
UNIVERSITY OF TECHNOLOGY SYDNEY

Faculty of Science

The Coupled Task Scheduling Problem:

Models and Solution Methods

by

Mostafa Khatami

A Thesis Submitted

in Partial Fulfillment of the

Requirements for the Degree

Doctor of Philosophy

Sydney, Australia

2022

Certificate of Authorship/Originality

I, Mostafa Khatami, certify that the work in this thesis has not been previously submitted

for a degree nor has it been submitted as a part of the requirements for other degree except

as fully acknowledged within the text.

I also certify that this thesis has been written by me. Any help that I have received in

my research and in the preparation of the thesis itself has been fully acknowledged. In

addition, I certify that all information sources and literature used are quoted in the thesis.

This research is supported by an Australian Government Research Training Program.

© Copyright May, 2022, Mostafa Khatami

Production Note:

Signature removed
prior to publication.

ABSTRACT

The Coupled Task Scheduling Problem:

Models and Solution Methods

by

Mostafa Khatami

The coupled task scheduling problem (CTSP) is studied in this thesis. The problem

consists of scheduling a set of jobs on one or a set of machines, where each job consists

of at least two tasks. The main characteristic of the problem is a fixed time-lag between

the process of each two consecutive tasks of the same job, where its duration is fixed, i.e.,

the succeeding task cannot be started earlier or later than the time-lag is passed. The

fixed time-lags were introduced to model radar tracking systems, and later extended to

formulate problems in chemistry manufacturing systems and robotic cells. The motivation

for studying the CTSP in this thesis is to model certain problems in healthcare scheduling

with the same characteristics. One example is the scheduling of patients in a chemotherapy

clinic, where each patient must undergo a number of consecutive treatments with time-lags

in between. Meeting the fixed delays between the treatments of a patient is an important

factor in gaining the best outcomes for them. To study the CTSP, a literature review is

first conducted, followed by studying the problem in different scheduling environments,

including the single-machine, parallel-machine, open-shop and flow-shop settings, where

we propose several new complexity results and solution algorithms for different variants

of the problem.

Regarding the single-machine coupled task problem, a new mathematical formula-

tion and two matheuristic algorithms are proposed for the classical problem, as well as

a dynamic programming algorithm for a variant of the problem with time-dependent

processing times.

With regard to the parallel-machine environment, we first explore the complexity of

the problem and propose NP -hardness proofs for certain cases, followed by approximation

bounds for the two-machine problem. The latter result is then extended to the open-shop

scheduling environment.

The problem in the flow-shop environment is then extensively investigated under the

permutation setting, and also under the case of ordered processing times. A set of pub-

licly available hard data set and state-of-the-art algorithms are proposed for the ordered

flow-shops. Then, flow-shop problem with coupled tasks is studied and polynomial-time

algorithms are proposed for various settings of the problem, including the ordered pro-

cessing times.

Dissertation directed by Dr Amir Salehipour

School of Mathematical and Physical Sciences

Dedication

I would have never accomplished this degree without your wholehearted love,

Mahboubeh. To you, my beloved wife, and our little Ali.

Acknowledgements

I would like to thank my principal supervisor Dr Amir Salehipour for his great and

continued support during my degree. He has always been available to help me, and his

strong support has been essential for my achievements.

I also thank my co-supervisors Professor Daniel Oron (The University of Sydney Busi-

ness School) and Dr Hanyu Gu (UTS), and my former co-supervisor Dr Feng-Jang Hwang

(UTS), for their helps and supports throughout my degree.

I would like to thank Professor Lance Lesley (UTS) and Professor Murray Elder (UTS),

for their kind smiles and nice chats during my time at UTS. I also thank Mrs Julia Memar

(UTS) for her great supports.

I thank UTS Graduate Research School for providing me with PhD scholarships, and

UTS Faculty of Science for assisting me with conference grants.

Finally, I thank my parents for their support, and my wife for her all time love.

Mostafa Khatami

Sydney, Australia, 2022.

List of Publications

Journal Papers

J-1. Khatami, M., Salehipour, A., and Hwang, F. J. (2019). “Makespan minimization for the m-

machine ordered flow shop scheduling problem”. Computers and Operations Research 111, 400–

414.

J-2. Khatami, M., Salehipour, A., and Cheng, T. C. E. (2020). “Coupled task scheduling with exact

delays: Literature review and models”. European Journal of Operational Research 282(1), 19 –39.

J-3. Khatami, M. and Salehipour, A. (2021a). “A binary search algorithm for the general coupled task

scheduling problem”. 4OR 19(4), 593–611.

J-4. Khatami, M. and Salehipour, A. (2021b). “Coupled task scheduling with time-dependent process-

ing times”. Journal of Scheduling 24, 223–236.

Conference Papers

C-1. Khatami, M., Salehipour, A., and Hwang, F. J. (2018). “Single-machine coupled task scheduling

with time-dependent processing times”. ASOR 2018. Melbourne, Australia.

C-2. Khatami, M. and Salehipour, A. (2019). “A simple heuristic for the coupled task scheduling

problem”. MODSIM 2019. Canberra, Australia.

C-3. Khatami, M. and Salehipour, A. (2020). “A relax-and-solve algorithm for the ordered flow-shop

scheduling problem”. IEEE IEEM 2020. Singapore.

Preprints under review

P-1. Khatami, M. and Salehipour, A. (2021c). “The coupled task scheduling problem: An improved

mathematical program and a new solution algorithm”. Submitted to International Transactions

in Operational Research.

P-2. Khatami, M., Salehipour, A., and Cheng, T. C. E. (2021b). “Flow-shop scheduling with exact

delays to minimize makespan”. Submitted to Computers & Industrial Engineering .

P-3. Khatami, M., Oron, D., and Salehipour, A. (2021a). “Scheduling coupled tasks on parallel identical

machines”. Submitted to Annals of Operations Research .

Contents

Certificate ii

Abstract iii

Dedication v

Acknowledgments vi

List of Publications vii

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Definitions, scope and classification . 1

1.2 Research aims . 3

1.3 Thesis Organisation . 3

2 Literature review and applications 5

2.1 Literature review . 5

2.1.1 The single-machine scheduling problem 6

2.1.2 The shop scheduling problem . 12

2.2 Applications . 20

3 Benchmarks and mathematical models 23

3.1 Benchmark instances . 23

3.1.1 Previous instance generation schemes 23

3.1.2 The single-machine CTSP . 24

3.1.3 The shop CTSP . 25

3.2 Mathematical models . 26

3.2.1 The single-machine models . 27

3.2.2 The flow-shop models . 32

3.3 Performance evaluation of models . 37

ix

4 Coupled tasks on a single-machine 42

4.1 Time-dependent scheduling . 42

4.1.1 Problem definition . 43

4.1.2 Minimising the makespan . 44

4.1.3 Lower bound . 52

4.1.4 Computational experiments . 53

4.2 Binary search algorithm . 57

4.2.1 Lower bound . 57

4.2.2 Upper bound . 60

4.2.3 The feasibility problem . 60

4.2.4 Computational experiments . 62

4.3 Proposed new formulation . 64

4.3.1 Removing existing constraints . 64

4.3.2 Introducing new constraints . 65

4.3.3 The enhanced mixed-integer program 67

4.4 The relax-and-solve algorithm . 69

4.4.1 Solution representation . 70

4.4.2 The initial sequence . 70

4.4.3 Pre-processing . 70

4.4.4 Relax and solve operations . 70

4.5 Computational experiments . 71

5 Coupled tasks on parallel machines 77

5.1 NP -hardness proof . 77

5.2 Approximation results . 81

5.3 Optimal schedule for Pm|(a, L, b)|Cmax and Pm|(p, L, p)|Cmax 83

5.3.1 Problem Pm|(a, L, b)|Cmax . 83

5.3.2 Problem Pm|(p, L, p)|Cmax . 85

6 Coupled tasks on flow-shops 87

6.1 Ordered flow-shops . 87

6.1.1 Problem definition and formulation 88

6.1.2 Proposed solution methods . 90

x

6.1.3 Computational experiments . 95

6.2 A relax-and-solve algorithm . 106

6.2.1 The proposed relax-and-solve method 106

6.2.2 Neighborhoods . 107

6.2.3 Computational experiments . 109

6.3 Flow-shops with coupled tasks . 111

6.3.1 Properties of the problem . 111

6.3.2 Distinct delays . 113

6.3.3 Ordered delays . 115

7 Concluding remarks 125

7.1 Limitations and Obtained results . 125

7.2 Future research directions . 126

References 128

List of Figures

1.1 A coupled-task job. 1

1.2 Single-machine with flexible delays and single-machine coupled task

scheduling. 3

1.3 Shop coupled task scheduling and no-wait shop scheduling. 3

2.1 Number of papers published in different time periods (last updated on

01/08/2021). 5

2.2 Interleaving jobs j and j′ (a) and nesting jobs j and j′ (b). 7

2.3 Schematic of the m-machine flow-shop CTSP. 13

2.4 An example showing that an optimal schedule for F2|Lj|Cmax is not

necessarily a permutation one. 14

2.5 Schematic of the two-machine flow-shop problem with coupled tasks on

the first machine, and a single task on the second machine. 18

2.6 The two-machine chain re-entrant flow-shop CTSP. 19

3.1 Interleaving jobs j and j′ (a) and nesting jobs j and j′ (b). 29

3.2 Calculation of (a) rjj′4 and (b) ljj′4 for two jobs j (1, 4, 3) and j′ (1, 10, 2). . 29

3.3 An example to clarify the correct definition of idle times. 34

4.1 Contribution of an interleaving pair of jobs (a), and a single job (b) to the

makespan. 44

4.2 Two possible schedules for a two-job instance: (l, k), where interleaving

occurs, and (k, l), where interleaving is not possible. 46

4.3 Counter example for generalising the result of Theorem 2. 47

4.4 A three-job example showing that appending job 2 (a) leads to a smaller

makespan than interleaving jobs 1 and 2 (b). 49

4.5 The schedule for a four-job instance delivered by Algorithm 1. 52

xii

4.6 An instance to illustrate calculation of the lower bound for model S3-T. . . 53

4.7 The main effects plot for constraints (3.25) and (4.24). 68

4.8 The interactions plot for constraints (3.25) and (4.24). 68

4.9 The solution representation in the proposed R&S algorithm. 70

5.1 An interleaving pair in the constructed schedule for CTP1 instance. 79

5.2 The constructed schedule for CTP3 instance. 82

5.3 The constructed schedule for problem O2|(aj, Lj, bj)|Cmax. 83

5.4 The optimal schedule for a three-job instance of P2|(a, L, b)|Cmax. 84

5.5 The optimal schedule for the three-job instance of P2|(p, L, p)|Cmax. 85

6.1 Comparison between the instances of benchmark T and the arbitrary

instances (denoted as R in the figure). 99

6.2 RPDs of the heuristic algorithms on three benchmark sets T, S and L. . . . 100

6.3 RPDs of the ILS, IGABR and the solver CPLEX. 105

6.4 The solution representation in the proposed R&S algorithm. 107

6.5 Selection of π′
1 and π′

2 in the first sub-problem of N1. 108

6.6 Selection of π′
1 and π′

2 in the first sub-problem of N2. 109

6.7 Selection of π′
1 and π′

2 in the first sub-problem of N3. 109

6.8 The optimal permutation (a) and non-permutation (b) schedules for

problem I2×2. 112

6.9 The equivalent no-wait schedule to the optimal schedule for case P. 114

6.10 The optimal schedule for problem I3×3. 116

List of Tables

2.1 Distribution of papers by journals and conference proceedings. 6

3.1 Naming convention for instances of the single-machine CTSP. 26

3.2 Numbers of decision variables and constraints in the models. 37

3.3 Comparison of the performance of the studied mathematical models. 38

3.4 Detailed performance of the single-machine weighted models (a “-”

denotes that the model cannot produce an outcome within the time limit). 40

3.5 Detailed performance of the single-machine makespan models (a “-”

denotes that the model cannot produce an outcome within the time limit). 41

3.6 Detailed performance of the flow-shop models. 41

4.1 The operation of Algorithm 1 for a four-job instance. 51

4.2 Number of feasible and optimal solutions delivered by Heurcons and Gurobi. 54

4.3 Gap (in %) and the computation time for Heurcons and Gurobi. 55

4.4 Overall results for Heurcons and Gurobi. 55

4.5 Gap to the lower bound for Heurcons and Gurobi. 56

4.6 Assessing the performance of Heurcons, HeurLPT and HeurSPT 56

4.7 The number of feasible solutions obtained by the binary search and Gurobi. 63

4.8 The number of optimal solutions obtained by the binary search and Gurobi. 64

4.9 The number of best solutions obtained by the binary search and Gurobi. . 65

4.10 The gap (in %) from the best solution. 66

4.11 An overview of the outcomes of the binary search heuristic and Gurobi. . . 67

4.12 Computational results for methods MIP S5 and MIP S3. 72

4.13 Computational results for methods BS S5 and BS S3. 73

4.14 Computational results for R&S. 74

4.15 Gap from the lower bound for MIP S5, BS S5, and R&S. 75

4.16 Improvement (in % of total) gained in the three steps of the R&S algorithm. 76

xiv

6.1 An instance of a 5-job 6-machine ordered flow-shop scheduling problem

(Panwalkar and Woollam, 1980). 88

6.2 Summary of metrics NBest, ARPD and ARPT for the four heuristic

algorithms on the three benchmark sets. 100

6.3 Wilcoxon signed-rank test for RPDs of the heuristic algorithms. 101

6.4 Value of the parameters used in the ILS algorithm. 102

6.5 Detailed comparison of the methods on the benchmark T. 102

6.6 Detailed comparison of the methods on the benchmark S. 103

6.7 Detailed comparison of the methods on the benchmark L. 104

6.8 Metrics NBest, ARPD and ARPT for ILS, IGABR, and CPLEX. 105

6.9 Wilcoxon signed-rank test for RPDs of ILS, IGABR and CPLEX. 105

6.10 Summary of the outcomes of different solution methods. 110

6.11 Summary of the outcomes over different instance sizes. 110

6.12 Data for problem I2×2. 111

6.13 The distance matrix of the TSP for the coupled task flow-shop problem. . . 113

6.14 The data for problem I3×3. 116

6.15 The reduced distance matrix of TSP for problem I3×3. 116

1

Chapter 1

Introduction

In this chapter, definitions, scope and classification of the problem will be discussed (Sec-

tion 1.1), followed by the research goals (Section 1.2). The chapter ends with presenting

the organisation of the remainder of the thesis in Section 1.3.

1.1 Definitions, scope and classification

Scheduling is a resource allocation problem, and deals with the problem of allocating

resources to some activities over specified time periods, where the goal is optimise one

or more objective functions (Pinedo, 2012). In this thesis, we denote the resources as

machines, and the activities as jobs. We formally formulate the single-machine coupled

task scheduling problem (CTSP) as follows: There is a set N = {1, . . . , n} of jobs, indexed
by j, where two tasks are associated with each job j ∈ N . The first (initial) task and its

processing time are denoted by aj while the second (completion) task and its processing

time are denoted by bj. As a result, there is a set H = {1, . . . , 2n} of tasks, indexed by

h. Both tasks have known durations and the second task of a job must be started with

a delay after the completion of the first task. We denote the delay duration between the

tasks of job j as Lj, as illustrated in Figure 1.1. In the context of CTSP, it is typical to

present the parameters for job j via a triple (aj, Lj, bj).

aj bj
Lj

Figure 1.1 : A coupled-task job.

In the shop setting, the set N of jobs need to be processed on a set M = {1, . . . ,m}
of different machines, indexed by k. The coupled task assumption in the shop setting

represents the situation where exact delays are considered between each two consecutive

tasks of the same job. The processing time of job j’s task on machine k is denoted by

pkj, ∀k ∈M, ∀j ∈ N , and the delay duration of job j after being processed on machine k

is represented by Lkj. For simplicity, in the two-machine setting, we replace p1j and p2j

by aj and bj, respectively. Likewise, we replace Lkj by Lj. In both single-machine and

shop settings we assume all processing times and delay durations take positive integers,

unless otherwise specified.

2

A scheduling problem can be denoted with a three-field notation α|β|γ (Graham et

al., 1979), where α field represents the scheduling environment, the field β presents details

of the characteristics and constraints of the problem, and the field γ shows the objective

function(s). The scheduling environments discussed in this thesis are the single-machine

(1) environment, where there is a single-machine and all jobs are executed on that machine,

the parallel identical machines (Pm) environment, where there are m identical machines

and a job can be processed on any one of the machines, the open-shop (Om) environment,

where there are m machines and each job needs to go through all machines, with no pre-

specified order, the flow-shop (Fm) environment that restricts the open-shop environment

in the sense that all jobs follow the same processing route, i.e., from machine 1 to machine

m, and the job-shop (Jm) environment where every job has its own pre-specified route.

With respect to β field, the problems discussed in this thesis deal with the coupled task

characteristic, i.e., existence of fixed delays between consecutive tasks of a job. Specifically,

each job consists of at least two tasks, where there is a fixed amount of delay between

every two consecutive tasks. The fixed delay therefore represents a strict time-lag between

the completion time of the preceding task and the starting time of the succeeding task.

In the single-machine setting (aj, Lj, bj) represents the coupled task characteristic, which

can be modified based on the values of aj, Lj and bj. On the other hand, in the shop

setting, the coupled task characteristic is represented by Lj.

With respect to the field γ, let dj, Cj, Ej and Tj denote the due date, completion

time, earliness and tardiness of job j, respectively, where Ej = max{dj − Cj, 0} and

Tj = max{Cj − dj, 0}. The most commonly used objective function for the CTSP is the

total length of the schedule, i.e., the makespan, which is denoted as Cmax. Also note that

we represent a general regular objective function by f . An objective function is called

regular if it is non-decreasing in the completion times of the jobs.

The definition of the coupled task setting is close to some other related characteristics,

that we do not study in this thesis. In the following we briefly define those related problems

to specify the position of this thesis.

There is research on scheduling problems with “flexible delays”, in which a lower

and/or an upper bound on the duration of the delay is/are given. The lower bound

implies that the delay between two consecutive tasks of a job must not be smaller than

the minimum delay (this is denoted by finish-start time-lags in the literature) and the

upper bound means the delay cannot be greater than the given bound. We can regard

the CTSP as a special case of scheduling with flexible delays, where the minimum and

maximum delays for each job are equal (see Figure 1.2). We refer the interested reader

to Dell’Amico (1996), Potts and Whitehead (2007), and Zhang and Van De Velde (2010)

for reviews of research on scheduling problems with flexible delays.

The CTSP in the shop environment is related to the well-known “no-wait” condition

3

Single-machine scheduling with flexible delays

Single-machine
scheduling with
coupled tasks

Figure 1.2 : Single-machine with flexible delays and single-machine coupled task schedul-
ing.

in shop scheduling. The no-wait assumption implies that the jobs are processed on all the

machines without any delay between them. Therefore, we can regard the no-wait shop

scheduling problem as a special case of the CTSP, where the value of the delay between

every pair of tasks is equal to zero (see Figure 1.3). Allahverdi (2016) discussed research

on no-wait shop scheduling.

Shop coupled task scheduling

No-wait shop scheduling

Figure 1.3 : Shop coupled task scheduling and no-wait shop scheduling.

1.2 Research aims

The main aims of this thesis include:

[i]. Conducting a review of the available results on the CTSP;

[ii]. Presenting new publicly available benchmark data sets for the CTSP;

[iii]. Exploring the computational complexity of different variants of the CTSP;

[iv]. Proposing new efficient and effective solution methodologies for the studied variants;

[v]. Investigating how the CTSP can be utilised to model real-world problems, mainly

in the healthcare scheduling.

1.3 Thesis Organisation

The rest of this thesis is organised as follows:

� Chapter 2: This chapter presents a complete review of the available literature on

the couple task scheduling problem, that is classified by the scheduling environment

and different objective functions. The classical applications of the problem are then

discussed, followed by the newly explored healthcare applications of the CTSP.

4

� Chapter 3: In this chapter, new benchmarks are proposed for different variants of

the CTSP. The available mathematical models for the problem are then discussed,

and some corrections/improvements are provided. The chapter ends with a thor-

ough comparison of the mathematical models based on extensive computational

experiments conducted on the proposed data sets.

� Chapter 4: This chapter is devoted to the single-machine CTSP under the objective

of minimising the makespan. First, we discuss the single-machine problem under

a special setting where processing times are time-dependent. Then, the general

problem is studied, where a binary search matheuristic is proposed for the problem,

that is based on an existing mathematical formulation of the problem. Then, a

new improved formulation is proposed based on the existing model. The chapter

continuous with proposing a second matheuristic for the problem, that benefits from

the new proposed mathematical formulation. The quality of the proposed model is

then discussed as a stand-alone method within a commercial solver, and also within

the framework of the proposed matheuristic algorithms.

� Chapter 5: The CTSP on parallel identical machines with the makespan criterion in

studied in this chapter. First, the complexity of the problem under different special

cases is discussed, where most of the cases are shown to be strongly NP -hard. Then,

an approximation bound is presented for the two-machine case of the problem. The

latter result is then extended to the two-machine open-shop problem with coupled

tasks.

� Chapter 6: The CTSP in the flow-shop environment is discussed in this chapter.

Firstly, we explore an special setting in the flow-shop scheduling problem, denoted

as ordered flow-shops. For that problem, we propose a new hard benchmark and

state-of-the-art algorithms. Then, CTSP is studied and some polynomially solvable

cases are presented, including the ordered flow-shop case.

� Chapter 7: A brief summary of the problems studied in this thesis and the main con-

tributions are provided in this chapter. Some recommendations for future researches

are also presented in this chapter.

5

Chapter 2

Literature review and applications

In this chapter, we review and discuss the literature of the coupled task scheduling prob-

lem (CTSP) in Section 2.1. The literature review will be presented with regard to the

scheduling environment, and also the performance criteria discussed in each environment.

We will then discuss the real-world applications of the CTSP in detail in Section 2.2.

Parts of the discussions presented in this chapter is published in:

� Khatami, M., Salehipour, A., and Cheng, T. C. E. (2020). “Coupled task scheduling

with exact delays: Literature review and models”. European Journal of Operational

Research 282(1), 19 –39.

2.1 Literature review
A comprehensive literature review of the CTSP on single-machine and shop scheduling

problems is presented in the following. We present the papers available up to the year

2021, where we review 45 published papers. The first study on the problem appeared in

1980. A few papers on the problem were published between 1980 and 2006, and almost

76% of the related studies were published after 2006. This is an indication of the current

research trend for the problem. Figure 2.1 shows the number of papers published over

the years. Table 2.1 summaries the outlets that publish the available studies on the

CTSP. According to the table, the majority of the papers were published in conference

proceedings and Journal of Scheduling.

0

4

8

12

1980–2000 2001–2006 2007–2011 2012–2016 2016–2021

N
um

be
r o

f p
ap

er
s

Year

Figure 2.1 : Number of papers published in different time periods (last updated on
01/08/2021).

6

Table 2.1 : Distribution of papers by journals and conference proceedings.

Journal/Proceeding Number of papers (%)

Proceedings 7 (15.56)
Journal of Scheduling 6 (13.33)
Discrete Applied Mathematics 4 (8.89)
Computers & Operations Research 3 (6.67)
RAIRO Operations Research 3 (6.67)
Computers & Industrial Engineering 2 (4.44)
European Journal of Operational Research 2 (4.44)
International Journal of Production Research 2 (4.44)
Journal of Combinatorial Optimization 2 (4.44)
Mathematical Methods of Operations Research 2 (4.44)
Naval Research Logistics 2 (4.44)
Operations Research Letters 2 (4.44)
Other outlets with one paper (eight outlets) 8 (17.76)

2.1.1 The single-machine scheduling problem

The majority of the studies on the CTSP are in the context of exact delays in the

single-machine environment. In the following we present the researches on the single

machine under different objective functions.

Makespan

Most of the available studies in the single-machine environment consider the objective

function of minimising the makespan. It should be noted that in the single-machine

environment minimising the idle times of the machine is equivalent to minimising the

makespan.

Shapiro (1980) discussed that the single-machine CTSP is equivalent to a two-machine

job-shop scheduling problem with the following characteristics: (1) every job requires

three tasks, where the first task is performed on M1, the second task, i.e., the delay

period, on M2, and the third task on M1; (2) machine M1 may only process one task at

a time, however, M2 has infinite processing capacity; and (3) no waiting time between

every pair of tasks of a job is permitted. Hence, the NP -hardness of the problem can

be derived from that of the two-machine job-shop problem. Shapiro (1980) also proposed

the first heuristic algorithms for the problem. He labelled his three simple heuristics as

“sequencing”, “nesting” and “fitting” as follows.

The sequencing heuristic, also known as “interleaving”, constructs an ordered subset

of jobs such that the completion tasks are sequenced for processing in the same order

as the initial tasks are scheduled, as shown in Figure 2.2a for two jobs j and j′. The

nesting heuristic is similar to the sequencing heuristic; however, the completion tasks are

processed in the reverse order of the initial tasks, as shown in Figure 2.2b. The fitting

heuristic allows the user to specify a priority order for the jobs, that is applicable to

7

instances with a small number of jobs.

(a): aj aj′ bj bj′

(b): aj aj′ bj′ bj

Figure 2.2 : Interleaving jobs j and j′ (a) and nesting jobs j and j′ (b).

Orman and Potts (1997) presented the symmetry property for the problem, meaning

that the makespan minimisation problem defined by (aj, Lj, bj) is equivalent to the one

defined by (bj, Lj, aj), where the latter is called the “reverse” of the former. Sherali and

Smith (2005) studied two variants of the problem. The first variant aims at maximising

the sum of the weights of the jobs that are completed before the time Tmax. The second

variant is the makespan minimisation problem. They showed that both variants are

strongly NP -hard and proposed two methods to formulate the two variants, namely a

discritised model and a continuous model. Condotta and Shakhlevich (2012) showed that

a restricted version of the problem, where the sequence for either the initial or completion

tasks of all the jobs is given, is NP -hard in the strong sense even if all the jobs have unit

execution times (UET).

Ageev and Kononov (2007) proposed an algorithm that works by ordering the jobs in

non-increasing order of aj+Lj, i.e., LPT(aj+Lj), and showed that it is a 3.5-approximation

algorithm for the problem. This job ordering has a time complexity of O(n log n). Li and

Zhao (2007) defined the “singleton” job as the job that can neither be interleaved nor

nested. Particularly, job j is a singleton if it cannot be nested within any other job

j′ ∈ N , nor j′ can be nested within j, nor they can be interleaved with each other. They

observed that such jobs can be “appended” (appending refers to scheduling a job without

any interleaving or nesting moves) one after another at the end of an optimal schedule of

the remaining jobs. They also presented a lower bound on the makespan as follows:

C∗
max ≥ max

{
Pa + Pb,max

j∈N
{aj + Lj + bj}, Pa +min

j∈N
Lj, Pb +min

j∈N
Lj

}
, (2.1)

where Pa =
∑

j∈N aj, Pb =
∑

j∈N bj, and C∗
max is the optimal makespan.

Li and Zhao (2007) proposed a tabu search (TS) algorithm that applies the interleav-

ing, nesting and appending operations for scheduling a job at the earliest possible time.

The TS algorithm of Condotta and Shakhlevich (2012) includes a neighborhood that re-

moves a job from its position and inserts it in another position, utilising a disjunctive

graph, where the nodes represent tasks and the arcs show the precedence relations be-

tween the tasks. Their TS algorithm outperforms the adapted heuristic of joint decompose

8

local search proposed for the problem with flexible delays (Potts and Whitehead, 2007)

and their own greedy dispatching rule.

Békési et al. (2014) proposed a branch-and-bound (B&B) algorithm. They developed

two mathematical models based on linear ordering variables. They also implemented two

additional models, a time-indexed model by utilising the discretised model of Elshafei

et al. (2004) (that is originally proposed for a radar pulse interleaving problem) and the

continuous model of Sherali and Smith (2005). They used the four models to evaluate

the performance of their B&B algorithm. In the following, we discuss the studies with

additional assumptions, e.g., on the duration or the job sequence.

In their study, Orman and Potts (1997) classified the problem with respect to the

restrictions on the duration of the tasks and the delay periods. They showed that the

case (aj = Lj = bj) is NP -hard in the strong sense, so the cases (aj, Lj = bj), (aj = bj, Lj)

and (aj = Lj, bj) are also NP -hard in the strong sense. They also showed the strong NP -

hardness of the case (aj, L, b), implying the same result for the cases (a, L, bj), (aj, Lj, b),

(a, Lj, bj) and (aj, L, bj). We note that a, L and b indicate that all the jobs have a

common initial task, a delay and a completion task, respectively. Even when the initial

and completion tasks are equal, i.e., (p, Lj, p) for some constant p, they proved that the

case is strongly NP -hard (the same applies to the case (a, Lj, b)). They proposed two

optimal algorithms with an O(n) time complexity for the cases (p, p, bj) and (p, L, p). The

former implies that the special cases (aj, p, p), (p, p, b) and (a, p, p) can also be optimally

solved by the same algorithm. There is one special case, however, whose complexity status

has remained open to date, where all the jobs have the same tasks and delay, i.e., (a, L, b).

This special case is called the “identical” problem.

Ahr et al. (2004) also studied the identical problem. They assumed two conditions.

First, a ≥ b because the problem is equivalent if b ≥ a, due to the reverse property

discussed earlier. Second, a < L < (n − 1)a; otherwise, a simple greedy heuristic yields

an optimal solution. Under the two assumptions, they proposed a dynamic programming

algorithm with an O(nr2L) time complexity, where r ≤ a−1
√
a (note that a−1

√
a approaches

1 when a increases). This algorithm has a linear time complexity in the number of

jobs only when L is fixed; however, the complexity status of the problem still remains

open. Studying the identical problem, Baptiste (2010) showed that it can be solved by

an algorithm in O(v2v+5), where v ≤ (aL/(a−1))a
L/(a−1)

. For fixed a, L and b, his algorithm

has an O(log n) time complexity, so is linear in the number of jobs. This implies that the

computational complexity of the identical problem still remains open for arbitrary inputs

a, L and b. Also, Baptiste (2010) showed that if all the processing times take integer

values, then an optimal schedule includes integer starting times.

Yu et al. (2004) showed the strong NP -hardness of the two-machine flow-shop CTSP

and UET tasks. Based on the NP -hardness of the flow-shop problem, they implied that

9

the single-machine CTSP with UET tasks is also strongly NP -hard.

Several studies develop approximation algorithms and ratios for special cases of the

problem. For example, Ageev and Kononov (2007) proposed an O(n log n) algorithm

based on LPT(aj+Lj), and showed that it is a 3-approximation when aj ≤ bj or bj ≤ aj,

and a 2.5-approximation if aj = bj. Importantly, they proved that, for any ε > 0, the

existence of a (2 − ε)-approximation algorithm for the problem implies P = NP , even if

aj = bj. Ageev and Baburin (2007) studied the case of UET tasks. They proposed an

O(n log n) algorithm based on non-decreasing ordering of Lj, i.e., SPT(Lj), and showed

that it is a 1.75-approximation. Békési et al. (2009) later argued that there are some

flaws in the approximation algorithm of Ageev and Baburin (2007). They re-calculated

the ratio as 28
19
≤ ρ ≤ 7

4
. Ageev and Ivanov (2016) studied the case with equal delays, i.e.,

(aj, L, bj). They proposed an O(n log n) constructive algorithm with a 3-approximation

ratio. They showed that the LPT(aj+Lj) algorithm leads to ratios of 2 when aj ≤ bj,

and 1.5 when aj = bj. Also, they showed that the 2-approximation algorithm provides

the same ratio for the identical problem. In addition, for any ε > 0, the existence of a

(1.25− ε)-approximation algorithm implies P = NP , even when aj = bj.

Li and Zhao (2007) studied the special case where the initial and completion tasks,

and the delay have the same value for every job, i.e., (pj, pj, pj). For this case they showed

that no two jobs can be interleaved, and that any schedule without forced idle time yields

a makespan value that is no greater than 1.5 times an optimal (a forced idle time is a time

period over which the machine is forced to be idle because no job is available). For the

problem (aj, L, b), they concluded that no nesting is possible for any pair of jobs. They

showed that a schedule with the makespan at most three times of an optimal one can be

constructed in linear time.

There are a number of studies with restrictions on the job sequence, that include

precedence relationships, compatibility and fixed-job-sequences. In the following we dis-

cuss research in those areas. Precedence constraints model jobs’ dependency, i.e., when

a job is required to be processed before another job. Precedence constraints are usually

defined by using a precedence graph, which can be in a general form, or in a special form

such as a chain or a star. The CTSP with precedence constraints is usually harder to

solve. For example, the case (p, L, p) is polynomially solvable (Orman and Potts, 1997);

however, if precedence constraints are included, the problem is not necessarily solvable in

polynomial time.

Blazewicz et al. (2010) investigated the problem with UET tasks and two types of

precedence constraints, namely strict and weak precedence constraints. For two jobs j

and j′, the strict precedence constraint Nj ≺ Nj′ (Nj precedes Nj′) means bj ≺ aj′ , i.e.,

bj must be completed prior to the start of aj′ . On the other hand, the weak precedence

constraint Nj → Nj′ means aj ≺ aj′ and bj ≺ bj′ , i.e., aj must be completed prior to

10

the start of aj′ and bj must be completed prior to the start of bj′ . They showed that

the problem with strict precedence constraints is NP -hard in the strong sense, when

L is arbitrary. However, for the special case where the delay duration is equal to two

and the precedence graph is an in/out-tree (the in-tree (out-tree) precedence constraints

occur when every job has at most one immediate successor (predecessor)), the problem

can be solved in O(n) time. For this reason, they developed an algorithm that operates

by utilising the rule proposed by McNaughton (1959) for the parallel-machine scheduling

problem.

Ecker and Tanaś (2012) studied the problem with UET tasks, equal delays, and strict

precedence constraints in the form of chains. Based on the McNaughton’s rule, they

proposed an algorithm that solves the problem in O(n log n) time if L is a fixed constant.

Blazewicz et al. (2012) studied a very special case of the problem where L = 4. They

proposed a greedy heuristic and an optimal algorithm with an O(n log n) time complexity.

As a generalisation of the two algorithms, they presented an approximation algorithm that

works for any L = 2r, r ∈ N, and runs in O(n log n) time. The solution delivered by the

approximation algorithm is at most L times worse than that of an optimal.

Two jobs j and j′ are compatible if at least one of the tasks of either of jobs can

be processed during the idle time of the other job. The compatibility of jobs can be

represented by a compatibility graph, in which an edge is associated with every two

compatible jobs. Simonin (2009) showed that the identical CTSP with compatibility

constraints is NP -hard. Later, Simonin et al. (2011a) showed that the identical problem

can be solved in polynomial time if L < a + b. However, it is NP -hard if L = a + b.

They proposed a ρ-approximation algorithm, where ρ depends on the values of a and b

(a > b), 1.25 ≤ ρ ≤ 1.5. Simonin et al. (2011b) investigated the identical problem with

precedence constraints, incompatibility graph, and UET tasks. They showed that the

problem is NP -hard when L ≥ 3. They presented an approximation algorithm with a

ratio of L+6
6
− 1

2(L+2)
+ L+3

6n(L+2)
(it is trivial though if L = 1). When L = 2, Simonin et

al. (2013) studied the problem under the conditions of with and without “triangles” in the

compatibility graph. They showed that the problem is NP -hard under both conditions,

and presented a 10
9

(13
12
)-approximation algorithm for the existence (lack) of triangles.

Darties et al. (2016) studied the case (pj, pj, pj) and denoted pj as the stretch factor of

job j. They showed that the problem can be solved in O(n3) time when the compatibility

graph is a chain and it is NP -hard when the graph is a star. For the problem with a

chain or a 2-stage bipartite compatibility graph, they proposed 7
6
and 13

9
-approximation

algorithms (a 2-stage is a bipartite graph that has three sets of disjoint nodes. The first

set is disjoint, but connected to the second set, which itself is also disjoint but connected

to the third set).

Recently, Bessy and Giroudeau (2019) investigated the parameterised complexity of

11

the CTSP with compatibility constraints. Given a fixed due date d for all the jobs, the

parameterised analysis includes whether a schedule in which at least a fixed number of jobs

are completely processed before d exists. They proved that the problem is fixed-parameter

tractable (FPT) when the total duration of every job is bounded by a constant, and also

showed that the problem is W[1]-hard otherwise. Particularly, they showed that for every

ζ ≥ 4, where ζ is an upper bound on the total duration of a job, i.e., aj + Lj + bj ≤ ζ,

an FPT algorithm exists for the CTSP with a time complexity of 2O(k)n2ζ log2 n, where

k ≤ n.

Hwang and Lin (2011) studied the problem subject to a fixed-job-sequence (fjs), as-

suming weak precedence constraints. Note that the problem with the fjs assumption and

strict precedence constraints is trivial. They argued that although fjs implies a preas-

signed job sequence, the problem remains a sequencing one due to the interleaving jobs.

They developed a procedure to construct a schedule for a given sequence, and showed

that if such a sequence is feasible, then the schedule has the minimum makespan among

all the feasible sequences. The procedure also concludes the infeasibility of a given se-

quence in O(n2) time. While the complexity status of the problem is open, they proposed

polynomial-time procedures for three special cases of the problem, namely (pj, pj, pj),

(p, p, bj) and (p, L, p).

The problem with a convex resource function is also recently studied by Mosheiov

et al. (2021). They investigated the case (p, p, bj), where the processing time of the

completion tasks is modelled as a convex function of the amount of the resource allocated

to job j. While setting an upper bound on the resource availablity, they proposed an

O(n2)-time algorithm to minimise the makespan.

Total completion time

Recently, Chen and Zhang (2020) studied the single-machine CTSP with the objec-

tive function of minimising the total completion time. Their results indicate that the

complexity of the problem under the total completion time criterion is analogous to that

of the makespan criterion. Precisely, they showed that cases (aj = Lj = bj), (p, Lj, p),

(aj, L, b), and (a, L, bj) are strongly NP -hard. Note that the last two cases are equivalent

(due to the reverse property) in the makespan setting. However, the reverse property

does not hold for the total completion time criterion (Chen and Zhang, 2020). Similar to

the makespan setting, they managed to propose polynomial-time algorithms for the cases

(p, p, bj), (aj, p, p), and (p, L, p). Lastly, they showed that the case (a, L, b) is polynomially

solvable only if a, L, and b are fixed values.

Cyclic scheduling

Ahr et al. (2004) investigated an interesting structure of an optimal schedule for the

identical problem when the number of jobs approaches infinity. They argued that an

12

optimal schedule consists of three parts, namely an “initial” segment, followed by a certain

number of repetition of cycles (the “middle” part), and a “finishing” segment. They

stated that the middle segment repetitions must contain the minimum mean cycle. For

the special case where b = 1, they conjectured a formula for the minimum mean cycle

time. They also presented optimal ratios and mean cycle times for certain small instances.

Later, Brauner et al. (2009) linked the problem to the one-machine no-wait robotic cell

problem and adapted the algorithm of Ahr et al. (2004) to obtain production patterns.

Lehoux-Lebacque et al. (2015) continued work on the identical problem in the cyclic

case. They considered the objective function of maximising the throughput, i.e., T (C)
N(C)

,

where T (C) is the cycle time and N(C) is the number of tasks in the cycle C. It should

be noted that maximising the throughput is equivalent to minimising the mean cycle time

(N(C)
T (C)

). They studied the problem for a > b, as for b > a the reverse property holds and

for a = b it is trivial. Likewise, the condition L > a+ b is imposed; otherwise, an optimal

cycle can be easily obtained. They studied all the possible patterns that may occur in a

cycle, and presented an algorithm with a time complexity of O((logL)2) to find an optimal

cycle. In addition, considering β = ⌊ L
a+b
⌋, if L − β(a + b) ≤ a, an optimal mean cycle is

the triple (a, L−β(a+b)
β+1

, b), i.e., the mean cycle consists of one initial task a, an idle time,

which is equal to L−β(a+b)
β+1

, and one completion task b. Such results let them arrive at the

conjectures of Ahr et al. (2004). The results of Lehoux-Lebacque et al. (2015) enable the

finding of an optimal schedule for the middle segment when n is very large. However,

obtaining an optimal schedule for the initial and finishing segments is not trivial.

2.1.2 The shop scheduling problem

Most of the published studies on the CTSP in the shop environment are conducted in

the flow-shop context. Therefore, we first discuss the flow-shop environment, based on the

difference in performance criteria. We then present research in job-shop and open-shop

scheduling environments.

The classical flow-shop scheduling problem includes a set N of jobs to be processed

on a set M of different machines. Job j consists of a set of m tasks to be processed in the

“same” sequence on the m machines.

The CTSP in the flow-shop environment deals with the situation in which there are

“exact” delays between every pair of consecutive tasks of a job. All the tasks have

known processing times and all the delays have known durations. In addition, the delay

durations are strict, i.e., once the delay period is elapsed, the processing of the next task

must immediately start. No two tasks can be processed at the same time on one machine

and preemption is not allowed. However, tasks of other jobs can be processed during the

delay period. Figure 2.3 shows a schematic of the m-machine flow-shop CTSP.

The flow-shop CTSP is a generalisation of the no-wait flow-shop scheduling problem.

13

M1

M2

. . .

Mm−1

Mm

p1j
L1j p2j

. . .

pm−1,j

Lm−1,j pmj

Figure 2.3 : Schematic of the m-machine flow-shop CTSP.

In other words, in case we allow for zero-time delays in the flow-shop CTSP, the no-

wait flow-shop problem is a special case of the flow-shop CTSP, where Lkj = 0, ∀k ∈
M \ {m}, ∀j ∈ N . Recall that in the no-wait flow-shop, once the processing of a job is

started, its tasks must be processed on all the machines (from the first to the last) without

any interruption.

Makespan

The problem F2||Cmax is one of the first and well studied scheduling problems. John-

son (1954) proposed an O(n log n) algorithm to find an optimal schedule for the problem,

which is a permutation one. A permutation schedule is any schedule in which the process-

ing orders of the jobs on all the m machines are the same. For the problem F2|Lj|Cmax

there exists an optimal schedule, which is also a permutation one, if Lj = L, and an

optimal schedule is obtained in O(n log n) time (Leung et al., 2007). However, they

did not discuss how the algorithm works. We observe that the algorithm proposed by

Gilmore and Gomory (1964) for the two-machine no-wait flow-shop problem is optimal

for F2|Lj = L|Cmax as well. This is because in any sequence for F2|Lj = L|Cmax, the

delay duration of the first job leads to shifting the completion tasks of all the jobs forward,

i.e., C
Lj=L
j = Cno-wait

j + L. Moreover, there is no job that can be swapped in order to

use this delay duration because all the jobs have an identical delay. Hence, an optimal

solution for the no-wait case yields an optimal solution for the problem F2|Lj = L|Cmax,

where C
Lj=L
max = Cno-wait

max + L.

However, the problem is not trivial if arbitrary delays are considered. For example,

Yu et al. (2004) showed that even if two distinct values are considered for the delays, the

two-machine flow-shop CTSP to minimise the makespan is strongly NP -hard. This result

holds even for the case with UET tasks. It should be noted that an optimal schedule for

the problem with arbitrary delays is not necessarily a permutation one. Leung et al. (2007)

discussed an example for this, which is shown in Figure 2.4. For two jobs N1 = (1, 8, 1)

and N2 = (2, 1, 3), the figure shows that the optimal makespan is 10. However, the

makespan of the best permutation schedule is 12.

Leung et al. (2007) also presented a simple lower bound for F2|Lj|Cmax as follows:

14

M1

M2

0 1 3 4 7 9 10

a1 a2

b2 b1

Figure 2.4 : An example showing that an optimal schedule for F2|Lj|Cmax is not neces-
sarily a permutation one.

C∗
max ≥ max

{
Pa, Pb,max

j∈N
{aj + Lj + bj}

}
, (2.2)

where Pa =
∑

j∈N aj and Pb =
∑

j∈N bj.

For the m-machine case Fm|Lj|Cmax, Hamdi and Loukil (2017) proposed a lower bound

as follows:

C∗
max ≥ max

k∈M\{m}

{∑
j∈N

pkj +
∑

k′∈M\{m}

min
j∈N
{pk′j + Lk′j}

}
. (2.3)

The lower bound indicates that the minimum completion time of a machine is equal

to the sum of its workload (all the processing times) plus its earliest starting time.

For the two-machine flow-shop CTSP, Ageev and Kononov (2007) presented a two-

phase algorithm. The first phase sequences the jobs in SPT(aj+Lj). The second phase con-

structs the schedule for that sequence. They showed that this simple algorithm provides

a 3-approximation ratio for the problem, and that the ratio is relatively small because,

for any ε > 0 the existence of a (1.5−ε)-approximation algorithm for the problem implies

P = NP , even if aj = bj. They discussed the same algorithm provides a 2-approximation

ratio for the special case where aj ≤ bj or bj ≤ aj. The algorithm can be implemented in

O(n log n) time.

Ageev and Baburin (2007) proposed a two-phase algorithm for the two-machine flow-

shop CTSP with UET tasks. Here, the first phase includes sequencing the jobs in SPT(Lj).

They showed that the algorithm provides a 1.5-approximation ratio for the problem with

a time complexity of O(n2 log n). They did not analyze the tightness of the ratio, which

remains as an open question. Both of the algorithms of Ageev and Kononov (2007) and

Ageev and Baburin (2007) are essentially the same when UET tasks are considered because

aj = 1, ∀j ∈ N , and sequencing the jobs in SPT(aj+Lj) leads to the same order obtained by

SPT(Lj). To conclude, for the two-machine flow-shop CTSP, sorting the jobs in SPT(aj+Lj)

leads to a 3-approximation algorithm for the general case, to a 2-approximation if aj ≤ bj

or bj ≤ aj, and to a 1.5-approximation for UET tasks.

A common assumption in scheduling research is that the processing times take positive

integers. Leung et al. (2007) considered a variant in which at least one positive task is

given for every job. In other words, there may be jobs with only one positive task. For

15

convenience, we use F g to denote this variant and F to denote the classical case. It should

be noted that F g is a generalisation of F . In their study, if one of the tasks of a job has

a zero processing time, the delay of the job also has a zero value. On the other hand,

if the delay duration of a job takes a non-zero value, both tasks of the job have positive

processing times. However, there might be a job with positive processing times for its two

tasks and a zero-duration delay.

Leung et al. (2007) showed that the problem F2g|Lj ∈ {λ1, λ2}|Cmax is strongly NP -

hard because the F g variant of the two-machine no-wait flow-shop problem is strongly

NP -hard (Sahni and Cho, 1979). They proposed a 3-approximation algorithm, which is

applicable to the F2 and F2g problems in O(n log n) time. The algorithm sequences the

jobs in SPT(Lj) and then obtains the schedule for the sequence. They showed that when

aj ≥ bj, sequencing the jobs in SPT(aj+Lj) leads to a 2-approximation algorithm. The

same argument applies to the F2g variant. Likewise, sequencing the jobs in LPT(Lj+bj)

provides a 2-approximation algorithm for the case aj ≤ bj, for both the F and F g variants.

They showed that the ratios are tight. Recently, Ageev (2019) developed an O(n log n)-

time 2-approximation algorithm for F2|Lj ∈ {λ1, λ2}|Cmax, and showed that the existence

of a (1.25− ε)-approximation algorithm for the problem implies P = NP , if λ1 = 0.

Total completion time

Leung et al. (2007) studied the flow-shop CTSP to minimise the total completion

time. They applied the NP -hardness of the two-machine no-wait flow-shop scheduling

problem to minimise the total completion time (Röck, 1984a) to imply that the following

two-machine problems are strongly NP -hard: (1) the F variant with equal delays and (2)

the F g variant with arbitrary delays.

They observed that a schedule is optimal if (1) the initial tasks are scheduled in non-

decreasing order, and from time zero with no idle time between them, or (2) the completion

tasks are scheduled in non-decreasing order, and from time minj∈N{aj +Lj} with no idle

time between them. Based on these observations, they proposed a lower bound on the

total completion time on two machines. Let a1 ≤ a2 ≤ · · · ≤ an denote the processing

times of the tasks on the first machine, sorted in non-decreasing order of the values.

Similarly, let b1 ≤ b2 ≤ · · · ≤ bn denote the processing times of the tasks on the second

machine, again sorted in non-decreasing order of their values. Let P ′
a =

∑
i∈N(n−i+1)ai,

P ′
b =

∑
i∈N(n− i+ 1)bi and L′ =

∑
j∈N Lj, and the lower bound is as follows:

C∗ ≥ max
{
P ′
a + L′ + Pb,min

j∈N
{aj + Lj}+ P ′

b

}
, (2.4)

where C∗ is the optimal value of the total completion time.

Another interesting result of their study includes generating an optimal schedule for

a special case of the F variant where aj = a, bj = b, and a ≥ b by sequencing the jobs in

16

SPT(Lj). This algorithm, however, is not optimal if a < b and provides a 2-approximation

ratio instead.

Huo et al. (2009) provided the major results for the total completion time criterion.

They studied the permutation version of the flow-shop CTSP. They showed that, as for

the makespan minimisation criterion, an optimal schedule for the two-machine flow-shop

to minimise the total completion time is not necessarily a permutation schedule. This can

be shown by the following example. Consider three jobs N1 = (1, 5, 3), N2 = (1, 9, 2) and

N3 = (3, 3, 3), where a non-permutation schedule generates the minimum total completion

time of 35, whereas that of a permutation one is 38. They argued that forced idle time will

never improve a permutation schedule under arbitrary delays. Therefore, they assumed no

forced idle time in any feasible schedule for the problem. Because any feasible schedule

for the two-machine no-wait flow-shop scheduling problem, which itself is NP -hard, is

a permutation schedule, they implied that the permutation flow-shop CTSP is strongly

NP -hard.

They investigated several special cases as well. For the first case, let the jobs be ordered

in such a way that aj ≤ aj+1. If aj+1+Lj+1 ≥ Lj+ bj for all 1 ≤ j ≤ n−1, the problem is

optimally solved by sequencing the jobs in SPT(aj). For the second case, assume that the

jobs are ordered in such a way that bj ≤ bj+1. If a1 + L1 = minj∈N{aj + bj} and aj+1 +

Lj+1 < Lj+bj for all 1 ≤ j ≤ n−1, the problem is also optimally solved by sequencing the

jobs in SPT(bj). The third case is when maxj∈N aj ≤ minj′∈N bj′ , Lj = L, ∀j ∈ N , which is

also polynomially solvable by a SPT(bj)-based algorithm that obtains the minimum total

completion time from a total of n schedules. Finally, for F2|perm,Lj, aj = a, bj = b|
∑

Cj,

sequencing the jobs in SPT(aj+Lj+bj) is optimal. The same rule also leads to an optimal

solution for F2|perm,Lj = L, aj′ < aj ⇒ bj′ < bj|
∑

Cj.

Huo et al. (2009) proposed two meta-heuristics, namely simulated annealing and tabu

search, for the general case of the problem. According to the computational results, SA

performs slightly better than TS in terms of both solution quality and computing time.

In addition, they showed that a greedy heuristic, which inserts the jobs one by one such

that the completion time of the inserted job has the smallest value, performs better than

sorting the jobs in non-decreasing order of any of the following: aj, bj, aj + Lj, Lj + bj

and aj + Lj + bj.

It should be noted that the problem to minimise the total completion time is compu-

tationally less demanding than that to minimise the makespan. For example, F2|Lj, aj =

a, bj = b, a ≥ b|
∑

Cj and so F2|Lj, aj = bj|
∑

Cj are polynomially solvable, however,

F2|Lj, UET |Cmax is NP -hard.

17

Maximum lateness

Fondrevelle et al. (2009) studied the m-machine flow-shop CTSP to minimise the

maximum lateness. They first showed that permutation schedules are not dominating

even if only one job has a delay greater than 0.

They defined the lateness of a job based on its completion time on any machine

k < m and distinguished three different forms of the jobs. They presented a special

case of the problem for which the earliest due date (EDD) dispatching rule provides

an optimal schedule. In addition, they developed several dominance rules for the two-

machine problem and proposed a B&B algorithm. They used the well-known algorithm

of Nawaz, Enscore and Ham (NEH) (Nawaz et al., 1983) to build upper bounds, and

the EDD rule and an extension of the algorithm of Gilmore and Gomory (1964) (for the

no-wait flow-shop problem) to generate lower bounds.

Earliness and tardiness penalties

Hamdi and Loukil (2017) studied permutation schedules for the flow-shop coupled

task problem to minimise the total earliness and tardiness penalties. They proposed three

mathematical formulations, namely completion time-based, idle time-based and starting

time-based. They also discussed three lower bounds. The first is a linear relaxation bound

and the second one is calculated by summing two bounds on the values of total earliness

and tardiness. The third bound is obtained by relaxing the processing times and delays

of the jobs. Also, they used simple sequencing rules to produce upper bounds.

Other variants of coupled task flow-shops

As reviewed, the flow-shop CTSP with an exact delay period between every two con-

secutive tasks is an important variant. In this section we discuss two additional variants

with exact delays in the flow-shop environment.

Two-machine problem with coupled tasks on the first machine. Meziani et

al. (2018) studied the two-machine flow-shop problem to minimise the makespan, in which

the coupled tasks with an exact delay are only considered on the first machine. Specifically,

every job consists of three tasks, two coupled tasks on the first machine, followed by

a single task on the second machine. The processing times of the tasks of job j are

represented by (aj, Lj, bj, cj), in which aj and bj are the coupled tasks with an exact delay

Lj between them, and cj represents the third task. The task on the second machine

can start if the tasks on the first machine are finished. Figure 2.5 shows a schematic

presentation of this problem. It should be noted that the problem is NP -hard because

the one on the first machine is NP -hard. Meziani et al. (2018) observed that the makespan

is at least equal to (1) the sum of all the tasks on M1 plus at least one task on M2, (2)

the smallest job on M1 plus the sum of all the tasks on M2, (3) a lower bound on M1,

18

where bj = 0, ∀j ∈ N , plus at least one task on M2 and (4) a lower bound on M1, where

aj = 0, ∀j ∈ N , plus at least one task on M2. Based on these observations, they proposed

a lower bound for the problem as follows:

LB = max
{∑

j∈N

(aj + bj) + min
j∈N

cj,min
j∈N
{aj + Lj + bj}+

∑
j∈N

cj,∑
j∈N

aj +min
j∈N

Lj +min
j∈N

cj,
∑
j∈N

bj +min
j∈N

Lj +min
j∈N

cj

}
.

(2.5)

M1

M2

aj
Lj

bj
cj

Figure 2.5 : Schematic of the two-machine flow-shop problem with coupled tasks on the
first machine, and a single task on the second machine.

They also proposed four SPT- and LPT-based heuristics and two meta-heuristics,

namely particle swarm optimisation (PSO) and simulated annealing (SA). They further

designed a hybrid algorithm, in which SA guides PSO to avoid being trapped in low-

quality local optima. Meziani et al. (2019) extended their previous study and examined

the complexity status of several cases. For example, they proved the NP -hardness of the

cases (aj, p, p, cj) and (p, p, bj, cj). For the cases (a, p, p, cj), (p, p, b, cj) and (p, L, p, cj),

they proposed optimal solutions by extending the algorithm of Johnson (1954), which

has an O(n log n) time complexity. They also proposed an O(n2 log n)-time algorithm, by

modifying the algorithm of Mitten (1959), to solve the cases (aj, p, p, cj) and (p, p, bj, cj).

The chain re-entrant flow-shop problem. Amrouche and Boudhar (2016) studied

a variant in which the coupled tasks are considered in the re-entrant flow-shop scheduling

environment. In the re-entrant flow-shop problem, the jobs may visit any machine more

than once. There are various types of the re-entrant shop, such as the chain re-entrant

and V -shop. In the chain re-entrant problem, the jobs visit M1, followed by the rest of

the m − 1 machines, and return back to M1 for their terminating task. In the V -shop

problem, the jobs follow the route M1,M2, . . . ,Mm−1,Mm,Mm−1, . . . ,M2,M1. Note that

for the two-machine flow-shop, the chain re-entrant and V -shop are identical. Amrouche

and Boudhar (2016) studied the two-machine chain re-entrant problem to minimise the

makespan, i.e., the jobs pass in the order M1,M2,M1. Here, the processing times of the

tasks of job j can be represented by the triple (aj, bj, cj), where aj and cj are processed

on the first machine and bj is processed on the second machine. We call this problem the

“Ch-R”. Figure 2.6 illustrates this.

19

M1

M2

aj
Lj

cj

bj

Figure 2.6 : The two-machine chain re-entrant flow-shop CTSP.

First, they considered Lj = L between two tasks of every job on the first machine.

They showed that even aj = cj = p leads to a strongly NP -hard problem. Therefore, the

general form of the problem is also strongly NP -hard. They showed that the special case

where aj >
L
2
, cj >

L
2
reduces to the maximum weight matching problem, so is solvable in

O(n2.5) time. They also showed that the case where bj = Lj = L ≥ aj+cj is polynomially

solvable.

Amrouche et al. (2017) showed that when bj = Lj, the problem is NP -hard in the

strong sense. In addition, they showed that the special case of the problem where bj =

Lj = L, aj + cj > L reduces to the maximum weight matching problem, so is solvable in

O(n2.5) time. The case where aj = a ≥ cj and bj + bj′ ≤ 2a = Lj is also polynomially

solvable. For the special case with identical delays, they proposed a heuristic procedure

with nine job arrangement rules. Eight rules include sorting the jobs in non-increasing and

non-decreasing order of aj, bj, cj and aj + cj. The ninth one is a heuristic that generates

the schedule with some best fitted batches of the jobs, where each batch consists of a

subset of interleaving jobs, and a union of all the batches form a complete solution. Their

experiments concluded that both the heuristic and sequencing rule in non-increasing order

of aj + cj perform the best.

Liu et al. (2017a) extended the setting of Amrouche and Boudhar (2016) and modelled

the time-in-use electricity prices for energy consumption as a bi-criteria re-entrant flow-

shop. They investigated the two objective functions of minimising the makespan and

minimising the total energy consumption. They developed a mathematical formulation

and proposed two solution methods.

The job-shop problem

The classical job-shop scheduling problem includes a set N of jobs to be processed on a

setM of different machines. Each job has a pre-specified processing order on the machines.

The job-shop CTSP is similar to its flow-shop counterpart with the only difference that

each job has its own pre-specified order in which its tasks are processed on the machines.

Gröflin and Klinkert (2007) first considered the job-shop CTSP. They studied an op-

timal job insertion in the job-shop environment, where the delays can also take negative

values, and the objective is to minimise the makespan. The insertion issue arises when

additional tasks or jobs are inserted into a given schedule. They showed that the job

insertion problem is NP -hard in the classical job-shop environment; however, it is poly-

20

nomially solvable in the job-shop CTSP.

Bürgy and Gröflin (2013) studied a similar job insertion problem, where sequence-

dependent setup times between consecutive tasks on a machine are present. They pro-

posed an O(n2 max{n,m})-time algorithm to solve the problem. They also developed a

heuristic based on their optimal job insertion algorithm. Later, Bürgy and Gröflin (2017)

generalised their earlier results to the case of minimising a general regular objective func-

tion.

The open-shop problem

The classical open-shop scheduling problem includes a set N of jobs to be processed

on a set M of different machines. Job j consists of m tasks, which can be processed in any

order on the m machines. The open-shop CTSP is similar to its flow-shop counterpart

with the only difference that the order in which the tasks of a job are processed on the

machines is immaterial.

Due to the NP -hardness of the two-machine no-wait open-shop problem (Giaro, 2001),

Ageev (2018) discussed that the two-machine open-shop CTSP is also NP -hard. They

also proved that the existence of a (1.5− ε)-approximation algorithm for the special case

where aj = bj implies P = NP , for any ε > 0. They further showed that when the delays

can take only two values, there is no approximation algorithm with a ratio better than

(1.5− ε) for any ε > 0, unless P = NP .

2.2 Applications

Shapiro (1980) introduced the CTSP based on the following application: In a radar

tracking system, pulses are transmitted and reflections are received once every specified

update period. The radar cannot transmit a pulse at the same time when a reflected pulse

is arriving; also, two reflected pulses cannot overlap. The radar devices transmit certain

pulses to calculate the sizes, shapes and speeds of the tracked objects. Hence, one can

model the transmission and reflection of pulses as two tasks with a fixed duration of delay

between them. It is important that the idle time of the radar system is minimised. In

a similar context, Simonin (2009) made use of the CTSP to improve the performance of

submarine torpedoes. Various environmental data must be processed by sensors located

on the torpedo. Here, the initial task is the transmission of a pulse from the torpedo to

the water and the completion task consists of receiving the echo, while there is an exact

duration of idle time between the two tasks.

In the flow-shop setting, Ageev and Baburin (2007) modelled a chemistry manufac-

turing process as the CTSP. Specifically, two different operators execute the operations

successively, where there is an exact technological delay between the finishing time of

the first task and the starting time of the second one. Brauner et al. (2009) showed that

21

minimising the makespan for the single-machine identical CTSP is equivalent to maximis-

ing the throughput rate in a one-machine no-wait robotic cell with the characteristics of

having an input station, an output station and one machine. Raw material and finished

products can be stored in input and output stations with infinite capacity. Any number

of products can be treated simultaneously by the machine. A single transporter with a

unit capacity carries materials between the stations and the machine.

Recently, the CTSP has been utilised to model certain problems in the health care

domain. As an example, for chemotherapy appointment scheduling, once the medicine

is prescribed, the patient visits the health centre on treatment days separated by a fixed

number of rest days (Condotta and Shakhlevich, 2014). Some other health care envi-

ronments with multi-stage characteristics can also be modelled as the CTSP. Consider

a pathology laboratory, where minimising the patients’ waiting times is the performance

measure (Marinagi et al., 2000; Azadeh et al., 2014). Certain blood tests, e.g., fasting

blood sugar testing, require multiple tests and there is an exact time delay between a pair

of tests. Another problem with multi-stage characteristics includes patient appointment

scheduling in nuclear medicine clinics. Due to the very strict multi-stage sequential pro-

cedures, the problem in the nuclear medicine clinic is more complex than its counterpart

in the typical medical imaging clinic (Pérez et al., 2011; Pérez et al., 2013). Here, a single

treatment requires multiple steps and each step needs to be completed within a strict time

window. Maximising the number of treated patients is well justified in this context due

to the costs of the required resources and the short half-lives of the radio-pharmaceuticals

needed for the treatments. Strict time window requirements also exist in the hemodialysis

treatment services (Liu et al., 2019).

In the context of healthcare applications, the tiredness of the staff, that typically oc-

curs in practice and impacts the processing time and therefore, the starting time of the

next job, can be modelled as a time-dependent event. For example, Pérez et al. (2013)

highlights the importance of modelling human resource fatigue within the patient ap-

pointment scheduling in nuclear medicine clinics or in similar environments, proposing

therefore studies on the CTSP with time-dependent processing times.

There are two other motivations incorporating delays in shop scheduling problems.

First, it can be used to model a no-wait problem, where there is a transport time (or

any processing that does not require a processing machine) between two consecutive

tasks of the same job. That time requirement can indeed be represented by the delay

duration in the CTSP. Chu and Proth (1996) presented a class of problems in which a

transport time between successive tasks of a job occurs. Fondrevelle et al. (2009) discussed

similar situations arising in the manufacturing process of thermic paper that involves

chemical processing, where temporal constraints are imposed on the process. Likewise,

such constraints must be satisfied in every processing step of a pharmaceutical plant,

22

from raw materials and resource preparation to packaging. Second, it can be used to

model the no-wait condition involving bottleneck machines. According to Mitten (1959),

the two-machine flow-shop problem with delays can present the industrial environment

involving two bottleneck machines, where the jobs must undergo a number of tasks on

some intermediate machines between the two bottleneck machines. The elapsed time on

those intermediate machines can be represented by the delay durations, where the delays

are exact in the no-wait situation.

23

Chapter 3

Benchmarks and mathematical models

This chapter is devoted to the benchmark instances and mathematical formulations of

the coupled task scheduling problem (CTSP). Precisely, in Section 3.1 we discuss the

utilised data sets in the literature, and then propose new sets of benchmarks. All available

mathematical formulations of the problem are then presented and discussed in Section 3.2.

Some corrections and improvements to the existing models, and a new formulation are

proposed. The chapter ends in Section 3.3 with comparing the performance of the models

based on the results of extensive computational experiments. The results presented in

this chapter are published in:

� Khatami, M., Salehipour, A., and Cheng, T. C. E. (2020). “Coupled task scheduling

with exact delays: Literature review and models”. European Journal of Operational

Research 282(1), 19 –39.

3.1 Benchmark instances

Several studies generated their own instances to evaluate their proposed algorithms.

Often, those instance generation schemes include small- and medium-sized instances, and

they may only be applicable to certain special cases. Also, because previously gener-

ated instances were not published in the literature, there is a demand for standard test

beds; particularly, for evaluation and comparison purposes. Therefore, we propose com-

prehensive sets of instances for the CTSP, and for both the single-machine and shop

environments.

3.1.1 Previous instance generation schemes

Shapiro (1980) proposed the first instance generation scheme. He generated a set

of problem instances by simulating a radar process. The instances set includes a total

number of 250 instances with 20 to 500 jobs, where the task processing times are in the

range of 10 and 100, and the delay durations in the range of 300 and 1,300. Ahr et

al. (2004), Li and Zhao (2007), Brauner et al. (2009), and Blazewicz et al. (2012) utilized

a discrete uniform interval as well.

The instances in Sherali and Smith (2005) consist of 8 to 14 jobs, with aj taken from the

normal distribution with a mean of 30 time units and a standard deviation of 5 time units,

i.e., N(30, 5). Likewise, bj and Lj are taken from N(120, 30) and N(600, 100), respectively.

24

Condotta and Shakhlevich (2012) defined three types of delay in their instance generation.

Delays in the first type are in a small range, while in the second and third types, delays

take considerably different values. In a set of data in Békési et al. (2014), aj and bj take

values in the range of 1 and 100, and the values of Lj are generated such that the jobs

are perfectly “fitted”, i.e., the jobs can be scheduled in such a way that the makespan is

at most one unit greater than the trivial lower bound Pa + Pb.

Considering the studies in the shop setting, the discrete uniform distribution is used

by all the works with a data generation scheme, including Huo et al. (2009), Fondrevelle

et al. (2009), Hamdi and Loukil (2017), Amrouche et al. (2017), and Meziani et al. (2018).

The previous studies generate different instances in order to evaluate their proposed

methods, though, none of them are published. Instead, the instance generation scheme

is designed and discussed in those studies, which are not useful for comparing various

algorithms and solution methods, because even the same instance generation scheme may

lead to different values, e.g., (aj, Lj, bj), so different instances. To fulfill the limitation,

we propose a complete set of benchmark instances for the CTSP, which is available online

in the Mendeley data repository at http://dx.doi.org/10.17632/dd7ht5k5pn.1.

3.1.2 The single-machine CTSP

We consider the set {5, 10, 15, 20, 25, 40, 50, 100} for the number of jobs. We investigate

jobs with small, medium and large durations, where the values of (aj, Lj, bj) are randomly

generated from the discrete uniform distribution in the ranges as follows:

� Small jobs: aj, bj ∼ U(1, 20), Lj ∼ U(10, 80)

� Medium jobs: aj, bj ∼ U(1, 50), Lj ∼ U(25, 200)

� Large jobs: aj, bj ∼ U(1, 100), Lj ∼ U(50, 400)

Having eight values for the number of jobs and three alternatives for their sizes results

in a total of 24 combinations. Generating ten instances for each combination will result

in a set with 240 instances, i.e., per each number of jobs n, 30 instances are generated,

where every ten instances have the same characteristics as discussed above.

We label this set the “general set”. For illustration purposes, we show the name of

an instance in the format n-x-y-gen, where n denotes the number of jobs, x denotes the

instance ID (number), ranging from 1 to 10, and y denotes the sizes of the jobs that can

be S, M, or L, denoting small, medium, or large jobs’ attributes as discussed above. The

gen denotes the general set. For example, n = 5 and small jobs result in a 5-1-S-gen

instance with the following job attributes

N1 = (5, 30, 14), N2 = (17, 10, 9), N3 = (15, 52, 6), N4 = (7, 33, 18), N5 = (19, 41, 8).

http://dx.doi.org/10.17632/dd7ht5k5pn.1

25

Although there is no prior research considering the single-machine CTSP with a due

date related criterion, we generate a set of due dates to complete the proposed data set.

Specifically, we follow the approach proposed by Potts and Van Wassenhove (1982), which

is also used in Fondrevelle et al. (2009) and Hamdi and Loukil (2017). The method is to

generate the due dates in the interval [Px, Py], where P is a lower bound for the problem.

We use the bound P = Pa + Pb, and set x = 0.05 and y = 0.95.

We also generate the second set, i.e., the “restricted set” based on the identical prob-

lem. The set consists of 240 instances, where all the jobs of a particular instance are

identical, i.e., (a, L, b) ∼ U(α, β) with the same characteristics and values of α and β as

those of the general set. Our naming convention for this set is n-x-y-res, where n, x,

and y are as before, and res denotes the restricted set. For example, 5-1-S-res may

represent an instance with 5 small jobs as follows:

N1 = N2 = N3 = N4 = N5 = (16, 47, 9).

Note that having the two sets allows us to generate instances for every special case, as

well as every restriction on the task/delay durations. As an example, an instance with five

small jobs for the case (a, Lj, bj), where all the initial tasks taking an identical processing

time can be generated by using the first values from the restricted set, and the second

and third values from the general set. This results in

N1 = (16, 30, 14), N2 = (16, 10, 9), N3 = (16, 52, 6), N4 = (16, 33, 18), N5 = (16, 41, 8).

We use n-x-y-a to denote this special case, where a stands for identical initial tasks.

Benchmark instances for the other special cases can also be generated in the same way.

For example, the special case (p, Lj, p), p > 0, where the initial and completion tasks of

every job are equal to p, can be generated from the instances for (a, Lj, b) and setting

bj = a, ∀j ∈ N . The special case aj ≥ bj can be generated from the general set by

interchanging the processing times of the tasks of job j with aj < bj. Similarly, instances

for the problem with UET tasks, i.e., (1, Lj, 1), can be generated by using the general

set instances and setting all the task processing times to 1. Table 3.1 shows the naming

convention for the instances generated for those special cases. In total, we generate 11

sets, each with 240 instances, i.e., 2,640 problem instances for the single-machine CTSP.

3.1.3 The shop CTSP

In order to generate benchmark instances for the two-machine flow-shop CTSP, we

use the instance generation parameters of the single-machine problem (see Section 3.1.2).

Particularly, the completion task durations can be considered as the processing times of

the tasks on the second machine. Hence, all the sets discussed in Section 3.1.2 can easily

be used for the two-machine flow-shop CTSP.

26

Table 3.1 : Naming convention for instances of the single-machine CTSP.

Type Description

gen general set
res restricted set (a, L, b)
a restricted set (a, Lj , bj)
L restricted set (aj , L, bj)
b restricted set (aj , Lj , b)
aL restricted set (a, L, bj)
ab restricted set (a, Lj , b)
Lb restricted set (aj , L, b)
p restricted set (p, Lj , p)
a>b restricted set (aj , Lj , bj), aj ≥ bj
UET restricted set (1, Lj , 1)

However, for the m-machine flow-shop scheduling problem the numbers of jobs n and

machines m need to be specified. Most of previous studies studied problems with up to

five machines. An exception is Hamdi and Loukil (2017), who solved instances with up to

ten machines. In addition, the number of jobs is set to at most 20 in the previous studies.

To cover a broader range of instances, we set n = {10, 20, 50, 100} and m = {5, 10, 20},
which results in 12 combinations. For each combination, ten instances are generated, so

a total of 120 instances are produced. The tasks’ processing times and delay durations

are randomly taken from a discrete uniform distribution with the following parameters:

pkj ∼ U(1, 100) and Lkj ∼ U(1, 20). Note that the values of the delay duration are not

from a wide range as in the single-machine case. This is to reflect the true nature of

delays in the flow-shop, which are mainly related to the transport of the tasks. We also

show the name of an instance in the format n-m-x, where n denotes the number of jobs,

m denotes the number of machines and x denotes the instance number, ranging from one

to ten. Also, we generate due dates for the jobs following the same method discussed in

the single-machine setting, where the lower bound follows Equation (2.3), and the same

values are used for x and y.

We note that the same data set can be used for the open-shop CTSP, with the only

change that we do not consider the pre-specified sequence for the tasks of the jobs. To

utilise the proposed data set for the job-shop setting, however, we need to generate a

sequence for the tasks of each job.

3.2 Mathematical models

In this section we discuss the mathematical programming formulations for the CTSP

documented in the literature. We first discuss the models for the single-machine CTSP

and then consider those for the flow-shop setting.

27

3.2.1 The single-machine models

Let N indexed by j, and H = {1, . . . , 2n} indexed by h, denote sets of jobs and tasks,

respectively, where H2j−1 and H2j represent the initial and completion tasks of job j.

Elshafei et al. (2004) proposed the first mathematical formulation for the single-

machine CTSP. For this time-indexed model, they discretised the time horizon into a

set Θ = {1, . . . , T } of unit time slots. The binary decision variable xjt, ∀j ∈ N, ∀t ∈ Θ,

takes the value of 1 if job j starts its processing at time slot t, and 0 otherwise. They

considered the objective function of minimising the makespan. Model S1 in the following

is their formulation.

Model S1

z = minCmax (3.1)

subject to

Cmax ≥
τj∑
t=1

(t+ Pj − 1)xjt, j ∈ N, (3.2)
τj∑
t=1

xjt = 1, j ∈ N, (3.3)∑
j∈N

∑
v∈s2j−1

1≤v≤τj

xjv +
∑
j∈N

∑
v∈s2j
1≤v≤τj

xjv ≤ 1, t ∈ Θ, (3.4)

xjt ∈ {0, 1}, j ∈ N, t ∈ Θ. (3.5)

The objective function (3.1) minimises the makespan, where the makespan is enforced

to be at least as large as the finishing time of every job (constraints (3.2)). Here, τj =

T − Pj + 1 is the latest time that if aj is scheduled by τj, processing of bj will finish by

time T (end of the time horizon), where Pj = aj + Lj + bj is the total time that job j

remains in the system after its initial task starts processing. Constraints (3.3) ensure that

every job starts at exactly one time slot, and constraints (3.4) indicate that at most one

job can occupy each time slot. In other words, time slot t is occupied by aj, if the starting

time of job j is in s2j−1 ∈ {t− aj + 1, . . . , t}, or it is occupied by bj, if the starting time

of job j is in s2j ∈ {t − Pj + 1, . . . , t − aj − Lj}. Note that the value of v must always

remain between 1 and τj and any other value is ignored.

Elshafei et al. (2004) also proposed the weighted version of model S1, in which the

objective is to maximise the total weight of the completed jobs within a time limit Tmax

of the time horizon, where Θ′ = {1, . . . , Tmax}. Model W1 shows their formulation.

Model W1

z = max
∑
j∈N

τj∑
t=1

wjxjt (3.6)

28

subject to

τj∑
t=1

xjt ≤ 1, j ∈ N, (3.7)

∑
j∈N

∑
v∈s2j−1

1≤v≤τj

xjv +
∑
j∈N

∑
v∈s2j
1≤v≤τj

xjv ≤ 1, t ∈ Θ′, (3.8)

xjt ∈ {0, 1}, j ∈ N, t ∈ Θ′. (3.9)

The objective function (3.6) maximises the total weight of the completed jobs, where

wj is the weight of job j. Recall that this model does not require all the jobs to be

scheduled, so constraints (3.7) reflect this. In other words, the constraints ensure that a

job should be started at exactly one time slot t, if it is scheduled within the time limit

Tmax.

The numbers of decision variables and constraints in the time-indexed formulations,

i.e., models S1 and W1, depend on the number of time slots. Hence, it is very likely that it

grows quickly as the size of the problem increases. Sherali and Smith (2005) attempted to

overcome this issue by proposing alternative formulations with continuous time horizon.

They considered five possible relative configurations for every pair of jobs j and j′:

1. processing of job j is finished before job j′ starts;

2. processing of job j′ is finished before job j starts;

3. the initial task of job j′, i.e., aj′ , is interleaved between the two tasks of job j (this

setting is only possible if aj′ ≤ Lj and bj ≤ Lj′);

4. the initial task of job j, i.e., aj, is interleaved between the two tasks of job j′ (this

setting is only possible if aj ≤ Lj′ and bj′ ≤ Lj); and,

5. job j is nested between the two tasks of job j′ (if Lj′ ≥ Pj), or job j′ is nested

between the two tasks of job j (if Lj ≥ Pj′ ; note that at most one of the two cases

is possible).

Those five configurations are depicted in Figure 3.1. Configurations 1 and 2 are always

possible if the time horizon is relatively large, i.e., if T ≥ Pj + Pj′ , ∀(j, j′) ∈ N (Pj =

aj + Lj + bj). According to those five configurations, Sherali and Smith (2005) defined a

binary decision variable yjj′ν , which takes 1 if jobs j and j′, j < j′, are scheduled relative

to each other based on configuration ν = 1, . . . , 5. For a configuration ν and jobs j and

j′, ljj′ν and rjj′ν denote two constants representing the earliest and latest times that job

j′ can start its processing relative to job j, i.e., ljj′ν ≤ sj′ − sj ≤ rjj′ν , where sj is the

starting time of job j.

29

(1): aj bj aj′ bj′

(2): aj′ bj′ aj bj

(3): aj aj′ bj bj′

(4): aj′ aj bj′ bj

(5): aj′ aj bj bj′

Figure 3.1 : Interleaving jobs j and j′ (a) and nesting jobs j and j′ (b).

The following example illustrates the calculation of those constants. Consider job j

with (aj = 1, Lj = 4, bj = 3) and job j′ with (aj′ = 1, Lj′ = 10, bj′ = 2). If the time

horizon is equal to 40 time units, configurations 1 and 2 are both possible and we have

ljj′1 = 8, rjj′1 = 27, ljj′2 = −32 and rjj′2 = −13. Configuration 3 is possible as aj′ ≤ Lj

and bj ≤ Lj′ , so we have ljj′3 = 1 and rjj′3 = 4. Configuration 4 is possible as aj ≤ Lj′

and bj′ ≤ Lj, so ljj′4 = −10 and rjj′4 = −8. Figure 3.2 shows the relative positions of

jobs j and j′ under configuration 4. Lastly, configuration 5 is possible for the nesting of

job j between the two tasks of job j′, so we have ljj′5 = −3 and rjj′5 = −1.

(a):
sj′ sj

aj′ aj bj′ bj
rjj′4 = −8

(b):
sj′ sj

aj′ aj bj′ bj
ljj′4 = −10

Figure 3.2 : Calculation of (a) rjj′4 and (b) ljj′4 for two jobs j (1, 4, 3) and j′ (1, 10, 2).

Following the above definitions, Sherali and Smith (2005) formulated the problem to

minimise the makespan into model S2 as follows:

Model S2

z = minCmax (3.10)

subject to

Cmax ≥ sj + Pj, j ∈ N, (3.11)

30

5∑
ν=1

yjj′ν = 1, (j, j′) ∈ N, j < j ′, (3.12)

sj′ − sj ≥
5∑

ν=1

ljj′νyjj′ν , (j, j ′) ∈ N, j < j ′, (3.13)

sj′ − sj ≤
5∑

ν=1

rjj′νyjj′ν , (j, j′) ∈ N, j < j ′, (3.14)

sj ≥ 0, j ∈ N, (3.15)

yjj′ν ∈ {0, 1}, (j, j ′) ∈ N, j < j ′, 1 ≤ ν ≤ 5. (3.16)

The objective function (3.10) minimises the makespan, where the makespan is enforced

to be at least as large as the finishing time of every job (constraints (3.11)). Constraints

(3.12) ensure that exactly one configuration is selected for every pair of jobs. Constraints

(3.13) and (3.14) ensure that the difference between the starting time of every pair of

jobs is within the permissible upper and lower bounds, under their selected configuration.

Note that if there is a configuration ν that is not possible for two jobs j and j′, the relative

decision variable yjj′ν is set to zero.

Sherali and Smith (2005) also proposed the weighted version of model S2. They defined

a binary decision variable xj that is equal to 1 if both tasks of job j are processed before

Tmax. The weighted formulation maximises the total weight of the completed jobs within

the time limit Tmax. Model W2 is as follows:

Model W2

z = max
∑
j∈N

wjxj (3.17)

subject to

sj + Pj ≤ UB − xj(UB − Tmax), j ∈ N, (3.18)

(3.12) to (3.16),

xj ∈ {0, 1}, j ∈ N, (3.19)

where UB is an upper bound for the problem, which can be set to
∑

j∈N Pj. Constraints

(3.18) state that if job j is selected to be scheduled, it must finish before the time limit.

In model W2, the values of ljj′ν and rjj′ν are the same as those in model S2.

Békési et al. (2014) proposed two linear ordering-based formulations of the problem

to minimise the makespan. In these formulations, a sequence is an ordered set of tasks,

rather than jobs. For any pair of tasks h and h′, a binary variable xhh′ is defined, which

31

takes the value of 1 if task h′ is started after task h in the sequence. Model S3 shows their

first formulation.

Model S3

z = minCmax (3.20)

subject to

Cmax ≥ s2j + bj, j ∈ N, (3.21)

x2j−1,2j = 1, j ∈ N, (3.22)

xhh′ + xh′h = 1, (h, h′) ∈ H, h < h′, (3.23)

xhh′ + xh′h′′ + xh′′h ≤ 2, (h, h′, h′′) ∈ H, h ̸= h′, h ̸= h′′, h′ ̸= h′′, (3.24)

s2j = s2j−1 + aj + Lj, j ∈ N, (3.25)

s2j ≤ UB − bj, j ∈ N, (3.26)

sh′ ≥ sh + ph − UB(1− xhh′), (h, h′) ∈ H, h ̸= h′, (3.27)

sh ≥ 0, h ∈ H, (3.28)

xhh′ ∈ {0, 1}, (h, h′) ∈ H, h ̸= h′, (3.29)

where s2j is the starting time of the completion task of job j. Constraints (3.22) indicate

that the initial task of each job should be scheduled before its completion task. The

relative order of any pair of tasks is considered by constraints (3.23). Constraints (3.24) are

the so-called “3-dicycle inequalities” for any triple distinct tasks. The relation between the

starting times of the tasks of a job is defined by constraints (3.25), where an upper bound

on the starting times of the completion tasks is set by constraints (3.26). Constraints

(3.27) relate the starting time variables to the linear ordering variables, where ph is the

processing time of task h. Specifically, the constraints ensure that if task h′ is scheduled

after task h, i.e., xhh′ = 1 and the constraint is as sh′ ≥ sh + ph, the starting time of task

h′, i.e., sh′ , must be at least as large as the finishing time of task h, i.e., sh + ph. On the

other hand, in case xhh′ = 0, the constraints turn to sh′ ≥ sh + ph − UB, that is always

true. The reason is that the finishing time of any task, including task h, cannot be larger

than UB.

Békési et al. (2014) proposed a second formulation as an alternative for model S3.

32

The model does not use the starting time variables. The model includes variables yh,

which are the idle times of the machine after processing task h, and positive constants

Ch, which are upper bounds on the values of yh. A knapsack constraint is used in order to

express that the sum of the processing times of tasks that are executed between the two

tasks of job j must not exceed its delay duration Lj. Because such a constraint is initially

stated in a non-linear form, additional variables yjh, j ∈ N, h ∈ H \{2j−1, 2j} are added
for linearisation (see Békési et al. (2014) for more details on the non-linear constraint).

Model S4 is the formulation as follows:

Model S4

z = min
∑
j∈N

(y2j−1 + y2j) (3.30)

subject to

y2j−1 +
∑

h/∈{2j−1,2j}

(ph(xh,2j − xh,2j−1) + yjh) = Lj, j ∈ N, (3.31)

yjh ≤ yh, j ∈ N, h ∈ H \ {2j − 1, 2j}, (3.32)

yjh ≤ Cjh(xh,2j − xh,2j−1), j ∈ N, h ∈ H \ {2j − 1, 2j}, (3.33)

yjh ≥ yh − Cj(x2j,h + xh,2j−1), j ∈ N, h ∈ H \ {2j − 1, 2j}, (3.34)

(3.22) to (3.24), (3.29),

yj ≥ 0, j ∈ N, (3.35)

yjh ≥ 0, j ∈ N, h ∈ H, h /∈ {2j − 1, 2j}. (3.36)

The objective function (3.30) minimises the total idle time of the machine, which is

equivalent to minimising the makespan. The knapsack constraints are presented in (3.31),

indicating that the delay duration of each job consists of the tasks that are processed

between its initial and completion tasks, plus the idle time between them. Constraints

(3.32) to (3.34) are used to linearise the knapsack constraints. Here, the constants Cjh =

max{0, Lj − ph} are upper bounds on the values of yjh. In addition, Ch = Lj, if h is the

first task of job j, or Ch = maxj∈N{Cjh|h /∈ {2j − 1, 2j}}, if h is the second task of a job.

3.2.2 The flow-shop models

Hamdi and Loukil (2017) proposed three mathematical formulations for the (permu-

tation) flow-shop CTSP. The objective function of the models is to minimise the total

earliness and tardiness. The first model, which we denote by F1, is a completion time-

33

based formulation. It uses the decision variable xij, which takes the value of 1 if job j is

assigned to the sequence position i ∈ N , and 0 otherwise. Also, the non-negative variable

Cik denotes the completion time of job in the sequence position i on machine k. Model

F1 shows this formulation as follows:

Model F1

z = min
∑
i∈N

(Ei + Ti) (3.37)

subject to∑
i∈N

xij = 1, j ∈ N, (3.38)

∑
j∈N

xij = 1, i ∈ N, (3.39)

Ti ≥ Cim −
∑
j∈N

djxij, i ∈ N, (3.40)

Ei ≥
∑
j∈N

djxij − Cim, i ∈ N, (3.41)

Ci,k+1 = Cik +
∑
j∈N

(pj,k+1 + Ljk)xij, i ∈ N, k ∈M \ {m}, (3.42)

Ci+1,k ≥ Cik +
∑
j∈N

pjkxi+1,j, i ∈ N \ {n}, k ∈M, (3.43)

Cik ≥ 0, i ∈ N, k ∈M, (3.44)

xij ∈ {0, 1}, (i, j) ∈ N, (3.45)

Ei, Ti ≥ 0, i ∈ N. (3.46)

The objective function (3.37) minimises the total earliness and tardiness. The as-

signment constraints (3.38) and (3.39) ensure that each job is assigned to exactly one

sequence position and each sequence position is assigned to exactly one job. Constraints

(3.40) and (3.41) define the tardiness and earliness of the job in the sequence position

i. Constraints (3.42) define the completion time of each job on consecutive machines.

Likewise, constraints (3.43) calculate the completion times of any pair of consecutive jobs

on every machine. We notice that Hamdi and Loukil (2017) missed a constraint in model

F1, i.e., they did not explicitly define the completion time of the first job on the first

machine. In particular, the omission of such a constraint may result in starting the first

job on the first machine before the time horizon, i.e., an infeasible solution. To avoid this,

we add the following constraint to model F1.

34

C11 ≥
∑
j∈N

pj1x1j. (3.47)

We express constraint (3.47) in the form of greater than or equal to because the

objective function of model F3, i.e., the total earliness and tardiness is a non-regular one,

and forced idle times may therefore improve the objective. In case of a regular objective

function, e.g., minimisation of the makespan, forced idle times will not be beneficial, so

it suffices to express constraint (3.47) as C11 =
∑

j∈N pj1x1j.

Their second model is an idle time-based formulation, in which the variable Iik is the

idle time of machine k after processing the job in the sequence position i. We notice that

their formulation does not generate a valid solution. We investigate their formulation

and observe two flaws. First, the calculation of jobs’ earliness needs fixing. Second,

by defining variable Iik as the idle time of machine k “after” processing the job in the

sequence position i, there is no possibility to have idle time before the processing of the

first job on the first machine. Note that because the objective function is non-regular,

it might be beneficial to have idle time before the processing of the first job on the first

machine. For example, in a one-job two-machine instance with a = 2, L = 3, b = 2 and

d = 9, the job should start at time 2 to minimise the total earliness and tardiness (see

Figure 3.3).

0 2 4 7 9

M1

M2

a1
L1 b1

Figure 3.3 : An example to clarify the correct definition of idle times.

Consequently, we define variable Iik as the idle time of machine k “before” processing

the job in the sequence position i. We also correct the earliness calculation. The corrected

formulation, denoted as model F2, is as follows:

Model F2

(3.37) to (3.39),∑
j∈N

(pjk + Ljk)x1j + I1k = I1,k+1, k ∈M \ {m}, (3.48)∑
j∈N

(pj,k+1 + Ljk)xij + Ii+1,k+1

=
∑
j∈N

(pjk + Ljk)xi+1,j + Ii+1,k, i ∈ N \ {n}, k ∈M \ {m},
(3.49)

Ti ≥
i∑

s=1

∑
j∈N

pjmxsj +
i∑

s=1

Ism −
∑
j∈N

djxij, i ∈ N, (3.50)

35

Ei ≥
∑
j∈N

djxij −
i∑

s=1

∑
j∈N

pjmxsj −
i∑

s=1

Ism, i ∈ N, (3.51)

Iik ≥ 0, i ∈ N, k ∈M, (3.52)

(3.45) and (3.46).

Constraints (3.48) model the idle time before the job in the first position. Similarly,

constraints (3.49) define the idle time between the remaining jobs on all the machines. In

particular, they relate the processing times, delays and idle times of every two consecu-

tive jobs on any pair of consecutive machines. Constraints (3.50) and (3.51) define the

tardiness and earliness, respectively.

The third model proposed by Hamdi and Loukil (2017) is a starting time-based for-

mulation, which uses the variable sik to express the starting time of the job in position i

on machine k. Model F3 in the following shows this formulation.

Model F3

(3.37) to (3.39),

Ti ≥ sim +
∑
j∈N

pjmxij −
∑
j∈N

djxij, i ∈ N, (3.53)

Ei ≥
∑
j∈N

djxij − sim −
∑
j∈N

pjmxij, i ∈ N, (3.54)

si,k+1 = sik +
∑
j∈N

(pjk + Ljk)xij, i ∈ N, k ∈M \ {m}, (3.55)

si+1,k ≥ sik +
∑
j∈N

pjkxij, i ∈ N \ {n}, k ∈M, (3.56)

sik ≥ 0, i ∈ N, k ∈M, (3.57)

(3.45) and (3.46).

Constraints (3.53) and (3.54) define the tardiness and earliness of jobs. Constraints

(3.55) relate the starting times of a job on every pair of consecutive machines. Finally,

constraints (3.56) relate the starting times of any pair of consecutive jobs on a machine.

Their original model also includes the constraint s11 ≥ 0. This constraint is redundant

because it has already been implied by constraints (3.57). Therefore, we do not include

it in model F3.

Also, we provide an additional formulation for the flow-shop CTSP, which Arabameri

and Salmasi (2013) originally proposed for the no-wait flow-shop scheduling problem.

We choose this model because it is relatively new and uses the sequential ordering vari-

ables (the first three have positional variables). The model proposed by Arabameri and

36

Salmasi (2013) includes a binary variable xjj′ , which takes 1 if job j′ is placed immediately

after job j in a sequence, and 0 otherwise. Two dummy jobs are considered, where their

processing times and delays on all the machines are equal to zero. The due date of the

first dummy job is also set to zero so as to assign it to the first position in a sequence,

and that of the second dummy job is set to a large positive number in order to assign it

to the last position in the sequence. Assuming the set N ′ = {1, . . . , n+ 2} of jobs, model

F4 is as follows:

Model F4

z = min
∑

j∈N ′\{n+2}

(Ej + Tj) (3.58)

subject to∑
j∈N ′\{n+2}

j ̸=j′

xjj′ = 1, j′ ∈ N ′ \ {1}, (3.59)

∑
j′∈N ′\{1}

j′ ̸=j

xjj′ = 1, j ∈ N ′ \ {n+ 2}, (3.60)

Cj′k +M(1− xjj′) ≥ Cjk + pjk, (j, j ′) ∈ N ′, j ̸= j′, k ∈M, (3.61)

Cjk = Cj,k−1 + pjk + Lj,k−1, j ∈ N ′, k ∈M \ {1}, (3.62)

Tj ≥ Cjm − dj, j ∈ N ′, (3.63)

Ej ≥ dj − Cjm, j ∈ N ′, (3.64)

Cjk ≥ 0, j ∈ N ′, k ∈M, (3.65)

xjj′ ∈ {0, 1}, (j, j′) ∈ N ′, j ̸= j′, (3.66)

Ej, Tj ≥ 0, j ∈ N ′. (3.67)

The objective function (3.58) minimises the total earliness and tardiness of jobs 1 to

n+1. The last job is not included as it is the second dummy job. Constraints (3.59) and

(3.60) ensure that all the jobs are sequenced exactly once. Constraints (3.61) and (3.62)

relate the completion time variables to the sequential ordering variables. Specifically, they

set the completion times of every two consecutive jobs on every machine, and every job on

any pair of consecutive machines. Here Cjk is the completion time of job j on machine k

andM is a sufficiently large constant. Constraints (3.63) and (3.64) define the tardiness

37

and earliness of the jobs.

3.3 Performance evaluation of models

In this section we evaluate the performance of all ten models discussed in Section 3.2.

For this purpose, we carried out comprehensive computational experiments. Recall that

the mathematical models can be categorised into three groups: (1) single-machine models

to minimise the makespan, i.e., models S1 to S4; (2) single-machine models to maximise

the weighted sum of the completed jobs, i.e., models W1 andW2; and (3) flow-shop models

to minimise the total earliness and tardiness, i.e., models F1 to F4. Table 3.2 summarises

the number of decision variables and constraints of each model. In the table, n and m

denote the numbers of jobs and machines, respectively, and T denotes the number of

discretised time units.

Table 3.2 : Numbers of decision variables and constraints in the models.

Model Number of binary vari-
ables

Number of continuous
variables

Number of constraints

S1 nT 1 2n+ T
S2 (5n2 − 5n)/2 n+ 1 (3n2 − n)/2
S3 4n2 − 2n n+ 1 8

3n
3 + 2n2 + 7

3n
S4 4n2 − 2n 2n2 8

3n
3 + 4n2 − 11

3 n

W1 nT - n+ Tmax

W2 (5n2 − 3n)/2 n (3n2 − n)/2

F1 n2 nm+ 2n 2nm+ 3n–m+ 1
F2 n2 nm+ 2n nm+ 3n
F3 n2 nm+ 2n 2nm+ 3n–m+ 1
F4 (n+ 2)2 − n− 2 (n+ 2)m+ 2(n+ 2) (n+2)2m+3(n+2)− 2

For the first and second groups, which are models for the single-machine CTSP, we

tested 240 instances of general set (see Section 3.1.2). For the weighted models, we

randomly generated the job weights from ∼ U(1, 10). We set the parameter Tmax to
1
3

∑
j∈N Pj, where Pj = aj + Lj + bj. For the third group, i.e., the flow-shop CTSP

models, we studied 120 benchmark instances generated in Section 3.1.3. We used the

solver Gurobi version 8.0.0 (Gurobi Optimization, 2018) to solve the models. We coded

all the models in Python version 2.7. We performed all the computational experiments

on a PC with an Intel® Core� i5-7500 CPU clocked at 3.40GHz with 8GB of memory

under the Linux Ubuntu 16.04 operating system. The machine has four threads and we

ran Gurobi in the parallel mode, i.e., we used all the four threads. We only changed

one Gurobi parameter, i.e., the time limit, for which we changed its default value to 900

seconds. Therefore, this was the stopping criterion for the solver. For the remaining

parameters of Gurobi, we used their default values.

38

Table 3.3 : Comparison of the performance of the studied mathematical models.

Model Feas Best Opt Gap (%) Time (sec)

S1 210 73 34 30.9 788.2
S2 126 85 61 4.2 674.8
S3 192 148 60 3.3 677.3
S4 166 68 58 15.5 751.7

W1 240 199 102 0.4 578.4
W2 205 153 113 1.1 497.5

F1 106 32 30 5.5 675.5
F2 107 47 36 5.1 645.0
F3 109 32 30 5.6 675.5
F4 120 106 30 0.6 742.7

Table 3.3 summarises the results of the computational experiments. We use five criteria

to evaluate each model. These include “feas”, which shows the number of generated

feasible solutions by the model within the time limit; “best”, which is the number of best

solutions obtained by the model; “opt”, i.e., the number of optimal solutions delivered by

the model; and “gap (in %)”, which is calculated as z−z∗

z∗
× 100, where z is the objective

function value obtained by the model and z∗ is the best objective function value among all

the models, i.e., the best available solution, and is calculated over the number of feasible

solutions for the model. The last metric “Time (sec)” represents the average computing

time in seconds for the model. We highlight the criterion with the best value across the

models (per group).

Among the single-machine models to minimise the makespan, model S1 generates the

largest number of feasible solutions. In addition, as Table 3.5 shows, model S1 is the only

model that produces feasible solutions for instances with 100 jobs. Despite this, model S1

is not the outperforming model in terms of solution quality because it only delivers the

best solution for 73 (almost 30%) and optimal for 34 (less than 15%) of instances. The

model’s gap (from the best solution) is also the highest among all the models. Notice

that a larger gap value implies that the solution is further from the best available one.

Model S2 delivers feasible solutions for slightly more than half of instances (52.5%).

Nevertheless, it obtains the highest number of optimal solutions. Also, its gap is the

second best, reflecting the quality of its solutions. Table 3.5 details the results and shows

that the majority of high-quality solutions obtained by model S2 are for instances with up

to 20 jobs. Model S2 was originally proposed to overcome the exponential growth in the

numbers of variables and constraints in the time-indexed model. However, it is evident

that it is unable to deliver feasible solutions for instances with 40 jobs and more.

Model S3 obtains the largest number of best solutions. It also delivers optimal solutions

for a quarter of the instances. The quality of the delivered solutions is very promising

because the gap is lowest among all the models. The model generates feasible solutions

39

for 80% of the instances. The details presented in Table 3.5 indicate that this model has

the capability of models S1 and S2 since it generates quality solutions for a broad range

of the instances. Model S4, which is an alternative for model S3, under-performs model

S3 across all the metrics.

The average computation times reported in Table 3.5 reveal that models S2 and S3

are able to solve slightly larger instances in a short time, because their computational

times do not quickly rise as for models S1 and S4.

Among the weighted models, model W1 generates feasible solutions for all the in-

stances, while model W2 produces feasible solutions for 205 (almost 86%) instances.

Model W1’s better performance is further recognised by its larger number of best so-

lutions and lower gap values. Particularly, the average gap for model W1 is less than

half of that for model W2. Regarding the number of optimal solutions, however, model

W2 obtains more optimal solutions, and in the order of 11 more instances. Based on

the detailed results presented in Table 3.4, we draw the conclusion that model W2 is a

better choice to solve the small instances, due to its shorter computing times and greater

numbers of optimal solutions. On the contrary, model W1 is the best choice when dealing

with large instances, due to its competitive gap and number of best solutions obtained.

Between the flow-shop models, model F4 performs significantly better than the other

models. In particular, it delivers feasible solutions for all the instances, with 106 (nearly

88%) of which being the best available solutions. As a result, the gap value of this model

is small, i.e., 0.6%. Models F1 and F3 behave very closely, which is not surprising since

they are very similar. Model F2, i.e., the idle time-based model, is slightly better than

models F1 and F3 because it has a lower average gap, as well as greater number of best

and optimal solutions. Model F2 also reports the largest number of optimal solutions

among all the models. The average computing times of models F1 to F3 are less than

that of model F4; particularly, model F2 has the shortest average time. To conclude, the

detailed results presented in Table 3.6 reveal that model F2 is the best option to solve

instances with up to 10 jobs. However, model F4 is the top performer and the best choice

to deal with large instances.

40

Table 3.4 : Detailed performance of the single-machine weighted models (a “-” denotes
that the model cannot produce an outcome within the time limit).

n
W1 W2

Feas Best Opt Gap (%) Time (sec) Feas Best Opt Gap (%) Time (sec)

5 30 30 30 0.0 1.5 30 30 30 0.0 0.0
10 30 23 20 0.8 363.8 30 30 30 0.0 6.1
15 30 25 20 0.6 390.7 30 30 22 0.0 274.7
20 30 19 12 0.8 589.2 30 27 14 0.1 517.0
25 30 21 8 0.6 690.1 30 19 9 1.1 651.3
40 30 24 6 0.5 750.5 30 12 5 3.0 802.6
50 30 27 6 0.3 785.1 25 5 3 4.2 828.3
100 30 30 0 0.0 1056.3 0 0 0 - 900.1

41

Table 3.5 : Detailed performance of the single-machine makespan models (a “-” denotes that the model cannot produce an outcome within
the time limit).

n
S1 S2 S3 S4

Feas Best Opt Gap
(%)

Time
(sec)

Feas Best Opt Gap
(%)

Time
(sec)

Feas Best Opt Gap
(%)

Time
(sec)

Feas Best Opt Gap
(%)

Time
(sec)

5 30 30 30 0.0 5.0 30 30 30 0.0 0.0 30 30 30 0.0 0.0 30 30 30 0.0 0.2
10 30 5 4 4.7 843.5 30 30 30 0.0 15.0 30 30 30 0.0 17.8 30 30 28 0.0 596.8
15 30 0 0 12.1 900.1 30 10 1 1.0 883.1 30 21 0 0.2 900.0 30 0 0 7.5 900.0
20 30 1 0 28.6 900.1 27 8 0 8.9 900.0 30 22 0 0.4 900.1 30 0 0 13.4 900.0
25 30 7 0 60.2 900.1 9 7 0 28.8 900.0 30 16 0 1.8 900.2 25 0 0 48.8 900.0
40 30 11 0 70.6 956.9 0 0 0 - 900.0 26 15 0 21.3 900.0 16 4 0 42.2 900.0
50 20 9 0 60.1 900.1 0 0 0 - 900.0 16 14 0 0.4 900.1 5 4 0 10.8 900.0
100 10 10 0 0.0 900.1 0 0 0 - 900.0 0 0 0 - 900.6 0 0 0 - 916.8

Table 3.6 : Detailed performance of the flow-shop models.

n
F1 F2 F3 F4

Feas Best Opt Gap
(%)

Time
(sec)

Feas Best Opt Gap
(%)

Time
(sec)

Feas Best Opt Gap
(%)

Time
(sec)

Feas Best Opt Gap
(%)

Time
(sec)

10 30 30 30 0.0 1.8 30 30 30 0.0 1.3 30 30 30 0.0 1.6 30 30 30 0.0 270.6
20 30 1 0 1.4 900.0 30 7 6 0.9 778.8 30 2 0 1.2 900.0 30 27 0 0.0 900.0
50 26 0 0 10.4 900.1 30 0 0 13.7 900.0 29 0 0 9.2 900.1 30 30 0 0.0 900.0
100 20 1 0 13.7 900.1 17 10 0 6.2 900.0 20 0 0 15.2 900.1 30 19 0 2.3 900.1

42

Chapter 4

Coupled tasks on a single-machine

In this chapter we study the single-machine CTSP. First, in Section 4.1 we study a

special case of the single-machine couple task problem where processing times are time-

dependent. Then, we study the general problem, where a binary search matheuristic

algorithm is proposed in Section 4.2, the best available mathematical model of the problem

is improved in Section 4.3, and a second matheuristic algorithm, i.e., a relax-and-solve

algorithm, is proposed in Section 4.4. Section 4.5 ends this chapter where we evaluate the

new mathematical formulation and compare the performance of the proposed methods

based on the new formulation. The results presented in Section 4.1 and Section 4.2 are

published in:

� Khatami, M. and Salehipour, A. (2021a). “A binary search algorithm for the general

coupled task scheduling problem”. 4OR 19(4), 593–611.

� Khatami, M. and Salehipour, A. (2021b). “Coupled task scheduling with time-

dependent processing times”. Journal of Scheduling 24, 223–236.

In addition, the results presented in Section 4.3 are submitted for possible publication as:

� Khatami, M. and Salehipour, A. (2021c). “The coupled task scheduling problem:

An improved mathematical program and a new solution algorithm”. Submitted to

International Transactions in Operational Research.

4.1 Time-dependent scheduling

The healthcare applications discussed in Section 2.2 become complex when staff tired-

ness, that typically occurs in practice and impacts the treatment times, is considered. In

this section we propose solution methods for the single-machine CTSP where processing

times are variables of their starting times, i.e., time-dependent processing times. Those

variable processing times can address human fatigue within the CTSP. We also note that

Mosheiov (1994) and Gawiejnowicz (2008) studied the time-dependent processing times

to model the time of performing medical services as the time increases under deteriorating

health conditions. It is true that in the coupled task applications in healthcare, partic-

ularly, in chemotherapy and radiotherapy services, the symptoms of the patient rapidly

grow over time, i.e., the patient needs longer treatment if that treatment is started late.

43

Orman and Potts (1997) proved that the case (p, p, bj) is polynomially solvable for the

objective function of minimising the makespan. We investigate the same case, however,

with a time-dependent processing time characteristic for the completion tasks. Under this

setting, the processing time of the completion task depends on its starting time. Gupta

and Gupta (1988) introduced the scheduling problems with time-dependent processing

times. Under this setting, job j has a normal processing time αj ≥ 0 and a processing

rate (also called “deterioration rate”) βj ≥ 0. The actual processing time of job j depends

on its starting time sj, and is typically shown as pj = αj ± βjsj. A variant of this model,

which is called the “simple linear processing times” (also called “simple linear deterio-

ration”), assumes αj = 0, and therefore, pj = βjsj. We investigate the simple linear

processing times model for the completion tasks. Therefore, with considering the three-

field scheduling notation proposed by Graham et al. (1979), the present study investigates

the problem 1|(p, p, bj = βjsj)|Cmax. In this chapter, we first present a mathematical for-

mulation for the problem in Section 4.1.1. In Section 4.1.2, we discuss optimal properties

for the problem. A dynamic program and a heuristic are also proposed. The results of

numerical experiments are presented in Section 4.1.4.

4.1.1 Problem definition

Given a set of coupled task jobs N = {1, 2, . . . , n}, each with two tasks and there

is an exact delay period between two consecutive tasks, to be processed on a single-

machine, a job j ∈ N is represented by (p, p, bj = βjsj), where p is a positive integer, and

βj, sj > 0, ∀j ∈ N . Therefore, parameter bj, ∀j is a time dependent variable defined by a

simple linear processing time. The goal is to develop a schedule for (p, p, bj = βjsj), so to

minimise the makespan.

As discussed in Section 3.3, model S3 is computationally among the top performing

models for the CTSP. Hence, we extend that formulation for the problem of this study.

Model S3-T below shows the formulation for (p, p, bj = βjsj), where βs2j is substituted

for bj.

Model S3-T

z = minCmax (4.1)

subject to

(3.22)-(3.25), (3.27)-(3.29),

sh ≥ s2j−1 + p− UB(1− x2j−1,h), 1 ≤ j ≤ n, 1 ≤ h ≤ 2n, h /∈ {2j − 1, 2j}, (4.2)

sh ≥ s2j + βjs2j − UB(1− x2j,h), 1 ≤ j ≤ n, 1 ≤ h ≤ 2n, h /∈ {2j − 1, 2j}, (4.3)

Cmax ≥ s2j + βjs2j, 1 ≤ j ≤ n, (4.4)

44

s2j ≤ UB − βjs2j, 1 ≤ j ≤ n. (4.5)

The objective function (Equation (4.1)) minimises the makespan. Constraints (4.2)

and (4.3) relate the starting time of tasks, and also relate the starting time variables to

the linear ordering variables. Constraints (4.4) ensure that the makespan is larger than

the completion time of any job. An upper bound (UB) is considered for the starting time

of the completion tasks in constraints (4.5).

4.1.2 Minimising the makespan

We show that model S3-T can be easily solved for these two cases: (1) βj > 0.5, ∀j ∈ N ,

and (2) a two-job instance. In addition, under the condition that jobs are grouped into a

few classes we propose a dynamic program for model S3-T that delivers an optimal sched-

ule in polynomial time. For the general case, we propose an efficient heuristic algorithm.

Optimal schedule

Orman and Potts (1997) showed that for problem (p, p, bj) under general processing

times, the nesting of jobs is not possible. For a pair of jobs j and k, if bj ≤ p, it is

possible to interleave jobs j and k, where j is the first job and k is the second job of the

pair. The contribution of this setting to the makespan is equal to 3p + bk, as illustrated

in Figure 4.1a. On the other hand, any job j with bj > p contributes 2p + bj to the

makespan, as shown in Figure 4.1b. Therefore, an optimal schedule is derived when as

many jobs as possible are interleaved. We will investigate whether this is the case in

problem (p, p, βjsj).

(a):

0 p 2p 3p

aj ak bj bk

(b):

0 p 2p

aj bj

Figure 4.1 : Contribution of an interleaving pair of jobs (a), and a single job (b) to the
makespan.

In the classical single-machine setting, an optimal schedule for both simple linear

and linear time-dependent processing times exists. Under the simple linear condition

Mosheiov (1994) showed that all schedules lead to the same makespan, which is equal to

s1 ×
∏

j (1 + βj), s1 > 0, where s1 is the starting time of the schedule. Under the linear

processing times, Gupta and Gupta (1988) proved that the optimal makespan is obtained

when jobs are sequenced in non-decreasing order of αj/βj.

The results of Gupta and Gupta (1988) may be extended for problem (p, p, βjsj). We

note that the combination of the initial task and the delay period of job j can be considered

45

as the normal processing time of job j, i.e., αj = p+p = 2p. If no interleaving is possible,

problem (p, p, βjsj) reduces to the single-machine scheduling with linear time-dependent

processing times, for which sequencing jobs in non-decreasing order of αj/βj leads to the

optimal makespan. Therefore, it suffices to investigate if interleaving is possible.

We can assume that the first job starts at time 0 because all jobs are available at time

0. Then, the processing time of its completion task will be bj = βj × 2p. Two cases are

possible: (1) βj > 0.5, ∀j ∈ N , and (2) βj ≤ 0.5, ∃j ∈ N . The following theorem leads to

an optimal schedule if βj > 0.5, ∀j.

Theorem 1. If βj > 0.5, ∀j, an optimal solution for model S3-T is obtained when jobs

are sorted in non-increasing order of βj.

Proof. Without loss of generality let the first job start at time 0. Therefore, its completion

task starts at time 2p and bj = βj × 2p. Note that bj > p, since βj > 0.5, ∀j. Recall

that there is no possibility for jobs interleaving if bj > p. Hence, an optimal sequence

is obtained by ordering jobs in non-decreasing order of αj/βj, or equivalently in non-

increasing order of βj since αj = 2p > 0, ∀j ∈ N .

The proof of Theorem 1 shows that even though the actual processing time of jobs

depends on the starting time of the completion tasks, this does not impact an optimal

sequence because αj = 2p, ∀j ∈ N . The result of Theorem 1 may also be utilised to locate

jobs that cannot be the first of an interleaving pair. This leads to the following lemma.

Lemma 1. Under arbitrary values of β the jobs in set J̄ ⊂ J , where J̄ = {j|βj > 0.5}
appear in an optimal schedule in non-increasing order of βj, j ∈ J̄ .

Proof. Let βj > βk > 0.5 for jobs j, k ∈ J̄ . Assume that job k precedes job j in an

optimal schedule. It is easy to see that swapping jobs j and k decreases the makespan,

which implies that job k cannot precede job j in an optimal schedule. We note that

the jobs in J̄ cannot be the first of an interleaving pair, and swapping jobs j, k does not

therefore change the order of the other jobs.

We now investigate the case of βj ≤ 0.5, ∃j ∈ N . There might be some possibility

for interleaving of jobs, as shown in the following scenario. Let l = (p, p, bl = βlsl) and

k = (p, p, bk = βksk) be a two-job instance of problem (p, p, βjsj). Also, let βl ≤ 0.5 and

βk > 0.5. Assume that the schedule starts at time 0 and the first completion task therefore

starts at time 2p. Since βl ≤ 0.5 and thus βl(2p) ≤ p, the jobs can be interleaved if the

schedule starts with job l. On the contrary, because βk > 0.5, and therefore βk(2p) ≰ p,

the interleaving of jobs is not possible if the schedule starts with job k. The Gantt chart

of these two cases are illustrated in Figure 4.2. The makespan for those cases can be

derived as follows.

46

(l, k) : C(1) = p+ p+ p+ 3pβk = 3p+ 3pβk, (4.6)

(k, l) : C(2) = p+ p+ 2pβk + p+ p+ (4p+ 2pβk)βl = 4p+ 2pβk + (4p+ 2pβk)βl. (4.7)

(l, k):

0 p 2p 3p

al ak bl bk

2pβl 3pβk

(k, l):

0 p 2p

ak bk al bl

2pβk (4p+ 2pβk)βl

p

Figure 4.2 : Two possible schedules for a two-job instance: (l, k), where interleaving
occurs, and (k, l), where interleaving is not possible.

Obviously, we are interested in finding the values of βl and βk such that C(1) ≤ C(2):

3p+ 3pβk ≤ 4p+ 2pβk + (4p+ 2pβk)βl =⇒

pβk ≤ p+ 4pβl + 2pβlβk =⇒

βk ≤ 1 + 4βl + 2βlβk =⇒

βk − 2βlβk ≤ 1 + 4βl =⇒

βk(1− 2βl) ≤ 1 + 4βl.

(4.8)

Note that if βl = 0.5, Inequality (4.8) always holds, i.e., interleaving is beneficial. Follow-

ing this, we propose Lemma 2.

Lemma 2. If there exists a job l with βl = 0.5, and the remaining jobs with βj >

0.5, ∀j ∈ N \ {l}, an optimal schedule is obtained among the following two schedules: (1)

interleaving job l with the job with the largest value of βj, j ∈ N \ {l}, and sequencing the

remaining jobs in non-increasing order of their β values, and (2) scheduling all jobs in

non-increasing order of their β values.

Proof. The largest improvement in the makespan by performing an interleaving is ob-

tained when interleaving job l with the job with the largest value of β. An optimal

sequence for the remaining jobs can be determined by Theorem 1. In case job l is not

scheduled first, it cannot be interleaved anymore, and hence the problem is solved by

Theorem 1.

Lemma 2 further shows that it is only enough to investigate the potential of interleav-

ing when 0 < βl < 0.5. Given a pair of jobs l, k, Inequality (4.9) calculates a threshold

for βk > 0.5 such that an interleaving improves the makespan:

βk ≤
1 + 4βl

1− 2βl

. (4.9)

47

This leads to the following theorem.

Theorem 2. In a two-job (l, k) instance of problem (p, p, βjsj), an interleaving reduces

the makespan if 0.5 < βk ≤ 1+4βl

1−2βl
, 0 < βl < 0.5.

Proof. As discussed above.

We note that Theorem 2 does not necessarily hold when n ≥ 3. A counter example is

shown in Figure 4.3. The optimal schedule for a three-job instance with β1 = 0.1, β2 = 1,

β3 = 1.5 and p = 1 does not follow Theorem 2, because the theorem implies that we

may schedule an interleaving pair of jobs 1 and 3 at the beginning of the schedule since

β3 <
1+4β1

1−2β1
(prioritising job 3 to job 2 since β3 > β2 due to applying Lemma 1), followed

by job 2. However, the optimal sequence is (3, 1, 2).

(1, 3, 2):

0 1 2 3 7.5 8.5 9.5 19

a1 a3 b3 a2 b2

b1 = 0.1× 2 1.5× 3 1× 9.5

(3, 1, 2):

0 1 2 5 6 7 8 16

a3 b3

1.5× 2

a1 a2 b1

0.1× 7

b2

1× 8

Figure 4.3 : Counter example for generalising the result of Theorem 2.

Groups of identical jobs

Although the computational complexity of problem (p, p, βjsj) under arbitrary values

of β remains open, we now investigate a polynomially solvable case, in which jobs are

partitioned into a set of G = {1, . . . , µ}, |G| = µ groups. An important characteristic of

group g ∈ G is that all of its jobs share the same processing rate denoted by βg.

The simplest case includes only one group of jobs, i.e., µ = 1, implying that all jobs

are identical and in the form of (p, p, βsj). The problem can easily be solved because the

sequence is immaterial. We further show this in Section 4.1.3. When µ > 1, however, the

number of all possible permutations of jobs grows exponentially. As an example, consider

µ = 2. For simplicity, let n be an even number and let each group have an equal number

of jobs. Therefore, n
2
jobs have a processing rate of β1 and the remaining n

2
jobs have a

processing rate of β2. The number of all possible permutations of jobs is equal to n!
n
2
!n
2
!
.

Next, we present a dynamic program for problem (p, p, βjsj).

The dynamic programming algorithm

Let i = 1, . . . , n denote the current stage of the algorithm, where the total number of

stages is equal to the number of jobs. At stage i the set of i first jobs is scheduled. Let π

48

denote the set of job-groups at stage i and j denote the last job scheduled in stage i. We

denote by ziπ,j = (ciπ,j, t
i
π,j) the state of the system at stage i, where tiπ,j represents two

operations of “interleaving” (int) or “appending” (app) for the next job in the sequence.

In case tiπ,j = app, ciπ,j represents the completion time of i first jobs, and in case tiπ,j = int,

ciπ,j shows the earliest time the second task of the next job can start. The recursive formula

for ziπ,j, 1 ≤ i ≤ n− 1 is shown in Equation (4.10).

ziπ,j = (ciπ,j, t
i
π,j) =

(ci−1

π\{j} + bj, app) if ti−1
π\{j} = int,

(ci−1
π\{j} + 2p+ bj, app) if ti−1

π\{j} = app ∧ bj > p,

(ci−1
π\{j} + 3p, int), (ci−1

π\{j} + 2p+ bj, app) if ti−1
π\{j} = app ∧ bj ≤ p.

(4.10)

where

bj =

βj(c
i−1
π\{j}) if ti−1

π\{j} = int,

βj(c
i−1
π\{j} + 2p) if ti−1

π\{j} = app.
(4.11)

Given that ci−1
π\{j} represents the completion time of the i − 1 first jobs and si−1

π\{j} and

ti−1
π\{j} denote the starting time and the operations “int” or “app” for the last job in the

sequence of i− 1 first jobs, then at each stage i > 1, we show the state of the system at

the previous stage by zi−1
π\{j}.

The initial state is (c0∅, t
0
∅) = (0, app), and the final state is

znπ,j = cnπ,j =

cn−1
π\{j} + bj if tn−1

π\{j} = int,

cn−1
π\{j} + 2p+ bj if ti−1

π\{j} = app.
(4.12)

The four possible cases for ziπ,j in Equation (4.10) are as follows. If ti−1
π\{j} = int, job j

is interleaved with the last job in the sequence and the next job should be in the form of

appending (case 1). If ti−1
π\{j} = app, job j will be appended, but the possibilities for the

next job depend on the value of bj. If bj > p, the next job is also in the form of appending

since it cannot be interleaved with job j (case 2). However, if bj ≤ p, the next job can

be interleaved with job j. We point that both interleaving and appending (cases 3 and 4,

respectively) must be considered for the next job. Consider a three-job instance, where

β1 = 0.25, β2 = 0.20, β3 = 0.17 and p = 1. Figure 4.4 shows that although job 2 can be

interleaved with job 1, appending it leads to the optimal schedule (Figure 4.4a).

We note that at most three cases, out of four, need to be considered in any stage.

Also, at each stage i, for any π, from the cases with similar tiπ,j the one with smaller ciπ,j

is stored for the next stage. Therefore, in each stage at most two options of appending

and interleaving may be possible.

49

(a):

0 1 2 2.5 3.5 4.5 5.5 6.435

a1 b1 a2 a3 b2 b3

0.25× 2 0.2× 4.5 0.17× 5.5

(b):

0 1 2.5 3 3.6 4.6 5.6 6.552

a1 a2 b1 b2 a3 b3

0.25× 2 0.2× 3 0.17× 5.6

Figure 4.4 : A three-job example showing that appending job 2 (a) leads to a smaller
makespan than interleaving jobs 1 and 2 (b).

Complexity of the proposed dynamic program

We assume that jobs are partitioned into µ groups. Let first consider the case that

each group contains an equal number of jobs, which is n
µ
.

In stage i there is a number of candidates for π. Each candidate includes exactly i

jobs. The number of candidates depends on both i and µ because we only distinguish

jobs by their group(s). In stage i, 1 ≤ i ≤ n
µ
, the number of candidates, which we denote

by η, is equal to the number of solutions of Equation (4.13):

µ∑
µ′=1

xµ′ = i, 0 ≤ xµ′ ≤ n

µ
, ∀µ′ ∈ {1, . . . , µ}. (4.13)

Since both i and xµ′ are bounded from above by n
µ
, η is equal to

(
i+µ−1

i

)
. In stage

i, n
µ

< i ≤ n, η is still derived by using Equation (4.13); however, out of the total

number of
(
i+µ−1

i

)
some are invalid. More precisely, because i > n

µ
the solutions including

xµ′ > n
µ
, ∃µ′ ∈ {1, . . . , µ} are not considered, leading to a smaller value of η. Therefore,

η in any stage i is not greater than
(
i+µ−1

i

)
. Now consider the case where the groups

do not contain an equal number of jobs. We can still derive η by using Equation (4.13),

however, again some of the solution are invalid, and hence, η in stage i is never greater

than
(
i+µ−1

i

)
.

Additionally, in stage i there are at most µ candidate jobs to occupy the last position

because µ groups of jobs exist. Also, at most three cases of appending or interleaving need

to be considered. Hence, the time complexity of stage i is in the order of O(µ
(
n+µ−1

n

)
),

implying that the time complexity of the proposed dynamic program is O(nµ
(
n+µ−1

n

)
),

which is shown by Theorem 3 to be polynomial for fixed values of µ.

Theorem 3. The proposed dynamic program solves model S3-T with n jobs and µ groups

of identical jobs in O(µnµ).

Proof. The proof is by induction:

If µ = 2, then 2n
(
n+2−1

n

)
= 2n(n+ 1) ≈ O(n2),

If µ = 3, then 3n
(
n+3−1

n

)
= 3n(n+ 2)(n+ 1)/2 ≈ O(n3),

50

If µ = 4, then 4n
(
n+4−1

n

)
= 4n(n+ 3)(n+ 2)(n+ 1)/6 ≈ O(n4),

. . . .

In general, if µ groups of identical jobs exist, the time complexity is O(µnµ). We note

that when µ = n, the complexity of the dynamic program is O(nn+1).

The heuristic algorithm

In Section 4.1.2, we showed that in problem (p, p, βjsj) the first priority must be given

to jobs with greater values of βj (implied by Theorem 1). However, an interleaving of jobs

may potentially decrease the makespan if Theorem 2 holds. Therefore, when constructing

a schedule the only two available options at any point include (1) appending a single

job, or (2) interleaving a pair of jobs. We utilise those principles and develop a heuristic

algorithm for model S3-T (see Algorithm 2), as follows.

Let T = J be the set of unscheduled jobs and S = () be the sequence of performing

jobs. Each iteration of the constructive heuristic consists of identifying a single job to be

appended, or a pair of jobs to be interleaved. Let us assume that the jobs can start at

time 0. Therefore, the starting time of the completion task in the first iteration is s1 = 2p.

At every iteration i ≥ 1, a threshold on β is calculated: βthr =
p
si

(the threshold is used

to identify jobs with bj ≤ p). The subset of jobs with βj ≤ βthr are identified as the jobs

that can be the first of a potential interleave. From those, the job with the largest value

of β is selected. Let l denote this job. The other job, say k, is then selected such that it

has the largest value of β among all jobs.

Then, it is checked whether the bound βk ≤ 1+4βl

1−2βl
is satisfied by job k. If yes, the

interleaving pair of jobs l and k is scheduled, where job l is the first job of the interleaving

pair. Otherwise, job k is appended to S. At the end of each iteration, the starting time

of the next completion task, and S and T are updated. The procedure continues until

all jobs are scheduled, or no interleaving is possible, i.e., bj ≰ p, j ∈ T . In this case, the

remaining jobs are appended to S in non-increasing order of βj.

By utilising the delay periods, Algorithm 1 constructs as many interleaving pairs as

possible, while it gives higher priority to the jobs with larger value of β. The total number

of iterations performed by the algorithm is at most equal to the number of jobs. Because

finding jobs l and k in each iteration requires O(n) time, the algorithm therefore has a

time complexity of O(n2).

The following numerical example is presented to clarify the operation of Algorithm 1.

There are four jobs with β values of {0.1, 0.15, 0.18, 3.0} and p = 1. We initialise T =

{1, 2, 3, 4} and S = (). Assuming that we start at time 0, then s1 = 2. Table 4.1 shows

that the algorithm appends job 4 in the first iteration. In the second iteration, jobs 1

and 3 are interleaved, where job 1 is the first job of the interleaving pair. Then, because

the condition in line 5 of Algorithm 1 is not satisfied, the loop is terminated and the

51

Algorithm 1: The construction procedure of the heuristic algorithm.

1 Input: S = (), T = J, p, βj , ∀j ∈ N, s1 = 2p.
2 Output: A sequence S with makespan CS .

3 for i = 1 to n do
4 βthr =

p
si
;

5 if ∃j ∈ T, βj ≤ βthr then
6 l← argmaxj∈T (βj |βj ≤ βthr);
7 k ← argmaxj∈T (βj);

8 if βk ≤ 1+4βl
1−2βl

then

9 Interleave jobs l and k adjacently;
10 si+1 = si + (βk)(si + p) + 3p;
11 S ← S ∪ {l, k};
12 T ← T \ {l, k};
13 else
14 Append job k adjacently;
15 si+1 = si + (βk)si + 2p;
16 S ← S ∪ {k};
17 T ← T \ {k};
18 end

19 else
20 Break;
21 end

22 end
23 Adjacently append the remaining jobs in T to S, in non-increasing order of βj ;
24 return S;

remaining job, i.e., job 2 is appended. The Gantt chart depicted in Figure 4.5 shows the

schedule delivered by Algorithm 1, that is the optimal schedule.

Table 4.1 : The operation of Algorithm 1 for a four-job instance.

Step i βthr l k S T si+1

1 1
2 3 4 (4) {1, 2, 3} 10

2 1
10 1 3 (4, 1, 3) {2} 14.98

3 1
14.98 - - - - -

The schedule obtained by Algorithm 1 can further be improved. In that regard, we

iteratively apply swap moves, as presented in Algorithm 2. We implement the “first

improvement” criterion, i.e., once an improving solution is obtained it is accepted and the

schedule is updated. The run time of Algorithm 2 is O(n2), and hence the run time of

the proposed heuristic is O(n2).

52

(4, 1, 3, 2):

0 1 2 8 9 10 11 12.98 13.98 14.98 17.227

a4 b4 a1 a3 b1 b3 a2 b2

3× 2 0.1× 10 0.18× 11 0.15× 14.98

Figure 4.5 : The schedule for a four-job instance delivered by Algorithm 1.

Algorithm 2: The improvement procedure of the heuristic algorithm.

1 Input: βj , ∀j ∈ N , S0, CS0 , j = 1.
2 Output: A sequence S with makespan CS .

3 S = S0;
4 CS = CS0 ;

5 while j ≤ n− 1 do
6 Improve = 0;

7 for k = j + 1 : n do
8 S′ ← swap(j, k);
9 CS′ ← makespan(S′);

10 if CS′ < CS then
11 S = S′;
12 CS = CS′ ;
13 Improve = 1;

14 end

15 end
16 if Improve = 0 then
17 j = j + 1;
18 end

19 end
20 return S;

4.1.3 Lower bound

We derive a lower bound for model S3-T by letting βj = minj∈N βj, ∀j ∈ N , i.e., all

jobs have an identical processing rate. Theorem 4 shows this.

Theorem 4. Optimising model S3-T under the setting βj = βmin = minj∈N βj, ∀j ∈ N

leads to a makespan, which is never greater than the makespan under arbitrary values for

βj.

Proof. Assume that the makespan under the setting βmin = minj∈N βj is larger than the

makespan under the arbitrary values for β. Then, there exits an optimal makespan where

βj > βmin, ∃j ∈ N . Since the initial task and the delay period take identical values for

all jobs, the makespan under βj > βmin, j ∈ N is never smaller than the one under βmin,

implying that the initial assumption is contradicted.

Next, we show that obtaining this lower bound is trivial.

53

Lemma 3. Under the setting βj = βmin, ∀j ∈ N the makespan for model S3-T is min-

imised if the sequence includes a number of adjacent interleaving pairs followed by ap-

pending the remaining jobs once no interleaving is possible (sequence 1), or if the se-

quence includes appending a single job at the beginning, followed by a number of adjacent

interleaving pairs and then appending the remaining jobs (sequence 2).

Proof. We note that the schedule with the minimum makespan consist of as many in-

terleaving pairs (of jobs) as possible. Intuitively, this implies that a number of adjacent

interleaving pairs followed by appending the remaining jobs once no interleaving is possi-

ble must lead to the minimum makespan. We show that in some cases a better makespan

(with smaller value) is obtained if we first append a single job, and then add a set of in-

terleaving pairs followed by a set of appending jobs. We note that interleaving is possible

as long as the completion task of the first job (of an interleaving pair) starts no later than
p

βmin
.

Let illustrate sequences 1 and 2 by a three-job example, where p = 1 and βmin = 0.1.

Sequence 1 consists of one interleaving pair, followed by appending the third job. This

results in Cmax = 5.83 (see Figure 4.6a). In sequence 2, the third job is scheduled before

the interleaving pair. This results in Cmax = 5.72, i.e., the minimum makespan (see

Figure 4.6b).

(a):

0 1 2 3 3.3 4.3 5.3 5.83

a1 a2 b1 b2 a3 b3

0.1× 2 0.1× 3 0.1× 5.3

(b):

0 1 2 3.2 4.2 5.2 5.72

a3 b3 a1 a2 b1 b2

0.1× 2 0.1× 4.2 0.1× 5.2

Figure 4.6 : An instance to illustrate calculation of the lower bound for model S3-T.

There is no possibility to append two (or more) jobs at the beginning of the sequence

because an interleaving pair of those jobs would complete earlier than appending them

adjacently.

4.1.4 Computational experiments

We evaluate the performance of the proposed heuristic on a set of 120 randomly

generated instances. The instances include 5, 10, 20, 50, 75 and 100 jobs (n). We set

the parameter β in a way to allow some interleaving in the schedule. Since large values

of β result in less possibility for interleaving, and hence, easier instances, we therefore

consider two settings. For the first setting, we randomly select β from the continuous

uniform distribution such that βj ∈ (0, 0.1), ∀j ∈ N , and for the second setting βj ∈

54

(0, 0.2), ∀j ∈ N . We generated 10 instances for each combination of n and β. This results

in 120 instances in total. We set p = 1 for all instances.

We also solve the instances by optimising model S3-T with the solver Gurobi Optimizer

version 8.0.0 (Gurobi Optimization, 2018). We perform all computational experiments on

the same PC mentioned in Section 3.3. We set a time limit of 3,600 seconds for the solver

Gurobi. We utilise one processor (thread) for the heuristic algorithm, however, we run

the Gurobi by using one processor and four processors (denoted as Gurobi1 and Gurobi4).

For the remaining parameters of the solver Gurobi we used the default values.

Table 4.2 reports the outcomes of the heuristic algorithm, denoted as “Heurcons” and

Gurobi. We use two criteria of feas and opt (see Section 3.3). According to the results,

Gurobi1 and Gurobi4 generate feasible solution for only 71 instances, out of 120 (i.e., for

almost 59%). Within 3,600 seconds of running, Gurobi reports feasible solution for only

one instance with 75 jobs and βj ∈ (0, 0.1); it also does not report feasible solution for

the instances with 50 jobs and βj ∈ (0, 0.2). For the instances with 100 jobs, Gurobi runs

out of memory. The performance of Gurobi4 is slightly better than that of Gurobi1 since

it obtains three additional optimal solutions. The proposed heuristic, however, delivers

feasible solutions for all instances. Interestingly, the heuristic produces the same best

solutions for 18 of those instances, i.e., for 45%.

Table 4.2 : Number of feasible and optimal solutions delivered by Heurcons and Gurobi.

n Setting for β Feas Opt
Heurcons Gurobi1 Gurobi4 Heurcons Gurobi1 Gurobi4

5 (0, 0.1) 10 10 10 0 10 10
(0, 0.2) 10 10 10 2 10 10

10 (0, 0.1) 10 10 10 9 7 10
(0, 0.2) 10 10 10 7 10 10

20 (0, 0.1) 10 10 10 0 0 0
(0, 0.2) 10 10 10 0 0 0

50 (0, 0.1) 10 10 10 0 0 0
(0, 0.2) 10 0 0 0 0 0

75 (0, 0.1) 10 1 1 0 0 0
(0, 0.2) 10 0 0 0 0 0

100 (0, 0.1) 10 0 0 0 0 0
(0, 0.2) 10 0 0 0 0 0

Total 120 71 71 18 37 40

Table 4.3 reports two criteria of gap (%) and time (sec) (see Section 3.3). Consistent

with earlier findings, for small instances with 5 and 10 jobs the solver Gurobi outperforms

the proposed heuristic. For larger instances, however, the heuristic delivers improved

solutions. Particularly, we note that both versions of Gurobi have a gap of 75.42% and

77.16% for instances with 50 and 75 jobs, not to mention that because Gurobi is not able

55

to report any feasible solution for four groups of instances, the value of gap cannot be

calculated for those instances (“-” in Table 4.3 shows this).

Table 4.3 : Gap (in %) and the computation time for Heurcons and Gurobi.

n Setting for β Gap (in %) Time
Heurcons Gurobi1 Gurobi4 Heurcons Gurobi1 Gurobi4

5 (0, 0.1) 1.08 0.00 0.00 < 0.01 0.20 0.18
(0, 0.2) 1.13 0.00 0.00 < 0.01 0.18 0.16

10 (0, 0.1) 0.01 0.00 0.00 < 0.01 3167.36 1526.39
(0, 0.2) 1.22 0.00 0.00 < 0.01 443.31 199.38

20 (0, 0.1) 0.00 6.52 4.86 0.02 3600.00 3600.03
(0, 0.2) 0.14 4.45 3.81 0.02 3600.01 3600.03

50 (0, 0.1) 0.00 75.42 75.42 0.25 3600.01 3600.07
(0, 0.2) 0.00 - - 0.31 3600.02 3600.02

75 (0, 0.1) 0.00 77.16 77.16 0.92 3600.15 3600.26
(0, 0.2) 0.00 - - 1.17 3600.28 3600.39

100 (0, 0.1) 0.00 - - 2.36 - -
(0, 0.2) 0.00 - - 2.79 - -

Table 4.4 summarises the outcomes of Heurcons and Gurobi1 and Gurobi4. The high-

lighted values denote the superiority of the method with respect to the criterion. As the

table shows, the proposed heuristic performs very well, and obtains high quality solutions:

its average gap is 0.30%, while its worst gap is nearly 1.22%. In addition, it is very effi-

cient since it solves even the problems with 100 jobs within three seconds. The average

time of both Gurobi1 and Gurobi4 is almost 40 minutes, and significantly increases with

the number of jobs.

Table 4.4 : Overall results for Heurcons and Gurobi.

Method Feasible Optimal Gap (%) Time (sec)
Ave Max Ave Max

Heurcons 120 18 0.30 1.22 0.65 2.79
Gurobi1 71 37 13.25 77.16 2521.18 3600.28
Gurobi4 71 40 12.93 77.16 2332.69 3600.39

To further evaluate the performance of the proposed heuristic, i.e., Heurcons, we com-

pare the values of its gap to the lower bound and those of the solver Gurobi. We report

the outcomes in Table 4.5, where the values of gap are averaged over 10 instances per

setting. The gap is calculated as z−lb
lb
× 100, where z is the objective function value, i.e.,

the makespan delivered by the method, and lb is the lower bound obtained via procedure

explained in Section 4.1.3. We report the results only for instances with n = 5, 10 because

proven optimal solutions are available only for these instances. The results indicate that

56

Table 4.5 : Gap to the lower bound for Heurcons and Gurobi.

n Setting for β Heurcons Gurobi1 Gurobi4

5 (0, 0.1) 2.55 1.50 1.50
(0, 0.2) 6.73 5.67 5.67

10 (0, 0.1) 3.72 3.71 3.71
(0, 0.2) 23.34 22.58 22.58

Average 9.08 8.36 8.36

Heurcons performs very closely to Gurobi because its average values of gap to the lower

bound is very close to those of Gurobi.

Because Gurobi cannot deliver feasible solutions for large instances, we further assess

the performance of the proposed heuristic, i.e., Heurcons by solving the instances with

two new settings and comparing the outcomes of Heurcons and those of the two settings.

For this purpose, we generate initial solutions via sorting the jobs in non-increasing and

non-decreasing orders of their β values that results in two new variants for the heuristic,

denoted as “HeurLPT”, “HeurSPT”, respectively. We summarise the results in Table 4.6,

where the metric best denotes the number of best solutions obtained by each setting. The

results show that Heurcons obtains significantly better solutions than those two variants of

HeurLPT and HeurSPT . Indeed, Heurcons obtains the best solution in 108 instances. The

average gap of Heurcons over all instances is almost 0.44%, that is much lower than the

average gap of the two settings of HeurLPT and HeurSPT . Those results further indicate

the quality of solutions produced by the proposed heuristic.

Table 4.6 : Assessing the performance of Heurcons, HeurLPT and HeurSPT .

n Setting for β Heurcons HeurLPT HeurSPT

Gap (in %) Best Gap (in %) Best Gap (in %) Best

5 (0, 0.1) 1.08 10 1.08 10 1.08 10
(0, 0.2) 2.01 10 2.01 10 2.01 10

10 (0, 0.1) 0.01 9 0.01 9 0.04 9
(0, 0.2) 1.22 8 3.10 5 2.48 5

20 (0, 0.1) 0.52 6 1.11 7 1.91 2
(0, 0.2) 0.40 9 3.13 2 9.80 0

50 (0, 0.1) 0.02 8 2.23 2 10.95 0
(0, 0.2) 0.00 10 5.71 0 6.88 0

75 (0, 0.1) 0.00 10 2.86 0 10.23 0
(0, 0.2) 0.00 9 4.94 1 10.43 0

100 (0, 0.1) 0.07 9 2.87 1 7.09 0
(0, 0.2) 0.00 10 4.61 0 12.61 0

Average / total 0.44 108 2.81 47 6.29 36

57

4.2 Binary search algorithm

In this section we consider the classical single machine CTSP, i.e., where all processing

times and delay durations are integral, with the objective of minimising the makespan.

As discussed in Section 3.3, the standard exact solvers can only optimally solve small

instances in a reasonable amount of time. Though, their performance is not guaranteed

for larger instances. We aim at proposing more efficient solution methods for the problem,

and that utilising the available formulations. We utilise model S3 as the mathematical

formulation.

The general idea of the proposed algorithm is as following. First, a lower bound (LB)

and an upper bound (UB) on the value of the optimal makespan are calculated. A point

in the interval [LB,UB] is selected as the binary bound bb. Then, the heuristic checks

whether it is possible (feasible) to schedule all jobs such that the makespan is bounded

from above by the binary bound, i.e., Cmax ≤ bb. For this reason, the heuristic utilises an

exact solver to solve a feasibility problem associated with Model S3. A feasible solution

means that bb is a valid makespan, implying that UB can be lowered to bb, i.e., UB = bb.

If there is no feasible solution, the lower bound is updated to bb, i.e., LB = bb. Therefore,

at each iteration either LB or UB is tightened. If the length of interval between the lower

and upper bounds is 1, i.e., UB − LB = 1, the upper bound is equal to the optimal

makespan because we deal with integer values for all problem input data. We note that

because problem 1|(aj, Lj, bj)|Cmax is strongly NP -hard it is less likely that we observe

a quick convergence of the proposed binary search heuristic in a reasonably short time.

Therefore, we set the stopping criterion of the heuristic as either UB − LB = 1 or when

a time limit is reached, whichever occurs the first. Under the latter condition the most

recent upper bound is a valid makespan for the problem. Algorithm 3 summarises the

proposed binary search heuristic.

Note that the binary search algorithm is also known as dichotomous search, and

has been successfully applied to various optimisation problems including the traveling

salesman problem (França et al., 1995), the project scheduling problem (Carlier and

Néron, 2003) and the job-shop scheduling problem (Grimes and Hebrard, 2015).

4.2.1 Lower bound

In the single-machine CTSP, A trivial LB on Cmax can be obtained by scheduling all

tasks without any idle time between them (Li and Zhao, 2007). We denote this lower

bound by lb0, where lb0 =
∑

j∈N (aj + bj). However, exclusion of parameter Lj, j ∈ N

from lb0 results in a loose lower bound. As a result, we present two remedies for this.

Note that not always the values of Lj can be included in lb0, for example, when aj = bj =

Lj = p, p ∈ Z+.

58

Algorithm 3: The binary search heuristic for the CTSP.

1 Input: lb (a lower bound), ub (an upper bound), time limit.
2 Output: A schedule.

3 UB := ub;
4 LB := lb;
5 elapsed time := 0;

6 while UB − LB > 1 and elpased time < time limit do
7 Calculate bb, bb ∈ [LB,UB];

8 Set Cmax ≤ bb;

9 if a feasible solution exists then
10 UB := bb;
11 else
12 LB := bb;
13 end

14 end
15 return UB;

As the first remedy, lb0 can be improved by checking whether there are some singleton

jobs (see Section 2.1.1). For the singleton jobs the delay period cannot be utilised to

schedule any other task. Hence, Lj associated with the singleton jobs can be included in

the lower bound. We let lb1 denote this, that can be calculated as Equation (4.14).

lb1 =
∑
j∈N

(aj + bj) +
∑
j∈N

Lj<pmin

Lj. (4.14)

Note that lb1 ≥ lb0 for any instance of the problem.

As the second remedy, lb0 can be improved if we are able to locate the jobs whose

delay periods cannot be completely utilised to schedule other tasks. Assume that we aim

to concatenate as much tasks as possible in the delay period of job j, which has a length

of Lj. This can be modelled as a 0-1 knapsack problem. In other words, the initial and

completion tasks of all jobs other than job j are eligible to be inserted into this delay

period. We define ph the processing time of task h. We note that if task h is an initial

task for some job j, then we have ph = aj. Similarly, if task h is a completion task for

some job j, then we have ph = bj. A binary decision variable yh is also defined that takes

the value of 1 if task h is selected. Such a concatenation problem can be formulated as

problem K.

Problem K

59

z = max
∑
h∈H

h/∈{2j,2j−1}

phyh (4.15)

subject to∑
h∈H

h/∈{2j,2j−1}

phyh ≤ Lj, (4.16)

y2j′−1 + y2j′ ≤ 1, ∀j′ ∈ N \ {j}, if aj′ + Lj′ + bj′ > Lj, (4.17)

y2j′−1 − y2j′ ≥ 0, ∀j′ ∈ N \ {j}, if Lj′ < aj, (4.18)

y2j′ − y2j′−1 ≥ 0, ∀j′ ∈ N \ {j}, if Lj′ < bj, (4.19)

where, the objective function (4.15) maximises the total processing time of the selected

tasks, and it is forced to be no larger than the delay period of job j (constraint (4.16)).

Constraints (4.17) imply that only either of tasks of job j′ can be selected if the nesting

of job j′ inside job j is not possible. Constraints (4.18) (constraints (4.19)) ensure that

if the delay period of job j′ is not as large as the initial (completion) task of job j, the

completion (initial) task of job j′ would only be selected if its initial (completion) task is

selected as well.

Solving problem K for job j results in whether Lj can be completely filled with some

tasks. If not, it means that there is an idle time Ij within Lj, which is equal to Lj − z∗K .

This implies that in an optimal schedule of model S3 there will be an idle time (inside

Lj) at least equal to Ij. If we solve problem K for all jobs j ∈ N and add the maximum

idle time among all found idle times, i.e., maxj∈N{Ij} to lb0, a tighter lower bound can

be obtained, denoted as lb2 (see Equation (4.20)).

lb2 =
∑
j∈N

(aj + bj) + max
j∈N
{Ij}. (4.20)

Although the knapsack problem is NP -hard in the ordinary sense, it can be efficiently

solved even for large inputs by the pseudo-polynomial time dynamic program of Martello

et al. (1999), that is able to solve instances with up to 10,000 items in less than a second.

Note that lb2 is a tighter lower bound than lb0 since lb2 ≥ lb0 for any instance of the

problem. Also, we cannot add the summation of the idle times (instead of their maximum

value) to lb0 because the idle times may be overlapped. Given lb1 ≥ lb0 and lb2 ≥ lb0,

Equation (4.21) follows directly:

Cmax ≥ max{lb1, lb2}. (4.21)

Next, we propose an upper bound for the problem.

60

4.2.2 Upper bound

A trivial upper bound on Cmax can be calculated as
∑

j∈N (aj + Lj + bj), i.e., schedul-

ing the jobs one by one without any interleaving or nesting. This bound, however, is ex-

pected to be of a large value, and might not therefore be tight because interleaving, nesting

and pairwise interchange operations are excluded from the calculation of the bound. We

may tighten this bound by applying a local search algorithm. The proposed local search

algorithm, which is summarised in Algorithm 4, starts with a given sequence π0 of jobs,

and then iteratively improves it by performing adjacent pairwise interchanges. We set

π0 = (1, . . . , n), i.e., we add the jobs to π0 in increasing order of their indices. In addition,

we implement the first improvement criterion in the adjacent pairwise interchanges.

For a sequence π, the algorithm generates a feasible schedule with nesting, interleaving

and appending operations as follows. For a pair of consecutive (adjacent) jobs j, j′ ∈ π,

where j comes before j′, if nesting of job j′ inside job j is possible, i.e., aj′ +Lj′ +bj′ ≤ Lj,

then job j′ is inserted inside job j. However, if nesting is not possible but interleaving,

i.e., Lj ≥ aj′ ∧ Lj′ ≥ bj, then the interleaving is performed where job j is the first

job in the pair. If neither nesting nor interleaving of a pair of jobs is possible, job j′ is

adjacently appended after job j. The algorithm performs this procedure for all consecutive

(adjacent) pairs of jobs until all jobs are scheduled. The worst-case time complexity of

the local search algorithm is O(n2).

4.2.3 The feasibility problem

Given lower and upper bounds on the value of the makespan, the next step is to

systematically tighten the gap between the bounds until the stopping criterion is met,

i.e., either no further tightening is possible or the computation time limit is reached.

We tighten the gap between the lower and upper bounds by iteratively solving a

feasibility problem associated with Model S3. We generate such a feasibility problem by

changing the objective function of Model S3 into a constant and bounding Cmax from

above by bb. Problem S3-F in the following represents the feasibility problem.

Problem S3-F

z = min ζ (4.22)

subject to

(3.21), (3.23) to (3.29),

Cmax ≤ bb, (4.23)

where ζ is a constant. Constraints (3.22) are not included in Model S3-F because they do

61

Algorithm 4: The local search algorithm.

1 Input: π0 = (1, . . . , n), Cπ0 , j = 1.
2 Output: A sequence π with makespan Cπ.

3 π := π0;
4 Cπ := Cπ0 ;

5 while j ≤ n− 1 do
6 improve := false;
7 k := j + 1;

8 for k ≤ n do
9 π′ ← swap(j, k);

10 Sπ′ ← Generate a feasible schedule for π′;
11 Cπ′ ← makespan(Sπ′);

12 if Cπ′ < Cπ then
13 π := π′;
14 Cπ := Cπ′ ;
15 improve := true;

16 end

17 end
18 if improve is false then
19 j := j + 1;
20 end

21 end
22 return Cπ;

not impact the feasibility of the problem. In other words, if we exclude constraints (3.22),

the feasibility model will return the same solution as the original model where this set of

constraints are included. Constraint (4.23) sets the binary bound as an upper bound on

the value of the makespan.

Solving problem S3-F is equivalent to identifying a feasible solution for model S3. Also,

if problem S3-F does not have a feasible solution, neither does model S3. We may use

standard optimisation solvers for solving problem S3-F. Even though problem S3-F might

be easier to solve than model S3 because at least no “optimisation” phase is performed, it

might be still challenging to find a feasible solution for problem S3-F, implying that the

process may be computationally expensive, particularly for large problem instances. We

propose two speed-up techniques to improve the computation burden of solving problem

S3-F.

Speed-up 1. The first speed-up that we propose benefits from the “call-back” function-

ality of the solver. A call-back provides additional information during the solve process of

the solver. We can use such additional information to stop the solver as soon as a feasible

solution is found.

Speed-up 2. The second speed-up focuses on modifying the “solve focus” of the solver.

62

Various solvers have different name for this feature. For example, the solver Gurobi names

the feature “MIPfocus”. Changing the focus of the solver towards obtaining a feasible

solution, rather than, e.g., an optimal solution (which focuses on proving the optimality

of the current solution), is an effective computation burden reduction strategy.

4.2.4 Computational experiments

We perform an extensive computational experiment to evaluate the performance of the

proposed binary search heuristic. We test the algorithm on the “general set” instances of

the CTSP proposed in Section 3.1.2.

We utilise Gurobi version 8.0.0 (Gurobi Optimization, 2018), as the solver within the

binary search heuristic algorithm, to solve problem S3-F. We use the same solver Gurobi

as the stand-alone solver to solve the same instances by optimising model S3. Also, we

utilise Gurobi to solve problem K (for delivering LB). Unless otherwise stated we perform

all computational experiments on the same PC mentioned in Section 3.3, and we set the

time limit to 3,600 seconds for both the binary search heuristic and the stand-alone Gurobi

and we utilise four processors. We use the default value for the remaining parameters of

Gurobi.

Recall that the binary bound is in the ranges [LB,UB], i.e., bb ∈ [LB,UB]. We

investigate two strategies to choose bb: (1) bb = lb+ub
2

, i.e., it is equal to the midpoint of

the interval, and (2) bb = lb+3ub
4

, i.e., it is equal to the three fourth of the interval. We

solve the 240 instances with both strategies, each with setting 3,600 seconds time limit.

We let bb1/2 and bb3/4 denote these two strategies.

We use the four criteria of feas, best, opt and gap (in %) (see Section 3.3), to com-

pare the proposed binary search heuristic and Gurobi. We report the outcomes of the

computational experiments in Tables 4.7 to 4.10, where a table represents one evaluation

criterion.

Table 4.7 summarises the performance of the methods for the criterion feas. The

table shows that the binary search heuristic under both bb1/2 and bb3/4 strategies obtain

feasible solution for all 240 instances, whereas Gurobi is unable to find feasible solution

for 43 instance, for which n = 40, 50, 100. In particular, Gurobi cannot deliver feasible

solution for any of the instances with 100 jobs. This shows that Gurobi is not able to even

generate acceptable solution for large instances. Also, Gurobi’s performance deteriorates

for medium sized instances.

Table 4.8 shows that Gurobi is slightly superior to the binary search in obtaining an

optimal solution for the instances with a small number of jobs. We note that the binary

search heuristic under both strategies still obtains an optimal solution for all instances

with 5 jobs but one. Both the binary search heuristic and Gurobi find an optimal solution

for all instances with 10 jobs. For the instances with 15 jobs, Gurobi finds an optimal

63

Table 4.7 : The number of feasible solutions obtained by the binary search and Gurobi.

n Job category bb1/2 bb3/4 Gurobi

5
S 10 10 10
M 10 10 10
L 10 10 10

10
S 10 10 10
M 10 10 10
L 10 10 10

15
S 10 10 10
M 10 10 10
L 10 10 10

20
S 10 10 10
M 10 10 10
L 10 10 10

25
S 10 10 10
M 10 10 10
L 10 10 10

40
S 10 10 9
M 10 10 10
L 10 10 10

50
S 10 10 4
M 10 10 6
L 10 10 8

100
S 10 10 0
M 10 10 0
L 10 10 0

Total 240 240 197

solution for only two instances. Overall, Gurobi delivers optimal solution for 62 instances,

i.e., only for three more instances than the binary search heuristic.

We report the results of the criterion best, i.e., the number of best obtained solutions,

in Table 4.9. Regarding this criterion, the strategy bb3/4 outperforms both the strategy

bb1/2 and Gurobi, particularly for large instances. We note that Gurobi is not comparable

to the binary search heuristic when the number of jobs increases, more precisely, when

n = 25, 40, 50, 100. A similar outcome is observed for the criterion gap, which is reported

in Table 4.10. Indeed, Gurobi performs well only for instances with a small number

of jobs. The Gurobi’s solutions are of poor quality when n ≥ 25. The strategy bb3/4

performs better than bb1/2 and also than Gurobi, because it has the smallest average gap.

In Table 4.10, the “-” indicates that the criterion gap cannot be calculated because not a

single feasible solution was reported by Gurobi.

We summarise the outcomes of both tested strategies of the binary search heuristic

and Gurobi in Table 4.11, where the highlighted values denote the superior ones. The

table shows that all methods perform close to one another for n = 5, 10, 15, 20. Once the

number of jobs increases, Gurobi cannot even deliver a feasible solution for any problem

64

Table 4.8 : The number of optimal solutions obtained by the binary search and Gurobi.

n Job category bb1/2 bb3/4 Gurobi

5
S 10 10 10
M 10 10 10
L 9 9 10

10
S 10 10 10
M 10 10 10
L 10 10 10

15
S 0 0 1
M 0 0 0
L 0 0 1

20
S 0 0 0
M 0 0 0
L 0 0 0

25
S 0 0 0
M 0 0 0
L 0 0 0

40
S 0 0 0
M 0 0 0
L 0 0 0

50
S 0 0 0
M 0 0 0
L 0 0 0

100
S 0 0 0
M 0 0 0
L 0 0 0

Total 59 59 62

instance. When Gurobi does find a feasible solution, however, it is usually of poor quality.

The binary search heuristic reports superior solutions for large instances. The results also

indicate that the binary search heuristic under the strategy bb3/4 outperforms the one

under the strategy bb1/2.

4.3 Proposed new formulation

In this section, we propose several enhancements to improve the computational perfor-

mance of model S3. Particularly, we propose two directions to improve the computational

performance of model S3. First, we identify constraints that can be removed from model

S3 without an impact on its validity; that is, we identify constraints that removing them

from model S3 will not change the model’s solution. Second, we introduce new con-

straints that may improve the computational performance of model S3. In the following,

we explore those directions.

4.3.1 Removing existing constraints

The three sets of constraints (3.23), (3.25) and (3.27) can be removed from model S3

without violating the validity of it. In other words, the solution of the model while those

65

Table 4.9 : The number of best solutions obtained by the binary search and Gurobi.

n Job category bb1/2 bb3/4 Gurobi

5
S 10 10 10
M 10 10 10
L 9 9 10

10
S 10 10 10
M 10 10 10
L 10 10 10

15
S 0 1 9
M 0 0 10
L 1 0 9

20
S 0 4 8
M 1 2 8
L 1 4 5

25
S 6 3 1
M 1 7 2
L 3 6 1

40
S 7 3 0
M 7 2 1
L 6 3 1

50
S 1 8 1
M 3 5 2
L 2 4 4

100
S 7 10 0
M 9 10 0
L 10 10 0

Total 124 141 122

three sets of constraints are removed will be the same as the solution of the original model,

based on the following reasons. From constraints (3.26), it follows that constraints (3.23)

can be removed because the relation between two tasks of the same job is modelled in

constraints (3.26). Constraints (3.25) can also be removed because the relative order of

each pair of tasks is established in constraints (3.24), enforcing therefore a similar order

for any triple distinct tasks. Finally, we can remove constraints (3.27) since they only

enforce an upper bound on starting time of the completion tasks.

4.3.2 Introducing new constraints

We propose two sets of constraints to be added to model S3. The first set of constraints

is based on an implicit relationship between the tasks of every pair of jobs. It follows that

if the initial task of job j precedes the initial task of job j′, i.e., if x2j−1,2j′−1 = 1, the

initial task of job j also precedes the completion task of job j′. Therefore, we may set

x2j−1,2j′ = 1. Constraints (4.24) show that relationship.

x2j−1,2j′−1 ≤ x2j−1,2j′ , j, j′ ∈ N. (4.24)

66

Table 4.10 : The gap (in %) from the best solution.

n Job category bb1/2 bb3/4 Gurobi

5
S 0.0 0.0 0.0
M 0.0 0.0 0.0
L 0.0 0.0 0.0

10
S 0.0 0.0 0.0
M 0.0 0.0 0.0
L 0.0 0.0 0.0

15
S 1.8 1.6 0.0
M 2.6 1.5 0.0
L 2.2 1.7 0.0

20
S 3.0 1.0 0.2
M 3.3 1.1 0.2
L 3.1 0.6 0.5

25
S 0.8 0.5 2.1
M 1.8 0.4 1.8
L 1.5 0.8 2.1

40
S 1.2 3.1 37.4
M 2.5 5.9 28.3
L 3.9 3.5 30.8

50
S 5.6 0.8 7.8
M 5.5 1.7 43.4
L 4.4 5.8 23.2

100
S 3.5 0.0 -
M 1.3 0.0 -
L 0.0 0.0 -

Average 2.0 1.25 7.48

The second set of constraints follows from the following observation. If two jobs cannot

be interleaved, and nor can be nested, then one of the jobs completes before the other job

is started.

Consider two jobs j and j′ that cannot be nested into each other (i.e., Lj < p2j′−1 +

Lj′ + p2j′ and Lj′ < p2j−1 + Lj + p2j), neither can job j be interleaved in job j′, and

nor job j′ can be interleaved in job j, i.e., p2j−1 > Lj′ or p2j′ > Lj, and p2j′−1 > Lj or

p2j > Lj′ . Then, either both tasks of job j precede both tasks of job j′, i.e., x2j−1,2j′−1 =

x2j,2j′−1 = x2j−1,2j′ = x2j,2j′ = 1, or both tasks of job j′ precede both tasks of job j, i.e.,

x2j−1,2j′−1 = x2j,2j′−1 = x2j−1,2j′ = x2j,2j′ = 0. Such relationships can be modelled by

constraints (4.25):

x2j−1,2j′−1 = x2j,2j′−1 = x2j−1,2j′ = x2j,2j′ , j, j′ ∈ N, (4.25)

if (Lj < p2j′−1 + Lj′ + p2j′), and (Lj′ < p2j−1 + Lj + p2j), and (p2j−1 > Lj′ or p2j′ > Lj),

and (p2j′−1 > Lj or p2j > Lj′).

We note that the two sets of new constraints are valid inequalities as tested over

67

Table 4.11 : An overview of the outcomes of the binary search heuristic and Gurobi.

Criterion bb1/2 bb3/4 Gurobi

Feas 240 240 197
Opt 59 59 62
Best 124 141 122
Gap (in %) 2.00 1.25 7.48

various instances.

Next, we conduct a full experimental design to assess the effectiveness of various

combinations of constraints removal and addition.

4.3.3 The enhanced mixed-integer program

As we discussed in Sections 4.3.1 and 4.3.2, a number of constraints can be removed

from model S3, and some constraints may be added to model S3 so that the computational

performance of model S3 may be improved. It is well-known that removing or adding re-

dundant constraints may lead to computational advantages. For example, Naeni and

Salehipour (2019) showed that certain redundant constraints significantly improve perfor-

mance of the MIPs for the traveling repairman problem. Therefore, we aim to determine

the best combination of constraints to be removed from, and to be added to model S3.

For that purpose, we design a full factorial experiment, in which there are five factors

corresponding to constraints (3.23), (3.25), (3.27), (4.24), and (4.25), and each factor has

two levels of being included or not. The number of all combinations is equal to 25 = 32,

resulting therefore in 32 different MIPs for the problem. We choose 48 instances from

the “general set” benchmark instances. That benchmark comprises of 240 instances in

24 categories of different sizes, where there are 10 instances per category. We select two

instances from each category. That results in a total of 48 instances to be solved by 32

MIPs, meaning that we test 1,536 settings in total, i.e., solving 48 instances each by 32

models. Because the original model S3 (before removing or adding constraints) is not

capable of obtaining even feasible solutions for large instances, we therefore utilise the

binary search heuristic to guide the optimisation process and to solve the instances. We

set the time limit to 900 seconds for solving each setting, resulting in a total computation

time of 16 days.

We perform a statistical analysis of the results of experiments with Minitab (Minitab

Statistical Software, 2020). At the significance level of 5%, the analysis indicates that

constraints (3.25) and (4.24), and the interaction of constraints (3.25) and (4.24) signifi-

cantly affect performance of the model, with the p-values equal to 0.000, 0.014, and 0.022,

respectively. We present the main effects and interactions plots for constraints (3.25) and

(4.24) in Figures 4.7 and 4.8, respectively. In the figures, level 1 stands for including

the constraints in the model, and level 0 means that the constraints are not included in

68

the model. From the results, we can observe that removing constraints (3.25) from, and

adding constraints (4.24) to the model considerably improve the performance.

Figure 4.7 : The main effects plot for constraints (3.25) and (4.24).

Figure 4.8 : The interactions plot for constraints (3.25) and (4.24).

At the 5% significance level, we observe that there is no significant impact for adding

or removing constraints (3.23), (3.27), and (4.25), because the p-values for the related

tests are equal to 0.996, 0.779, and 0.743. We do not include those three constraints in

the model for the sake of having less number of constraints.

Based on the full factorial experiment and our statistical analysis, we present the

improved formulation for the problem of minimising the makespan on the single-machine

CTSP as model S5 in the following.

Model S5

z = min Cmax (4.26)

subject to

(3.21), (3.22), (3.24), (3.26), (3.28)-(3.29), (4.24).

69

4.4 The relax-and-solve algorithm

In this section, we propose a relax-and-solve (R&S) matheuristic algorithm for solv-

ing problem 1|(aj, Lj, bj)|Cmax. The R&S has been shown to deliver quality solutions for

challenging scheduling problems (Ahmadian et al., 2020; Ahmadian et al., 2021). The

operation of the R&S algorithm is similar to that of the fix-and-optimize algorithm of

Helber and Sahling (2010). The fix-and-optimize algorithm is utilized to solve many opti-

mization problems, including variations of the timetabling problem (Dorneles et al., 2014),

the shortest path problem (Carvalho et al., 2021) and inventory routing problem (Friske

et al., 2022).

The general idea of the R&S includes destructing the execution order of a small num-

ber of consecutive tasks of jobs, and constructing a new order for executing the tasks.

Starting from an initial feasible sequence of tasks, the destruction is performed through

relaxing certain constraints or variables in mathematical program of the problem, while

the construction is performed by solving a new instance of the mathematical program.

The earlier work by Salehipour (2020) refers to those operations as “relax” and “solve”.

Our proposed R&S algorithm for problem 1|(aj, Lj, bj)|Cmax (see Crefch4.alg.rs) has

certain distinguishing characteristics. First, the proposed R&S uses a pre-processing

procedure before the relax and solve operations, that spends t0 seconds to improve an

initial sequence. Second, it benefits from the exact delays between the tasks of jobs,

which results in not all 2n! sequences of the tasks being feasible. Therefore, both in the

local search algorithm and through solving model S5, only feasible sequences are explored.

Third, unlike the original R&S, we relax two subsets of tasks, where each relax iteration

is followed by a solve operation for tr seconds, and the whole relax and solve operation is

iterated for t > tr seconds. The details of the components of Algorithm 5 is as follows.

Algorithm 5: The R&S algorithm for problem 1|(aj, Lj, bj)|Cmax.

1 Input: The initial sequence σ0 = (1, . . . , 2n) with makespan Cσ0 .
2 Output: A sequence σ with makespan Cσ.

3 Pre-processing:
4 σ1, Cσ1 ← Run Algorithm 4;
5 σ2, Cσ2 ← Given σ1, solve model S5 by an exact solver;
6 σ ← The best sequence between σ1 and σ2;
7 while the stopping condition is not met do
8 Select σ′, σ′′ ⊂ σ to relax;
9 σtmp ← Given σ with relaxed σ′, σ′′, solve model S5 by an exact solver;

10 σ ← Update the best sequence;

11 end
12 return σ with the makespan value of Cσ;

70

4.4.1 Solution representation

A feasible solution is represented by a sequence of the tasks in positions 1 to 2n, where

H(i) represents the task in position i in the sequence as shown in Figure 4.9.

H(1) . . . H(i) . . . H(2n)

Figure 4.9 : The solution representation in the proposed R&S algorithm.

4.4.2 The initial sequence

The initial sequence σ0 = (1, . . . , 2n) is constructed in the same way to that of Al-

gorithm 4, i.e., by appending the jobs one by one from 1 to n. Each pair of tasks

(H(2j−1), H(2j)) ∈ σ0 represents the two tasks of job j.

4.4.3 Pre-processing

The pre-processing aims to improve the initial sequence σ0 in two steps. In the first

step, σ0 is passed into the local search (see Algorithm 4), where interleaving and nesting

moves are applied to σ0. We let σ1 denote the sequence obtained by the local search with

the makespan value of Cσ1 .

In the second step, we further improve σ1 by using an optimisation solver. For that,

model S5 is solved with a time-limit of t0 seconds. We warm-start the optimisation process

by providing σ1 as a starting point. Let σ2 denote the resulting sequence with Cσ2 as its

value of makespan.

4.4.4 Relax and solve operations

The main operations of the R&S algorithm are the relax and solve where a series

of “relaxed” problems are solved. Given sequence σ from the pre-processing, a relaxed

problem is generated by destructing the execution order of two subsets of tasks. Let

σ′, σ′′ ⊂ σ denote those two subsets. In model S5, that is equivalent to considering binary

variables xhh′ , h, h′ ∈ σ′ ∪ σ′′, to be decided by model S5, for representing those tasks,

and setting value of the remaining binary variables, i.e., xhh′ , h, h′ /∈ σ′ ∪ σ′′ according to

the relative position of h and h′ in σ. Therefore, we treat those variables as parameters.

That implies that the non-relaxed tasks are not allowed to change their position in σ. By

solving model S5, the binary variables for the relaxed tasks will be decided upon, resulting

therefore in a re-constructed sequence of executing the tasks.

Note that we keep the size of subsets σ′ and σ′′ small, so that a relaxed problem

includes only a small number of binary variables, and as such the relaxed problem may be

solved in a reasonable amount of time. Each relaxed problem is solved by the solver for

tr seconds, and the whole relax and solve procedure is run for a total time of t seconds.

We denote the best available sequence as σ with the makespan value of Cσ.

71

4.5 Computational experiments

Extensive computational experiments are performed to evaluate the performance of the

new mathematical model (model S5), and that of the two matheuristic solution methods,

i.e., the binary-search algorithm of Section 4.2, and the R&S algorithm of Section 4.4.

We test the model and the algorithms on the 240 instances denoted as “general set” in

Section 3.1.2.

We limit the run time of the binary-search algorithm and the stand-alone Gurobi to

3,600 seconds. Regarding the value of parameters of the R&S algorithm, we set the time-

limit t0 to 100 seconds, and we set the time-limit t such that the total time elapsed for each

instance is 3,600 seconds. Because the first step in the pre-processing (see Section 4.4.3)

is almost instantaneously performed for any instance, the value of t is therefore almost

equal to 3,500 seconds. We set the value of time-limit tr to 20 seconds. In addition to

those three time-limits, we need to set size of the relaxing subsets σ′ and σ′′ in the R&S

algorithm. We choose an identical value for size of σ′ and σ′′, which is proportionate to

the number of jobs in the instance. For small to medium-sized instances with n ≤ 25,

we set the size of σ′ and σ′′ to be equal to 5, and for large instances with n > 25, we

set it to 10. We choose a larger value for larger instances because we observe, during

a preliminary test, that having larger chunks in larger instances leads to higher quality

solutions, compared to having smaller chunks. We, however, do not choose values greater

than 10 because Gurobi cannot solve the test instances with 15 jobs and more within the

time limit.

We utilise Gurobi version 8.0.0 (Gurobi Optimization, 2018), as the solver within the

binary search and R&S algorithms. We also solve the same 240 instances with the solver

Gurobi, through optimising model S5. We implement the models and algorithms in the

programming language Python version 3.6. We perform all computational experiments

on the same PC mentioned in Section 3.3, and we utilise four processors.

We solve the 240 benchmark instances by the following five methods: (1) model S3

by the solver Gurobi, (2) model S5 by the solver Gurobi, (3) the binary search algorithm

incorporated with model S3, (4) the binary search algorithm incorporated with model

S5, and (5) the R&S algorithm. For both binary search algorithms we set the bound

bb = LB+3UB
4

(i.e., it is equal to the three fourth of the interval). We also use the “call-

back” functionality of the Gurobi solver to stop the solver as soon as a feasible solution

is found (this can be seen as a computation time reduction strategy). We also alter the

parameter “MIPfocus” of Gurobi, focusing therefore on obtaining a feasible solution, than

e.g., on obtaining an optimal solution.

Table 4.12 reports outcomes of the first two solution methods, i.e., optimising models

S3 and S5 by the solver Gurobi, which we denote by MIP S3 and MIP S5, respectively.

From the table, we observe that model S5 obtains higher quality solutions than model S3,

72

meaning that it has a superior performance to model S3. For example, model S5 obtains

the best solutions for additional 30 instances. The gap of solutions obtained by model

S5 is as low as 3.3%, which is in the order of five times smaller than that of model S3.

While model S5 obtains a smaller number of feasible solutions than model S3, it delivers

an optimal solution for more instances than model S3. We believe that the criteria feas

and opt are less important in the context of models S3 and S5 because both problems are

only capable of generating competitive solutions for instances with up to 25 jobs.

Table 4.12 : Computational results for methods MIP S5 and MIP S3.

n
Job Gap Best Feas Opt

category MIP S5 MIP S3 MIP S5 MIP S3 MIP S5 MIP S3 MIP S5 MIP S3

5
S 0.0 0.0 10 10 10 10 10 10
M 0.0 0.0 10 10 10 10 10 10
L 0.0 0.0 10 10 10 10 10 10

10
S 0.0 0.0 10 10 10 10 10 10
M 0.0 0.0 10 10 10 10 10 10
L 0.0 0.0 10 10 10 10 10 10

15
S 0.3 0.2 6 6 10 10 2 1
M 0.3 0.4 4 5 10 10 0 0
L 0.2 0.4 8 4 10 10 2 1

20
S 0.2 0.8 4 2 10 10 0 0
M 0.1 1.0 7 1 10 10 0 0
L 0.2 1.1 7 1 10 10 0 0

25
S 0.8 4.0 3 0 10 10 0 0
M 0.7 3.4 4 0 10 10 0 0
L 0.7 4.5 6 0 10 10 0 0

40
S 9.9 52.0 0 0 6 9 0 0
M 10.3 43.5 0 0 9 10 0 0
L 7.3 49.9 0 0 7 10 0 0

50
S 17.2 43.7 0 0 2 4 0 0
M 10.8 86.8 0 0 2 6 0 0
L 9.8 55.9 0 0 1 8 0 0

100
S - - 0 0 0 0 0 0
M - - 0 0 0 0 0 0
L - - 0 0 0 0 0 0

Total/average 3.3 16.6 109 79 177 197 64 62

Next, we compare the performance of binary search algorithms. We denote by BS S3

and BS S5 the binary search algorithms incorporated with models S3 and S5. We show

the outcomes of BS S3 and BS S5 in Table 4.13. Recall that the only difference between

BS S3 and BS S5 is the implemented mathematical model. The results of Table 4.13

further indicate the superiority of model S5 to model S3 because, for example, the gap

of 3.9% for BS S5 is in the order of almost four times less than that of BS S3, which is

16.6%. Also, BS S5 obtains 11 more best solutions.

73

Table 4.13 : Computational results for methods BS S5 and BS S3.

n
Job Gap Best Feas Opt

category BS S5 BS S3 BS S5 BS S3 BS S5 BS S3 BS S5 BS S3

5
S 0.0 0.0 10 10 10 10 10 10
M 0.0 0.0 10 10 10 10 10 10
L 0.0 0.0 10 10 10 10 10 10

10
S 0.0 0.0 10 10 10 10 10 10
M 0.0 0.0 10 10 10 10 10 10
L 0.0 0.0 10 10 10 10 10 10

15
S 0.9 1.8 2 0 10 10 0 0
M 1.6 1.9 0 0 10 10 0 0
L 1.1 2.0 0 0 10 10 0 0

20
S 0.9 1.6 3 1 10 10 0 0
M 1.5 1.9 1 0 10 10 0 0
L 0.8 1.3 2 1 10 10 0 0

25
S 1.5 2.4 0 0 10 10 0 0
M 1.1 1.9 3 0 10 10 0 0
L 1.4 3.2 2 0 10 10 0 0

40
S 5.2 14.4 0 0 10 10 0 0
M 5.6 17.8 0 0 10 10 0 0
L 5.8 18.4 0 0 10 10 0 0

50
S 5.8 31.3 0 0 10 10 0 0
M 5.6 32.2 0 0 10 10 0 0
L 6.3 35.1 0 0 10 10 0 0

100
S 14.6 58.4 0 0 10 10 0 0
M 15.0 66.7 0 0 10 10 0 0
L 19.5 67.4 0 0 10 10 0 0

Total/average 3.9 15.0 73 62 240 240 60 60

Tables 4.12 and 4.13 show that our proposed formulation S5 is more effective, than

the existing formulation S3, in obtaining better solutions for 1|(aj, Lj, bj)|Cmax.

Table 4.14 presents the computational results obtained by the R&S method. Recall

that we utilise model S5 in the R&S matheuristic (see Section 4.4). The gap of the R&S

method is as low as 0.6%, and it delivers the best known solution for 164 instances. In

addition, the R&S method obtains the best solution for all instances with 40 or more

jobs. The results indicate that the R&S method performs the best among the five tested

methods.

To further illustrate the quality of solutions obtained by the R&S method, we report

“gap from LB (in %)” for the solutions reported by model S5, and the BS S5 and R&S

matheuristics in Table 4.15. That criterion is calculated as z−LB
LB
× 100, where LB is

the best lower bound obtained for the instance through the procedure explained in Sec-

tion 4.2.1. As the table shows, the gap from LB for the solutions obtained by model S5

and BS S5 increases as the number of jobs increase. On the other hand, for the R&S

method, the values of gap are almost stable over instances with different number of jobs.

74

Table 4.14 : Computational results for R&S.

n Job category Gap Best Feas Opt

5
S 0.0 10 10 10
M 0.0 10 10 10
L 0.0 10 10 10

10
S 0.0 10 10 10
M 0.0 10 10 10
L 0.0 10 10 10

15
S 1.7 0 10 0
M 2.1 1 10 0
L 1.8 0 10 0

20
S 2.0 0 10 0
M 2.3 1 10 0
L 2.2 0 10 0

25
S 0.5 7 10 0
M 0.7 3 10 0
L 0.9 2 10 0

40
S 0.0 10 10 0
M 0.0 10 10 0
L 0.0 10 10 0

50
S 0.0 10 10 0
M 0.0 10 10 0
L 0.0 10 10 0

100
S 0.0 10 10 0
M 0.0 10 10 0
L 0.0 10 10 0

Total/average 0.6 164 240 60

That suggests the stability of the R&S method for solving larger instances, and confirms

effectiveness of the R&S for solving various instances.

We also investigate the effectiveness of both steps of the pre-processing procedure that

we proposed for the R&S matheuristic. We solve each instance by the R&S method, and

record the value of makespan for the initial sequence, the sequences obtained in each step

of the pre-processing, and for the final sequence. We let Cσ0 , Cσ1 , Cσ2 and Cσ denote

those values of the makespan. For each instance, we calculate percentage of improvement

gained in each step, out of total improvement of TI = Cσ0 −Cσ. Those can be calculated

as
Cσ0−Cσ1

TI
×100, Cσ1−Cσ2

TI
×100, and Cσ2−Cσ

TI
×100. The average improvements for different

job categories are shown in Table 4.16. We do not report the percentage of improvement

for instances with 5 and 10 jobs because all of those instances are optimally solved almost

instantly in the second step of the pre-processing.

According to Table 4.16, the contribution of the constructive heuristic (for generating

initial sequences) to the total improvement is significant, and varies from 60.9% to 66.8%.

For the instances with n = 15, 20, 25, the majority of the remaining improvements is

obtained in the second step of the pre-processing. The main reason for that includes the

75

Table 4.15 : Gap from the lower bound for MIP S5, BS S5, and R&S.

n Job category MIP S5 BS S5 R&S

5
S 10.2 10.2 10.2
M 10.2 10.2 10.2
L 10.1 10.1 10.1

10
S 5.0 5.0 5.0
M 5.6 5.6 5.6
L 6.0 6.0 6.0

15
S 4.0 3.4 4.9
M 5.5 4.3 6.1
L 5.2 4.3 6.0

20
S 5.9 5.2 7.2
M 7.1 5.6 7.9
L 6.8 6.1 8.2

25
S 7.4 6.6 6.3
M 7.8 7.4 7.5
L 8.1 7.4 7.6

40
S 10.5 15.8 5.0
M 11.1 16.0 5.2
L 11.8 13.5 5.7

50
S 11.1 23.1 5.0
M 11.4 16.5 5.4
L 12.8 15.8 6.1

100
S 22.4 - 6.8
M 24.3 - 8.1
L 29.1 - 8.0

Total/average 10.40 9.44 6.84

size of model S5 generated for those instances, which is small enough, allowing therefore

the solver Gurobi to improve the solution to a great extent within 100 seconds. As the

size of instances increases to n = 40, 50, 100, the majority of the improvements is due

to the main body of the R&S algorithm. This further suggests the effectiveness of the

proposed R&S algorithm for large instances.

76

Table 4.16 : Improvement (in % of total) gained in the three steps of the R&S algorithm.

n Job category Step 1 of Step 2 of Main body
pre-processing pre-processing of R&S

15
S 61.2 38.6 0.1
M 60.9 39.0 0.0
L 63.7 36.0 0.2

20
S 64.2 34.7 1.2
M 63.8 35.9 0.4
L 64.6 34.3 1.1

25
S 64.6 27.4 7.9
M 63.8 32.3 3.9
L 63.7 31.8 4.5

40
S 64.2 6.9 28.9
M 64.3 5.9 29.8
L 65.1 4.7 30.1

50
S 64.6 4.8 30.6
M 65.1 4.0 30.9
L 64.8 4.8 30.4

100
S 66.8 1.4 31.8
M 66.0 1.1 32.9
L 66.3 3.6 30.1

77

Chapter 5

Coupled tasks on parallel machines

In this chapter, we introduce the problem of scheduling a set of coupled-task jobs on

parallel identical machines with the objective function of minimising the makespan. In

the parallel-machine variant of the coupled task scheduling problem (CTSP), we seek

a job allocation to machines as well as a job schedule on each machine such that the

makespan is minimised. To the best of our knowledge, this is the first attempt to address

the CTSP with parallel identical machines and the makespan criterion. The motivation

for this setting is that in the healthcare applications of the CTSP (see Section 2.2), there

are typically a number of identical pieces of equipment with the same functionality. This

is the major motivation for us to study the CTSP with parallel identical machines. The

problem is denoted by Pm|(aj, Lj, bj)|Cmax. As a first step in studying the problem,

we provide a full overview of the computational complexity for Pm|(aj, Lj, bj)|Cmax. In

Section 5.1 we formally define the problem of scheduling the coupled-tasks on parallel

identical machines. We then prove that the majority of these problems are (strongly)

NP -hard. An important result of our work discussed in Section 5.2 includes showing

that the existence of a (2− ε)-approximation algorithm for the problem implies P = NP .

The latter result improves a recently proposed bound for the open-shop counterpart as

well. In Section 5.3, we present polynomially solvable cases of the problem and develop

efficient algorithms for minimising the makespan. The results presented in this chapter

are submitted for possible publication as:

� Khatami, M., Oron, D., and Salehipour, A. (2021a). “Scheduling coupled tasks on

parallel identical machines”. Submitted to Annals of Operations Research.

5.1 NP -hardness proof
Given the set J = {1, . . . , n} of n coupled-task jobs and the set M = {1, . . . ,m}

of parallel identical machines, problem Pm|(aj, Lj, bj)|Cmax consists of scheduling the

coupled-task jobs on the machines such that the makespan is minimised. Each task can

be performed on any machine and there is an exact delay period between the two tasks

of each job. The triplet (aj, Lj, bj) represents a job j ∈ J , where aj, Lj and bj are positive

integer parameters. Each machine can perform at most one task at a time and preemption

of tasks is not allowed, i.e., once the operation of a task is started it must be completed

with no interruption. The tasks of other jobs, however, can be processed during the delay

period.

78

As discussed in Section 2.1.1, the computational complexity of the single machine

CTSP under the objective of minimising the makespan was extensively studied in Orman

and Potts (1997). In general, they showed that 1|(aj, Lj, bj)|Cmax is strongly NP -hard.

They also showed that 1|(aj = Lj = bj)|Cmax is strongly NP -hard, implying therefore

that problems 1|(aj = bj, Lj)|Cmax, 1|(aj, Lj = bj)|Cmax and 1|(aj = Lj, bj)|Cmax are also

strongly NP -hard. From those results it follows that even if any two parameters of aj, Lj

and bj, out of three, are identical for all jobs, the problem remains strongly NP -hard.

Hence, we conclude that problems 1|(aj, L, b)|Cmax, 1|(a, Lj, b)|Cmax, 1|(a, L, bj)|Cmax,

1|(aj, Lj, b)|Cmax, 1|(a, Lj, bj)|Cmax and 1|(aj, L, bj)|Cmax are strongly NP -hard as well.

Even the problem 1|(p, Lj, p)|Cmax was shown to be strongly NP -hard, where p is a pos-

itive constant (the initial and completion tasks of all jobs are identical). From these

results, we conclude that the associated problems in the parallel identical machine setting

are also strongly NP -hard, more precisely:

Theorem 5. The following parallel-machine CTSPs are strongly NP -hard:

� Pm|(aj = Lj = bj)|Cmax, resulting in the strong NP -hardness of cases Pm|(aj =

bj, Lj)|Cmax, Pm|(aj, Lj = bj)|Cmax and Pm|(aj = Lj, bj)|Cmax;

� Pm|(aj, L, b)|Cmax, and also Pm|(a, Lj, b)|Cmax and Pm|(a, L, bj)|Cmax, resulting in

the strong NP -hardness of Pm|(aj, Lj, b)|Cmax, Pm|(a, Lj, bj)|Cmax, Pm|(aj, L, bj)|
Cmax; and,

� Pm|(p, Lj, p)|Cmax.

Orman and Potts (1997), proposed an optimal O(n)-time algorithm for 1|(p, p, bj)|Cmax,

i.e., when the delays are equal to the initial tasks across all jobs. From here, it fol-

lows that their algorithm is optimal for 1|(aj, p, p)|Cmax as well. We observe that the

parallel-machine counterparts of both problems are not easily solved. We show in the

following that Pm|(p, p, bj)|Cmax is NP -hard even for the two-machine setting, as is

Pm|(aj, p, p)|Cmax. We use the equal cardinality partition (ECP) problem for the NP -

hardness proof.

The equal cardinality partition problem (ECP): Given a set W = {w1, . . . , wq} of q
elements where each element i has an integer size wi and

∑
j∈W wj = 2B, does there exist

two disjoint subsets W1 and W2 with |W1| = |W2| = q
2
, such that

∑
j∈W1

wj =
∑

j∈W2
wj =

B?

Given an instance of ECP, we construct an instance of the parallel identical machines

CTSP with two machines, i.e., P2|(p, p, bj)|Cmax, as following.

79

The two-machine CTSP (CTP1): We construct an instance of the decision version

of the two-machine CTSP with the set of jobs J = {1, . . . , 2q}, where we distinguish the

following two subsets of jobs:

� aj = Lj = p, bj = wj, wj ∈ W, 1 ≤ j ≤ q,

� aj = Lj = bj = p, q + 1 ≤ j ≤ 2q,

where p > B
3
. We denote jobs 1 to q as “partition jobs” and jobs q+1 to 2q as “identical

jobs”.

Lemma 4. If ECP has a solution, so does the constructed instance of CTP1 such that

C∗
max ≤

3qp
2

+B.

Proof. Assume that ECP has a solution. We construct a feasible schedule for CTP1 as

follows. There are q
2
interleaving pairs of jobs on each machine. The first job of each

interleaving pair is one of the identical jobs, and the second job of each interleaving pair

on the first (second) machine is from the set W1 (W2). The processing time of each

interleaving pair is therefore equal to 3p+wj (see Figure 5.1), where wj is the processing

time of the completion task of the second job of the interleaving pair. The total processing

times on the first and second machines are equal to C∗
1 =

∑
j∈W1

(3p+wj) =
3qp
2
+B and

C∗
2 =

∑
j∈W2

(3p+ wj) =
3qp
2

+B.

p p p wj

Figure 5.1 : An interleaving pair in the constructed schedule for CTP1 instance.

Lemma 5. If CTP1 has a solution, ECP should have a solution as well.

Proof. First, observe that there is no idle time in the schedule of Figure 5.1. Hence, any

optimal solution for CTP1 should have no idle time as well. It is easy to observe that

this can only be achieved if there are q interleaving pairs with no idle time between them.

Also, we note that an interleaving pair has no idle time only if one of the identical jobs

is the first job of the pair, i.e., all identical jobs should be scheduled as the first jobs

of the interleaving pairs. Second, there should be an equal number of interleaving pairs

on both machines, i.e., q
2
, since otherwise the additional interleaving pair(s) will have a

processing time of at least 3p, and hence, C1 >
3qp
2
+3p > 3qp

2
+B > C∗

1 . That completes

the proof.

Based on Lemmas 4 and 5, we have:

80

Theorem 6. Problem P2|(p, p, bj)|Cmax is at least NP -hard in the ordinary sense.

The NP -harness result for the two-machine problem can be easily generalised to the

strong NP -hardness of the m-machine problem. For that purpose, we use the 3-partition

problem (3-PP), as following:

3-PP: Given a set W = {w1, . . . , w3m} of 3m elements where each element i has an

integer size wi and, and a positive integer B, where B
4
< wj <

B
2
, for j = 1, . . . , 3m, and∑3m

j=1 wj = mB, does there exist m disjoint subsets W1, . . . ,Wm such that
∑

j∈Wi
wj = B

and |Wi| = 3, for i = 1, . . . ,m (there are exactly three elements in each subset Wi whose

sum is exactly B)?

Given an instance of the 3-PP, we construct an instance of Pm|(p, p, bj)|Cmax as following.

The m-machine CTSP (CTP2): We construct an instance of the decision version

of the m-machine CTSP with a set J = {1, . . . , 6m} of jobs, where we distinguish the

following two subsets of jobs:

� aj = Lj = p, bj = wj, wj ∈ W, 1 ≤ j ≤ 3m;

� aj = Lj = bj = p, 3m+ 1 ≤ j ≤ 6m;

where p > B
3
. Similar to the two-machine variant we denote jobs 1 to 3m as “partition

jobs” and jobs 3m+ 1 to 6m as “identical jobs”.

Lemma 6. If 3-PP has a solution, so does the constructed instance of CTP2 such that a

feasible schedule has C∗
max ≤ 9p+B.

Proof. Assume that 3-PP has a solution. We construct a feasible schedule for CTP2 as

follows. There are 3 interleaving pairs of jobs on each machine, where the interleaving

pairs are constructed similar to the two-machine variant (see Figure 5.1). We note that

the second job of each interleaving pair on machine i ∈M is from the set Wi. As a result,

the total processing time on machine i ∈ M is equal to C∗
i =

∑
j∈Wi

(3p + wj). Because

we assumed that 3-PP has a solution, we have therefore C∗
i = 9p + B, i = 1, . . . ,m, as

desired.

Lemma 7. If CTP2 has a solution, so does 3-PP.

Proof. The proof is similar to the two-machine case: In order to ensure that there is no

idle time in the schedule, there should be 3m interleaving pairs such that there are exactly

3 interleaving pairs on each machine i ∈M .

Based on Lemmas 6 and 7 we have Theorem 7:

Theorem 7. Problem Pm|(p, p, bj)|Cmax is strongly NP -hard.

81

5.2 Approximation results

In this section we demonstrate that the existence of a (2−ε)-approximation algorithm

for P2|(p, p, bj)|Cmax implies P = NP . We utilize the well-known partition problem for

the proof.

The partition problem (PP): Given a set W = {w1, . . . , wq} of q elements where each

element i has an integer size wi and where
∑q

j=1 wj = 2B, the question is whether there

exist two disjoint subsets W1 and W2 such that
∑

wj∈W1
wj =

∑
wj∈W2

wj = B?

Given an instance of the partition problem, we construct an instance of the problem

P2|(aj, Lj, bj)|Cmax as following.

The two-machine CTSP (CTP3): Given a set J = {1, . . . , q + 3} of jobs, we set the

tasks and delays of the jobs as:

� aj = bj = wj, Lj = Y +B − wj, wj ∈ W, 1 ≤ j ≤ q,

� aq+1 = Lq+1 = B, bq+1 = Y ,

� aq+2 = Y, Lq+2 = bq+2 = B,

� aq+3 = bq+3 = B,Lq+3 = Y + 2B,

where Y > 2B.

Lemma 8. If PP has a solution, there exists a feasible schedule for CTP3 with C∗
max ≤

Y + 4B.

Proof. Let us assume that PP has a solution. We construct a feasible schedule for CTP3

as depicted in Figure 5.2. Assume that the starting time of the schedule is time 0. Let

the initial (completion) task of job q + 1, i.e., aq+1 (bq+1) be processed on machine M1

(M2), where aq+1 starts at time 0. Similarly, let the initial (completion) task of job q+2,

i.e., aq+2 (bq+2) be performed on machine M1 (M2), where an+2 starts at time 2B. The

initial task of job q + 3 starts at time 0 on M2, and its completion task finishes at time

Y + 4B on machine M1. It remains to schedule jobs 1 to q. We assume that jobs having

aj = bj = wj ∈ W1, denoted as W1-jobs, are processed during the two idle times on M1,

and jobs having aj = bj = wj ∈ W2, denoted as W2-jobs, are performed during the two

idle times on M2. We note that the initial and completion tasks of W1-jobs (W2-jobs) are

processed on M1 (M2) in the same order. Therefore, the starting time of the initial task

of job j ∈ W1 is B +
∑j−1

k=1 wk. As a result, the starting time of its completion task will

be the time (B+
∑j−1

k=1 wk +wj)+ (Y +B−wj) = Y +2B+
∑j−1

k=1 wk. It is easy to verify

that all those jobs will be scheduled with no overlap in their tasks.

82

M1: aq+1 = B
B

aq+2 = Y
B

bq+3 = B

M2: aq+3 = B
B

bq+1 = Y
B

bq+2 = B

Figure 5.2 : The constructed schedule for CTP3 instance.

Lemma 9. If PP has no solution, then neither does CTP3.

Proof. We can consider the following two cases where PP has no solution: (1)
∑

wj∈W1
wj >

B and (2)
∑

wj∈W1
wj < B. In either of the cases, there will be some jobs that their tasks

cannot be finished during the idle times of the machines, and hence, either they should

finish before the constructed schedule starts, or they should start after the constructed

schedule finishes.

Theorem 8 follows from Lemmas 8 and 9:

Theorem 8. The existence of a (2−ε)-approximation algorithm for the problem P2|(aj, Lj,

bj)|Cmax implies P = NP .

Proof. Let C∗
max denote the optimal makespan and Cσ

max be that of an arbitrary schedule

σ. As we note in Lemma 7, if PP has no solution, the schedule will consist of some jobs

from W1 or W2 that are completely processed before or after the constructed schedule.

This means that Cσ
max > Y +4B. As such, Cσ

max will be at least equal to Y +4B+Y +B =

2Y + 5B. Another formation of the schedule is to process jobs q + 1 and q + 2 on the

same machine. In that case Cσ
max is at least equal to 2Y + 2B. This indicates that Cσ

max

C∗
max

tends to 2 when Y is sufficiently large in comparison to B:

Cσ
max

C∗
max

=
2Y + 2B

Y + 4B
(5.1)

The result obtained in Theorem 8 can be further extended to other machine settings:

Theorem 9. The existence of a (2−ε)-approximation algorithm for the problem O2|(aj, Lj,

bj)|Cmax implies P = NP .

Proof. Note that problem P2|(aj, Lj, bj)|Cmax can be regarded as O2|(aj, Lj, bj)|Cmax, i.e.,

the two-machine open-shop CTSP, where the initial task of all jobs must be processed

on M1, and their completion tasks must be processed on M2. The schedule depicted in

Figure 5.3 shows that, where the difference to the schedule of Figure 5.2 includes the

completion task of job q + 3 is processed before its initial task, i.e., bq+3 starts at time 0

on M2, and aq+3 starts at time Y + 3b on M1. Also, the initial (completion) tasks of W1

83

(W2)-jobs are processed in the interval [B, 2B] on M1 (M2), and the completion (initial)

tasks of W1 (W2)-jobs are processed in the interval [Y + 2B, Y + 3B] on M2 (M1). The

rest of the proof will be similar to Theorem 7.

M1: aq+1 = B
B

aq+2 = Y
B

aq+3 = B

M2: bq+3 = B
B

bq+1 = Y
B

bq+2 = B

Figure 5.3 : The constructed schedule for problem O2|(aj, Lj, bj)|Cmax.

Theorem 9 improves the in-approximability results proposed by Ageev (2018) for

O2|(aj, Lj, bj)|Cmax. Also note that Ageev (2018) showed that problem O2|(aj, Lj, bj)|Cmax

does not admit approximation algorithms with a ratio better than (1.5−ε) unless P = NP ,

even for the case of aj = bj, ∀j ∈ J . We provide an optimal scheduling policy for two

variants of Pm|(a, L, b)|Cmax and Pm|(p, L, p)|Cmax in the following.

5.3 Optimal schedule for Pm|(a, L, b)|Cmax and Pm|(p, L, p)|Cmax

In this section, we generate an optimal schedule for problems Pm|(a, L, b)|Cmax and

Pm|(p, L, p)|Cmax. Recall that the single-machine variant of both these problems can be

solved easily (see Baptiste (2010) and Orman and Potts (1997)). This implies that it

only suffices to optimally allocate the jobs to m parallel identical machines as then the

problem is reduced to m single-machine problems.

First, observe that problem Pm|(p, L, p)|Cmax is obtained from Pm|(a, L, b)|Cmax by

letting a = b = p. As a result, we obtain an optimal allocation policy for problem

Pm|(a, L, b)|Cmax, and then we extend our results to problem Pm|(p, L, p)|Cmax. We

show that partitioning the jobs equally among the machines, i.e., the “equal allocation”

policy, leads to an optimal schedule. We note that whenever the equal allocation policy

is not possible, e.g., when the number of jobs is odd and the number of machines is

even, then assigning the jobs as equally as possible to the machines results in an optimal

schedule. As an example, given 3 jobs and 2 machines, we assign two jobs to machine 1,

and one job to machine 2.

Next, we show the optimality of the equal allocation policy for Pm|(a, L, b)|Cmax.

5.3.1 Problem Pm|(a, L, b)|Cmax

We prove the optimality of the equal allocation policy for two identical machines, and

then extend it to m identical machines. We assume a ≥ b and L ≥ max{a, b}, since
otherwise the problem is trivial. Note that the proof also applies to b ≥ a due to the

reverse property of the CTSP. Let s denote the starting time of a block of k jobs. We

84

define a block of jobs as the set of at most k ≤ ⌈L
a
⌉ jobs. It follows from a ≥ b and

L ≥ max{a, b} that the first (initial) tasks of the jobs in the block are processed without

idle time between the tasks. Hence, the k initial tasks will be processed in time intervals

[s, s + a], [s + a, s + 2a], . . . , [s + (k − 1)a, s + ka]. The second (completion) tasks of the

jobs in the block are processed in the time intervals [s + L + a, s + L + a + b], [s + L +

2a, s+L+2a+ b], . . . , [s+L+ ka, s+L+ ka+ b]. As a result, the makespan of the block

is equal to:

Cmax(k) = s+ L+ ka+ b. (5.2)

In the following we show that the makespan of the block is reduced if we equally

allocate the jobs of the block to be executed on two machines, each with k
2
jobs (instead

of executing all of the jobs of the block on only one machine).

Lemma 10. Under two parallel identical machines, Cmax(k) > Cmax(
k
2
).

Proof. Without loss of generality assume that there is only one block of k jobs. Let s be the

starting time of the schedule. It follows from Equation (5.2) that Cmax(k) = s+L+ka+b

and Cmax(
k
2
) = s+ L+ k

2
a+ b.

Therefore, Cmax(k)−Cmax(
k
2
) = (s+L+ka+ b)− (s+L+ k

2
a+ b) = k

2
a > 0. This implies

that Cmax(k) > Cmax(
k
2
) for any k ∈ R. Therefore, it is always optimal to equally (or as

equally as possible) partition the jobs between the machines.

Now, we show that Lemma (10) can be easily extended to m parallel identical machines:

Lemma 11. Under m parallel identical machines, Cmax(k) > Cmax(
k
m
).

Proof. Again assume that there is only one block of k jobs, and let s be the starting time

of the schedule. It follows that Cmax(k)−Cmax(
k
m
) = (s+L+ka+ b)− (s+L+ k

m
a+ b) =

(m−1)k
m

a > 0, for any k ∈ R,m > 1.

Given a three-job instance with a = 3, L = 4, b = 2, and 2 machines, the optimal

makespan is equal to 12, as shown in Figure 5.4, in which we assign two jobs to machine

1, and one job to machine 2. We note that not following the equal allocation policy may

result in all three jobs being assigned to either machine 1 or machine 2. In either case,

the makespan is equal to 21.

0 3 6 7 9 10 12

M1: a1 a2 b1 b2

M2: a3 b3

Figure 5.4 : The optimal schedule for a three-job instance of P2|(a, L, b)|Cmax.

Next, we extend our results to problem Pm|(p, L, p)|Cmax.

85

5.3.2 Problem Pm|(p, L, p)|Cmax

Assume L ≥ p since otherwise the problem is trivial. From the results for Pm|(a, L, b)|
Cmax, it is easy to show that in Pm|(p, L, p)|Cmax a block includes at most k ≤ ⌈L

p
⌉ jobs

and the makespan of the block is equal to

Cmax(k) = s+ L+ p(k + 1). (5.3)

The makespan of the block is reduced if we allocate the jobs of the block to be executed

on m identical machines, each with k
m

jobs since Cmax(k) − Cmax(
k
m
) = (s + L + p(k +

1))− (s+ L+ p k
m+1

) = (m−1)k
m

p > 0, for any k ∈ R,m > 1.

For example, consider the optimal makespan for the three-job instance with a = 3, L =

4, b = 3, which is equal to 13, if the equal allocation policy is applied, see Figure 5.5. Note

that one may obtain a schedule with the makespan of 23 if the equal allocation policy is

not followed.

0 3 6 7 10 13

M1: a1 a2 b1 b2

M2: a3 b3

Figure 5.5 : The optimal schedule for the three-job instance of P2|(p, L, p)|Cmax.

Following these propositions, an optimal schedule for problems Pm|(a, L, b)|Cmax and

Pm|(p, L, p)|Cmax is obtained through (i) partitioning the jobs equally among the ma-

chines; and, (ii) creating ⌈ ηi
⌈L/a⌉⌉ job blocks for machine i, where ηi is the number of jobs

allocated to machine i: (ii-1) for Pm|(a, L, b)|Cmax, solving m single-machine problems,

i.e., 1|(a, L, b)|Cmax each with the algorithm of Baptiste (2010), and (ii-2) for problem

Pm|(p, L, p)|Cmax, blocks 1, 2, . . . , r− 1 contain kmax = ⌈L/a⌉ jobs each and are all inter-

leaved and, block r contains ηi − rkmax jobs that are interleaved. The solution procedure

is polynomial in the problem input size.

86

Algorithm 6: Optimal procedure for Pm|(a, L, b)|Cmax and Pm|(p, L, p)|Cmax.

1 Input: a, L, b, p, m.
2 Output: An optimal schedule.

3 Partition the jobs equally among the machines;
4 for 1 ≤ i ≤ m do
5 Create ⌈ ηi

⌈L/a⌉⌉ job blocks;

6 Solve m single-machine problems for Pm|(a, L, b)|Cmax, and for problem
Pm|(p, L, p)|Cmax, form blocks 1, 2, . . . , r − 1 with kmax = ⌈L/a⌉ jobs each and
interleave them all, and block r with ηi − rkmax jobs that are interleaved;

7 end

87

Chapter 6

Coupled tasks on flow-shops

This chapter explores the coupled task scheduling problem (CTSP) in the flow-shop envi-

ronment, and particularly, the ordered flow-shop environment. For that purpose, we first

study the ordered flow-shop problem and propose benchmarks and solution algorithms

for the problem in Section 6.1 and Section 6.2. Then, in Section 6.3, we explore new

results for the CTSP in the classic flow-shop environment, and in the ordered flow-shop

environment. The results presented in Section 6.1 and Section 6.2 are published in:

� Khatami, M., Salehipour, A., and Hwang, F. J. (2019). “Makespan minimization for

the m-machine ordered flow shop scheduling problem”. Computers and Operations

Research 111, 400–414.

� Khatami, M. and Salehipour, A. (2020). “A relax-and-solve algorithm for the or-

dered flow-shop scheduling problem”. IEEE IEEM 2020. Singapore.

In addition, the results presented in Section 6.3 are submitted for possible publication as:

� Khatami, M., Salehipour, A., and Cheng, T. C. E. (2021b). “Flow-shop scheduling

with exact delays to minimize makespan”. Submitted to Computers & Industrial

Engineering .

6.1 Ordered flow-shops

The ordered flow-shop scheduling problem, first introduced by Smith (1968), is a

subcategory of the classical flow-shop scheduling problem, where there are structured

properties for processing times. In the classical flow-shop problem, the processing times

of jobs are usually assumed to be independent of each other, as well as independent of

the machines. The jobs’ processing times in an industrial environment, however, may be

related to the physical characteristics of the jobs and/or machines (Smith et al., 1975).

For example, the processing times of jobs may be considered to be correlated because

the machine with old design would process the jobs slower than that with the up-to-date

technology. In the ordered flow-shop scheduling problem, the structured properties of

jobs and machines can be described by the following two conditions, which apply to all

jobs and machines: (1) job-ordered condition, that is, if a the processing time of a job

is smaller than that of another job on some machine, then it should be the case on all

88

machines, and (2) machine-ordered condition, that is, if the processing time of a job on a

machine is smaller than that on another machine, then it should be the case for all jobs.

We will first study the ordered flow-shops, propose two efficient heuristics, and one fast

Iterated Local Search algorithm. We also propose three sets of benchmarks consisting of

600 instances for the problem.

6.1.1 Problem definition and formulation

Given a set of jobs J = {1, . . . , n} and a set of different machines M = {1, . . . ,m}, we
denote the processing time of job j on machine r by pr,j, where r ∈ M and j ∈ J . The

ordered flow-shop scheduling problem is characterised by the following two conditions:

1. if for any two jobs j, k ∈ J, pr,j < pr,k, r ∈M , then pq,j ≤ pq,k, ∀q ∈M ; and,

2. if for any two machines r, q ∈M, pr,k < pq,k, k ∈ J , then pr,j ≤ pq,j, ∀j ∈ J .

We assume that only permutation schedules are allowed. Also, all jobs are assumed

to be available at time zero, preemption of jobs is not allowed, and each machine can

process at most one job at a time. The ordered flow-shop scheduling problem aims to

obtain the best order of performing jobs on machines (a permutation) with respect to

some criteria. We consider the objective of minimising the makespan. An example of the

ordered flow-shop, which is borrowed from Panwalkar and Woollam (1980), is shown in

Table 6.1.

Table 6.1 : An instance of a 5-job 6-machine ordered flow-shop scheduling problem (Pan-
walkar and Woollam, 1980).

Machine
Job 1 2 3 4 5 6

1 2 3 15 3 8 8
2 3 4 21 7 13 15
3 9 12 30 15 19 21
4 13 14 34 19 24 26
5 15 16 37 24 28 35

It is known that a pyramidal-shaped sequence is optimal for the ordered flow-shop

scheduling problem (Smith et al., 1976). A pyramidal-shaped sequence consists of two

sub-sequences, in which the jobs in the first sub-sequence are ordered by the shortest

processing time (SPT) dispatching rule, and the jobs in the second sub-sequence are

sequenced in the longest processing time (LPT) order. Those two sub-sequences will be

hereafter called SPT sub-sequence and LPT sub-sequence, respectively.

Among different MILP formulations available for the flow-shop scheduling problem

we implement the “starting time-based” formulation proposed by Wilson (1989), which

89

according to Tseng et al. (2004), is one of the best performing models for solving the

permutation flow-shop scheduling problem. In this formulation, which is represented by

Model PF1 in the following, a binary decision variable zj,i takes a value of 1 if job j

is assigned to position i ∈ J in the sequence, and 0 otherwise. Also, the non-negative

decision variable sr,i indicates the starting time of the job in position i on machine r.

Based on those notations, the Wilson’s model for the permutation flow-shop scheduling

problem can be presented by Model PF1:

Model PF1

z = minCmax = min(sm,n +
n∑

j=1

pm,jzj,n) (6.1)

subject to
n∑

j=1

zj,i = 1, 1 ≤ i ≤ n, (6.2)
n∑

i=1

zj,i = 1, 1 ≤ j ≤ n, (6.3)

s1,1 = 0, (6.4)

s1,i +
n∑

j=1

p1,jzj,i = s1,i+1, 1 ≤ i ≤ n− 1, (6.5)

sr,1 +
n∑

j=1

pr,jzj,1 = sr+1,1, 1 ≤ r ≤ m− 1, (6.6)

sr,i +
n∑

j=1

pr,jzj,i ≤ sr+1,i, 1 ≤ r ≤ m− 1, 2 ≤ i ≤ n, (6.7)

sr,i +
n∑

j=1

pr,jzj,i ≤ sr,i+1, 2 ≤ r ≤ m, 1 ≤ i ≤ n− 1, (6.8)

zj,i ∈ {0, 1}, 1 ≤ j ≤ n, 1 ≤ i ≤ n, (6.9)

sr,i ≥ 0, 1 ≤ r ≤ m, 1 ≤ i ≤ n. (6.10)

The objective function (eq. (6.1)) minimises the makespan. Constraints (6.2) and (6.3)

are of the assignment problem, and ensure that exactly one job is assigned to each position

and exactly one position is assigned to each job. Constraints (6.4) set the starting time of

the schedule to zero. Constraints (6.5) and (6.6) ensure that there is no idle time on the

first machine, and the first job in the sequence is processed on all m machines without

delay. Constraints (6.7) indicate that the starting time of each job on machine r + 1 is

no earlier than its completion time on machine r. Constraints (6.8) ensure that the job

in position i+ 1 does not start on machine r until the job in position i has completed its

processing on that machine. Finally, constraints (6.9) and (6.10) state decision variables

are binary and non-negative.

90

6.1.2 Proposed solution methods

Thanks to the pyramidal-shaped property, the size of the set of all candidate feasible

solutions in an ordered flow-shop problem significantly reduces from n! to 2n−1. Hence, it is

sensible to utilise the pyramidal-shaped property in the development of solution methods.

In this study, we utilise the pyramidal-shaped property in developing problem-specific

heuristics and meta-heuristics. The heuristic algorithms include a pyramidal variant of

the Nawaz-Enscore-Ham (NEH) algorithm (Nawaz et al., 1983) and a procedure named

“Pair-Insert”. We also develop an iterated local search (ILS) meta-heuristic.

The Pyramidal-NEH algorithm

The well-known NEH algorithm is one of the most effective heuristics for solving the

permutation flow-shop scheduling problem. Ruiz and Maroto (2005) showed this through

a comprehensive evaluation of available heuristics for the permutation flow-shop schedul-

ing problem. One may refer to Dong et al. (2008) and Kalczynski and Kamburowski (2008)

for more details on the applications of the NEH algorithm and its variants.

The NEH algorithm consists of three steps. In Step 1, a sequence π0 is generated by

sorting the n jobs in non-increasing order of the total processing times of m operations.

In Step 2, the first two jobs from π0 are selected, and a sequence π for the two jobs

with the minimum makespan is generated. A complete sequence is then constructed

in Step 3, where the remaining jobs of π0 are inserted in the sequence π one by one,

such that a job is inserted into a position, among all possible positions, which minimises

the makespan of the yielded partial sequence. Note that there are i possible positions

for inserting job 3 ≤ i ≤ n into the partial sequence. Taillard (1990) improved the

computational complexity of the NEH algorithm from O(n3m) to O(n2m). With regard

to tie-breaking rules, Fernandez-Viagas and Framinan (2014) showed that their idle time-

based tie-breaking mechanism outperforms all other methods.

We propose a modification to Step 3 of the original NEH algorithm to improve its

efficiency for solving the ordered flow-shop scheduling problem, based on the pyramidal

property. Our proposed solution procedure is thus named the Pyramidal-NEH algorithm

and is shown in Algorithm 7.

Note that in case of ties, Algorithm 7 chooses the sequence π′. The Pyramidal-NEH

algorithm restricts the allocation of an unassigned job only to the first or the last posi-

tion of the partially built sequence, maintaining therefore the pyramidal-shaped property

of the final sequence. In the Pyramidal-NEH algorithm 2(n − 1) partial sequences are

investigated in order to build a complete solution, whereas n×(n+1)
2
− 1 partial sequences

need be considered in the original NEH algorithm. The time complexities of Steps 1 and

2 of Algorithm 7 are O(n log n) and O(m), identical to those of the NEH algorithm. Step

3, however, performs 2mn operations when calculating the makespan of the partial se-

91

Algorithm 7: The Pyramidal-NEH algorithm.

1 Input: The processing times of n jobs on all the m machines.
2 Output: A job sequence π.

3 Step 1: Generate a sequence π0 by sorting the n jobs in the non-increasing order of the
total processing times of m operations;

4 Step 2: Select from π0 the first two jobs, and generate a sequence π of the two jobs
with the minimum makespan;

5 Step 3 (Complete sequence construction):
6 for 3 ≤ i ≤ n do
7 Generate π′ and π′′ by letting π be prefixed and suffixed respectively with the ith

job of π0;
8 Compare the makespans of π′ and π′′, and set π as the one with smaller makespan;

9 end
10 return the constructed sequence π

quence at each iteration. Therefore, the time complexity of the Pyramidal-NEH algorithm

is O(n2m).

The Pair-Insert algorithm

Another heuristic algorithm that we propose for the ordered flow-shop scheduling prob-

lem is named the “Pair-Insert” algorithm, that utilises the pyramidal-shaped property as

well as the general idea of the NEH algorithm, as summarized in Algorithm 8. Performing

the same first two steps as Algorithm 7, the Pair-Insert algorithm constructs a partial

sequence in Step 3 by adding unassigned jobs in pairs. The pyramidal-shaped property of

the problem leaves only four possible choices for concatenating a pair of unassigned jobs

with a partial sequence. Let π0 be the sequence obtained in Step 1 and π be a partial

sequence constructed with the first i−1 jobs of π0. Then the four choices of concatenation

are: (1) (i+ 1, i, π), i.e., prefix both jobs i+ 1 and i to π; (2) (π, i, i+ 1), i.e., suffix both

jobs i + 1 and i to π; (3) (i, π, i + 1), i.e., prefix job i and suffix job i + 1 to π; and, (4)

(i + 1, π, i), i.e., prefix job i + 1 and suffix job i to π. Among those four permutations,

the one with the least makespan is selected as the partial sequence constructed with the

first i+ 1 jobs of π0.

Note that in case of ties, the algorithm chooses the sequence with the smallest index

among the four choices. The Pair-Insert algorithm also runs in O(n2m) and the total

number of partial sequences to be evaluated is equal to 2(n− 1).

An Iterated Local Search algorithm

The Iterated Local Search (ILS) algorithm has been widely applied to solve the flow-

shop scheduling problems, and has delivered high quality solutions. Examples include

the studies of Stützle (1998), Marmion et al. (2011) and Lin et al. (2013). We propose

92

Algorithm 8: The Pair-Insert algorithm.

1 Input: The processing times of n jobs on all the m machines.
2 Output: A job sequence π.

3 Step 1: Generate a sequence π0 by sorting the n jobs in the non-increasing order of the
total processing times of m operations;

4 Step 2: Select from π0 the first two jobs, and generate a sequence π of the two jobs
with the minimum makespan;

5 Step 3 (Complete sequence construction):
6 Set i = 3;
7 while i ≤ n do
8 Generate four partial sequences by concatenating π with the ith and (i+ 1)th jobs

of π0 in accordance with (1): (i+ 1, i, π), (2): (π, i, i+ 1), (3): (i, π, i+ 1), and (4):
(i+ 1, π, i);

9 Compare the makespans of the four permutations, and set π as the one with the
smallest makespan;

10 Set i = i+ 2;

11 end
12 return the constructed sequence π

an ILS algorithm for the ordered flow-shop scheduling problem, that is as follows. Upon

generating an initial solution, a local search is applied to obtain an improved solution.

Then, a perturbation is iteratively applied to the current solution, followed by the lo-

cal search, which is applied to the perturbed solution. The process continues until the

stopping criterion is met (Talbi, 2009).

Our proposed ILS algorithm incorporates a post-processing procedure in order to

further improve the best obtained solution. For this reason, the post-processing is ini-

tiated when the main algorithm completes. The post-processing includes a local search

algorithm, which utilises a different neighborhood structure from that used in the main

algorithm. The motivation behind the post-processing is that exploring the search space

with a different neighborhood structure that does not utilise the pyramidal-shaped prop-

erty may lead to exploring some yet unexplored solutions, and we may therefore obtain

improved solutions. Recall that although we know that one of the pyramidal-shaped se-

quences must be optimal, a non-pyramidal sequence may also be optimal. Algorithm 9

summarises our ILS algorithm, where Phase 1 represents the main algorithm and Phase

2 represents the post-processing procedure.

Generating initial solutions Both random and greedy approaches have been used to

generate initial solutions for the flow-shop scheduling problem (Ponnambalam et al., 2001;

Osman and Potts, 1989). Since the ILS algorithm includes applying random perturbations

to the solution, we utilise the Pair-Insert heuristic (Algorithm 8), which is a deterministic

algorithm, to build an initial solution for the ILS algorithm. This implies that the initial

93

Algorithm 9: The ILS algorithm for the ordered flow-shop problem.

1 Input: The processing times of n jobs on m machines, d0, d1, T0, F, S, time limit.
2 Output: A job sequence.

3 Phase 1:
4 Pair-Insert algorithm(); % Algorithm 8
5 Local search algorithm(); % Algorithm 10
6 d = d0, flag[F] = 0, T = T0;
7 while elapsed time ≤ time limit do
8 for 1 ≤ l ≤ d do
9 Perturbation();

10 Local search algorithm(); % Algorithm 10

11 end
12 if “no new solution” found then
13 flag[F] = flag[F] + 1;
14 if flag[F] ≥ F then
15 d = d1;
16 end

17 else
18 flag[F] = 0, d = d0;
19 end
20 T = α× T ;

21 end
22

23 Phase 2:
24 while elapsed time ≤ time limit do
25 Swap two randomly selected jobs in the current solution;
26 if superior solution found then
27 Update the best found solution;
28 end

29 end
30 return the best found solution

solution will be a pyramidal-shaped sequence.

Perturbation The main procedure in the ILS algorithm includes two operations of

perturbation and local search. Through those operations, the ILS iteratively obtains

improved solutions.

Each iteration of perturbation includes removing some jobs from their current positions

in the sequence, and inserting them at some other positions. While jobs are randomly

selected to be removed, their insertion positions are determined such that the pyramidal-

shaped property of the solution is maintained. Precisely, if job j is removed from SPT

sub-sequence, then it is inserted into LPT sub-sequence, and between two adjacent jobs l

and k, where
∑m

r=1 pr,l ≥
∑m

r=1 pr,j ≥
∑m

r=1 pr,k. Likewise, if job j is removed from LPT

sub-sequence, it is then inserted into SPT sub-sequence, and that between two adjacent

jobs l and k, where
∑m

r=1 pr,l ≤
∑m

r=1 pr,j ≤
∑m

r=1 pr,k.

94

In order to control the diversification and intensification aspects of the ILS algorithm,

the number of such removals and insertions (i.e., d) is adaptively changed during the

course of algorithm’s operation. For this reason, the number of removals and insertions

is increased to d1, from its default value of d0, whenever certain number of consecutive

iterations, denoted as F , are performed with no improvements in the solution. On the

other hand, if an improved solution is obtained, the number of removals and insertions is

reduced to the default value of d0. The sequence generated by the perturbation operation

is always accepted.

Local search The local search method applied in the proposed ILS algorithm utilises

the “insert” operator to build new neighboring solutions, and operates as follows. A job

is removed from its position in the sequence, and is inserted into another position such

that the pyramidal-shaped property is maintained. This operation, which is performed

for all jobs in the sequence, starts from the job in the first position in the sequence, and

proceeds to the job in the last position. The process is continued until either a “new

solution” is obtained, or all neighboring solutions are explored without obtaining such a

new solution. A neighbor solution is defined as a “new solution”, if either it has a better

objective function value, or it has a worse objective function value, however, meeting

the “acceptance criterion”. Note that if a new solution is obtained, then it is accepted,

i.e., the “first improvement strategy” is applied, and the process is re-started from the

beginning of the sequence. This process is continued until S iterations are performed.

Algorithm 10 summarises the proposed local search.

Note that in the typical iterated local search algorithm the local search goes for a local

optimum (Stützle and Ruiz, 2018). Though, delivering a local optimum is not guaranteed

in our algorithm since the local search is applied for a certain number of iterations, i.e.,

parameter S.

Acceptance and termination criteria We implement an acceptance criterion that

accepts both superior and inferior solutions. Precisely, an improved solution is always

accepted. A worse solution can be accepted if the local search cannot deliver a new

solution (see Local search) and also the degradation amount is not greater than a certain

threshold (similar to the threshold accepting algorithm). The threshold parameter is

initialised as T0 and decremented according to the geometric decrement rule of T = α×T ,
where 0 < α < 1. The algorithm continues until a certain time limit is elapsed.

Post-processing The Phase 2 of the ILS algorithm includes a post-processing proce-

dure, which is applied to the best delivered solution of Phase 1. The Phase 2 applies a

“swap” local search and aims to deliver new high quality solutions. For that, the neigh-

95

Algorithm 10: Local search procedure of the ILS algorithm.

1 Input: Current solution.
2 Output: A new solution or the current solution.

3 flag[P] = 1, flag[S] = 0;

4 while flag[P] = 1 and flag[S] ≤ S do
5 i = 1, flag[C] = 0;

6 while flag[C] = 0 do
7 Remove the job in the ith position and insert it into another position in the

sequence, maintaining the pyramidal property;

8 if a “new solution” (superior solution or inferior one passing the acceptance
criterion) obtained or all neighbor solutions are generated with “no new
solution” then

9 flag[C] = 1;
10 end
11 i = i+ 1;

12 end
13 if a “new solution” is found then
14 Update the current solution;

15 if the “new solution” is a superior solution then
16 Update the best found solution;
17 end

18 else if “no new solution” found then
19 flag[P] = 0;
20 end
21 flag[S] = flag[S] + 1;

22 end
23 return the solution

boring solutions are built by using the swap operator, applied to randomly selected jobs,

regardless of maintaining the pyramidal-shaped property. Discovering non-pyramidal se-

quences is a way to let the algorithm search for better solutions in unexplored spaces.

Phase 2 is run for the same time-limit as Phase 1.

6.1.3 Computational experiments

In this section we report the computational results of the developed heuristic algo-

rithms on three sets of randomly generated benchmark instances. First, we explain the

instance generation procedure, and discuss tuning the parameters of the algorithms. Then,

we run the algorithms on the generated instances and report the computational results.

The proposed algorithms were coded in the computational package MATLAB version

9.4 (MATLAB, 2018). We perform all computational experiments on the same PC men-

tioned in Section 3.3. For comparison purposes we solve the instances with the available

solution method for the permutation flow-shop problem. The top performing methods for

the permutation flow-shop problem include the Iterated Greedy Algorithms (IGA) of Ruiz

96

and Stützle (2007) and of Fernandez-Viagas and Framinan (2014). Recently, Benavides

and Ritt (2018) proposed a new IGA (denoted as IGABR throughout this study) that

reports superior results for the permutation flow-shop problem. The recently published

IGABR is very effective in solving both the permutation and the non-permutation flow-

shop scheduling problems. The IGABR algorithm was coded in the programming language

C++, and the code is available to the public. We use the same code. In addition, we use

the IBM ILOG CPLEX version 12.8.0 (CPLEX, 2017) to solve Model PF1 to optimality

(where possible). Because the proposed ILS and IGABR start with an initial solution,

we use the same initial solution to warm start the solver CPLEX. This ensures a fair

comparison. We also force the solver CPLEX to utilise only one processor (thread), and

to use a time limit as a stopping criterion. For the remaining parameters of the CPLEX

we use the default values.

Instance generation and evaluation

We generate ordered instances, as benchmarks, for the problem, based on the avail-

able instances for the permutation flow-shop problem, i.e., based on the benchmarks of

Taillard (1993) and Vallada et al. (2015).

Taillard’s instances were chosen from a large set of randomly generated instances,

aiming to generate a set of the most difficult instances. The Taillard’s instances range

from 20 to 500 jobs, and 5 to 20 machines, and include 12 combinations of number of jobs

and number of machines denoted as (n,m). Those 12 combinations include (20, 5), (20,

10), (20, 20), (50, 5), (50, 10), (50, 20), (100, 5), (100, 10), (100, 20), (200, 10), (200, 20),

and (500, 20). Each combination consists of 10 instances. Therefore, a total number of

120 instances were produced. For more recent studies of Taillard’s instances we refer the

interested reader to Khatami and Zegordi (2017), Khorasanian and Moslehi (2017), and

Liu et al. (2017b).

Vallada et al. (2015) performed extensive experiments and selected 240 “small” in-

stances and 240 “large” instances, from a pool of 72,000 instances. The number of jobs

in the Vallada et al.’s small instances is chosen from the set {10, 20, 30, 40, 50, 60}, and
the number of machines is chosen from the set {5, 10, 15, 20}. Hence, there are 6× 4 = 24

combinations of n and m. Each combination consists of 10 instances. This results in

240 instances. For the large instances, the number of jobs is selected from the set

{100, 200, 300, 400, 500, 600, 700, 800} and the number of machines is selected from the

set {20, 40, 60}. Therefore, there exist 8 × 3 = 24 combinations of n and m, where

each combination consists of 10 instances, and therefore, a total number of 240 large in-

stances are produced. We refer the interested reader to Fernandez-Viagas et al. (2017)

and Dubois-Lacoste et al. (2017) for two recent studies of Vallada et al.’s instances.

We note that Taillard’s and Vallada et al.’s instances are for the permutation flow-

97

shop scheduling problem. In order to generate challenging benchmark instances for the

ordered flow-shop scheduling problem, the following three steps are performed on all the

120 Taillard’s instances and on all the 480 Vallada et al.’s instances.

� Step 1: Sort, for each machine, the operation processing times of all the n jobs in a

non-decreasing order;

� Step 2: Sort, for each job, the operation processing times on all the m machines in

a non-decreasing order;

� Step 3: Permute the order of machines.

Steps 1 and 2 generate the instances in which the processing times of jobs are in non-

decreasing order, i.e., every job has its smallest processing time on the first machine, the

second smallest processing time on the second machine and so on. Those instances can

be easily solved by the SPT rule. Watson et al. (2002) also showed that the structured

problems are relatively easy to solve. Thus, we perform Step 3 for permuting the order

of machines, aiming at producing non-trivial instances. We let T, S and L denote our

three sets of instances derived from the Taillard’s and the Vallada et al.’s small and large

instances.

According to Vallada et al. (2015), the difficulty of an instance can be measured as

the percentage of the deviation from its lower bound (LB) solution, i.e., δ = 100× (UB−
LB)/LB, where the LB is obtained by utilising the method of Ladhari and Haouari (2005)

(eq. (6.11)), and UB is the objective function’s upper bound calculated by using the Pair-

Insert algorithm.

LB = max
1≤r<q≤m

[min
j∈J

Rr,j + Cr,q
max(J) + min

j∈J
Qq,j], (6.11)

In Equation (6.11), Cr,q
max(J) denotes the optimal makespan of a two-machine permuta-

tion flow-shop problem with time lags, defined on the job set J and machine pair (r, q). In

addition, Rr,j and Qq,j are the summation of the processing times of job j on some subset

of machines. For more details on the implementation of this lower bound, see “LB5” in

Ladhari and Haouari (2005). Note that this tight lower bound is calculated based on the

bottleneck machine, which is suitable for our problem, particularly, because the number

of bottleneck machines in the ordered flow-shop scheduling problem is small.

For the 5-machine instances we can easily evaluate all 120 possible permutations of

machines, and choose the one with the largest value of δ. For instances with 10 or

more machines, however, we evaluate 1000 random permutations of machines instead,

because evaluating all possible permutations is very expensive, if not impractical. Indeed,

evaluating 1000 permutations ensures, to some extent, that the so generated instances are

98

very difficult to solve. In summary, a total number of 520,800 instances were evaluated

(93,600 instances of T, 187,200 instances of S and 240,000 instances of L), out of which 600

instances were produced as very difficult and challenging instances for the ordered flow-

shop scheduling problem (120 for T, 240 for S, and 240 for L). For the illustration purposes,

we show the name of an instance in the format B-n-m-x, where B is the benchmark name

that can be T, S or L, n and m denote the number of jobs and the number of machines, and

x denotes the instance number, ranging from 1 to 10. For example, an instance named

T-20-5-1 is the instance in benchmark T, that includes 20 jobs and 5 machines and is

assigned the index number 1.

Figure 6.1 highlights the necessity of producing instances with large values of δ. For

comparison purposes, the box-plot includes a set of “arbitrary” instances, which were

generated by randomly permuting machines based on instances of benchmark T. According

to the box-plot, the δ metric may reveal how easily such arbitrary instances might be

solved. The overall δ for the benchmark T is 3.33, while it is 0.64 for the arbitrary

instances. In addition, our preliminary tests showed that the Pair-Insert algorithm obtains

a proven optimal solution for 37 (out of 120) arbitrary instances, even for the largest size

(a proven optimal solution is either reported by the solver CPLEX or is extracted when

UB = LB). This means that at least about 31% of arbitrary instances were optimally

solved with the Pair-Insert algorithm. In addition, we realise that the minimum of δ

for every category of arbitrary instances is 0. Note that a value of 0 for δ implies that

there was at least one instance solved to optimality by the Pair-Insert algorithm. We also

used statistical tests to validate the obtained results. Because the data do not follow a

normal distribution, we applied the Wilcoxon signed-rank test for the paired data with

a 95% confidence level. We observed a p-value of 0 for the test, confirming therefore the

statistical significance of selecting instances with large values of δ. Overall, the results

indicate the impact of generating instances with large deviations (associated with large

values of δ) to build challenging benchmark instances for the ordered flow-shop scheduling

problem.

We note that all 600 benchmark instances, which we generate in this study, are avail-

able online in the Mendeley data repository at http://dx.doi.org/10.17632/cd2rv7hyyj.1.

Future studies for the ordered flow-shop scheduling problem could benefit from these

benchmark sets in evaluating their methods.

Evaluation of the proposed heuristic algorithms

We first evaluate the proposed heuristic algorithms, i.e., the Pyramidal-NEH algo-

rithm (denoted as NEHPyr) and the Pair-Insert algorithm (denoted as PI), by solving the

three sets of benchmark instances and comparing the outcomes with those obtained by

the NEH algorithm with Taillard acceleration (denoted as NEHTai), and also with the

99

0.0

2.0

4.0

6.0

8.0

10.0

T R T R T R T R T R T R T R T R T R T R T R T R

20-5 20-10 20-20 50-5 50-10 50-20 100-5 100-10 100-20 200-10 200-20 500-20

d

Figure 6.1 : Comparison between the instances of benchmark T and the arbitrary instances
(denoted as R in the figure).

NEH algorithm with Taillard acceleration and tie-breaking rule of Fernandez-Viagas and

Framinan (2014) (denoted as NEHFF).

We use three criteria of “number of best obtained solutions (NBest)”, “average rela-

tive percentage deviation (ARPD)”, and “average relative percentage time (ARPT)” to

evaluate the performance of those four heuristic algorithms.

The quality of the results is shown by the relative percentage deviation (RPD), which

is calculated as z−z∗

z∗
× 100, where z is the objective function value, i.e., the makespan

delivered by an algorithm, and z∗ is the best known objective function value for the

instance. The metric ARPD is the average of RPDs over groups of instances. The

metric RPT denotes the relative percentage computation time of an algorithm, and is

calculated as CPU−ACT
ACT

× 100, where CPU is the computation time of the algorithm for

an instance, and ACT is the average computation time for all algorithms on the same

instance. The ARPT ′ is the average of RPT s over groups of instances, and ARPT is

then calculated as ARPT = ARPT ′ + 1. For more details on the metrics ARPD and

ARPT we refer the interested reader to Fernandez-Viagas et al. (2017).

Table 6.2 presents the values of the three metrics NBest, ARPD and ARPT for the

four heuristics of NEHPyr, PI, NEHTai, and NEHFF over the three sets of benchmark

instances. The highlighted numbers denote the outperforming values. The results show

that the PI is the best algorithm in terms of NBest, and the NEHPyr is the second best.

The PI generates the best solution for almost 73% of the instances, and in the order of

over 4 times more than the NEHTai algorithm. The quality of the PI algorithm is further

confirmed based on the metric ARPD, where it delivers solutions with an ARPD value

of 0.81, where the ARPD of NEHFF (the second best algorithm) is 1.08. The quality of

solutions of NEHPyr is similar to that of NEHTai, and slightly worse than that of NEHFF .

Finally, the NEHPyr is the fastest and the PI is the slowest algorithms based on the metric

100

ARPT .

Table 6.2 : Summary of metrics NBest, ARPD and ARPT for the four heuristic algorithms
on the three benchmark sets.

Metric Benchmark NEHTai NEHFF NEHPyr PI

NBest

T 20 16 20 89
S 42 39 42 211
L 44 50 55 137
Sum 106 105 117 437

ARPD
T 1.30 1.22 1.30 0.91
S 1.56 1.51 1.56 1.10
L 0.61 0.52 0.61 0.42
Average 1.16 1.08 1.16 0.81

ARPT
T 0.54 0.76 0.43 2.28
S 0.49 0.66 0.38 2.47
L 0.86 1.10 0.65 1.39
Average 0.63 0.84 0.49 2.05

The superiority of the PI algorithm can be further investigated in Figure 6.2, where

the RPDs of the heuristic algorithms are compared based on the three benchmark sets.

In addition, the Wilcoxon signed-rank test for the paired data of the RPD values of the

heuristic algorithms with a 95% confidence level, which is detailed in Table 6.3, confirms

the quality of the PI algorithm.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tai FF Pyr PI Tai FF Pyr PI Tai FF Pyr PI

T S L

R
PD

Figure 6.2 : RPDs of the heuristic algorithms on three benchmark sets T, S and L.

We should note that although the PI heuristic is not as fast as the other three heuris-

tics, the computation time is not a concern because the largest instances (i.e., L-800-60-x)

is solved within a second by any of the four heuristic algorithms. To conclude, the PI can

be considered as the best performing heuristic for generating initial solutions for the or-

dered flow-shop scheduling problem, and therefore, we utilise the PI heuristic to generate

initial solutions for the ILS algorithm.

101

Table 6.3 : Wilcoxon signed-rank test for RPDs of the heuristic algorithms.

Benchmark Comparison
Wilcoxon signed-rank test
Test statistic p-value

T

PI vs. NEHTai 455 0.000
PI vs. NEHFF 466 0.000
PI vs. NEHPyr 457 0.000

S

PI vs. NEHTai 970 0.000
PI vs. NEHFF 726 0.000
PI vs. NEHPyr 970 0.000

L

PI vs. NEHTai 2621 0.000
PI vs. NEHFF 4100 0.000
PI vs. NEHPyr 2667 0.000

Parameter tuning for the ILS algorithm

A full factorial design of experiments (Montgomery, 2017) is applied to tune the val-

ues of the parameters. Those parameters include T0 (the initial threshold value), α (the

threshold decrement parameter), the upper and lower levels of d (the number of modi-

fications in the perturbation), F (the number of iterations with no improvement), and

S (the maximum number of times that the local search is performed at each iteration).

To set the initial threshold value for each instance, a coefficient of its lower bound LB is

used. Four candidate values of 0.05, 0.1, 0.15 and 0.2 are considered for the coefficient.

For the threshold decrement parameter, we consider (1/T0)
(1/t), where t is selected from

{400, 600, 800, 1000}. Also, recall that the number of modifications in the perturbation is

changed adaptively as the algorithm proceeds. It starts with a default value of d0, and

if F consecutive iterations are performed with no improvement, it is increased to d1. We

consider two scenarios for the values of the pair (d0, d1), that are: (⌊log (n/2)⌉, ⌊log 10n⌉)
and (⌊2 log n⌉, ⌊3 log n⌉). We also consider four candidate values of 5, 10, 15 and 20 for

F . For the intensification parameter S, that is the maximum number of times that the

local search is performed at each iteration, we consider four values of 6, 8, 10 and 12.

Those candidate values lead to a total number of 4×4×2×4×4 = 512 combinations. To

tune the algorithm, 35 instances with different sizes are solved with those 512 parameter

combinations. Hence, a total number of 17,920 instances are solved and RPD of each

problem is used to represent its quality. Based on the obtained results of the means of

the analysis of variance (ANOVA) technique, d and S statistically play a significant role

in the performance of the algorithm. The obtained optimal value of those parameters are

presented in Table 6.4.

Evaluation of the ILS algorithm

We test the proposed ILS algorithm on the three sets of benchmark instances of

Section 6.1.3. For comparison purposes, we solve those instances with IGABR, and also

102

Table 6.4 : Value of the parameters used in the ILS algorithm.

Parameter Definition Value

T0 Initial threshold value 0.1× LB

α Threshold decrement factor (1/T0)
(1/600)

(d0, d1) Default and increased number of removals and
insertions

(⌊log (n/2)⌉, ⌊log 10n⌉)

F Number of iterations with no improvement 15
S The maximum number of times the local search

is performed at each iteration
10

with the solver CPLEX (of solving Model PF1) with a warm start. The solution of the

PI heuristic is utilised to warm start the CPLEX.

We use the three criteria of NBest, ARPD and ARPT to evaluate the performance of

ILS and IGABR algorithms, and the solver CPLEX. We use the same time limit (millisec-

onds) for ILS and IGABR algorithms, which is calculated as τ × n×m, where τ is set to

15 (hence, each phase of ILS algorithm is set to run for τ×n×m
2

milliseconds). We solve

each instance for three times by the ILS and IGABR algorithms, and report the average

of the three runs. A computation time limit of 3,600 seconds (60 minutes) is applied to

the CPLEX, and the CPLEX is set to utilise one processor. Other than those, we use

the default values for the remaining parameters of the CPLEX. We note that an optimal

solution to Model PF1 is not guaranteed by setting a time limit for the CPLEX.

Table 6.5 presents the results of the three methods on the instances of benchmark T,

where the best values across the methods are highlighted. It is easily realised that the

ILS algorithm is performing very well on the larger instances, where it is the superior

algorithm for the 80 large instances (T-50-10-x to T-500-20-x).

Table 6.5 : Detailed comparison of the methods on the benchmark T.

Problem ILS IGABR CPLEX
size (n-m) NBest ARPD ARPT NBest ARPD ARPT NBest ARPD ARPT

20-5 5 0.06 0.86 10 0.00 0.86 10 0.00 1.28
20-10 3 0.03 0.64 10 0.00 0.64 10 0.00 1.72
20-20 5 0.01 0.65 10 0.00 0.65 10 0.00 1.71
50-5 4 0.03 0.00 3 0.04 0.00 5 0.05 2.99
50-10 8 0.02 0.01 0 0.09 0.01 3 0.10 2.99
50-20 9 0.02 0.01 0 0.09 0.01 1 0.06 2.98
100-5 9 0.01 0.01 1 0.08 0.01 0 0.18 2.99
100-10 10 0.01 0.01 0 0.17 0.01 0 0.32 2.98
100-20 10 0.01 0.02 0 0.16 0.02 0 0.32 2.95
200-10 10 0.01 0.02 0 0.13 0.02 0 0.54 2.95
200-20 10 0.01 0.05 0 0.16 0.05 0 0.52 2.90
500-20 10 0.00 0.12 0 0.10 0.12 0 0.36 2.77

Total 93 0.02 0.20 34 0.08 0.20 39 0.20 2.60

103

Table 6.6 presents the results of the methods on the instances of benchmark S. The best

values across the methods are highlighted. It is clear that the ILS algorithm is the superior

method for the larger instances, i.e., for the last 80 ones (S-50-5-x to S-60-20-x). The

average computation time for the solver CPLEX is more than 1800 seconds, while this is

less than 7 seconds for ILS and IGABR algorithms.

Table 6.6 : Detailed comparison of the methods on the benchmark S.

Problem ILS IGABR CPLEX
size (n-m) NBest ARPD ARPT NBest ARPD ARPT NBest ARPD ARPT

10-5 10 0.00 1.42 10 0.00 1.42 10 0.00 0.15
10-10 10 0.00 1.43 10 0.00 1.43 10 0.00 0.14
10-15 10 0.00 1.44 10 0.00 1.44 10 0.00 0.13
10-20 10 0.00 1.45 10 0.00 1.45 10 0.00 0.11
20-5 4 0.04 0.57 10 0.00 0.57 10 0.00 1.87
20-10 4 0.04 0.64 10 0.00 0.64 10 0.00 1.72
20-15 5 0.02 0.60 10 0.00 0.60 10 0.00 1.81
20-20 4 0.02 0.74 10 0.00 0.74 10 0.00 1.53
30-5 3 0.06 0.02 8 0.01 0.02 8 0.01 2.97
30-10 2 0.08 0.08 5 0.01 0.08 9 0.00 2.84
30-15 2 0.03 0.06 5 0.01 0.06 9 0.00 2.88
30-20 4 0.02 0.16 4 0.01 0.16 9 0.01 2.68
40-5 2 0.05 0.00 3 0.03 0.00 8 0.01 2.99
40-10 2 0.05 0.03 1 0.05 0.03 9 0.02 2.95
40-15 4 0.02 0.02 0 0.04 0.02 8 0.01 2.97
40-20 2 0.01 0.01 0 0.05 0.01 9 0.01 2.97
50-5 5 0.02 0.00 2 0.05 0.00 4 0.03 2.99
50-10 7 0.02 0.01 0 0.10 0.01 4 0.08 2.99
50-15 4 0.01 0.01 0 0.09 0.01 6 0.02 2.98
50-20 3 0.02 0.01 1 0.07 0.01 7 0.03 2.97
60-5 9 0.01 0.05 3 0.04 0.05 2 0.10 2.89
60-10 4 0.02 0.01 0 0.12 0.01 7 0.03 2.99
60-15 5 0.02 0.01 0 0.11 0.01 6 0.06 2.98
60-20 9 0.02 0.01 0 0.10 0.01 1 0.08 2.97

Total 124 0.02 0.37 112 0.03 0.37 186 0.02 2.27

The results of the three methods on the instances of benchmark L, which are reported

in Table 6.7, show the good performance of the ILS algorithm. We note that the ILS

algorithm outperforms both IGABR and CPLEX, in terms of solution time and quality.

Table 6.8 provides a summary of the computational results of the three methods.

Based on the metric NBest, the ILS is the best performing algorithm among all, because

it delivers the best solution for more than 75% of the instances. Also, quality of solutions

of the ILS algorithm is very good according to the metric ARPD. More precisely, the ILS

algorithm generates superior solutions than the IGABR algorithm, and that in the order

of almost 7 times. The quality of the ILS algorithm can be further observed in Figure 6.3,

where the RPDs of the methods are compared across the three benchmark sets. Since

104

Table 6.7 : Detailed comparison of the methods on the benchmark L.

Problem ILS IGABR CPLEX
size (n-m) NBest ARPD ARPT NBest ARPD ARPT NBest ARPD ARPT

100-20 10 0.01 0.02 0 0.16 0.02 0 0.35 2.95
100-40 10 0.01 0.05 0 0.13 0.05 0 0.47 2.90
100-60 10 0.00 0.07 0 0.11 0.07 0 0.42 2.86
200-20 10 0.00 0.05 0 0.16 0.05 0 0.59 2.90
200-40 10 0.01 0.09 0 0.14 0.09 0 0.58 2.81
200-60 10 0.00 0.14 0 0.12 0.14 0 0.47 2.73
300-20 10 0.00 0.07 0 0.13 0.07 0 0.57 2.86
300-40 10 0.01 0.14 0 0.12 0.14 0 0.46 2.73
300-60 10 0.01 0.20 0 0.10 0.20 0 0.39 2.61
400-20 10 0.00 0.09 0 0.11 0.09 0 0.43 2.81
400-40 10 0.01 0.18 0 0.09 0.18 0 0.37 2.65
400-60 10 0.00 0.25 0 0.09 0.25 0 0.37 2.50
500-20 10 0.01 0.12 0 0.09 0.12 0 0.45 2.77
500-40 10 0.00 0.21 0 0.10 0.21 0 0.32 2.57
500-60 10 0.01 0.30 0 0.08 0.30 0 0.34 2.40
600-20 10 0.00 0.14 0 0.07 0.14 0 0.35 2.73
600-40 10 0.01 0.25 0 0.11 0.25 0 0.39 2.50
600-60 10 0.01 0.35 0 0.10 0.35 0 0.35 2.31
700-20 8 0.00 0.16 2 0.06 0.16 0 0.33 2.69
700-40 10 0.00 0.28 0 0.10 0.28 0 0.29 2.43
700-60 10 0.01 0.39 0 0.08 0.39 0 0.36 2.22
800-20 7 0.01 0.18 3 0.05 0.18 0 0.27 2.65
800-40 9 0.01 0.32 1 0.06 0.32 0 0.29 2.37
800-60 10 0.00 0.43 0 0.08 0.43 0 0.31 2.14

Total 234 0.01 0.19 6 0.10 0.19 0 0.40 2.63

ILS and IGABR algorithms use the same time limit, the ARPT measure is similar for

both, and far better than that of the solver CPLEX. The Wilcoxon signed-rank test for

paired data with 95% confidence level is carried out on the RPDs of the three algorithms

(see Table 6.9), and confirms the quality of the ILS algorithm.

105

Table 6.8 : Metrics NBest, ARPD and ARPT for ILS, IGABR, and CPLEX.

Metric Benchmark ILS IGABR CPLEX

NBest

T 93 34 39
S 124 112 186
L 234 6 0
Sum 451 152 225

ARPD
T 0.02 0.08 0.20
S 0.02 0.03 0.02
L 0.01 0.10 0.40
Average 0.02 0.07 0.21

ARPT
T 0.20 0.20 2.60
S 0.37 0.37 2.27
L 0.19 0.19 2.63
Average 0.25 0.25 2.50

0.0

0.2

0.4

0.6

0.8

ILS IGA CPLEX ILS IGA CPLEX ILS IGA CPLEX

T S L

R
PD

Figure 6.3 : RPDs of the ILS, IGABR and the solver CPLEX.

Table 6.9 : Wilcoxon signed-rank test for RPDs of ILS, IGABR and CPLEX.

Benchmark Comparison
Wilcoxon signed-rank test
Test statistic p-value

T
ILS vs. IGABR 606 0.000
ILS vs. CPLEX 518 0.000

S
CPLEX vs. ILS 4993 0.005
ILS vs. IGABR 4485 0.001

L
ILS vs. IGABR 67 0.000
ILS vs. CPLEX 0 0.000

106

6.2 A relax-and-solve algorithm

We propose a relax-and-solve algorithm for the ordered flow-shop scheduling problem.

For that, we implement the model proposed by Wagner (1959) (denoted by Model PF2 in

the following), where binary decision variables zji take the value of 1 if job j is assigned to

position i ∈ J in the sequence, and 0 otherwise. Also, the non-negative decision variables

xri and yri are utilised to represent the idle time of machine r before starting the job in

position i, and the idle time of the job in position i after finishing its process on machine

r, respectively.

Model PF2

z = minCmax = min(
∑
j∈J

pmj +
∑
i∈J

xmi) (6.12)

subject to∑
j∈J

zji = 1, i ∈ J, (6.13)∑
i∈J

zji = 1, j ∈ J, (6.14)∑
j∈J

prjzj1 + xr1 + yr1 = xr+1,1, r ∈M \ {m}, (6.15)∑
j∈J

prjzj,i+1 + xr,i+1 + yr,i+1 =
∑
j∈J

pr+1,jzji

+ xr+1,i+1 + yri, i ∈ J \ {n}, r ∈M \ {m},
(6.16)

zji ∈ {0, 1}, i, j ∈ J, (6.17)

xri ≥ 0, yri ≥ 0, r ∈M, i ∈ J. (6.18)

The objective function (eq. (6.12)) minimises the makespan. The assignment con-

straints (6.13) and (6.14) ensure that each position is filled with only one job and exactly

one position is assigned to each job. The job-adjacency and the machine-linkage con-

straints presented in (6.15) and (6.16) ensure that the process of job in position i cannot

be started on machine r + 1 until its process on machine r is finished, and the process of

job in position i+ 1 cannot be started on machine r, until the process of the job in posi-

tion i on that same machine is finished. Constraints (6.17) and (6.18) ensure zji ∈ {0, 1},
xri ≥ 0 and yri ≥ 0.

We note that in our preliminary experiments, model PF2 performed better than model

PF1 for the proposed method of this study.

6.2.1 The proposed relax-and-solve method

We propose an efficient relax-and-solve (R&S) heuristic algorithm for the problem, as

summarized in Algorithm 11. We utilise the pyramidal-shaped property in the develop-

107

ment of the neighborhoods for the proposed R&S algorithm. In the following, we discuss

the components of the proposed R&S heuristic.

Algorithm 11: The R&S heuristic algorithm.

1 Input: The initial sequence π of performing the operations on the machines,
parameter K.

2 k := 1;
3 while the stopping condition is not met and k ≤ K do
4 Apply neighborhood k (Nk) to relax π′ ⊂ π;
5 Solve the problem by using an optimisation solver;

6 end
7 return The best obtained schedule (the solution);

Solution representation

As the problem under study is considered with the permutation assumption, any

sequence of executing the jobs on the machine is then feasible. Therefore, we present a

feasible solution by a sequence of jobs in positions 1 to n, i.e., a permutation, where job

J(i) represents the job in position i in the sequence; see Figure 6.4.

J(1) . . . J(i) . . . J(n)

Figure 6.4 : The solution representation in the proposed R&S algorithm.

Initial solution

The pair-insert heuristic algorithm (see Algorithm 8) is utilised to generate the initial

solution for the R&S algorithm.

6.2.2 Neighborhoods

The main body of the proposed R&S algorithm applies the relax operation by utilising

a set of neighborhoods. We develop three neighborhoods, each of which applies a unique

relaxation method that results in two relaxed subsets. Let π denote the complete sequence.

From π, two subsets π′
1, π

′
2 ⊂ π are selected to be relaxed, and that by letting variables

zji ∈ {0, 1}, ∀i ∈ π′
1 ∪ π′

2 (see Model PF2), i.e., letting Model PF2 decide on the values

of zji. For the remaining variables, i.e., zji, ∀i /∈ π′
1 ∪ π′

2, their values are kept as they

appear in π, i.e., those variables are treated as parameters. The solve operation consists

of solving Model PF2 by using an optimisation solver.

Selection of the relaxed subsets π′
1 and π′

2 results in new “smaller” optimisation prob-

lems that have fewer variables and constraints than Model PF2 associated with the original

108

problem. In addition, changing the relaxed subsets results in different optimisation prob-

lems. An optimisation problem generated in a neighborhood is hereafter called a “sub-

problem” of that neighborhood. For example, given π = (J(1), . . . , J(i′), J(i′+1), . . . , J(i′′),

J(i′′+1), . . . , J(n)), we generate a sub-problem where the decision variables related to J(1)

to J(i′) and J(i′′+1) to J(n) (i.e., zj1 to zji′ and zj,i′′+1 to zjn in Model PF2) are optimised.

We treat the decision variables related to J(i′+1) to J(i′′), i.e., zj,i′+1 to zji′′ as parameters.

Due to the pyramidal-shaped property, two equally-sized subsets π′
1 and π′

2 are relaxed

in each neighborhood. We denote the neighborhoods by N1, N2 and N3, and the size of

the subsets by n1, n2 and n3, associated with N1, N2 and N3, where, e.g., n1 denotes

the number of jobs that are relaxed in π′
1 (and also in π′

2) in N1. A certain number of

sub-problems is solved in each neighborhood, while ensuring that any part of the sequence

is subject to optimisation at least once within each neighborhood. The number of sub-

problems that are solved in each neighborhood N1, N2 and N3 is equal to ⌊ n
n1
⌋, ⌊ n

n2
⌋ and

⌊ n
n3
⌋. The mechanism of selecting π′

1 and π′
2 for each neighborhood is as follows. The

order of applying the neighborhoods will be discussed in Section 6.2.3.

Neighborhood N1 The pyramidal-shaped property of the problem is considered in the

mechanism of selecting π′
1 and π′

2 in N1. Let S1 = {1, . . . , ⌊ n
n1
⌋} be the set of all sub-

problems generated by N1. Then, π′
1 and π′

2 in the sub-problem s ∈ S1 are the sth and

the (⌊ n
n1
⌋ − s + 1)th parts of the sequence, respectively. We note that each part of the

sequence contains n1 jobs. As an example, for s = 1, π′
1 and π′

2 are the first and the last

n1 jobs, respectively, that means π′
1 includes jobs 1 to n1 and π′

2 includes jobs n−n1+1 to

n, as shown in Figure 6.5. The reason behind selecting N1 as the first neighborhood in the

algorithm is that the initial solution of the algorithm, that is obtained by the pair-insert

heuristic, is a pyramidal-shaped sequence.

J(1) . . . J(n1)
. . . J(n−n1+1) . . . J(n)

π′
1 π′

2

Figure 6.5 : Selection of π′
1 and π′

2 in the first sub-problem of N1.

Neighborhood N2 The mechanism of selecting π′
1 and π′

2 in N2 is similar to the rolling

horizon method. Let S2 = {1, . . . , ⌊ n
n2
⌋} be the set of all sub-problems generated by N2.

Then, π′
1 and π′

2 in the sub-problem s ∈ S2 are the sth and the (s + 1)th part of the

sequence, respectively. Similar to N1, each part of the sequence contains n2 jobs. For

example, for s = 1, π′
1 and π′

2 are the first and the second n2 jobs, respectively, implying

π′
1 includes jobs 1 to n2 and π′

2 includes jobs n2 + 1 to 2n2 (see Figure 6.6).

109

J(1) . . . J(n2) J(n2+1) . . . J(2n2)
. . . J(n)

π′
1 π′

2

Figure 6.6 : Selection of π′
1 and π′

2 in the first sub-problem of N2.

Neighborhood N3 The mechanism of selecting π′
1 and π′

2 in N3 is a disjoint version of

the mechanism used in N2. Precisely, let S3 = {1, . . . , ⌊ n
n3
⌋} be the set of all sub-problems

generated by N3. Then, π
′
1 and π′

2 in the sub-problem s ∈ S3 are the sth and the (s+2)th

part of the sequence, respectively. As in N1 and N2, each part of the sequence contains n3

jobs. As an example, for s = 1, π′
1 and π′

2 are the first and the third n3 jobs, respectively,

implying π′
1 includes jobs 1 to n3 and π′

2 includes jobs 2n3 + 1 to 3n3 (see Figure 6.7).

J(1) . . . J(n3)
. . . J(2n3+1) . . . J(3n3)

. . . J(n)

π′
1 π′

2

Figure 6.7 : Selection of π′
1 and π′

2 in the first sub-problem of N3.

Stopping criterion

Two stopping criteria are considered for the algorithm. First, a time-limit criterion

that works as follows is applied. Before searching each neighborhood, if the total elapsed

computation time exceeds the time limit T , the algorithm stops. Otherwise, the neigh-

borhood is completely explored. The second criterion terminates the algorithm if the

algorithm goes back to a visited neighborhood with no improvement in the objective

function. That is, if the best objective function is obtained in neighborhood k, and there

has been no improvement with other neighborhoods, the algorithm then stops. The rea-

son for applying this criterion is that if no improvement is gained in the neighborhoods

other than k, the algorithm returns to the same neighborhood where it reached the best

obtained solution. Although, because the sub-problems are heuristically solved by setting

the time-limit t for the solver, finding an improving solution in the same neighborhood is

unlikely.

6.2.3 Computational experiments

In this section we report the computational results of the proposed R&S algorithm on

benchmark T. Recall that R&S includes two time limits. The first time limit, denoted by

t, is for the solver Gurobi, i.e., Gurobi is allowed to spend t seconds on solving each sub-

problem. We set t = 20 because it leads to good quality solutions in a reasonable amount

of time. We observe that smaller or greater values of t led to poor quality solutions or

110

unnecessarily long run time for the algorithm. The second time limit, which we denote by

T , is the total time limit of R&S. Because of the different instance sizes (number of jobs

and machines) we consider parameter T = 2 × n × Tm, i.e., as a function of the number

of jobs and machines, where Tm = 0.8, 1.0, 1.2 for m = 5, 10, 20 is a machine-dependent

coefficient. We set the relaxation size of sub-problems, i.e., parameters n1, n2 and n3 to

15, 20 and 15 for N1, N2 and N3. We apply the neighborhoods in order N1, N2, N3 and

that for two times. We perform all computational experiments on the same PC mentioned

in Section 3.3.

Table 6.10 summarises the performance of three solution methods of R&S, ILS and

CPLEX (CPLEX, 2017). We compare the methods across three criteria of best, gap (in

%), and time (sec) (see Section 3.3).

Table 6.10 : Summary of the outcomes of different solution methods.

R&S ILS CPLEX

Best 51 85 39
Gap (%) 0.046 0.012 0.197
Time (seconds) 280.66 27.44 2694.25

According to Table 6.10, the performance of R&S is superior to solving Model PF2

with CPLEX, because R&S obtains a larger number of best solutions, and that with a

smaller gap. Both R&S and ILS methods have small values of gap, which are less than

0.05%. While the proposed R&S method does not outperform ILS, it has a promising per-

formance because R&S obtains the best solution in 51 of the instances. That corresponds

to about 42% of instances. This very good performance along with the straightforward

implementation of the proposed R&S method are among the main benefits of the R&S

algorithm. With respect to the computational time, the R&S time is almost 280 seconds

on average, that is small enough for real-world applications.

The instance size-wise analyses reported in Table 6.11, which shows that the perfor-

mance of R&S is reliable among different sizes of the instances, and even in large instances

its gap from the best solution is less than 0.09%.

Table 6.11 : Summary of the outcomes over different instance sizes.

R&S ILS CPLEX
Size Best Gap % Best Gap % Best Gap %

Small 38 0.031 33 0.022 39 0.029
Medium 13 0.056 42 0.002 0 0.365
Large 0 0.087 10 0.000 0 0.359

111

6.3 Flow-shops with coupled tasks

The flow-shop scheduling CTSP is a generalisation of no-wait flow-shop scheduling

in which an exact delay exists between the consecutive tasks of each job. The flow-

shop CTSP to minimise the makespan has been mostly studied for the two-machine case.

Leung et al. (2007) showed that the two-machine case can be solved in O(n log n) time

if all the delays are equal. However, the problem is not trivial if arbitrary delays are

considered. For example, Yu et al. (2004) showed that even if only two distinct values are

considered for the delays, then the problem is strongly NP -hard. This result holds even

for the case with unit execution time (UET) tasks. In this chapter, we first formulate

the problem as the traveling salesman problem in Section 6.3.1. In Section 6.3.2, we

find the optimal makespan for the two-machine case with distinct delays and show that

the problem becomes strongly NP -hard when there are more than two machines. We

devote Section 6.3.3 to studying the case with ordered delays, showing that an optimal

permutation schedule possesses the pyramidal-shaped property, and providing an O(n2)

dynamic program to solve the general problem and an O(n log n) procedure to solve the

case where the largest processing times occur on the first or the last machine. To the

best of our knowledge, our research is the first attempt that studies flow-shop CTSP on

an arbitrary number of machines with both distinct and ordered delays.

6.3.1 Properties of the problem

We now discuss several properties of the coupled task flow-shop scheduling problem.

First, we note that the coupled task flow-shop reduces to the no-wait flow-shop if Lrj =

0, ∀j ∈ J, r ∈ M \ {m}. Second, it is easy to see that only permutation schedules, in

which the processing orders of the jobs on all the m machines are the same, are feasible

for the no-wait flow-shop scheduling problem, whereas in the coupled task flow-shop, non-

permutation schedules can also be feasible. Therefore, an optimal schedule for the coupled

task flow-shop scheduling problem may not necessarily be a permutation schedule.

Table 6.12 : Data for problem I2×2.

Job p1j p2j L1j

1 1 2 3
2 2 3 6

Consider an instance with two machines and two jobs denote by problem I2×2. Ta-

ble 6.12 shows the data for problem I2×2. We show in Figure 6.8 the optimal makespan

for problem I2×2, under both permutation and non-permutation schedules. It is evident

that the non-permutation schedule (Figure 6.8b) yields a makespan of 11, which is better

than that under the permutation schedule, i.e., 12. We have the following lemma:

112

(a):
M2

M1

0 1 3 4 6 9 12

p11 p12

p21 p22

(b):
M2

M1

0 2 3 6 8 11

p12 p11

p21 p22

Figure 6.8 : The optimal permutation (a) and non-permutation (b) schedules for problem
I2×2.

Lemma 12. An optimal schedule for the coupled task flow-shop scheduling problem is not

necessarily a permutation schedule.

Proof. See the optimal schedule for problem I2×2 depicted in Figure 6.8.

In the rest of the section we only consider permutation schedules for the coupled

task flow-shop problem because the problem with non-permutation schedules is strongly

NP -hard even for the case with two machines, two distinct delays, and UET tasks (Yu

et al., 2004). Next, we formulate the coupled task flow-shop scheduling problem as the

traveling salesman problem (TSP), and develop some properties of the problem based on

the TSP formulation in Sections 6.3.2 and 6.3.3.

Baker and Trietsch (2013) showed that the n-job no-wait flow-shop scheduling problem

can be formulated as an (n + 1)-city TSP, where each city corresponds to a job and the

intercity distances correspond to the delays between the jobs. In addition, one dummy

city is added, from which the distances to all the other cities are zero and to which the

distance from city j is the sum of the processing times of job j. We formulate the coupled

task flow-shop scheduling problem as a TSP because the problem is a generalisation of

the no-wait flow-shop scheduling problem.

Let Djk be the delay in starting job k, measured from the starting time of job j, which

is calculated by

Djk = p1j +max

{
0, (p2j − p1k + L1j − L1k), (p2j + p3j − p1k − p2k+

L1j + L2j − L1k − L2k), . . . , (
m∑
r=2

prj −
m−1∑
r=1

prk +
m−1∑
r=1

Lrj −
m−1∑
r=1

Lrk)

}
, ∀j, k ∈ J.

(6.19)

In Equation (6.19), the delay in starting job k after job j in the sequence is composed of

two terms. The first term is the processing time of job j on the first machine since the

delay is calculated from the start time of job j. The second term calculates the maximum

113

delay incurred on the start time of job j on machines 2 to m. In addition, let Tj be the

distance from city j to the dummy city, i.e.,

Tj =
m∑
r=1

prj +
m−1∑
r=1

Lrj. (6.20)

Then, we show in Table 6.13 the distance matrix of the corresponding TSP. From the

distance matrix shown in Table 6.13, we see that a tour for the TSP corresponds to a

sequence of processing the jobs on the machines. The total cost of the tour is equivalent

to the makespan of the sequence.

Table 6.13 : The distance matrix of the TSP for the coupled task flow-shop problem.

- D12 D13 . . . D1n T1

D21 - D23 . . . D2n T2

. . .

. . .

. . .

Dn1 Dn2 Dn3 . . . - Tn

0 0 0 . . . 0 -

We can use a “reduced” distance matrix to simplify the TSP formulation of the coupled

task flow-shop scheduling problem. To this end, we define D′
jk and T ′

j via Equations (6.21)

and (6.22) as follows:

D′
jk = Djk − p1j, ∀j, k ∈ J, (6.21)

T ′
j = Tj − p1j, ∀j ∈ J. (6.22)

Replacing Djk with D′
jk, ∀j, k ∈ J , and Tj with T ′

j , ∀j ∈ J in Table 6.13, we obtain

the reduced distance matrix. It is noted that the TSP tour remains the same under

the reduced distance matrix. The optimal cost (makespan), however, is different by a

constant value, which is equal to
∑n

j=1 p1j. Next, we present our results for the coupled

task flow-shop problem with distinct delays.

6.3.2 Distinct delays

Recall that the coupled task flow-shop scheduling problem with non-permutation

schedules is strongly NP -hard even for the two-machine case. However, the two-machine

case with permutation schedules and identical delays is polynomially solvable (Gilmore

and Gomory, 1964; Leung et al., 2007). We generalise this result to the case with distinct

delays and show that it is polynomially solvable.

114

We first transform the case with distinct delays to the equivalent no-wait case, i.e., with

zero delays. We let P and P′ denote the cases with distinct and zero delays, respectively.

We set the processing time of each task in P′ as the processing time of the task in P

plus the amount of delay of the task. The incurred delays between the jobs, i.e., Djk,

are equal in both cases. First, observe that minimising the makespan for P′ is equivalent

to minimising the makespan for P. Second, it is clear that minimising the makespan is

equivalent to minimising the total idle time on either machine or, equivalently, minimising

the total idle time on both machines (Emmons and Vairaktarakis, 2012). We let I1 and I2

denote the total idle times on machines 1 and 2, respectively. Third, note that irrespective

of the processing times of P′, the values of idle times in both cases of P and P′ are equal.

Consider again problem I2×2. In the optimal schedule depicted in Figure 6.8a, I1 = 9

and I2 = 4+ 3 = 7. It follows that p′11 = p11 +L11 = 1+ 3 = 4, p′21 = p21 +L11 = 2+ 3 =

5, p′12 = p12+L12 = 2+6 = 8, and p′22 = p22+L12 = 3+6 = 9, where p′rj is the processing

time of job j on machine r in case P′. We show in Figure 6.9 the schedule for P′, which

is equivalent to the optimal schedule for case P.

M2

M1

0 4 9 12 21

p′11 p′12
p′21 p′22

Figure 6.9 : The equivalent no-wait schedule to the optimal schedule for case P.

Gilmore and Gomory (1964) provided an O(n log n)-time algorithm that finds the

optimal makespan for case P′. Therefore, it suffices to transform case P to case P′, as

stated in the following lemma.

Lemma 13. The two-machine CTSP with distinct delays and permutation schedules can

be transformed into an equivalent two-machine no-wait flow-shop scheduling problem.

Proof. Let p′rj = prj +L1j, ∀j ∈ J, r = 1, 2. Substituting them into Equation (6.19) yields

Djk = p1j + max{0, (p′2j − p′1k)}, ∀j, k ∈ J , which is indeed the definition of the no-wait

flow-shop problem given in Baker and Trietsch (2013). As a result, the case with distinct

delays and processing times prj is equivalent to the no-wait case with processing times

p′rj.

Lemma 13 results in Theorem 10.

Theorem 10. The optimal makespan for the two-machine coupled task flow-shop schedul-

ing problem with distinct delays and permutation schedules can be obtained in O(n log n)

time.

115

Proof. The result is clear because the transformation is performed in constant time (see

Lemma 13) and the two-machine no-wait flow-shop problem can be solved in O(n log n)

time by the algorithm of Gilmore and Gomory (1964).

We observe that Theorem 10 does not hold when there are more than two machines

(see the definition in Equation (6.19)). Indeed, the problem is not trivial for m > 2:

Theorem 11. The coupled task flow-shop scheduling problem with distinct delays and

permutation schedules is strongly NP -hard for m > 2.

Proof. We immediately deduce the result because the coupled task flow-shop problem is

a generalisation of the no-wait flow-shop problem, which is strongly NP -hard for m > 2

as shown in Röck (1984b).

In summary, the coupled task flow-shop scheduling problem with arbitrary processing

times and distinct delays is polynomially solvable if there are two machines and permuta-

tion schedules are considered. If there are more than two machines or if non-permutation

schedules are considered, the problem is strongly NP -hard. Next, we introduce an addi-

tional assumption for the processing times and delays, which leads to finding an optimal

solution for any number of machines in polynomial time.

6.3.3 Ordered delays

In this section we study the coupled task flow-shop problem with the additional as-

sumption of ordered processing times and delays. The following two conditions are satis-

fied for the ordered processing times assumption:

(i) for any two jobs j, k ∈ J , if prj < prk, r ∈M , then pqj ≤ pqk, ∀q ∈M ; and,

(ii) for any two machines r, q ∈M , if prk < pqk, k ∈ J , then prj ≤ pqj, ∀j ∈ J ,

where (i) is called the job-ordered condition and (ii) is called the machine-ordered condi-

tion. Following the job-ordered condition, we can rank the jobs by their processing times

as follows: We call job j smaller than job k, which is denoted by j < k, if the processing

time of job k on each machine is at least as large as that of job j on the same machine.

In case there are two identical jobs, we rank them by their job index.

We can show that the problem with ordered processing times and distinct delays is

strongly NP -hard even for the case with two machines. The proof follows from the case

with UET tasks, which satisfies the assumption of ordered processing times and is strongly

NP -hard (Yu et al., 2004). If delays are identical, however, the problem is polynomially

solvable (Gilmore and Gomory, 1964; Leung et al., 2007). So we consider the case with

ordered delays: If job j is smaller than job k, i.e., j < k, then the delay of job k after

completion on any machine r < m is at least as large as the delay of job j after completion

on the same machine. We formally state this condition as follows:

116

(iii) for any two jobs j, k ∈ J , if j < k, then Lrj ≤ Lrk, ∀r ∈M \ {m}.

Therefore, in addition to conditions (i) and (ii), the new condition (iii) ensures that

the delays are ordered as well. We call this case coupled task ordered flow-shop scheduling.

Observe from (iii) that the case with identical delays is a special case of ordered delays.

We present the reduced distance matrix of the TSP associated with the coupled task

ordered flow-shop scheduling problem via an example, which is denoted by problem I3×3.

Problem I3×3 consists of three jobs and three machines labelled as M1, M2, and M3.

Table 6.14 shows the data of problem I3×3.

Table 6.14 : The data for problem I3×3.

Job p1j p2j p3j L1j L2j

1 2 1 2 1 2
2 5 3 3 3 2
3 6 4 5 4 3

As shown in Table 6.14, the jobs are ordered as 1 < 2 < 3 and the machines are

ordered as M1 > M3 > M2. The delays are also ordered. Table 6.15 shows the reduced

distance matrix of the TSP associated with problem I3×3, where the values appearing in

the optimal tour are highlighted. The minimum makespan is equal to 27 and the optimal

job sequence is (3, 2, 1), which are depicted in Figure 6.10 and are obtained by solving

the TSP. We note that an instance of the TSP needs to be solved to find the optimal

sequence.

Table 6.15 : The reduced distance matrix of TSP for problem I3×3.

- 0 0 6
5 - 0 11
10 3 - 16
0 0 0 -

M1

M2

M3

0 6 9 10 14 17 19 20 21 22 23 25 27

p13 p12 p11
p23 p22 p21

p33 p32 p31

Figure 6.10 : The optimal schedule for problem I3×3.

Next, we derive an important property of an optimal sequence for the coupled task

ordered flow-shop scheduling problem, and then we find an optimal schedule for the

problem.

117

The pyramidal property

We show that the pyramidal-shaped property holds for an optimal sequence for the

coupled task ordered flow-shop scheduling problem. The pyramidal-shaped property im-

plies that the jobs can be partitioned into two disjoint sets, where the jobs in the first

set are sequenced in the SPT order and those in the second set follow the LPT order.

Without loss of generality, we assume that the largest job is in the first set. We start by

showing the following lemma.

Lemma 14. For any four jobs j, k ∈ J, j < k and i, l ∈ J , and i < l, D′
ki−D′

kl ≥ D′
ji−D′

jl.

Proof. We represent the elements of the reduced distance matrix as follows:

D′
jk = max{0, ζ1, . . . , ζm−1},

where ζ1 = (p2j − p1k + L1j − L1k), as defined in Equation (6.19), and so on for the rest

of the elements. By substitution, we have

max{0, A1, A2, . . . , Am−1} −max{0, B1, B2, . . . , Bm−1} ≥

max{0, C1, C2, . . . , Cm−1} −max{0, E1, E2, . . . , Em−1},
(6.23)

where A,B,C, and E represent the elements of D′
ki, D

′
kl, D

′
ji, and D′

jl, respectively. We

call two elements “similar” if they have the same index, e.g., A2 and B2, and “non-similar”

otherwise. It is evident that if all the four maximum terms are equal to zero, the lemma

holds. The lemma also holds if in D′
ki (or in D′

jl), the maximum term is larger than zero,

while the other three maximum terms are equal to zero. Therefore, we consider the case

where in D′
kl the maximum term is larger than zero, while the other three maximum terms

are equal to zero.

For that, suppose the second element is the largest, i.e., D′
kl = B1. The assumption results

in 0−B1 ≥ 0− 0, meaning that the lemma holds if and only if B1 ≤ 0. Suppose B1 > 0,

which leads to p2k − p1l + L1k − L1l > 0. Because i < l, we have p1i < p1l and L1i < L1l.

Therefore,

p2k − p1l + L1k − L1l > 0, =⇒ p2k + L1k > p1l + L1l,

=⇒ p2k + L1k > p1i + L1i, =⇒ p2k − p1i + L1k − L1i > 0. (6.24)

Observe that p2k − p1i + L1k − L1i is the second element, i.e., A1 in the first maximum

term. Based on our earlier assumption that the first maximum term is equal to zero, none

of its elements including A1 can be positive, so a contradiction. Similar calculations can

118

be performed for the other elements of D′
kl and D′

ji. Similarly, for the cases where two or

three maximum terms are equal to zero, the lemma can be shown to hold.

Now, let us consider the case where all of the maximum terms in inequality (6.23) are

larger than zero. We start with the case where similar elements are the largest in all

the four maximum terms. For example, consider the case where the second elements are

the largest in all the maximum terms. So we must show that A1 − B1 ≥ C1 − E1. By

expanding the terms, we obtain

(p2k − p1i + L1k − L1i)− (p2k − p1l + L1k − L1l) ≥

(p2j − p1i + L1j − L1i)− (p2j − p1l + L1j − L1l),
(6.25)

where all the elements are cancelled out on both sides and the lemma always holds. This

can also be shown for any other element. Now we consider the cases where the non-similar

elements are the largest. We start with the case where the largest elements in exactly

three of the terms are similar. For example, assume that B1, C1, and E1 are the largest

elements in their respective terms; however, A2 is the largest element of D′
ki, implying

that A2 ≥ A1, so

(p2k + p3k − p1i − p2i + L1k + L2k − L1i − L2i) ≥ (p2k − p1i + L1k − L1i)

=⇒ (p3k − p2i + L2k − L2i) ≥ 0.
(6.26)

It suffices to show that A2 − B1 ≥ C1 − E1. Expanding the terms, we obtain

(p2k + p3k − p1i − p2i + L1k + L2k − L1i − L2i)− (p2k − p1l + L1k − L1l) ≥

(p2j − p1i + L1j − L1i)− (p2j − p1l + L1j − L1l)

=⇒ (p3k − p2i + L2k − L2i) ≥ 0,

(6.27)

which holds because it follows from our assumption in inequality (6.26). Considering any

other largest term of A will lead to the same result. Similar calculations can be performed

for D′
jl.

We also show that the lemma holds if A1, C1, and E1 are the largest elements in their

respective terms, and B2 is the largest element in D′
kl. The latter leads to (p3k − p2l +

L2k − L2l) ≥ 0 following inequality (6.26). Expanding the terms, we obtain

(p2k − p1i + L1k − L1i)− (p2k + p3k − p1l − p2l + L1k + L2k − L1l − L2l) ≥

(p2j − p1i + L1j − L1i)− (p2j − p1l + L1j − L1l)

=⇒ −(p3k − p2i + L2k − L2i) ≥ 0,

(6.28)

which implies that either (p3k − p2i + L2k − L2i) = 0, where the lemma holds, or (p3k −

119

p2i + L2k − L2i) < 0, which is a contradiction to our assumption. Considering any other

largest term of B will lead to the same result, and we can apply a similar argument for

D′
ji. This completes the proof.

Noting that considering any other combination of the largest elements in the terms is

similar to one of the aforementioned cases, we omit the proof for brevity.

Lemma 14 leads to the following theorem.

Theorem 12. An optimal sequence for the coupled task ordered flow-shop scheduling

problem is in the pyramidal shape.

Proof. We claim that any non-pyramidal sequence is dominated by a pyramidal one.

Let π denote a pyramidal sequence for a set of n jobs, where job n is the largest job,

i.e., it has the longest processing time. It is clear that π = (a, . . . , l, n, k, . . . , b), where

a < · · · < l < n and n > k > · · · > b. Let π = πL ∪ πR, where πL = (a, . . . , l, n) and

πR = (k, . . . , b), i.e., we assume that job n is in πL. Any shuffling of the job order of either

πL or πR leads π to be a non-pyramidal sequence. Let π′ present such a non-pyramidal

sequence and π′
L correspond to the first part of the sequence, i.e., the sequence of the

jobs up to and including job n and π′
R denotes the second part of the sequence, i.e., the

sequence of the jobs after job n. We need to show that π is derivable from π′ and that

such a process does not increase the makespan, so the makespan of π′ is never better than

that of π.

In order to derive π from π′, we follow the rule of Arora and Rana (1980). We select the

next largest job in π′
L \ {n} and move it to a position before a job just larger than it in

the same sequence π′
L. We show that the move does not increase the makespan. Assume

that, at some stage, the tour associated with π′
L is

S ′
L = (n+ 1, 1, 2, . . . , a, j, b, . . . , c, j + 1, . . . , l, n),

where n + 1 and n are the dummy city and the largest job, respectively. Also, j is the

next largest job in π′
L\{n} and j+1 is the job larger than j. We denote the total distance

for tour S ′
L as z′L:

z′L = 0 +D′
12 + · · ·+D′

aj +D′
jb + · · ·+D′

c,j+1 + · · ·+D′
ln.

According to the rule, job j is moved to the position between jobs c and j + 1. Let z′′L =

0+D′
12+· · ·+D′

ab+· · ·+D′
cj+D′

j,j+1+· · ·+D′
ln denote the makespan obtained as the result

of the move. We need to show that z′L−z′′L = (D′
aj+D′

jb+D′
c,j+1)−(D′

ab+D′
cj+D′

j,j+1) ≥ 0.

Either of the following two cases is possible: (1) c > a or (2) c < a. We now show that in

both cases, the makespan either improves or remains the same.

120

Case 1: Assume that c > a. Adding and subtracting D′
cb to and from the inequality

z′L − z′′L = (D′
aj +D′

jb +D′
c,j+1 +D′

cb)− (D′
ab +D′

cj +D′
j,j+1 +D′

cb) ≥ 0 and re-arranging

the terms yields

(D′
cb −D′

cj) + (D′
aj −D′

ab) + (D′
jb −D′

j,j+1) + (D′
c,j+1 −D′

cb) ≥ 0.

Given that j + 1 > j, j > a, b, c, and c > a (as the underlying assumption of case 1), we

have

D′
cb −D′

cj ≥ D′
ab −D′

aj

and

D′
jb −D′

j,j+1 ≥ D′
cb −D′

c,j+1,

which hold due to Lemma 14. Hence, z′L − z′′L ≥ 0.

Case 2: Assume that c < a. Again after adding and subtracting D′
a,j+1 to and from the

inequality and re-arranging the terms, we have (D′
jb −D′

j,j+1) + (D′
a,j+1 −D′

ab) + (D′
aj −

D′
a,j+1) + (D′

c,j+1 −D′
cj). It follows that

D′
jb −D′

j,j+1 ≥ D′
ab −D′

a,j+1

and

D′
aj −D′

a,j+1 ≥ D′
cj −D′

c,j+1,

which hold due to Lemma 14, leading to z′L − z′′L ≥ 0. We note that similar calculations

can be performed for π′
R, i.e., to the LPT part of the non-pyramidal sequence π′. As a

result, any non-pyramidal sequence π′ is dominated by the pyramidal sequence π. This

completes the proof.

Theorem 12 is the basis for a polynomial-time algorithm to find the minimummakespan

for the coupled task ordered flow-shop scheduling that we propose in the next section.

The optimal makespan

We can find an optimal sequence for the coupled task ordered flow-shop scheduling

problem in O(n2) time. In addition, we show that, under certain conditions, we can find

an optimal sequence in O(n log n) time.

Theorem 13. The minimum makespan for the coupled task ordered flow-shop scheduling

problem can be found in O(n2) time.

Proof. We prove the theorem by noting that the problem can be formulated as a TSP

and that finding the shortest pyramidal tour in the TSP can be performed in O(n2) by

121

dynamic programming (Burkard et al., 1998; van der Veen and van Dal, 1991). The TSP

tour S = (n+ 1, a, . . . , l, n, k, . . . , b, n+ 1) associated with π is called a pyramidal tour if

the distances between cities a and l are in ascending order, i.e., a < · · · < l, and those

between k and b are in descending order, i.e., k > · · · > b.

Next, we prove that if the first or the last machine processes the largest job, which

we denote by Mmax
1 and Mmax

m , respectively, then an optimal sequence can be efficiently

found in O(n log n) time.

For the proof, we first present a few properties of the problem. We sort the jobs in

non-decreasing order of their processing times and re-label them accordingly.

Lemma 15. D′
kj ≥ D′

k,k−1 +D′
k−1,k−2 + · · ·+D′

j+1,j, ∀j, k ∈ J, j < k,Mmax
1 .

Proof. First, we consider j = k − 2, which leads to D′
k,k−2 ≥ D′

k,k−1 + D′
k−1,k−2. From

Equations (6.19) and (6.21), we have (p2k − p1,k−2 +L1k −L1,k−2) ≥ (p2k − p1,k−1 +L1k −
L1,k−1) + (p2,k−1− p1,k−2 +L1,k−1−L1,k−2) =⇒ p2,k−1− p1,k−1 ≤ 0, which is always true.

It is not difficult to show that the lemma holds for other values of j.

Lemma 16. T ′
2 − T ′

1 ≥ D′
21,M

max
1 .

Proof. Using Equations (6.20) and (6.22) and expanding T ′
2 and T ′

1, we obtain

T ′
2 − T ′

1 = (
m∑
r=1

pr2 +
m−1∑
r=1

Lr2 − p12)− (
m∑
r=1

pr1 +
m−1∑
r=1

Lr1 − p11) =

= (
m∑
r=2

pr2 −
m∑
r=2

pr1 +
m−1∑
r=1

Lr2 −
m−1∑
r=1

Lr1),

which is always non-negative since
∑m

r=2 pr2 ≥
∑m

r=2 pr1 and
∑m−1

r=1 Lr2 ≥
∑m−1

r=1 Lr1.

It is also clear that the right-hand side is non-negative and can be expanded as max{0, (p22−
p11+L12−L11), (p22+p32−p11−p21+L12+L22−L11−L21), . . . , (

∑m
r=2 pr2−

∑m−1
r=1 pr1+∑m−1

r=1 Lr2 −
∑m−1

r=1 Lr1)}.
We need to show that the left-hand-side is greater than or equal to every element inside

the maximum term. We start with the term (p22−p11+L12−L11). As the jobs are sorted

in non-decreasing order of their processing times, the left-hand-side is at least as large as

that term: (
∑m

r=2 pr2 −
∑m

r=2 pr1 +
∑m−1

r=1 Lr2 −
∑m−1

r=1 Lr1) ≥ (p22 − p11 +L12 −L11) =⇒
(
∑m

r=3 pr2 −
∑m

r=3 pr1) + (
∑m−1

r=2 Lr2 −
∑m−1

r=2 Lr1) ≥ 0, which is always true.

We can also show that the left-hand-side is greater than or equal to the next element as

well, i.e., (
∑m

r=2 pr2−
∑m

r=2 pr1+
∑m−1

r=1 Lr2−
∑m−1

r=1 Lr1) ≥ (p22+p32−p11−p21+L12+L22−
L11 −L21). This can be written as (

∑m
r=4 pr2−

∑m
r=4 pr1) + (

∑m−1
r=3 Lr2−

∑m−1
r=3 Lr1) ≥ 0,

which is also always true.

122

Similarly, we can show that the left-hand-side is at least as large as the other terms in

the maximum term of the right-hand side. This completes the proof.

We note that Lemma 16 can be further generalised to T ′
j − T ′

1 ≥ D′
j1, 2 ≤ j ≤ n,Mmax

1 ,

but we do not give the proof here for brevity. Observe that Lemmas 15 and 16 hold for

problem I3×3 and its reduced distance matrix, which is shown in Table 6.15. Lemmas 15

and 16 result in the following theorem.

Theorem 14. The minimum makespan for the coupled task ordered flow-shop scheduling

problem is obtained by the LPT sequence if Mmax
1 .

Proof. Due to the pyramidal-shaped property of the problem discussed in Theorem 12, it

suffices to show that the largest job is the first job in an optimal sequence. Suppose the

tour associated with the LPT sequence is

S = (n+ 1, n, n− 1, . . . , j, . . . , 2, 1, n+ 1),

where the total distance for the tour S, denoted as zS, is equal to

zS = 0 +D′
n,n−1 + · · ·+D′

j+1,j +D′
j,j−1 + · · ·+D′

21 + T ′
1.

To prove that the LPT sequence is optimal, we show that any change in tour S will

not improve the makespan. We first consider the case of constructing a new tour S ′ by

inserting a job j, ∀j ∈ J \ {n}, before the largest job n. We need to show that the total

distance of tour S ′ is at least as large as that of tour S. We consider the following two

cases.

Case 1. j > 1: zS′ is equal to

zS′ = 0 +D′
jn +D′

n,n−1 + · · ·+D′
j+1,j−1 + · · ·+D′

21 + T ′
1.

If we re-arrange the inequality zS′ ≥ zS, we obtain D′
jn+D′

j+1,j−1 ≥ D′
j+1,j+D′

j,j−1. From

Lemma 15, we have D′
j+1,j−1 ≥ D′

j+1,j +D′
j,j−1, so the inequality holds.

Case 2. j = 1: zS′ is equal to

zS′ = 0 +D′
1n +D′

n,n−1 + · · ·+D′
32 + T ′

2.

If we re-arrange the inequality zS′ ≥ zS, we obtain D′
1n+T ′

2 ≥ D′
21+T ′

1. From Lemma 16,

we have T ′
2 − T ′

1 ≥ D′
21, which means the inequality holds.

We can generalise this result by investigating the cases where more than one job are

inserted before job n. Assuming there are two jobs before n, that are jobs j, k, ∀j, k ∈
J \ {n}, we construct the new tour S ′ with regard to three cases:

123

Case 1. k > j > 1: zS′ is equal to

zS′ = 0 +D′
jk +D′

kn +D′
n,n−1 + · · ·+D′

j+1,j−1 + · · ·+D′
j+1,j−1 + · · ·+D′

21 + T ′
1.

If we re-arrange the inequality zS′ ≥ zS, we obtain D′
jk + D′

kn + D′
k+1,k−1 + D′

j+1,j−1 ≥
D′

j+1,j +D′
j,j−1 +D′

k+1,k +D′
k,k−1. From Lemma 15, we have D′

j+1,j−1 ≥ D′
j+1,j +D′

j,j−1

and D′
k+1,k−1 ≥ D′

k+1,k +D′
k,k−1, so the inequality holds.

Case 2. k > j = 1: zS′ is equal to

zS′ = 0 +D′
1k +D′

kn +D′
n,n−1 + · · ·+D′

k+1,k−1 + · · ·+D′
32 + T ′

2.

If we re-arrange the inequality zS′ ≥ zS, we obtain D′
1k +D′

kn +D′
k+1,k−1 + T ′

2 ≥ D′
k+1,k +

D′
k,k−1+D′

21+T ′
1. From Lemma 16, we have T ′

2−T ′
1 ≥ D′

21, and from Lemma 15 we have

D′
k+1,k−1 ≥ D′

k+1,k +D′
k,k−1 which means the inequality holds.

Case 3. k = 2, j = 1: zS′ is equal to

zS′ = 0 +D′
12 +D′

2n +D′
n,n−1 + · · ·+D′

43 + T ′
3.

If we re-arrange the inequality zS′ ≥ zS, we obtain D′
12 + D′

2n + T ′
3 ≥ D′

32 + D′
21 + T ′

1.

From the generalisation of Lemma 16, we have T ′
3 − T ′

1 ≥ D′
31, and from Lemma 15 we

have D′
31 ≥ D′

32 +D′
21 which means the inequality holds.

Inserting more than two jobs will also result in the same arguments. This completes

the proof.

We note that the SPT and LPT sequences can be obtained in O(n log n) time. The

following theorem shows that the SPT sequence minimises the makespan for the coupled

task ordered flow-shop scheduling problem if the largest job is processed on the last

machine.

Theorem 15. The minimum makespan for the coupled task ordered flow-shop scheduling

problem is obtained by the SPT sequence if Mmax
m .

Proof. We claim that the proof similar to the those presented in Smith et al. (1975) and

Panwalkar and Woollam (1979), and by noting that the case with Mmax
m is the reverse of

the case with Mmax
1 , where the route for executing the jobs is reversed. From the reverse

property of scheduling problems (McMahon and Burton, 1967), we see that the reverse

of an optimal sequence of the case Mmax
1 obtained by the LPT rule is the SPT sequence,

implying that the largest job is processed on the last machine.

Consider the problem I3×3. Observe that the mirror image of the LPT sequence

depicted in Figure 6.9 is the SPT sequence, which is optimal, and no job can start earlier.

124

To sum up, we showed that with arbitrary values for the delays, the two-machine

case with permutation schedules can be transformed into the equivalent no-wait case.

We demonstrated that the problem is polynomially solvable if there are only two ma-

chines, and is strongly NP -hard if there are more than two machines. We also introduced

the additional assumption of ordered delays and proved that under the ordered delay

assumption, an optimal sequence follows the pyramidal structure. We proposed a poly-

nomial dynamic program to solve the case. We further showed that if the largest task of

every job occurs on the first or the last machine, the LPT or SPT sequence is optimal,

respectively.

125

Chapter 7

Concluding remarks

In this chapter, a summary of the obtained results and the limitations of this study are

presented in Section 7.1, followed by future research directions presented in Section 7.2.

7.1 Limitations and Obtained results

This thesis focused on the coupled task scheduling problem (CTSP), with the main

aims of exploring the computational complexity, and proposing solution methodologies for

different variants of the problem. First, we conducted a comprehensive literature review

of the available results, and presented a complete evaluation of the available mathematical

models. We also proposed new publicly available benchmark data sets for several variants

of the CTSP, to be a basis for future researches on this topic. We also discussed the real-

world applications of the CTSP in detail. We then explored the computational complexity

of several variants of the problem, and also proposed several algorithms to efficiently solve

those variants. Our main contributions in this thesis can be summarized as following:

� Presenting a literature review of the coupled task problem (addressing aim [i]);

� Evaluating the available mathematical models for the single-machine and flow-shop

coupled task problems (addressing aim [i]);

� Proposing new benchmark instances for different variants of the coupled task prob-

lem (addressing aim [ii]);

� Proposing a new mathematical formulation for the single-machine coupled task

problem (addressing aim [iv]);

� Proposing two matheuristic algorithms for the single-machine coupled task problem

(addressing aim [iv]);

� Proposing dynamic program and a heuristic algorithm for the single-machine cou-

pled task problem with time-dependent processing times (addressing aim [iv]);

� Presenting NP -hardness proofs and polynomial algorithms for different variants of

the parallel identical machines with coupled tasks (addressing aim [iii]);

� Proposing approximation bounds for two parallel identical machines with coupled

tasks (addressing aim [iii]);

126

� Proposing approximation bounds for two-machine open-shop problem with coupled

tasks (addressing aim [iii]);

� Correcting/Improving available mathematical models for the flow-shop coupled task

problem (addressing aim [iv]);

� Proposing state-of-the-art algorithms for the ordered flow-shop problem (addressing

aim [iv]);

� Proposing new complexity results for several variants of the flow-shop problem with

coupled tasks (addressing aim [iii]).

Regarding the limitations of the study, aim [v] of the problem was to investigate how

the coupled task problem can model real-world healthcare appointment scheduling prob-

lems. Pursuing that aim, we had the goal of formulating the chemotherapy appointment

scheduling problem with real characteristics of the problem, e.g., the treatment time and

delays for the utilised regimens, gained from an outpatient clinic. However, due to the

long-term lock-down and restrictions imposed as the result of the COVID-19 pandemic,

we did not fulfilled that aim.

7.2 Future research directions

Although we conducted research on several variants of the CTSP, there are still many

open problems to be investigated. In the following we present three directions for future

research:

� The computational complexity of the identical case of the single-machine coupled

task problem, i.e., (a, L, b) is still open. As explained in Section 2.1.1, Ahr et

al. (2004) and Baptiste (2010) explored this case and proposed algorithms with fixed

inputs, however, it remains an open question whether the problem with arbitrary

inputs is polynomially solvable (extending aim [iii] of this research).

� The single-machine problem under due-date related objectives is not yet explored.

Resolving the computational complexity of those problems can be the initial step

in that regard. Particularly, resolving the computational complexity of the single-

machine problem with the objective of minimising the maximum lateness will pave

the way for the other due-date related criteria, e.g., minimising the number of tardy

jobs. Proposing solution algorithms for those problems will come as the next step

in this direction (extending aims [iii] and [iv] of this research).

� Studying the parallel-machine CTSP is important as it can be utilised in formulating

real-world healthcare appointment scheduling. This is due to the fact that many

127

healthcare clinics consists of a number of chairs/beds to service the patients, that can

be considered as a parallel-machine setting. The variability in the characteristics of

different clinics it warrants more research, specifically on formulating the problems

and developing efficient solution methodologies (exploring aim [v] of this research).

128

References

Ageev, A. (2019). “Approximating the 2-machine flow shop problem with exact delays

taking two values”. Journal of Global Optimization.

Ageev, A. A. (2018). “Inapproximately lower bounds for open shop problems with exact

delays”. Approximation and Online Algorithms. Springer International Publishing AG,

45–55.

Ageev, A. A. and Baburin, A. E. (2007). “Approximation algorithms for UET scheduling

problems with exact delays”. Operations Research Letters 35(4), 533 –540.

Ageev, A. A. and Ivanov, M. (2016). “Approximating coupled-task scheduling problems

with equal exact delays”. Discrete Optimization and Operations Research. Springer

International Publishing: Cham, 259–271.

Ageev, A. A. and Kononov, A. V. (2007). “Approximation algorithms for scheduling

problems with exact delays”. Approximation and Online Algorithms. Springer Berlin

Heidelberg, 1–14.

Ahmadian, M. M., Salehipour, A., and Cheng, T. (2021). “A meta-heuristic to solve the

just-in-time job-shop scheduling problem”. European Journal of Operational Research

288(1), 14–29.

Ahmadian, M. M., Salehipour, A., and Kovalyov, M. (2020). “An Efficient Relax-and-Solve

Heuristic for Open-Shop Scheduling Problem to Minimize Total Weighted Earliness-

Tardiness”. Available at SSRN 3601396.

Ahr, D., Békési, J., Galambos, G., Oswald, M., and Reinelt, G. (2004). “An exact al-

gorithm for scheduling identical coupled tasks”. Mathematical Methods of Operations

Research 59(2), 193–203.

Allahverdi, A. (2016). “A survey of scheduling problems with no-wait in process”. Euro-

pean Journal of Operational Research 255(3), 665 –686.

Amrouche, K. and Boudhar, M. (2016). “Two machines flow shop with reentrance and

exact time lag”. RAIRO-Operations Research 50(2), 223–232.

Amrouche, K., Boudhar, M., Bendraouche, M., and Yalaoui, F. (2017). “Chain-reentrant

shop with an exact time lag: new results”. International Journal of Production Re-

search 55(1), 285–295.

Arabameri, S. and Salmasi, N. (2013). “Minimization of weighted earliness and tardiness

for no-wait sequence-dependent setup times flowshop scheduling problem”. Computers

& Industrial Engineering 64(4), 902–916.

129

Arora, R. K. and Rana, S. P. (1980). “Scheduling in a semi-ordered flow-shop without

intermediate queues”. AIIE Transactions 12(3), 263–272.

Azadeh, A., Farahani, M. H., Torabzadeh, S, and Baghersad, M. (2014). “Scheduling

prioritized patients in emergency department laboratories”. Computer Methods and

Programs in Biomedicine 117(2), 61–70.

Baker, K. R. and Trietsch, D. (2013). Principles of sequencing and scheduling. John Wiley

& Sons.

Baptiste, P. (2010). “A note on scheduling identical coupled tasks in logarithmic time”.

Discrete Applied Mathematics 158(5), 583 –587.

Békési, J., Galambos, G., Jung, M. N., Oswald, M., and Reinelt, G. (2014). “A branch-and-

bound algorithm for the coupled task problem”. Mathematical Methods of Operations

Research 80(1), 47–81.

Békési, J., Galambos, G., Oswald, M., and Reinelt, G. (2009). “Improved analysis of an

algorithm for the coupled task problem with UET jobs”. Operations Research Letters

37(2), 93 –96.

Benavides, A. J. and Ritt, M. (2018). “Fast heuristics for minimizing the makespan in

non-permutation flow shops”. Computers & Operations Research 100, 230 –243.

Bessy, S. and Giroudeau, R. (2019). “Parameterized complexity of a coupled-task schedul-

ing problem”. Journal of Scheduling 22(3), 305–313.

Blazewicz, J., Ecker, K., Kis, T., Potts, C. N., Tanas, M., and Whitehead, J. (2010).

“Scheduling of coupled tasks with unit processing times”. Journal of Scheduling 13(5),

453–461.

Blazewicz, J., Pawlak, G., Tanas, M., and Wojciechowicz, W. (2012). “New algorithms

for coupled tasks scheduling - a survey”. RAIRO-Operations Research 46(4), 335–353.

Brauner, N., Finke, G., Lehoux-Lebacque, V., Potts, C., and Whitehead, J. (2009).

“Scheduling of coupled tasks and one-machine no-wait robotic cells”. Computers &

Operations Research 36(2), 301 –307.

Bürgy, R. and Gröflin, H. (2013). “Optimal job insertion in the no-wait job shop”. Journal

of Combinatorial Optimization 26(2), 345–371.

Bürgy, R. and Gröflin, H. (2017). “The no-wait job shop with regular objective: a method

based on optimal job insertion”. Journal of Combinatorial Optimization 33(3), 977–

1010.

Burkard, R. E., Deineko, V. G., van Dal, R., van der Veen, J. A. A., and Woeginger, G. J.

(1998). “Well-solvable special cases of the traveling salesman problem: a survey”. SIAM

review 40(3), 496–546.

Carlier, J. and Néron, E. (2003). “On linear lower bounds for the resource constrained

project scheduling problem”. European Journal of Operational Research 149(2), 314–

324.

130

Carvalho, I. A., Noronha, T. F., Duhamel, C., Vieira, L. F., and Santos, V. F. d. (2021). “A

fix-and-optimize heuristic for the minmax regret shortest path arborescence problem

under interval uncertainty”. International Transactions in Operational Research.

Chen, B. and Zhang, X. (2020). “Scheduling coupled tasks with exact delays for minimum

total job completion time”. Journal of Scheduling, 1 –13.

Chu, C. and Proth, J. (1996). “Single machine scheduling with chain: Structured prece-

dence constraints and separation time windows”. IEEE Transactions on Robotics and

Automation 12(6), 835–844.

Condotta, A. and Shakhlevich, N. (2012). “Scheduling coupled-operation jobs with exact

time-lags”. Discrete Applied Mathematics 160(16), 2370 –2388.

Condotta, A. and Shakhlevich, N. (2014). “Scheduling patient appointments via multilevel

template: A case study in chemotherapy”. Operations Research for Health Care 3(3),

129 –144.

CPLEX, I. I. (2017). version 12.8.0. Armonk, New York, U.S.

Darties, B., Giroudeau, R., König, J.-C., and Simonin, G. (2016). “Some complexity and

approximation results for coupled-tasks scheduling problem according to topology”.

RAIRO-Operations Research 50(4-5), 781–795.

Dell’Amico, M. (1996). “Shop problems with two machines and time lags”. Operations

Research 44(5), 777–787.

Dong, X., Huang, H., and Chen, P. (2008). “An improved NEH-based heuristic for the

permutation flowshop problem”. Computers & Operations Research 35(12), 3962 –

3968.

Dorneles, Á. P., Araújo, O. C. de, and Buriol, L. S. (2014). “A fix-and-optimize heuristic

for the high school timetabling problem”. Computers & Operations Research 52, 29–

38.

Dubois-Lacoste, J., Pagnozzi, F., and Stützle, T. (2017). “An iterated greedy algorithm

with optimization of partial solutions for the makespan permutation flowshop prob-

lem”. Computers & Operations Research 81, 160 –166.

Ecker, K and Tanaś, M (2012). “Complexity of scheduling of coupled tasks with chains

precedence constraints and any constant length of gap”. Journal of the Operational

Research Society 63(4), 524–529.

Elshafei, M., Sherali, H. D., and Smith, J. C. (2004). “Radar pulse interleaving for multi-

target tracking”. Naval Research Logistics (NRL) 51(1), 72–94.

Emmons, H. and Vairaktarakis, G. (2012). Flow shop scheduling: Theoretical results, al-

gorithms, and applications. Vol. 182. Springer Science & Business Media.

Fernandez-Viagas, V. and Framinan, J. M. (2014). “On insertion tie-breaking rules in

heuristics for the permutation flowshop scheduling problem”. Computers & Operations

Research 45, 60 –67.

131

Fernandez-Viagas, V., Ruiz, R., and Framinan, J. M. (2017). “A new vision of approximate

methods for the permutation flowshop to minimise makespan: State-of-the-art and

computational evaluation”. European Journal of Operational Research 257(3), 707 –

721.

Fondrevelle, J., Oulamara, A., Portmann, M.-C., and Allahverdi, A. (2009). “Permutation

flow shops with exact time lags to minimise maximum lateness”. International Journal

of Production Research 47(23), 6759–6775.

França, P. M., Gendreau, M., Laporte, G., and Müller, F. M. (1995). “The m-traveling

salesman problem with minmax objective”. Transportation Science 29(3), 267–275.

Friske, M. W., Buriol, L. S., and Camponogara, E. (2022). “A relax-and-fix and fix-

and-optimize algorithm for a Maritime Inventory Routing Problem”. Computers &

Operations Research 137, 105520.

Gawiejnowicz, S. (2008). Time-dependent scheduling. Springer Science & Business Media.

Giaro, K. (2001). “NP-hardness of compact scheduling in simplified open and flow shops”.

European Journal of Operational Research 130(1), 90 –98.

Gilmore, P. C. and Gomory, R. E. (1964). “Sequencing a one state-variable machine: A

solvable case of the traveling salesman problem”. Operations Research 12(5), 655–679.

Graham, R., Lawler, E., Lenstra, J., and Kan, A. R. (1979). “Optimization and approx-

imation in deterministic sequencing and scheduling: A survey”. Annals of Discrete

Mathematics 5, 287 –326.

Grimes, D. and Hebrard, E. (2015). “Solving variants of the job shop scheduling problem

through conflict-directed search”. INFORMS Journal on Computing 27(2), 268–284.

Gröflin, H. and Klinkert, A. (2007). “Feasible insertions in job shop scheduling, short

cycles and stable sets”. European Journal of Operational Research 177(2), 763–785.

Gupta, J. N. D. and Gupta, S. K. (1988). “Single facility scheduling with nonlinear pro-

cessing times”. Computers & Industrial Engineering 14(4), 387 –393.

Gurobi Optimization, L. (2018). Gurobi Optimizer Reference Manual.

Hamdi, I. and Loukil, T. (2017). “The permutation flowshop scheduling problem with

exact time lags to minimise the total earliness and tardiness”. International Journal

of Operational Research 28(1), 70–86.

Helber, S. and Sahling, F. (2010). “A fix-and-optimize approach for the multi-level ca-

pacitated lot sizing problem”. International Journal of Production Economics 123(2),

247–256.

Huo, Y., Li, H., and Zhao, H. (2009). “Minimizing total completion time in two-machine

flow shops with exact delays”. Computers & Operations Research 36(6), 2018 –2030.

Hwang, F. J. and Lin, B. M. T. (2011). “Coupled-task scheduling on a single machine

subject to a fixed-job-sequence”. Computers & Industrial Engineering 60(4), 690 –698.

132

Johnson, S. M. (1954). “Optimal two- and three-stage production schedules with setup

times included”. Naval Research Logistics Quarterly 1(1), 61–68.

Kalczynski, P. J. and Kamburowski, J. (2008). “An improved NEH heuristic to minimize

makespan in permutation flow shops”. Computers & Operations Research 35(9), 3001

–3008.

Khatami, M., Oron, D., and Salehipour, A. (2021a). “Scheduling coupled tasks on parallel

identical machines”. Submitted to Annals of Operations Research.

Khatami, M. and Salehipour, A. (2019). “A simple heuristic for the coupled task schedul-

ing problem”. MODSIM 2019. Canberra, Australia.

Khatami, M. and Salehipour, A. (2020). “A relax-and-solve algorithm for the ordered

flow-shop scheduling problem”. IEEE IEEM 2020. Singapore.

Khatami, M. and Salehipour, A. (2021a). “A binary search algorithm for the general

coupled task scheduling problem”. 4OR 19(4), 593–611.

Khatami, M. and Salehipour, A. (2021b). “Coupled task scheduling with time-dependent

processing times”. Journal of Scheduling 24, 223–236.

Khatami, M. and Salehipour, A. (2021c). “The coupled task scheduling problem: An

improved mathematical program and a new solution algorithm”. Submitted to Inter-

national Transactions in Operational Research.

Khatami, M., Salehipour, A., and Cheng, T. C. E. (2020). “Coupled task scheduling

with exact delays: Literature review and models”. European Journal of Operational

Research 282(1), 19 –39.

Khatami, M., Salehipour, A., and Cheng, T. C. E. (2021b). “Flow-shop scheduling with

exact delays to minimize makespan”. Submitted to Computers & Industrial Engineer-

ing.

Khatami, M., Salehipour, A., and Hwang, F. J. (2018). “Single-machine coupled task

scheduling with time-dependent processing times”. ASOR 2018. Melbourne, Australia.

Khatami, M., Salehipour, A., and Hwang, F. J. (2019). “Makespan minimization for them-

machine ordered flow shop scheduling problem”. Computers and Operations Research

111, 400–414.

Khatami, M. and Zegordi, S. H. (2017). “Coordinative production and maintenance

scheduling problem with flexible maintenance time intervals”. Journal of Intelligent

Manufacturing 28(4), 857–867.

Khorasanian, D. and Moslehi, G. (2017). “Two-machine flow shop scheduling problem

with blocking, multi-task flexibility of the first machine, and preemption”. Computers

& Operations Research 79, 94 –108.

Ladhari, T. and Haouari, M. (2005). “A computational study of the permutation flow shop

problem based on a tight lower bound”. Computers & Operations Research 32(7), 1831

–1847.

133

Lehoux-Lebacque, V., Brauner, N., and Finke, G. (2015). “Identical coupled task schedul-

ing: polynomial complexity of the cyclic case”. Journal of Scheduling 18(6), 631–644.

Leung, J. Y.-T., Li, H., and Zhao, H. (2007). “Scheduling two-machine flow shops with

exact delays”. International Journal of Foundations of Computer Science 18(02), 341–

359.

Li, H. and Zhao, H. (2007). “Scheduling coupled-tasks on a single machine”. IEEE Sym-

posium on Computational Intelligence in Scheduling, 137–142.

Lin, B. M. T., Lin, Y. Y., and Fang, K. T. (2013). “Two-machine flow shop scheduling

of polyurethane foam production”. International Journal of Production Economics

141(1), 286 –294.

Liu, M., Liu, X., Zheng, F., and Chu, F. (2017a). “Bi-objective optimization of a reen-

trant flow shop scheduling with exact time lag considering energy cost”. 7th Interna-

tional Conference on Industrial Engineering and Systems Management (IESM 2017).

Saarbrücken, Germany.

Liu, W., Jin, Y., and Price, M. (2017b). “A new improved NEH heuristic for permutation

flowshop scheduling problems”. International Journal of Production Economics 193,

21 –30.

Liu, Z., Lu, J., Liu, Z., Liao, G., Zhang, H. H., and Dong, J. (2019). “Patient scheduling

in hemodialysis service”. Journal of Combinatorial Optimization 37(1), 337–362.

Marinagi, C. C., Spyropoulos, C. D., Papatheodorou, C., and Kokkotos, S. (2000). “Con-

tinual planning and scheduling for managing patient tests in hospital laboratories”.

Artificial Intelligence in Medicine 20(2), 139–154.

Marmion, M.-E., Dhaenens, C., Jourdan, L., Liefooghe, A., and Verel, S. (2011). “NILS:

a neutrality-based iterated local search and its application to flowshop scheduling”.

European Conference on Evolutionary Computation in Combinatorial Optimization,

191–202.

Martello, S., Pisinger, D., and Toth, P. (1999). “Dynamic programming and strong bounds

for the 0-1 knapsack problem”. Management Science 45(3), 414–424.

MATLAB (2018). version 9.4.0 (R2018a). The MathWorks Inc.: Natick, Massachusetts,

U.S.

McMahon, G. and Burton, P. (1967). “Flow-shop scheduling with the branch-and-bound

method”. Operations Research 15(3), 473–481.

McNaughton, R. (1959). “Scheduling with deadlines and loss functions”. Management

Science 6(1), 1–12.

Meziani, N., Boudhar, M., and Oulamara, A. (2018). “PSO and simulated annealing

for the two-machine flowshop scheduling problem with coupled-operations”. European

Journal of Industrial Engineering 12(1), 43–66.

134

Meziani, N., Oulamara, A., and Boudhar, M. (2019). “Two-machine flowshop scheduling

problem with coupled-operations”. Annals of Operations Research 275(2), 511–530.

Minitab Statistical Software (2020). State College, PA: Minitab, Inc. Version 17.

Mitten, L. G. (1959). “Sequencing n jobs on two machines with arbitrary time lags”.

Management Science 5(3), 293–298.

Montgomery, D. C. (2017). Design and analysis of experiments. John wiley & Sons.

Mosheiov, G. (1994). “Scheduling jobs under simple linear deterioration”. Computers &

Operations Research 21(6), 653 –659.

Mosheiov, G., Oron, D., and Salehipour, A. (2021). “Coupled task scheduling with convex

resource consumption functions”. Discrete Applied Mathematics 293, 128–133.

Naeni, L. M. and Salehipour, A. (2019). “A new mathematical model for the traveling

repairman problem”. 2019 IEEE International Conference on Industrial Engineering

and Engineering Management (IEEM), 1384–1387.

Nawaz, M., Enscore, E. E., and Ham, I. (1983). “A heuristic algorithm for the m-machine,

n-job flow-shop sequencing problem”. Omega 11(1), 91 –95.

Orman, A. J. and Potts, C. N. (1997). “On the complexity of coupled-task scheduling”.

Discrete Applied Mathematics 72(1), 141 –154.

Osman, I. H. and Potts, C. N. (1989). “Simulated annealing for permutation flow-shop

scheduling”. Omega 17(6), 551 –557.

Panwalkar, S. S. and Woollam, C. R. (1979). “Flow shop scheduling problems with no

in-process waiting: A special case”. Journal of the Operational Research Society 30(7),

661–664.

Panwalkar, S. S. and Woollam, C. R. (1980). “Ordered flow shop problems with no in-

process waiting: Further results”. Journal of the Operational Research Society 31(11),

1039–1043.

Pérez, E., Ntaimo, L., Malavé, C. O., Bailey, C., and McCormack, P. (2013). “Stochastic

online appointment scheduling of multi-step sequential procedures in nuclear medicine”.

Health care management science 16(4), 281–299.

Pérez, E., Ntaimo, L., Wilhelm, W. E., Bailey, C., and McCormack, P. (2011). “Patient

and resource scheduling of multi-step medical procedures in nuclear medicine”. IIE

Transactions on Healthcare Systems Engineering 1(3), 168–184.

Pinedo, M. (2012). Scheduling. Vol. 29. Springer.

Ponnambalam, S. G., Aravindan, P., and Chandrasekaran, S. (2001). “Constructive and

improvement flow shop scheduling heuristics: An extensive evaluation”. Production

Planning & Control 12(4), 335 –344.

Potts, C. N. and Van Wassenhove, L. N. (1982). “A decomposition algorithm for the single

machine total tardiness problem”. Operations Research Letters 1, 177–181.

135

Potts, C. N. and Whitehead, J. D. (2007). “Heuristics for a coupled-operation scheduling

problem”. Journal of the Operational Research Society 58(10), 1375–1388.

Röck, H. (1984a). “Some new results in flow shop scheduling”. Zeitschrift für Operations

Research 28(1), 1–16.

Röck, H. (1984b). “The three-machine no-wait flow shop is NP-complete”. Journal of the

ACM 31(2), 336–345.

Ruiz, R. and Stützle, T. (2007). “Robust scheduling of a two machine flow shop with

uncertain processing times”. European Journal of Operational Research 177, 2033 –

2049.

Ruiz, R. and Maroto, C. (2005). “A comprehensive review and evaluation of permutation

flowshop heuristics”. European Journal of Operational Research 165(2), 479 –494.

Sahni, S. and Cho, Y. (1979). “Complexity of scheduling shops with no wait in process”.

Mathematics of Operations Research 4(4), 448–457.

Salehipour, A. (2020). “An algorithm for single- and multiple-runway aircraft landing

problem”. Mathematics and Computers in Simulation 175, 179–191.

Shapiro, R. D. (1980). “Scheduling coupled tasks”. Naval Research Logistics Quarterly

27(3), 489–498.

Sherali, H. D. and Smith, J. C. (2005). “Interleaving two-phased jobs on a single machine”.

Discrete Optimization 2(4), 348 –361.

Simonin, G., Darties, B., Giroudeau, R., and König, J.-C. (2011a). “Isomorphic coupled-

task scheduling problem with compatibility constraints on a single processor”. Journal

of Scheduling 14(5), 501–509.

Simonin, G., Giroudeau, R., and König, J.-C. (2011b). “Complexity and approximation

for scheduling problem for a torpedo”. Computers & Industrial Engineering 61(2), 352

–356.

Simonin, G. (2009). “L’impact de I’introduction du graphe de compatibilité dans les

problèmes d’ordonnancement en présence de tâches-couplées”. PhD thesis. Montpel-

lier, France: Universite de Montpellier II.

Simonin, G., Giroudeau, R., and König, J.-C. (2013). “Approximating a coupled-task

scheduling problem in the presence of compatibility graph and additional tasks”. In-

ternational Journal of Planning and Scheduling 1(4), 285–300.

Smith, M. L., Panwalkar, S. S., and Dudek, R. A. (1975). “Flowshop sequencing problem

with ordered processing time matrices”. Management Science 21(5), 544–549.

Smith, M. L., Panwalkar, S. S., and Dudek, R. A. (1976). “Flowshop sequencing prob-

lem with ordered processing time matrices: A general case”. Naval Research Logistics

Quarterly 23(3), 481–486.

Smith, M. L. (1968). “A critical analysis of flow-shop sequencing”. PhD thesis. Texas Tech

University.

136

Stützle, T. (1998). “Applying iterated local search to the permutation flow shop problem”.

FG Intellektik, TU Darmstadt, Darmstadt, Germany.

Stützle, T. and Ruiz, R. (2018). “Iterated Local Search”. Handbook of Heuristics. Ed. by

R. Mart́ı, P. M. Pardalos, and M. G. C. Resende. Springer International Publishing:

Cham, 579–605.

Taillard, E. (1990). “Some efficient heuristic methods for the flow shop sequencing prob-

lem”. European Journal of Operational Research 47(1), 65 –74.

Taillard, E. (1993). “Benchmarks for basic scheduling problems”. European Journal of

Operational Research 64(2), 278 –285.

Talbi, E. G. (2009). Metaheuristics: From design to implementation. John Wiley & Sons.

Tseng, F. T., Stafford Jr., E. F., and Gupta, J. N. D. (2004). “An empirical analysis

of integer programming formulations for the permutation flowshop”. Omega 32, 285

–293.

Vallada, E., Ruiz, R., and Framinan, J. M. (2015). “New hard benchmark for flow-

shop scheduling problems minimising makespan”. European Journal of Operational

Research 240(3), 666 –677.

van der Veen, J. A. A. and van Dal, R. (1991). “Solvable cases of the no-wait flow-shop

scheduling problem”. Journal of the Operational Research Society 42(11), 971–980.

Wagner, H. M. (1959). “An integer linear-programming model for machine scheduling”.

Naval Research Logistics Quarterly 6, 131 – 140.

Watson, J.-P., Barbulescu, L., Whitley, L. D., and Howe, A. E. (2002). “Contrasting struc-

tured and random permutation flow-shop scheduling problems: Search-space topology

and algorithm performance”. INFORMS Journal on Computing 14(2), 98–123.

Wilson, J. M. (1989). “Alternative formulations of a flow-shop scheduling problem”. Jour-

nal of the Operational Research Society 40(4), 395–399.

Yu, W., Hoogeveen, H., and Lenstra, J. K. (2004). “Minimizing makespan in a two-

machine flow shop with delays and unit-time operations is NP-hard”. Journal of

Scheduling 7(5), 333–348.

Zhang, X. and Van De Velde, S. (2010). “Polynomial-time approximation schemes for

scheduling problems with time lags”. Journal of Scheduling 13(5), 553–559.

	Title Page
	Certificate of Authorship / Originality
	Abstract
	Dedication
	Acknowledgements
	List of Publications
	Contents
	List of Figures
	List of Tables
	Introduction
	Definitions, scope and classification
	Research aims
	Thesis Organisation

	Literature review and applications
	Literature review
	The single-machine scheduling problem
	The shop scheduling problem

	Applications

	Benchmarks and mathematical models
	Benchmark instances
	Previous instance generation schemes
	The single-machine CTSP
	The shop CTSP

	Mathematical models
	The single-machine models
	The flow-shop models

	Performance evaluation of models

	Coupled tasks on a single-machine
	Time-dependent scheduling
	Problem definition
	Minimising the makespan
	Lower bound
	Computational experiments

	Binary search algorithm
	Lower bound
	Upper bound
	The feasibility problem
	Computational experiments

	Proposed new formulation
	Removing existing constraints
	Introducing new constraints
	The enhanced mixed-integer program

	The relax-and-solve algorithm
	Solution representation
	The initial sequence
	Pre-processing
	Relax and solve operations

	Computational experiments

	Coupled tasks on parallel machines
	NP-hardness proof
	Approximation results
	Optimal schedule for Pm|(a,L,b)|Cmax and Pm|(p,L,p)|Cmax
	Problem Pm|(a,L,b)|Cmax
	Problem Pm|(p,L,p)|Cmax

	Coupled tasks on flow-shops
	Ordered flow-shops
	Problem definition and formulation
	Proposed solution methods
	Computational experiments

	A relax-and-solve algorithm
	The proposed relax-and-solve method
	Neighborhoods
	Computational experiments

	Flow-shops with coupled tasks
	Properties of the problem
	Distinct delays
	Ordered delays

	Concluding remarks
	Limitations and Obtained results
	Future research directions

	References

