a sufficiently large set of MHC-
peptide binding affinities that are experimentally validated and specific to the host of the target  pathogen26). 
The in silico strategy, as a compromise, is based on the premise that immunogenic proteins will have a different 
profile of characteristics to non-immunogenic proteins, and immunogenic proteins are more likely to provide 
protective immunity. This profile difference is not distinguishable to an observer and requires a trained binary 
classifier implemented via supervised machine learning (ML). Training data are the initial information used to 
teach supervised ML algorithms in the process of developing a model, from which the model creates and refines 
its approaches required for classification. Consequently, quantity and quality of training data are paramount to 
the ML algorithm’s performance when given an unseen profile to classify. Ideal training data for the in silico 
strategy would comprise two labelled datasets of characteristic profiles: one set derived from proteins shown to 
induce a protective immune response in a host, and an opposing set derived from known non-immunogenic 
proteins. This ideal is currently not readily forthcoming for parasites and raises a fundamental cyclic conundrum 
that currently limits the in silico vaccine discovery potential. That is, a sufficient number of proteins verified to 
provide protective immunity are required in the training data to predict proteins likely to provide protection. 
The only known repository that contains protective antigens associated with parasites is a web database created 

Table 1.  Important parasites and their associated infectious disease. a Parasite = the genus of an organism 
that lives on or in a host organism and typically at the detriment of the host (genus is a taxonomic name 
defining a group of related living organisms made up of one or more species). b Class = there are three main 
classes of parasites that can cause disease in humans and livestock: (1) protozoa (microscopic single-celled 
eukaryotes); (2) helminthic (multicellular organisms generally visible to the naked eye in their adult stages); 
and (3) ectoparasite (ticks, fleas, lice, and mites that attach or burrow into the skin). c Disease = the name given 
to an abnormal condition detrimentally affecting the structure or function of all or part of a host organism 
due to parasite infection. ‘Infection only’ signifies multiplication of parasites occurs within or on a host’s 
body but does not disrupt the normal functioning of the host. d Priority = F,G,W denotes priority diseases in 
need of a vaccine as determined by: (F) Food and Agriculture Organization of the United Nations (FAO)—
Microbiological Risk Assessment series (https:// www. who. int/ publi catio ns/i/ item/ micro biolo gical- risk- asses 
sment- series); (G) Bill and Melinda Gates Foundation—Neglected Tropical Diseases (https:// www. gates found 
ation. org/ our- work/ progr ams/ global- health/ negle cted- tropi cal- disea ses) and Uniting to Combat Neglected 
Tropical Diseases (https:// uniti ngtoc ombat ntds. org/ ntds/); and (W) World Health Organisation (WHO) – 
Ending the neglect to attain the Sustainable Development Goals: A road map for neglected tropical diseases 
2021–2030 (https:// www. who. int/ publi catio ns/i/ item/ 97892 40010 352). URLs last viewed September 2021.

https://www.who.int/publications/i/item/microbiological-risk-assessment-series)
https://www.who.int/publications/i/item/microbiological-risk-assessment-series)
https://www.gatesfoundation.org/our-work/programs/global-health/neglected-tropical-diseases
https://www.gatesfoundation.org/our-work/programs/global-health/neglected-tropical-diseases
https://unitingtocombatntds.org/ntds/
https://www.who.int/publications/i/item/9789240010352
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in 2011 called  Protegen27. It currently contains 167 unique parasitic antigens manually curated from selected 
peer-reviewed publications.

The PubMed database maintained by the National Center for Biotechnology Information (NCBI) at the U.S. 
National Library of Medicine (NLM) indicates that the first published investigation of a subunit  vaccine28 was in 
1966. Over the following decades an increasing trickle of publications has accumulated to 1112 with ‘subunit vac-
cine’ or ‘subunit vaccines’ in their title. It is difficult to ascertain from PubMed search terms and keywords, how 
many of these publications are specific to ‘protein-based’ subunit vaccines. Furthermore, it is estimated here that 
there are possibly hundreds of published studies over the past several decades without ‘subunit vaccine’ in their 
title, but still report immunogenicity results of parasitic proteins. The exact number is unclear, however, given 
the non-standardised keywords in publications. Despite this uncertainty in exact numbers, PubMed searches 
suggest there is a potential pool of immunogenic proteins that could fulfil the elusive training data requirement 
for the in silico vaccine discovery approach.

The aim of the current study is to ‘automatically’ identify all parasite proteins that induce a protective response 
in an animal model as reported in the scientific literature within the last 30 years. To achieve this aim, we have 
developed a computational pipeline that first classifies published abstracts using ML, and then extracts protein 
and/or gene names from the classified ‘abstracts of interest’ using natural language processing (NLP). Source 
code for the pipeline is provided via GitHub (a source code repository hosting service). The pipeline extracted 
606 parasitic proteins from four phyla (Apicomplexa, Euglenozoa, Nematoda, and Platyhelminthes). All these 
proteins are reported in highly cited publications; and 485 of the 606 have evidence supporting their accessibility 
to the immune system. We judge them to have vaccine candidacy merit, and therefore relevant for ML training 
data and/or further investigation. Furthermore, protein characteristics of the candidates were extracted from 
existing resources or predicted from their sequences. A comparative analysis of these characteristics from differ-
ent phyla is presented via tables and graphs. Unresolved limitations remain with the pipeline and in particular, it 
has a programmed inclination to identify more popular well-reported candidates to reduce the numbers of false 
positives. However, we believe this is the first reported attempt to ‘automatically’ generate a vaccine candidacy 
list from the scientific literature as a starting point for investigation, and is a superior time-saving alternative to 
a manual gathering process.

Results
Figure 1 shows a schematic of the entire pipeline that is designed to take abstracts as input and provide as output, 
a list of vaccine candidates. The pipeline consists of different stages and the presented results are in accordance 
to the stage’s approach used to obtain them: (1) rule-based abstract classification; (2) ML abstract classification, 
(3) rule-based and NLP protein name extraction, and (4) protein name to sequence association.

Classification of abstracts using a rule-based approach. All publications over the last 30  years 
that contained either the word ‘parasite’, ‘vaccine’, ‘vaccinated’, or ‘vaccination’ in its title or abstract text were 
downloaded from PubMed—332,627 publications met this selection criteria. Each title and associated abstract 
was assessed to determine whether it contained matching words in keyword files (see Material and methods—
Abstract classification using a rule-based approach). For instance, an abstract was classified as one of importance 
(a positive) if it contained defining words for the following: a parasite species, protective immunity, an animal 
model, a parasitic disease, and a gene or protein name associated with parasites. Supplementary Table S1 (an 
Excel file, sheet [Rule_based]) lists 2744 PubMed IDs and their relative keyword counts that were classified as 
positives e.g., the ‘title+abstract’ for PubMed ID ‘31815006’ contains 16 ‘protective immunity’ keywords, one 
animal model, one parasite species, one parasitic disease, and one protein name (surface antigen protein). Sheet 
[Identified_protein_names] lists 1752 unique protein names identified within these abstracts along with the 
number of publications containing the name. Abstracts with the greatest number of protective immunity key-
words are considered here as the most likely to contain a vaccine candidate. Similarly, protein names associated 
with a greater number of publications are considered more likely vaccine candidates than those with fewer 
publications. For example, ‘Circumsporozoite protein’ is mentioned in 319 publications, whereas ‘1-cys perox-
iredoxin’ only one (718 of the 1752 unique protein names have only one publication).

Two sets of 100 abstracts were randomly selected from the 2744 classified abstracts. One set contained only 
abstracts with more than one protective immunity keyword (2308 met this criteria); whilst the other set contained 
only one keyword, excluding those with ‘vaccine’ or ‘vaccination’ (381 met this criteria). These abstracts were 
manually verified. Supplementary Table S1 (sheets [Verified abstracts > 1] and [Verified abstracts = 1]) shows 
PubMed IDs and their keyword counts for the two sets. An additional column indicates a manually assessed ‘yes’ 
or ‘no’ as to whether the abstract is truly one of interest and has a relevant protein name. This manual assess-
ment suggests the rule-based approach has a 42.5% accuracy of selecting an ‘abstract of interest’ but increases to 
85% when the classifying threshold is greater than one protective immunity keyword. This accuracy, however, 
reduces to 80% in its capacity to fully identify the relevant protein name. These manually assessed abstracts are 
referred to henceforth as the ‘Verified positive’ and ‘Verified negative’ abstracts, and used later to evaluate the 
ML algorithm’s performance.

As a further independent test, the title and abstract were taken from 50 publications known to contain vac-
cine candidates (see Material and methods–Evidence abstracts). The rule-based criteria were applied to the 50 
‘title+abstracts’ (referred to henceforth as the ‘Evidence’ abstracts). The results are shown in Supplementary 
Table S1—sheet [Rule_based_evidence]. Blank cells or text in bold indicates that no keyword was found for 
specific selection criteria e.g., the ‘title+abstract’ for PubMed ID ‘24349483’ does not contain an animal model. 
Using the stringent rule-based selection criteria, only 58% would be classified abstracts of interest. This is because 
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Figure 1.  A schematic of the pipeline processes that takes abstracts as input and provides vaccine candidates 
as output. PubMed is a database maintained by the National Center for Biotechnology Information (NCBI) 
and contains over 30 million abstracts on life sciences and biomedical topics. The advanced search query was 
parasite, vaccine, vaccinated, OR vaccination in Title or Abstract text AND publication year greater or equal 
to 1991 and less than 2022. Keywords for the rule-based abstract classification were related to protective 
immunity, animal models, parasite species, and parasitic diseases. Note keywords were searched and counted 
in both title and abstract. The term ‘abstract of interest’ refers to abstracts that potentially contain a protein 
name of a vaccine candidate. Database searching involves checking for a match of an extracted protein name 
in an in-house protein and gene database compiled from The Universal Protein Resource (UniProt) and NCBI. 
Training data consisted of abstracts converted to a vectorised format (i.e., a numerical representation) using 
the text vectorization technique, Bag of Words (BoW). NLP is an acronym for natural language processing. 
Named entity recognition (NER) is a sub-task of NLP and was used to classify named entities in abstracts into 
a pre-defined category of protein name. CD-HIT (cluster database at high identity with tolerance) was used to 
cluster 3731 sequences associated with 403 unique protein names into 1099 clusters, in which each member had 
a sequence similarity identity greater than 90%. A representative sequence is the longest sequence in a cluster. 
Exposed candidates are proteins naturally exposed to the immune system, whereas non-exposed are normally 
located in the pathogen’s interior.
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most of the abstracts contain no ‘disease’ keyword. Ignoring the disease criterion, the relevant protein name is 
correctly identified in 82% of the abstracts.

Classification of abstracts using machine learning. An in-house ML pipeline was created that clas-
sifies an unseen abstract as either one of interest i.e., one potentially containing a vaccine candidate (a posi-
tive) or one that is not of interest (a negative). Materials and methods—Abstract classification using machine 
learning—describes the pipeline. The pipeline accuracy as determined from tenfold cross-validation of the ML 
training data (1556 positives and 1556 negatives) was 99.6% (see Supplementary Table S2 [SVM performance 
measures] for other measures used to evaluate the pipeline’s predictive performance). This high accuracy comes 
with a caveat. The positive or negative categorisation of training data abstracts was determined by the rule-based 
approach. Given the previous verification results, the expectation is that an unknown 15% of this categorisation 
is potentially incorrect. Figure 2 shows a word cloud of the 50 most frequent words in the positives training data. 
Supplementary Table S2 (sheets [Positives] and [Negatives]) shows the cross-validation-derived probability for 
each training abstract that it has been correctly classified e.g., 4 out of 1556 positives have a less than 50% prob-
ability that the classification is correct.

The in-house ML pipeline was applied to the Evidence and Verified abstracts, which are independent of 
the training abstracts. Supplementary Table S2 shows the results. Only one Evidence abstract had a probability 
less than 0.5, and therefore 49/50 (98%) were correctly classified as abstracts of interest—see sheet [Evidence 
abstracts]. The results from the Verified abstracts indicate the ML pipeline accuracy in correctly classifying an 
abstract of interest is 83% with a sensitivity and specificity of 98.8% and 71.3%, respectively. This means the 
classifier correctly predicts a positive more often than a negative e.g., with respect to the Verified abstracts, one 
‘abstract of interest’ would be incorrectly rejected and 33 abstracts that are not of interest would be incorrectly 
accepted for the next stage of protein/gene name extraction—see sheets [Verified positive abstracts] and [Veri-
fied negative abstracts].

The ‘title+abstract’ from all 332,627 downloaded publications were input into the ML pipeline. Approxi-
mately 22% of these input abstracts had an equal or greater than 50% probability of being correctly classified as 
an ‘abstract of interest’—16.8% with probability greater than 75%, and 12.5% greater than 90% (see sheet [All 
abstracts >  = 0.5]). Abstracts of interest have steadily increased from 420 publications in 1991 to      4619 in 2020 
(except years 2002 and 2016 showed declines from the year before). Supplementary Data S1 displays a graph 
of these publication numbers. Figures 3 and 4 show the frequency of words related to animal models, parasitic 
species, and parasitic diseases within classified abstracts over the last three decades.

Protein name extraction using rules and natural language processing. SpaCy is an open-source 
library for advanced NLP in Python (https:// spacy. io/—last viewed September 2021). It provides named entity 
recognition (NER) functionality as one of its options. NER, a sub-task of information extraction, finds and 
classifies named entities in text into pre-defined categories such as names of persons, organizations, and coun-

Figure 2.  A word cloud showing the 50 most frequent words in the positives training data applied in the 
classification of abstracts using machine learning. Note that stop words e.g., “a”, “the”, “is”, “are” etc. were 
removed and a standard Porter Stemming algorithm applied to detect and combine similar words e.g., words 
such as responses and response or significant and significantly are combined (the most frequent of the variants 
is chosen to represent them). TagCrowd (https:// tagcr owd. com/) was used to generate the word cloud.

https://spacy.io/
https://tagcrowd.com/


7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10349  | https://doi.org/10.1038/s41598-022-13790-1

www.nature.com/scientificreports/

Figure 3.  A bar chart showing frequency of disease words in classified abstracts over three decades from 1991 
to 2021. The classified abstracts are ‘title+abstract’ text output from the machine learning abstract classification 
stage of the current study i.e., given an initial input of 332,627 ‘title+abstract’ texts downloaded from PubMed, 
64,986 had a classification probability greater than or equal to 50% and were deemed ‘abstracts of interest’ (e.g.; 
an abstract that potentially contains a protein name of a vaccine candidate). Each word or a series of words 
associated with a parasitic disease were counted in the abstracts of interest e.g., the word ‘malaria’ appears 
2162 times and ‘toxocariasis’ 13 times in the abstracts. The bar chart shows that each decade has a greater 
disease frequency than the decade before; and the frequency has more than doubled in the last 10 years (except 
for schistosomiasis and cysticercosis). Note that for brevity, counts of words related to the same or similar 
diseases were combined e.g., the diseases Chagas disease, American trypanosomiasis, African trypanosomiasis, 
and sleeping sickness are all caused by trypanosomes. The word counts associated with these diseases were 
combined and presented under trypanosomiasis.

Figure 4.  A bar chart showing frequency of ‘animal model’ words in classified abstracts over three decades 
from 1991 to 2021. The classified abstracts are ‘title+abstract’ text output from the machine learning abstract 
classification stage of the current study i.e., given an initial input of 332,627 ‘title+abstract’ texts downloaded 
from PubMed, 64,986 had a classification probability greater than or equal to 50% and were deemed ‘abstracts 
of interest’ (e.g.; an abstract that potentially contains a protein name of a vaccine candidate). Each word or a 
series of words describing an animal were counted in the abstracts of interest e.g., the word ‘mice’ appears 30,749 
times and ‘goats’ 545 times in the abstracts. Note that the automated approach does not distinguish whether the 
animal words relate to a model for candidate verification or reference to another context such as an animal host. 
The bar chart shows that each decade has a greater frequency for each ‘animal model’ word than the decade 
before. The rate of increase in frequency has doubled in the last 10 years for the following (listed in descending 
rates): pigs, chickens, cattle, birds, goats, dogs, and sheep. Conversely, the rate of increase has slowed for the 
following (listed in ascending rates): primates, rats, rabbits, mice, and guinea pigs. Note that for brevity, counts 
of words related to the same or similar animal model were combined e.g., the ‘cattle’ animal model comprises 
word counts for cow, cows, calf, calves, and cattle.
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tries. In this study, our entities of interest are protein and gene names. We investigated three types of NER 
trained models: SpaCy default models (https:// spacy. io/ models), scispaCy, and a SpaCy custom model trained 
for this study (see later ‘Protein name detection using natural language processing’). scispaCy is a Python pack-
age containing spaCy models trained for processing biomedical, scientific or clinical  text29. As an illustration, 
Supplementary Data S2 contains two example abstracts that were processed with various spaCy, scispaCy, and 
custom NER models, with the aim to identify protein and genes, either via a symbol or name e.g., identify EG95 
in Example #1, and TgPI-1, ROP2, GRA4, and serine protease inhibitor-1 in Example #2 (expected entities are 
highlighted in bold). Following the examples are the identified entities. All expected entities were identified by 
the evaluated scispaCy NER models. However, from this study’s perspective, there were numerous false positive 
entities related to scientific terminology, which was not a surprise considering scispaCy is designed to identify 
biomedical and scientific entities. The custom NER model, trained specifically to extract gene and protein name 
entities, successfully identified the expected names with only one false positive.

The Evidence and the Verified abstracts were processed with the custom NER model and a rule-based 
approach (see later ‘Protein name extraction using a rule-based approach’). An important point is that entities 
identified by both approaches are checked for a match in an in-house compiled protein and gene database (see 
Materials and methods). The accuracies in identifying ‘database verified’ protein or gene names were 88% and 
91% (custom NER model), and 95% and 97% (rule-based) given Evidence and Verified abstracts, respectively. 
The rule-based accuracy is higher entirely because of the database verification e.g., a greater percentage of the 
entities checked for database verification are not valid protein names, whereas a substantially smaller percentage 
are invalid for the custom NER model. This equates to the rule-based approach generating more false positives 
and less false negatives; and conversely, the custom NER model generating less false positives and more false 
negatives. Using a consensus of the ‘rule-based+custom NER model’ entities, the accuracies reduce to 86% and 
90% given Evidence and Verified abstracts, respectively.

Combined abstract classification and subsequent protein extraction. Supplementary Table  S3 
(sheet [Candidates per PubID]) lists 1776 PubMed IDs and their relative keyword counts that were classified 
as abstracts containing protein names considered worthy vaccine candidates for further investigation. This 
list was achieved by first performing a ML classification of ‘title+abstract’ from 332,627 publications to obtain 
‘abstracts of interest’, and then a protein name extraction using a consensus of the ‘rule-based+custom NER 
model’ approaches. An important point is that different selection criteria and thresholds can be applied that 
greatly dictate the number and quality of proteins in the output list. Namely: start and end year for publications; 
a threshold applied to ‘abstract of interest’ probability i.e., the output probability from the ML abstract classifica-
tion; a threshold applied to the number of publications containing a candidate protein; and a threshold applied 
to the number of animal models referenced in the ‘abstract of interest’. Supplementary Data S3 demonstrates 
the impact of different selection criteria and thresholds. The main impact is that the more stringent the selec-
tion criteria, the more false negatives and potentially less false positives. The criteria used to obtain the 1776 
proteins were Probability threshold >  = 0.99, Publication threshold >  = 3, Animal model threshold >  = 1, Year 
Start >  = 1991; Year End <  = 2021 (Discussion expands on the rationale for the thresholds chosen).

The protein names extracted from the 1776 classified abstracts were compiled into one list of 403 unique 
names (see Supplementary Table S3—sheet [Candidates]). This list also includes the number of publications 
that mention the unique ‘protein name’ given the 332,627 abstracts. Note that the uniqueness of the name is 
with reference to the usage in the abstracts e.g., Apcial membrane antigen I, Apical membrane antigen, apical 
membrane antigen 1, Apical membrane antigen 1, and Apical membrane antigen-1 are the exact names extracted 
from ‘abstracts of interest’. It is likely these names all represent the same protein, however, they are valid names 
with unique records in The Universal Protein Resource (UniProt)  database30 e.g., the assumed misspelt ‘Apcial 
membrane antigen I’ has the UniProt ID Q26162. Several names were incorrectly extracted from abstracts due 
to the following two reasons: (1) an incorrect link of a ‘gene name from an abstract’ to a ‘protein in a database’ 
e.g., some abstracts contain the words ‘circumsporozoite (CS) protein’. CS is the gene name for both Chorismate 
synthase and Citrate synthase. Protein names extracted from such abstracts included Circumsporozoite protein, 
Chorismate synthase, and Citrate synthase; (2) an incorrect name extraction from a larger name e.g., for abstracts 
containing ‘Calcium-dependent protein kinase’, ‘Apical membrane antigen 1’, and ‘heat shock protein 70’, the 
names ‘protein kinase’, ‘Apical membrane antigen’, and ‘heat shock protein’ were also extracted because they are 
valid names associated with unique Uniprot IDs.

Protein name to sequence association. The study aim was to not only obtain a list of vaccine candidate 
names but to associate the name to a relevant protein sequence. Two challenges had to be overcome to fulfil 
this aim. First, the inconsistency in protein names as previously highlighted with the ‘Apical membrane antigen’ 
example; and second, the name association with more than one sequence e.g., ‘Circumsporozoite protein’ is one 
of the 403 protein names extracted. In the UniProtKB database (release 2021_03), there are 3281 (unreviewed 
i.e., computationally analysed records) and 26 (reviewed i.e., manually annotated records) proteins with the 
name ‘Circumsporozoite protein’. Given only abstracts, it was not possible to determine which of these proteins 
was used in the related study’s vaccine candidacy evaluation. We did, nonetheless, narrow down the number of 
protein possibilities by using only proteins from the species specified in the abstract e.g., Plasmodium falciparum 
has 1098 proteins named ‘Circumsporozoite protein’. Despite using only species-related protein names, 29,648 
sequences could be associated with the 403 protein names.

The following approach was implemented to overcome the two challenges. First, all ‘partially’ sequenced 
proteins (i.e., proteins annotated as being a fragment) were removed leaving 3731 sequences. Second, a CD-
HIT (cluster database at high identity with tolerance)31 analysis was performed on the 3731 sequences. CD-HIT 

https://spacy.io/models
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provides functionality to cluster protein sequences that meet a sequence similarity identity threshold. The thresh-
old chosen here was 90%. The CD-HIT analysis created 1099 clusters (see Supplementary Table S4—sheet [Clus-
ters]). As an example, cluster #19 has 73 sequences all with the same name ‘Transmission-blocking target antigen 
P230’. These sequences formed one cluster because they meet a sequence similarity identity greater than 90%. The 
longest sequence from each cluster was chosen as the cluster’s ‘representative’ e.g., UniProt ID H1AAD5_PLAVI 
is the representative sequence for cluster #19. All representative sequences are denoted by a ‘*’ in the Identity 
column. Note that the identity threshold is another variable that can greatly impact results.

Supplementary Table S4 (sheet [Representative Names]) shows the representative names for the 1099 clusters. 
The representative name chosen is the majority name in a cluster. This resolved the problem of having the same 
protein but with slight variations in the annotation e.g., the 47 members in cluster #724 have three variations: 
one ‘Merozoite surface antigen 2’, 18 ‘Merozoite surface antigen 2C’, and 28 ‘Merozoite surface antigen-2c’. 
Sheet [Unique Names] lists 438 unique names from the 1099 representative names. Note that some names are 
similar e.g., Hsp70 and HSP70. Despite the name similarity, the associated sequences have a sequence similarity 
identity less than 90%, and in most cases associated with different species e.g., Hsp70 from Leishmania infan-
tum and Leishmania donovani, and HSP70 from Schistosoma japonicum. Figure 5 is a graphical representation 

Figure 5.  A word cloud showing the 15 most reported protein names per organism in the last 30 years of 
published research for four important parasite species. The size of the name is proportional to the number of 
publications reporting the protein. These protein names were ‘automatically’ extracted by the current study’s 
computational pipeline, which is designed to identify, from publication abstracts, parasite proteins that induce 
a protective response in an animal model. The presented names are from the top four species based on the total 
number of proteins identified: (A) Plasmodium Falciparum, (B) Toxoplasma gondii, (C) Babesia bovis, and (D) 
Schistosoma japonicum. Wordclouds.com (https:// class ic. wordc louds. com/) was used to generate the word 
cloud.

https://classic.wordclouds.com/
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proportional to the frequency of the unique names given publications over the last 30 years for four important 
parasitic species. Supplementary Table S4 (sheet [Unique Names per Species]) shows for every parasitic species 
extracted from the abstracts, their unique names along with the number of source publications.

The lists of ‘representative names’ and ‘unique names’ in Supplementary Table S4 also include the following 
metrics per protein: number of publications containing the name, number of times each publication has been 
cited, an h-index and g-index of the names’ source publications (see later ‘Calculating h-index and g-index’), first 
year the name was reported in a publication (over the last 30 years), most recent year the name was reported, 
time period in years covering the number of publications and citations, and the number of years since last 
reported. Collectively, these metrics give a guideline as to the importance of each protein in the list. For example, 
‘Circumsporozoite protein’ is without doubt an important protein worthy of inclusion in the list. Conversely, the 
one publication containing ‘Calpain’ has not been cited since 1996, and although the one publication containing 
‘Bifunctional dihydrofolate reductase-thymidylate synthase’ has been cited 141 times, the protein has not been 
reported in any other ‘abstract of interest’ since 1998. Questionable proteins were flagged where the h-index was 
less than or equal to one and if the publication was more than 5 years old—114 of the 438 unique proteins were 
questionable with respect to vaccine candidacy. We therefore propose that 324 proteins are worthy candidates 
for further investigation.

To provide a guide to the reliability of the proposed candidates, a random selection of publications associated 
with the candidates were manually read. Table 2 shows a sample of publications that were automatically classi-
fied in this study to contain parasite proteins that induce a protective response in an animal model. A manual 
verification confirmed that nine out of 10 were correctly classified (e.g., calcium-dependent protein kinase 1 is 
not considered a potential vaccine candidate), although only six publications support the vaccine potential of 
the associated protein. Similarly, Table 2 shows a sample of proposed candidates with their mapped UniProt IDs 
associated with a publication. A manual verification confirmed that the vaccine potential of seven candidates out 
of 10 is supported by publications. Tables 2 and 3 also highlight some of the challenges restricting the reliability. 
First example, the protein name in a publication was ‘merozoite surface protein 1’, but the study’s automated 
pipeline incorrectly used ‘merozoite surface protein’ as the name to link to a Uniprot ID. Second example, the 
protein ‘Citrate synthase’ is not a valid candidate, despite the h-index. The automated pipeline incorrectly used 
this protein name instead of ‘Circumsporozoite protein’. This is because many publications have used the term 
‘circumsporozoite (CS)’ antigen or protein and CS is one of the gene names for ‘Citrate synthase’.

Table 2.  Manual verification of proteins linked to positively classified publications. Year = year of publication; 
Row = row position on sheet [Candidates per PubID] in Supplementary Table S3. This sheet contains 1776 
PubMed IDs and their relative keyword counts that were classified as abstracts containing protein names 
considered worthy vaccine candidates for further investigation. The rows are in descending order based on the 
‘Protection’ column. Rows were chosen at regular intervals from the top and bottom for manual verification; 
Protein(s) = protein name(s) specified in publication. Names with strikethrough are not vaccine candidates 
and therefore the classification is a false positive; UniProt ID. = UniProt ID(s) linked to protein name; e_
Protein(s) = names automatically extracted from publication title+abstract; e_UniProt = UniProt ID(s) linked 
to protein names, which in effect are the representatives of the vaccine candidates listed in Supplementary 
Table S4. UniProt IDs underlined exactly match to the protein identifier in the publication. UniProt IDs in 
bold are incorrect with respect to the protein name e.g., Q9GSA3 is the ID for ‘merozoite surface protein’ and 
not ‘merozoite surface protein 1’; Species = the source species for the proteins; Prot. = ‘Yes’ or ‘No’ whether 
the publication reports testing in an animal model for protein immunogenicity. a No formal identifier e.g., 
GenBank accession No. or UniProt ID given in publication. The UniProt ID shown is based on the protein 
name only. b Protein reported in other publications as a possible vaccine candidate.

PubMed ID Year Row Protein(s) UniProt ID e_Protein(s) e_UniProt Species Prot

28424680 2017 2 Nucleoside triphosphate hydrolase-IIa A0A7J6JVX4 Hydrolase,
NTPase II

A0A7J6K3V0
A0A7J6JVX4 T. gondii Yes

23928460 2013 11 Rhoptry protein 5 (ROP5) Q3YJR4
Rhoptry protein ROP5,
Type II rhoptry protein 5A,
Type III rhoptry protein 5A,
Type I rhoptry protein 5A

A0A125YQ30
Q3YJR4
B9QLN8
B9Q3F2

T. gondii Yes

26421596 2014 22 Toxoplasma gondii 10 kDa excretory–
secretory antigen (TgESA10) R4H6A8 Ubiquitin R4H6A8 T. gondii Yes

14500491 2003 33 Merozoite surface protein 1 (MSP1)a P13828 Merozoite surface protein 1 Q9GSA3 P. yoelii Yes

29599776 2018 44 Amastigote 2 (A2)a A4HZU7
Q26351

Stage-specific S antigen-like protein, stage-
specific S antigen homolog,

A4HZU7
Q26351 L. infantum Yes

7595214 1995 1737 Sporozoite surface protein 2
(PfSSP2)a Q26020 Sporozoite surface protein 2 Q26020 P. falciparum Nob

21715579 2011 1747 Pfs230a P68874 Gametocyte surface protein P230 P68874 P. falciparum Yes

9106193 1996 1757 Merozoite surface protein  1a P04933 Merozoite surface protein 1 Q8IJ53 P. falciparum Nob

29524527 2017 1767 False positive T. gondii No

11349025 2001 1777 Paramyosin (Pmy)a A0A3Q0KD88 Paramyosin A0A3Q0KD88 S. mansoni Nob
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Comparison of representative sequences. Parasites are composed of thousands of proteins. Theoreti-
cally, any protein from a parasite irrespective of its normal location could potentially trigger a response when 
presented to the immune system. This is because all parasite proteins are ultimately foreign material to the host. 
It is currently impractical to investigate all proteins for their vaccine candidacy potential. A compromised strat-
egy is therefore to identify those proteins more ‘likely’ to induce an immune response and consequently more 
worthy of laboratory investigation. A protein that is either external to or located on, or in, the membrane of a 
pathogen are strong indicators that it is more likely to be accessible to surveillance by the immune system than a 
protein within the interior of a  pathogen32. Focusing on only proteins naturally exposed to the immune system 
greatly narrows down the candidates for investigation. It must be acknowledged, however, that this strategy 
excludes potential candidates from the interior. For example, peptides from interior proteins can be presented 
to the immune system via MHC Class II molecules on professional antigen presenting cells (APCs) that have 
engulfed and digested protozoan parasites.

Characteristics of the 1099 representative proteins were extracted from existing resources or predicted from 
their sequences using freely available bioinformatic programs. Supplementary Table S5 (sheet [Representative 
proteins]) lists 96 characteristics collected for each representative protein. Note that characteristics sourced 
from resources that were unavailable are denoted by ‘na’. A primary aim of the characteristics collection was 
to provide circumstantial evidence of a protein’s natural accessibility to the immune system. Each protein was 
scored based on the number of accessibility indicators e.g., indicators such as presence of transmembrane (TM) 
domains, a signal peptide (SP), glycosylphosphatidylinositol (GPI) anchors, published epitopes; subcellular 
locations related to membrane or secreted; and Gene Ontology (GO) terms related to pathogenesis (see section 
‘Calculating immune system accessibility score’). The accessibility score in addition to the ‘questionable’ flag 
provided a reliability guideline of a representative protein’s potential as a vaccine candidate; only a guideline 
because many of the indicators are predictions. With this in mind, we propose that the 152 representative proteins 
with no accessibility indicators and associated with questionable publications (i.e. more than 5 years old with 
h-indexes less than or equal to one) are the least reliable. However, proteins with the highest accessibility scores 
are not necessarily more worthy than a protein with only one accessibility indicator. Of the 1099 proteins, 62.5% 
have accessibility scores greater than zero. Grouping these proteins under phyla, Apicomplexa proportionally 
contains the most reliable proteins (77.3%), then Nematoda (52%), Euglenozoa (49.3), Platyhelminthes (41%), 
and Arthropoda (25%).

The characteristics collection also provided a resource for comparative analysis between the representative 
proteins (i.e., potential vaccine candidates)—see Fig. 6. Supplementary Data S4 presents via comparative tables 
and graphs, a candidates breakdown into phylum and/or genus groups for a selection of characteristics such as 
number of publications, infectious disease, average protein lengths, subcellular location, TMs, SPs, SP cleavage 
sites, GPI-anchors, published epitopes, and GO terms.

Table 3.  Manual verification of vaccine candidates derived from automated extraction of names from 
published abstracts. Candidate = a protein name taken from sheet [Unique Names] in Supplementary 
Table S4. This sheet lists 438 unique names from the 1099 representative names extractedfrom the 1776 
positively classifiedabstracts. The 324 unique names without a warningare considered possible vaccine 
candidates.Candidates with the highest and lowest h-indexes were chosen from the list at regular row 
intervals for manual verification; UniProt ID. = UniProt ID(s) linked to candidate name (names are mapped 
via sheets [Representative Names] and [Clusters] in Supplementary Table S4). Multiple IDs per candidate are 
representatives from different clusters. UniProt IDs underlined exactly match to the protein identifier in the 
publication; H. = h-index of the protein names’ source publications; Year = year of publication; Species = the 
source species for the protein; Prot. = ‘Yes’ or ‘No’ whether the publication reports testing for protein 
immunogenicity in an animal model. a Protein reported in other publications as a possible vaccine candidate.

Candidate UniProt ID H PubMed ID Year Species Prot

Circumsporozoite protein
A0A4V0KF74
Q03752
A0A077Y0S6

80 22252877 2011 Plasmodium. yoelii Yes

Citrate synthase False positive 27 8817831 1996 Plasmodium berghei No

Microneme protein MIC3 B2D1U3 20 21632181 2011 Toxoplasma gondii Yes

Liver stage antigen Q25893 15 8609407 1996 Plasmodium falciparum Yes

Rhoptry associated protein-1 A7AS21 12 12933845 2003 Babesia bovis Noa

Putative kunitz-type protease inhibitor

A0A3Q0KUE0
A0A3Q0KFV5
A0A5K4F6V0
G4VEE0
A0A3Q0KN03
G4VBB1
G4VED8

1 31736947 2019 Schistosoma mansoni Yes

Ribonuclease T2 Q6PYW1 1 28212670 2017 Schistosoma japonicum Yes

Thioredoxin-like A0A1N6LW58 1 29335000 2018 Babesia microti (strain RI) No

Hydatid disease diagnostic antigen P-29 Q9U8G7 0 32908913 Echinococcus granulosus Yes

Surface antigen 22 Q70CC3 0 33689009 2021 Eimeria tenella Yes
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The 1099 representative proteins were further filtered on accessibility score and h-index thresholds to cre-
ate two vaccine candidate groups: exposed and non-exposed (see Supplementary Table S5 sheets [Exposed 
candidates] and [Non-exposed candidates]). The exposed group contains 485 proteins. These proteins are con-
sidered the ones most likely to be naturally exposed to the immune system. The non-exposed group contains 
121 proteins normally located in the interior of the cell. Proteins in both groups have prominent publication 
histories as determined by the h-index. Note that within each group many protein names are identical, but they 
are considered here as separate proteins because their sequences have a less than 90% similarity. Furthermore, 
the same name can appear in both groups. This inconsistency is addressed in the [Non-exposed candidates] 
sheet with a column called ‘Name type’, which contains ‘Unique’, ‘Non-exposed common’, ‘Exposed common’, or 
‘Common’ with respect to the protein name—where ‘Unique’ is a name exclusive to the non-exposed group (e.g., 
Nucleoside hydrolase); ‘Non-exposed common’ is a name appearing in both groups but is more common in the 
non-exposed group (e.g., Paramyosin); conversely, ‘Exposed common’ is a name appearing in both groups but is 
more common in the exposed groups (e.g., Heat shock protein 70); and ‘Common’ is a name occurring equally 
in both groups. In this study, the sequence and the protein characteristics it encodes takes precedence over the 

Figure 6.  A column graph depicting the number of predicted characteristics in candidate proteins per phylum 
per genus (A); and a bar graph showing the number of publications associated with the candidates (B). Protein 
characteristics were predicted from 1099 representative sequences related to protein names extracted from 
332,627 PubMed ‘title+abstract’ texts using the presented study’s pipeline. The 1099 proteins are considered 
here as potential vaccine candidates. Characteristics predicted are accessibility to the immune system by 
Vacceed, transmembrane (TM) domains by TMHMM, the presence of a signal peptide (SP) by signalP, and 
glycosylphosphatidylinositol (GPI) anchors by PredGPI. As an example of how to interpret the graphs, there 
are 1099 candidates of which 320 are proteins from the genus Plasmodium (a member of the Apicomplexa 
phylum)—257 of the 320 proteins are predicted to be naturally accessible to the immune system, 173 have at 
least one TM, 204 have SPs, and 76 GPI-anchors. The 320 candidates appear collectively in 4055 publications.
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name, which may contradict expectations when given a name. For example, the names ‘Surface antigen 2B’ and 
‘Apical membrane antigen’ imply that their sequences belong to the exposed group. Nevertheless, the proteins 
associated with these names (UniProt IDs B9VQX5 and R4JAM5) are classified as non-exposed because their 
sequences provide no evidence of natural exposure to the immune system.

Predicting vaccine candidates using an in silico approach. As one example of how the collated can-
didates from this study can be used for identifying further vaccine candidates, the program  Vacceed33 was used. 
This program is a high-throughput computational platform designed to automate the process of predicting, 
for eukaryotic pathogens, those proteins most likely to be naturally exposed to the immune system. A crucial 
component of Vacceed is an ensemble of supervised ML algorithms for binary classification that can be trained. 
The 485 proteins identified here as exposed candidates were used as the source for the positives training data. In 
contrast, 485 proteins with predicted cytoplasmic and nuclear subcellular locations formed the negatives—see 
Supplementary Table S6 sheet [Negatives] and later ‘Predicting vaccine candidates for three apicomplexan spe-
cies using Vacceed’ that describes the negatives creation. Based on a tenfold cross-validation of training data, 
the classification accuracy is 89.3% (see Supplementary Table  S6 [Vacceed performance measures] for other 
measures used to evaluate Vacceed’s predictive performance).

Every known protein for Plasmodium falciparum (strain 3D7), Toxoplasma gondii (strain ME49), and Babesia 
bovis (strain T2Bo) were processed through Vacceed to predict their probability of being exposed to the immune 
system. All three species are apicomplexans. Plasmodium causes malaria (the most fatal parasitic disease); T. 
gondii causes toxoplasmosis (responsible for birth defects in humans) and considered the model organism for 
 Apicomplexa34; and B. bovis causes babesiosis, a significant economic disease burden to livestock  industries35,36.

Supplementary Table S6 lists the predicted probabilities for the three apicomplexan species. The reliability of 
annotated protein names is considered poor by the current study (see later Annotation analysis). The high scor-
ing probabilities presented must therefore come with a caveat that their names may be misleading with regard to 
their sequence signals encoded and true function. The Plasmodium list has 354 unique names associated with 704 
proteins having a greater than 90% probability of being correctly classified as naturally exposed to the immune 
system. Note that 582 of these 704 proteins are predicted, 102 are inferred from homology, 19 have evidence at 
the protein level, and 150 have ‘putative’ in the name. Notable in the 354 names are those reported to have been 
explored as vaccine candidates, namely: apical membrane antigen  137, merozoite surface protein  138, merozoite 
surface protein  339, circumsporozoite  protein40, glutamate-rich protein  GLURP41, serine repeat antigen  542, eryth-
rocyte binding antigen-17543, gpi-anchored micronemal  antigen44, sporozoite invasion-associated protein  245, 
thrombospondin-related anonymous  protein46, cell traversal protein for ookinetes and  sporozoites47, liver stage 
antigen  346, liver stage antigen  148, rhoptry neck protein  249, cytoadherence linked asexual protein 3.145, 6-cysteine 
protein P12/P3850, and duffy binding-like merozoite surface  protein45. Notable names explored as candidates but 
classified here with a less than 90% probability were sporozoite threonine and asparagine-rich protein (82.7%)51, 
merozoite surface protein 2 (80%)52, rhoptry-associated leucine zipper-like protein 1 (75.3%)53, reticulocyte 
binding protein homologue 5 (45.5%)54, ring-infected erythrocyte surface antigen (60.3% and 38.8%)55, and 
erythrocyte membrane protein 1 (PfEMP1)56. There are 61 PfEMP1 proteins and all were less than 70% (25 less 
than 50%). PfEMP1 proteins do not contain signal peptides and are exported by distinct non-classical secretion 
 pathways56, which may explain the low Vacceed scores. Of the 704 proteins, 144 are named ‘conserved protein, 
unknown function’. These proteins of unknown function are considered promising candidates worth explor-
ing because they have characteristics encoded in their sequences similar to those proteins previously explored.

The Toxoplasma list has 393 unique names associated with 1022 proteins having a greater than 90% prob-
ability of being correctly classified as naturally exposed to the immune system (582 of the 1022 proteins are 
predicted, 153 inferred from homology, 2 have evidence at the protein level, and 52 have ‘putative’ in the name). 
Notable names previously explored as vaccine candidates are dense granule proteins GRA2 to GRA8, GRA14 
(GRA6 an exception with 85.9%)57–61; Microneme protein  MIC262;  MIC363; Protein disulfide-isomerase64; MIC12, 
SAG-related sequence SRS13, and Rhoptry protein  ROP665. Notable names explored as candidates but classi-
fied here with a less than 90% probability are SAG-related sequence SRS29A (89.9%)65, MIC1 (88.8%)66, MAG1 
(87.7%)67, Rhoptry protein ROP18 (77.4%)64, ROP1 (40.4%)68, Profilin (1.3%)69. Of the 1022 proteins, 474 are 
named ‘Uncharacterized protein’.

The Babesia list has 106 unique names associated with 435 proteins having a greater than 90% probability 
of being correctly classified as naturally exposed (279 of the 435 proteins are predicted, 100 with evidence at 
transcript level, 56 inferred from homology, and 153 have ‘putative’ in the name). Notable names previously 
explored are 12D3  antigen70, merozoite surface antigen (MSA) 1 and  271,72, thrombospondin-related anonymous 
 protein73, spherical body protein 2 (SBP2)74. A notable name explored as candidate but classified here with a 
less than 90% probability is rhoptry-associated protein 1 (RAP-1) (77.4%)75. Proteins that are exported from 
Babesia into the host’s red blood cell (RBC) cytoplasm and/or the RBC membrane are considered worthy vaccine 
 candidates76. Variant erythrocyte surface antigen (VESA) proteins are the main known B. bovis RBC surface-
exposed  proteins77. There are 133 VESA proteins, nine have a greater than 90%, 79 between 50 and 90%, and 45 
less than 50% probability of being naturally exposed. Small open reading frame (smORF) proteins are proposed 
to play a role in sequestration together with VESA  proteins78. Sequestration is the attachment of parasitised RBCs 
to ligands on endothelial cells of blood vessels. There are 44 smORF proteins, 41 have a greater than 90% prob-
ability of being exposed (the three exceptions have probabilities: 89.8%, 85.9%, and 7.1%). Of the 435 proteins, 39 
are named ‘Uncharacterized protein’, 126 ‘conserved hypothetical protein’, and 107 ‘membrane protein, putative’.

Only laboratory testing can verify that the proteins with predicted high probabilities are truly commendable 
for continued investigation. Given the thousands of proteins constituting a pathogen, the purpose of the lists is 
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to highlight the more worthy ones for laboratory testing. The expectation is that a reduced list will ultimately 
save time and money over the traditional identification approach.

Discussion
Previous  studies22,23 have shown that reverse vaccinology can be improved with a machine learning approach. 
Crucial requisites to this approach are quantity and quality training data consisting of positives and negatives. 
Ideally, positives are sourced from hundreds of proteins shown to induce a protective immune response in a host. 
The catalyst for this study was a need for positives to conduct an in silico vaccine discovery approach against 
Babesia bovis. A search for single or multiple public repositories that might contain a sufficient quantity of B. 
bovis positives was not forthcoming. The only repository distinguishing proteins with immunogenic potential 
is Protegen with currently 167 unique parasitic antigens, including five for B. bovis. Given there are hundreds 
of parasite species causing infectious diseases (see Supplementary Table S7  for examples), it is reasonable to 
assume there are hundreds, theoretically thousands of immunogenic proteins to be discovered. An unknown 
number of these proteins have already been discovered and published. However, as our unsuccessful search 
highlighted, there is no single resource listing all the discovered proteins. Our motivation for this study was 
the lack of such a list and the knowledge that research publications collectively contain an unexploited pool of 
potential immunogenic proteins.

PubMed, a major search engine for accessing publication abstracts, contains over 30 million abstracts on life 
sciences and biomedical topics. It provides an advanced search builder to query text within each publication’s 
abstract with terms and logical operators e.g., AND, OR, and NOT. The challenge is in determining the optimum 
query terms and logic to return the most pertinent publications. In our instance, abstracts containing a refer-
ence to an immunogenic protein. For example, PubMed returns 332,627 abstracts released over the last 30 years 
containing either the word ‘parasite’, ‘vaccine’, ‘vaccinated’, OR ‘vaccination’ when using the ‘title/abstract’ term. 
Including more appropriate keywords such as immunogenic or antigen returns 830,107. This number can be 
reduced by using the ‘AND’ logic such as parasite AND immunogenic, but at the cost of incorrectly enforcing 
a notion that every abstract of interest contains these words. Furthermore, there is no obvious indication given 
1000 s of returned abstracts that they truly contain immunogenic parasite proteins. Regrettably, no standardised 
set of keywords for summarising immunological studies has been adopted over the last 30 years. Our conclusion 
is that PubMed searches alone are an impracticable option towards obtaining abstracts of interest.

The aim of this study was to ‘automatically’ identify all parasite proteins that induce a protective response in 
an animal model as reported in the scientific literature within the last 30 years. More specifically, the aim was 
to develop a pipeline that takes PubMed-derived ‘title+abstract’ text as input, and then outputs a list of vaccine 
candidate proteins that can be linked to their sequences. The developed pipeline comprised two linked stages—
first, classification of abstracts using ML, and second, protein name extraction from classified abstracts using a 
hybrid of NLP, rules, and database searching.

Training data was required for the abstract classification. We were faced with a similar cyclic conundrum to 
the one initiating the catalyst for this study. That is, a sufficient number of abstracts—verified to contain a para-
site protein ‘shown to induce a protective response in an animal model’—were required for the training data to 
predict the classification of unseen abstracts. A rule-based approach using keyword selection criteria provided 
the sufficient number. Given 332,627 PubMed ‘title+abstracts’, the rule-based approach identified 2744 abstracts 
of interest i.e., positives. A manual assessment of 100 randomly chosen abstracts from the 2744, suggested the 
rule-based approach has an 85% accuracy of selecting an abstract of interest, but only 80% in its capacity to 
fully identify the relevant protein name. The manual assessment, however, could not provide an indication of 
how many abstracts of interest from the 332,627 were missed. We speculate that many were missed due to the 
restrictive nature of a fixed set of keywords underlying the rule-based approach. This issue of missed important 
abstracts is not unlike that encountered through PubMed advanced search builder.

The pipeline ML training data comprised 1556 positives and 1556 negatives obtained from the highest and 
lowest scoring rule-based derived abstracts, respectively. An advantage of the ML over the rule-based approach 
is that every word in the ‘title+abstract’ other than stop words are considered during the classification process 
rather than only a fixed set of keywords. That is, the ML classifier recognizes distinguishing patterns between 
positive and negative abstracts that can be used to detect similar patterns in unseen abstracts. This considerable 
advantage overcomes the ‘missed abstracts’ issue. The classification accuracy as determined from tenfold cross-
validation of the training data was 99.6%. This high accuracy is acknowledged, nonetheless, as misleading because 
the categorisation of training data abstracts was determined by the rule-based approach. An unknown 15% of this 
categorisation is potentially incorrect based on the manual assessment. As a more reliable performance indicator, 
the accuracy in correctly classifying ‘verified’ abstracts independent of training data was 83% with a sensitivity 
and specificity of 98.8% and 71.3%, respectively. A threshold of 0.5 was applied to predicted probabilities to 
determine a positive or negative classification. The threshold technically can be changed to alter the sensitivity 
and specificity ratio. In this study, we deemed that a higher sensitivity than specificity was preferable i.e., have 
more false positives than false negatives filtering to the next stage of protein name extraction. Approximately 
22% of the 332,627 PubMed ‘title+abstracts’ have a classification probability greater than 0.5. We expect at least 
15% (10,976) to be false positives.

The second pipeline stage, protein extraction, presented the most challenges. To reiterate, the extraction 
goal was to determine whether any word or ‘series of words’ in the classified abstract matched a known gene or 
protein in UniProt and/or NCBI databases. The challenges were because (1) abstracts rarely contain a protein’s 
unique identifier (e.g., UniProt ID and NCBI accession #), which would unambiguously provide the link to the 
protein associated with the abstract’s study. Protein or gene names in UniProt and NCBI are not unique (hence 
the reason for IDs); (2) many proteins and genes are poorly annotated with single names like ‘protein’, ’antigen’, 
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‘putative’, ‘raw’, ’dead’, ‘sand’, ‘impact’ and a multitude of other names with an English language meaning; (3) 
names in abstracts and databases have inconsistency in spelling and/or capitalising names e.g., ‘Apcial membrane 
antigen I’; (4) proteins that are possibly the same have slight name variations in the abstract and/or databases 
e.g., Rhoptry associated protein-1 and Rhoptry-associated protein 1 are recorded as separate proteins in UniProt; 
and (5) all protein names extracted from abstracts are not necessarily immunogenic proteins.

In an attempt to overcome the protein extraction challenges, we used spaCy to build a custom NER model, 
trained specifically to extract gene and protein name entities. The NER model was trained with protein names 
from the training positives used to build the abstract classifier. Testing the custom NER model with the task of 
protein extraction on verified abstracts showed that it identifies expected names with less false positives but more 
false negatives than a rule-based approach. Notably, every protein and gene was correctly identified as an entity in 
an abstract if they also appeared in the training data, whereas other valid proteins and genes in the abstract were 
sometimes missed if not used in the training data. We propose that the number of false negatives can be greatly 
reduced by including more protein names in the NER training data. Ideally, the training data should contain a 
BIO tag for every parasite protein and gene name in the UniProt and NCBI databases. These databases represent 
the entire real world domain for protein name extraction, which means it would be impossible to overtrain the 
NER model given the ideal training data.

The final output from the entire pipeline given 332,627 was 1099 protein names and their associated 
sequences. An important point is that this output number is variable due to the user-defined thresholds gov-
erning the final output e.g., separate thresholds can be applied to the ML abstract classification probability, 
CD-HIT identity, number of publications, number of animal models, and start and end year of publications. We 
acknowledge that it is debatable whether the most appropriate thresholds were used, but our aim was to obtain 
the optimum acceptable level of false predictions i.e., to find the optimal sensitivity and specificity. For example, 
both sensitivity and specificity would both be 100% in a perfect system. Changing thresholds in our real world 
system increased sensitivity whilst decreasing specificity, or conversely, decreased sensitivity while increasing 
specificity. Our considered optimum was the maximum obtainable sensitivity and specificity but with a higher 
sensitivity than specificity i.e., more false positives than negatives for further evaluation.

The 1099 proteins were further filtered into two vaccine candidate groups, exposed and non-exposed, based 
on a protein’s normal location in the context of the entire parasite. The ‘exposed’ candidates are those proteins 
naturally exposed to the immune system i.e., membrane-associated or secreted, and ‘non-exposed’ are hidden 
within the cell interior. The groups were determined from circumstantial evidence of a protein’s accessibility to 
the immune system i.e., collected or predicted protein characteristics indicating a protein’s potential to be in 
view of a host’s immune system surveillance. Furthermore, proteins calculated here with high rather than low 
h-index were considered more favourably. Taken together, accessibility indicators and h-indexes, the final list 
of proposed exposed candidates contained 485 proteins (363 Apicomplexa, 75 Platyhelminthes, 31 Euglenozoa, 
and 16 Nematoda). Although four arthropod proteins are in the 1099 representative names, all four had poor 
accessibility indicators and h-indexes and were consequently filtered from the candidate list. The unexposed 
group comprised 121 proteins with no accessibility indicators but high h-indexes (55 Platyhelminthes, 49 Api-
complexa, 11 Euglenozoa, and 5 Nematoda).

A vaccine is in effect a simulated infection to deceive the immune system into making memory B or T cell 
responses specific to an antigen. These memory cells then help protect against future infections from parasites 
possessing the same antigen i.e., provide a protective immune response. In the current study, we focused on 
naturally exposed immunogens under the premise that if they induced memory cells as a vaccine component, 
these memory cells are more likely to encounter the same immunogen during a real infection. We acknowledge 
that the benefits of reducing the number of candidates for investigation by maintaining this focus, comes at 
the cost of potentially missing important immunogenic peptides residing on interior proteins. This focus was 
further illustrated with a reverse vaccinology inspired program called Vacceed, which is designed to predict 
those proteins naturally exposed to the immune system. Probabilities of exposure were predicted for every 
protein from three important apicomplexan species (P. falciparum, T. gondii, and B. bovis) with the expectation 
10% are incorrectly predicted given the training data tenfold cross-validation metrics; and the caveat that only 
laboratory testing can truly verify the predictions. The proteins with the highest probabilities are judged to be 
the optimum within the current quality constraints of protein sequences. Reverse vaccinology has the potential 
to rapidly advance vaccine development against parasites, but its potential has been hindered since its inception 
by the lack of verified protein sequences. Most parasite sequences are predicted from poor quality genomes. For 
example, a recent  study79 reveals misassembly, karyotype differences, and chromosomal rearrangements of the 
T. gondii and Neospora caninum genomes following a re-evaluation. These genomes were originally sequenced 
using conventional Sanger sequencing  technology80 i.e., first generation sequencing. Next-generation sequenc-
ing (NGS) has mostly superseded Sanger sequencing for genome research but has limitations caused by inad-
equacies of short-read outputs with repetitive regions scattered across the  genome81. These limitations have 
caused assembly artefacts that are currently widely distributed in genome and proteome  databases82. NGS is 
now regarded as second-generation sequencing. Third-generation sequencing (TGS), still under active develop-
ment, has the capability to produce substantially longer reads than second generation sequencing. Reads that 
are longer than a repetitive region provides a solution to assembling long contigs spanning an entire genome. 
TGS potentially provides this solution but has a higher sequencing error rate and systematic error than  NGS83. 
Nevertheless, the recent combination of NGS and TGS data with the advances in assembly technologies has 
resulted in greatly improved genome sequence quality, which is epitomised by the new TGS-derived T. gondii 
and N. caninum  genomes79. An increase in quality parasite genomes ultimately equates to reverse vaccinology 
progressing towards its full potential.

It remains unclear how many parasite proteins reported to ‘induce a protective response in an animal model’ 
were missed by the pipeline. We expect, nevertheless, that our final candidate lists are far from complete given 
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the limitations of the study’s pipeline. Given only abstracts, extracting a protein name that links to the exact 
protein evaluated in the related study was the foremost challenge e.g., a protein name is not a unique identifier 
to its true sequence. A pipeline limitation is that there is no measurable indicator that the CD-HIT clustering 
solution made the correct link. Another limitation was that in order to reduce the numbers of false positives, 
candidates reported in many publications are considered more favourably in the selection process than those 
reported in only one or two. This consideration potentially excludes a true and perhaps novel candidate that is 
under-reported. We conclude that the pipeline succeeded in capturing the low hanging fruit (i.e., the popularly 
reported candidates) with an 86–90% accuracy based on independent testing. It is unclear how many candidates 
were missed because the percentage of publications reporting immunogenic parasitic proteins tested on animal 
models is unknown. A key closing point is that the current alternative to the pipeline for identifying pertinent 
parasitic proteins for further investigation is a manually, time-consuming approach using judicious PubMed 
keyword searching and colossal amounts of reading.

Materials and methods
Computer platform used for study. All experiments and data generation was performed on a high per-
formance computing (HPC) cluster node with 64 bit kernel, 32 MB memory, and 8 cores. The pipelines were 
designed for a Linux operating system and have only been tested on Red Hat Enterprise Linux 7.9, but are 
expected to work on most Linux distributions. Python version used was 3.6.8.

Source code availability. Source codes indicated in this article as being provided are available via GitHub: 
https:// github. com/ goods wen/ abstr act_ class ifica tion.

Obtaining abstracts. PubMed was the source for all abstracts. There is a limit of 10,000 abstracts that can 
be downloaded from the PubMed webpage. The limitation was overcome using the Entrez Programming Utili-
ties (E-utilities—https:// www. ncbi. nlm. nih. gov/ books/ NBK25 497—last viewed September 2021). The utilities 
provide an interface into the Entrez query. Entrez is a data retrieval system that provides users access to NCBI’s 
databases such as PubMed. An in-house Python script (source code provided: ‘get_abstract.py’) used the module 
‘Entrez’ from Biopython (version 1.79)84 to implement the E-utility interface.

All abstracts dating from 1991 to present that contained either the word ‘parasite’, ‘vaccine’, ‘vaccinated’, or 
‘vaccination’ in the abstract or title text were downloaded in 10,000 batches using the in-house Python script. 
The search query was ((parasite[Title/Abstract]) OR (vaccine[Title/Abstract]) OR (vaccinated[Title/Abstract]) 
OR (vaccination [Title/Abstract])) AND (("1991"[Date-Publication] : "2022"[Date-Publication])).

The ‘Entrez.efetch’ return mode parameter (retmode) defined ‘text’ as the format of the PubMed retrieved 
data (XML is another option). The retrieved data contained more information than required e.g., author infor-
mation. An in-house Python script (source code provided: ‘process_abstract.py’) created a more workable file 
that included only PubMed ID, Title, and Abstract per row for each publication (referred to henceforth as the 
Abstracts).

Keyword files. A list of notable parasite species of medical and veterinary importance and their associated 
infection/disease was compiled—three classes of parasites with 75 classed as protozoan, 88 helminthic, and 
seven ectoparasite (170 in total—see Supplementary Table S7 sheet [Species + Diseases]. Its contents were com-
piled with reference to Centers for Disease Control and Prevention (CDC)—Parasitic Diseases (https:// www. cdc. 
gov/ paras ites/), Protegen database (http:// www. violi net. org/ prote gen/ index. php, ParaBoss website (Australia’s 
resource for parasite management information for sheep, goats and cattle—https:// www. parab oss. com. au), and 
Meat and Livestock Australia (MLA) website on ticks (https:// www. mla. com. au/ resea rch- and- devel opment/ ani-
mal- health- welfa re- and- biose curity/ paras ites/ ident ifica tion/ ticks/. All websites were last viewed in September 
2021. The compiled list is referred to henceforth as the ‘taxonomy_ disease_ link’ and is used in abstract scoring.

All diseases from ‘taxonomy_ disease_ link’ were extracted to create a unique list of diseases, referred to 
henceforth as the ‘Disease_keywords’ (see Supplementary Table S7). A list of common animal models was com-
piled, referred to henceforth as the ‘Animal_keywords’ (see Supplementary Table S7). An animal model denoted 
here is a non-human species used to evaluate protective immunity of a protein candidate when challenged with 
an infection. A list of frequently used words or terms when describing protective immunity was compiled and 
referred to henceforth as the ‘Protection_keywords’ (see Supplementary Table S7.

Evidence abstracts. A conventional manual process was performed to find publications that met the fol-
lowing requirement: stated at least one parasite protein that induced a protective response in an animal model. 
For example, the process involved using PubMed search terms and keywords and/or finding pertinent publica-
tions through citations in other publications. References to publications were also obtained from the Protegen 
database.

In-house parasite protein database creation. The files ‘uniprot_sprot_invertebrates.dat.gz’ (manually 
annotated and reviewed proteins –38.9 MB compressed) and ‘uniprot_trembl_invertebrates.dat.gz’ (automati-
cally annotated and not reviewed proteins—8.3 GB compressed) were downloaded from: https:// ftp. unipr ot. org/ 
pub/ datab ases/ unipr ot/ curre nt_ relea se/ knowl edgeb ase/ taxon omic_ divis ions/. The uncompressed files were 
over 48.2 GB and contained all proteins associated with invertebrate organisms. An explanation of the keywords 
used in the files can be found in https:// www. unipr ot. org/ docs/ keywl ist. An in-house Python script was used 
to parse the uncompressed files to generate one file with one protein per row under the main column headings: 

https://github.com/goodswen/abstract_classification
https://www.ncbi.nlm.nih.gov/books/NBK25497
https://www.cdc.gov/parasites/
https://www.cdc.gov/parasites/
http://www.violinet.org/protegen/index.php
https://www.paraboss.com.au
https://www.mla.com.au/research-and-development/animal-health-welfare-and-biosecurity/parasites/identification/ticks/
https://www.mla.com.au/research-and-development/animal-health-welfare-and-biosecurity/parasites/identification/ticks/
https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/taxonomic_divisions/
https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/taxonomic_divisions/
https://www.uniprot.org/docs/keywlist
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UniProt ID, Protein Name, and Taxonomy ID. Only proteins with a Taxonomy ID in the taxonomy_ disease_ 
link were extracted. In summary: 28,285 (reviewed) and 12,688,175 (unreviewed) invertebrate-related proteins 
were read, and 1,058 (reviewed) and 1,462,608 (reviewed) proteins linked to 174 Taxonomy IDs were recorded 
in a file referred to henceforth as ‘parasite_proteins’.

In-house parasite gene database creation. The file ‘gene_info.gz (647 MB compressed, 4 GB uncom-
pressed) was downloaded from: https:// ftp. ncbi. nlm. nih. gov/ gene/ DATA/ gene_ info. gz. An in-house Python 
script was used to parse the uncompressed files to generate one file with one gene per row under the main col-
umn headings: Gene ID, Gene Name, and Taxonomy ID. Only genes with a Taxonomy ID in the taxonomy_ dis-
ease_ link were extracted. In summary: 26,379,168 genes were read, and 596,571 genes linked to 174 Taxonomy 
IDs were recorded in a file referred to henceforth as ‘parasite_genes’.

Abstract classification using a rule-based approach. An in-house Python script (source code pro-
vided: ‘score_abstract.py’) classified an abstract based on whether it contained matching words to the following 
four criteria words: (1) genus or species names from taxonomy_ disease_ link; (2) Protection_keywords; (3) 
Animal_keywords, and (4) Disease_keywords. Abstracts with at least one count for each of the four criteria were 
classified as ‘abstracts of interest’. These abstracts were further processed to check if they contained words match-
ing to protein or gene names in parasite_proteins and/or parasite_genes (see the following method).

Protein name extraction using a rule-based approach. An in-house pipeline consisting of Linux and 
Python scripts were used to extract parasite protein or gene names from the abstracts of interest (pipeline source 
code provided: rule_based_protein_extraction). More specifically, the aim is to associate the extracted name 
with a UniProt ID or NCBI Gene ID.

The pipeline uses both parasite_proteins and parasite_genes for searches. parasite_proteins contains the fol-
lowing columns: UniProt ID, Protein name, Alternative name, NCBI Protein ID, NCBI Gene_ID, Gene name, 
Taxonomy ID; and parasite_genes contains: Taxonomy NCBI Gene_ID, Symbol, LocusTag, Gene Name. Note 
that ‘Protein name’ and ‘Gene name’ can consist of one or more words.

The pipeline incorporates two methods to obtain UniProt ID or NCBI Gene IDs. Steps in Method #1 for each 
abstract: (1) punctuation (e.g., []}{,.;)?!:-) are removed; (2) genus or species names from taxonomy_ disease_ link 
are checked for matches; (3) every ‘Protein name’ from parasite_proteins that is specific to the previously matched 
genus or species is checked for a match. An exception is that single word protein names matching to common 
words with English meaning in the abstract are ignored. For example, poorly annotated single names such as 
‘protein’, ’antigen’, ‘putative’, ‘raw’, ’dead’, ‘sand’. A Python script included the module ‘enchant’, which provides 
functionality to check the spelling of words via in-built dictionaries of different languages. Here, when checking 
for single word protein name, any name in the enchant US dictionary or in ‘Ignored_names (see Supplementary 
Table S7) is ignored. Single word protein names not ignored but listed in Check_names (see Supplementary 
Table S7) an additional check is performed, whereby a name is accepted if in the abstract it is capitalised, or 
preceded or followed with one of the following words: ‘gene’, ‘protein’, or ‘antigen’; (4) a UniProt ID is recorded 
for all matches; (5) as per step #3, but every ‘Gene name’ from parasite_genes is checked for a match and a NCBI 
Gene_ID recorded for matches.

Steps in Method #2 for each abstract: (1) genus or species names from taxonomy_ disease_ link are checked 
for matches; (2) punctuation (e.g., []{},.;)?!:-) at start and end of words, numbers, words (191 in total) contained 
in Ignored_words (see Supplementary Table S7), and words in the enchant US dictionary except those capital-
ised, or preceded or followed with one of the following words: ‘gene’, ‘protein’, or ‘antigen’ are all removed. The 
‘Ignored_words’ are essentially those considered stop words such as ‘the’, ‘a’, ‘that’, and ‘when’; (3) each remaining 
word in the abstract is checked for a match with UniProt ID, Alternative name, NCBI Protein ID, NCBI Gene_ID 
in parasite_proteins that is specific to the previously matched genus or species. Some abstract words are preceded 
by a two letter species abbreviation e.g., ncSAG1 indicating a SAG1 protein from Neospora caninum. When no 
match is found, an additional matching search is performed by removing the first two letters of the word if they 
are an abbreviation for the species in the abstract; (4) a UniProt ID is recorded for all matches; (5) as per step 
#3, but each remaining word is checked for a match with NCBI Gene_ID, Symbol, LocusTag in parasite_genes 
and a NCBI Gene_ID recorded for matches.

Note that the case of a word (i.e., upper or lowercase) was disregarded when determining a match. The pipe-
line combines the output from both methods to create a single file containing a list of unique UniProt IDs for 
each PubMed ID (where matched NCBI Gene IDs are mapped to UniProt IDs).

Creation of machine learning training data. The 2,744 abstracts of interest generated by the rule-based 
approach were further filtered. An abstract was selected if it contained a parasite protein name or gene that is 
mentioned in more than five other publications and contained more than two ‘protective immunity’ keywords. 
An in-house Python script applied the thresholds (source code provided: ‘get_training_data.py’). Abstracts that 
exceeded the > 5 publications and > 2 keyword thresholds formed the positives training data (1556 in total).

The negatives training data was obtained by randomly selecting 1556 from 15,358 abstracts (from the initial 
332,627 downloaded) that had a zero matching count to all words contained in the five keyword files (taxonomy_ 
disease_ link; Protection_keywords; Animal_keywords, Disease_keywords). Supplementary Table S2 lists the 
lists the PubMed IDs and their relative keyword counts for the positives and negatives training data.

As part of the ML feature extraction process, the title+abstracts associated with the training data PubMed IDs 
were converted to a vectorised format (i.e., a numerical representation) using the text vectorization technique, 
Bag of Words (BoW)85. In brief, the technique starts with a list of words (the BoW) that are considered important. 

https://ftp.ncbi.nlm.nih.gov/gene/DATA/gene_info.gz
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The BoW in this instance contained all common words (minus stop words) from the positives’ training abstracts 
(1011 words). Then, given the ‘title+abstract’ text as input, the output for the training data was a numerical vector 
consisting of the frequency of each word from the BoW that occurred in the input e.g., for each ‘title+abstract’ 
input, the training data had 1011 values (features)+a 0 or 1 representing a negative or positive target. The BoW 
is listed in Supplementary Table S2.

Abstract classification using machine learning. A pipeline comprising Linux and R scripts performed 
a binary classification of abstracts i.e., two classes: abstracts of interest (those containing a parasitic protein name 
shown to induce a protective response in an animal model) and abstracts to be ignored. The ML algorithm used 
to build the predictive models was support vector machines (SVM)86. SVM is a popular ML algorithm for text 
classification when the amounts of training data are  limited87. This algorithm was implemented via the ksvm R 
function, which is contained in the kernlab package. The function used two arguments: a data frame of numeric 
variables (i.e., the vectorised training dataset) and a numerical class vector, i.e., a vector representing the target 
label, which had two classes: 1 (positive) and 0 (negative). Given input data (a vectorised ‘title+abstract from 
a publication), the SVM algorithm generates a probability for each class e.g., class positive = 0.75, class nega-
tive = 0.25. This means that if the abstract was classified as a positive, then the classification is considered to be 
75% likely to be correct. An important caveat, however, is that a class positive equal to 1.0 does not necessarily 
mean the associated abstract is unquestionably an abstract of interest. Parameters were tuned empirically with 
the training and validation datasets. All default parameters for the SVM algorithm were used except for ker-
nel = "rbfdot" and type = "C-svc".

An additional pipeline using the same ksvm R function was created to perform tenfold cross validation. A 
threshold of 0.5 was applied to the predicted probabilities, whereby a true positive is a probability >  = 0.5 and 
a false positive is a probability < 0.5 for expected positives, and similarly, a true negative is <  = 0.5 and a false 
negative is > 0.5 for expected negatives. The measures used to evaluated the SVM model’s predictive performance 
were accuracy, error rate (misclassification), true positive rate (sensitivity), false positive rate, true negative rate 
(specificity), precision (positive predictive value, and negative predictive value (see Supplementary Table S2 sheet 
[SVM performance measures] for formulae). Source code is provided for both pipelines called ‘classification 
pipeline’, and ‘classification pipeline CV’.

Note that when the classification pipeline was used on the Evidence and Manual abstracts for evaluation, any 
input PubMed IDs matching the training data PubMed IDs were removed prior to the evaluation.

Protein name detection using natural language processing. The program spaCy 3.1 was used to 
build a custom named entity recognition (NER) model. The first step was to convert the abstracts previously used 
for the ML training positives into an input format suitable for spaCy. This format comprises tagged sentences 
and the tagging style used was BIO (Beginning, Inside, Outside) e.g., three labels (B, I, O) are used to define the 
required entity boundaries. For this study, the required entities are protein and gene names e.g., The [O] protein 
[O] name [O] is [O] dense [B] granule [I] protein [I] and [O] the [O] symbol [O] is [O] GRA14 [O] in [O] the 
[O] species [O] Toxoplasma [O] gondii [O]; where ‘dense granule protein’ and ‘GRA14’ are the required entities 
to extract. The source code to add tags to sentences is provided via the Python script ‘get_bio_format.py’ (output 
file: ‘bio_format.iob’); where the tags are protein and gene names extracted from the training data using the 
rule-based approach (source code: ‘get_bio_words.py’), and the sentences for tagging are those only containing 
a protein or gene name (obtained with source code: ‘get_sentences.py’).

The next step was to convert the BIO formatted sentences (‘bio_format.iob’) into a spaCy binary format: 
python -m spacy convert -c iob bio_format.iob/train (use ‘python -m spacy convert –help’ for details on syntax). 
To create a trained NER model: python -m spacy train acc_config.cfg—output/train/output (use ‘python -m 
spacy train—help’ for details). Note that the computational time to build the model is multiple hours e.g., over 
24 h to model 5099 lines of BIO formatted sentences using the study’s computer platform. The built NER model 
was named ‘custom_NER_model’ and is provided.

The final step is a Python script (source code provided: ‘NER_protein_extract.py’) that takes ‘title+abstract’ 
per PubMed ID as input. The script uses the module ‘spacy’ to load the custom NER model, which determines 
the entities within the input text. Each entity is checked for a match in parasite_proteins and parasite_genes. The 
output file contains a list of matched protein and gene names for each PubMed ID.

Calculating h-index and g-index. The h-index (also known as Hirsch index) is a leading author-level 
research metric, where ‘h’ denotes the number of papers having at least an ‘h’ number of  citations88. In this study, 
the protein is the equivalent of the author. For example, a protein name is extracted from seven publications. 
The number of citations for each of the seven publications in descending order is 130, 85, 24, 15, 9, 4, and 1. In 
this example, the protein has an h-index of 5, meaning there are five publications with more than 5 citations i.e., 
the protein does not have six publications with 6 or more citations. The h-index is insensitive to the highly cited 
 work89 e.g.; the h-index does not increase if the top five cited publications in the previous example continue to 
be cited. The ‘g-index’ allocates more weight to highly cited papers. The g-index is defined as ‘the largest number 
such that the top ‘g’ publications received together at least  g2  citations90 e.g., the g-index for previous example 
would be 7, since the sum of the seven citations (268) is more than 49 (i.e.  72).

Collecting and predicting characteristics for representative proteins. The column heading names 
of the 96 characteristics collected or predicted are listed in the ReadMe file of Supplementary Table S5. The 
source and/or description for each column are now described:
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[1] UniProt ID from UniProtKB; [2] Entry_name from UniProtKB; [3] Cluster # from study’s CD-HIT 
analysis; [4] Representative Protein Name is the majority protein name in Cluster #; [5] Warning (0 or 1) where 
‘1’ indicates a questionable protein were the h-index is less than or equal to one and its associated publication 
is more than 5 years old; [6] accessibility score calculated in-house (see section ‘Calculating immune system 
accessibility score’; [7] class of parasite (ectoparasite, helminthic, or protozoan); [8] phylum (Apicomplexa, 
Arthropoda, Euglenozoa, Nematoda or Platyhelminthes) from NCBI Taxonomy; [9] number of publications with 
reference to the representative or related protein (calculated in-house); [10] citation counts from Scopus; [11, 12] 
see section on ‘Calculating h-index and g-index’; [13–16] publication years from PubMed;  [17–20] organism, 
protein length, gene names, and protein existence from UniProtKB; [21, 22] diseases (see section ‘Keywords’); 
[23] TMs predicted by Phobius (1.0)91; [24] TMs predicted by TMHMM (2.0)92; [25–27] TM domains from 
UniProtKB; [28] SP predicted by Phobius (1.0); [29] SP predicted by TargetP (2.0)93; [30, 31] SP and cleavage 
site predicted by signalP (5.0)94; [32] SP from UniProtKB; [33]  Vacceed33; [34–36] GO terms from UniProtKB; 
[37, 38] PredGPI (version 1.0)95. Note GPI FPrate < 0.001 is highly probable, < 0.005 is probable, < 0.01 is weakly 
probable, and >  = 0.01 is not GPI-anchored; [39] Subcellular location from UniProtKB; [40–44] Immune Epitope 
Database and Analysis Resource (IEDB)96; [45–96] all taken from UniProtKB.

Calculating immune system accessibility score. An in-house Python script calculated the immune 
system accessibility score, which represents a protein’s potential ‘accessibility to the immune system’ based on a 
selection of the 96 characteristics previously described. For each representative protein, a ‘1’ is added for each 
immune system accessibility indicator (in this case a particular column entry from Supplementary Table S5) 
if a SP, TM, GPI-anchor is present in the protein, and if it has a subcellular location related to membrane and/
or secretion; and a GO term related to pathogenesis. More precisely, inputs to the script were values from 12 
columns: phobius_TM, TMHMM, TMCount, phobius_SP, targetP, signalP’ Vacceed, GO biological process, GO 
cellular component, GO molecular function, GPI_Desc, Subcellular location, NoOfEpitopes; where a ‘1’ is added 
for a true case in each of the following conditional statements: (1) if phobius_TM > 0 and TMHMM > 0 and 
TMCount > 0; (2) if phobius_SP > 0 and targetP >  = 0.5 and signalP >  = 0.5; (3) if Vacceed >  = 0.5; (4) if "GPI", 
"adhesion", "pathogenesis", or "immune" in GO biological process; (5) if "cell surface", "component of mem-
brane", "extracellular", or "GPI-anchor" in GO cellular component; (6) if "cell surface" or "transmembrane" in 
GO molecular function; (7) if GPI-anchor description not equal to "Not GPI-anchored"; (8) if "membrane", 
"GPI-anchor", "surface", or "secreted" in Subcellular location; and (9) if ‘number of published epitopes’ > 0.

Predicting vaccine candidates for three apicomplexan species using Vacceed. All 5460 P. falci-
parum (strain 3D7) and 8322 T. gondii (strain ME49) proteins were downloaded in a FASTA format from Plas-
moDB (release 47) and ToxoDB (release 47), respectively, which are database members of Eukaryotic Pathogen 
Databases (EuPathDB)97. All 3706 currently available protein sequences for B. bovis T2Bo were downloaded in a 
FASTA format from PiroPlasmaDB (release 47), which is also a database member of EuPathDB.

Vacceed was downloaded from https:// github. com/ goods wen/ vacce ed/ relea ses. The original training data 
was replaced with positives formed from the 485 proteins identified in this study as potential candidates, and 
negatives formed from 485 proteins with known and/or predicted cell interior locations such as the cytoplasm 
or nucleus—see Supplementary Table S6 sheet [Negatives]. The protein locations were determined by first down-
loading tabbed results from an advanced UniProtKB search using terms ‘organism:plasmodium OR toxoplasma’ 
and including Subcellular location [CC] as one of the output columns. An in-house Python script then parsed 
the results and selected 485 proteins that included in the Subcellular location column, ‘Cytoplasm’, ‘Nucleus’, or 
,for a UniProt reviewed protein, a location within the interior of the cell e.g. Golgi apparatus, Lysosome. The new 
training data, formatted for Vacceed and named ‘train_profiles’, was copied into the expected Vacceed’s direc-
tory structure: /vacceed/species_name/pipeline/evidence/training_files, where ‘species_name’ is a user-defined 
name for the target species such as plasmodium, toxoplasma, or babesia. The new ‘train_profiles’ is provided via 
GitHub: https:// github. com/ goods wen/ abstr act_ class ifica tion.

Note that many of the training proteins were also proteins in the three apicomplexan species. In such cases, 
their probabilities were independently determined by running Vacceed with a training dataset that excluded the 
training protein for which the exposure probability was sought e.g., Vacceed in effect was executed with only 
one input training protein sequence at a time whereby the same protein was removed from the training data.

Annotation analysis. UniProtKB provides a heuristic measure of the annotation, although the curators 
claim they cannot define the ’correct annotation’ for any given protein (https:// www. unipr ot. org/ help/ annot 
ation_ score: last viewed October 2021). UniProtKB assign an annotation score from one to five to every protein, 
where five is considered the best-annotated entry (annotations with experimental evidence score higher than 
equivalent predicted/inferred annotations). With an understanding UniProtKB annotation scores are only a 
guideline of annotation quality, we checked scores for all 5460 P. falciparum (strain 3D7), 8322 T. gondii (strain 
ME49), and 3706 B. bovis T2Bo proteins (see Supplementary Table S6 for annotation score per protein).

Considering all P. falciparum proteins: 70.2% scored 1, 23.8% scored 2, 5.0% scored 3, 0.5% scored 4, and 
0.5% scored 5; T. gondii: 86.9% scored 1, 12.0% scored 2, 1.0% scored 3, 0.1% scored 4, and 0.01% scored 5; and 
B. bovis: 86.5% scored 1, 12.4% scored 2, 1.0% scored 3, 0.05% scored 4, and 0% scored 5.

UniProtKB also indicates the type of evidence that supports the existence of the protein (see https:// www. 
unipr ot. org/ help/ prote in_ exist ence: last viewed October 2021). However, this is not an indication of the accuracy 
or correctness of the protein sequence. Considering all P. falciparum proteins: 72.4% predicted, 22.5% inferred 
from homology, 0.1% with experimental evidence at transcript level, and 4.9% with experimental evidence at 
protein level; T. gondii: 78.5% predicted, 21.3% inferred from homology, 0.02% with experimental evidence at 

https://github.com/goodswen/vacceed/releases
https://github.com/goodswen/abstract_classification
https://www.uniprot.org/help/annotation_score
https://www.uniprot.org/help/annotation_score
https://www.uniprot.org/help/protein_existence
https://www.uniprot.org/help/protein_existence
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transcript level, and 0.13% with experimental evidence at protein level; and B. bovis: 57.0% predicted, 20.4% 
inferred from homology, 22.4% with experimental evidence at transcript level, and 0.13% with experimental 
evidence at protein level (see Supplementary Table S6 for protein existence per protein).
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