Phytochemical Investigation of Traditional Bangladeshi Medicinal Plants

by Bishwajit Bokshi

Thesis submitted in fulfilment of the Doctor of Philosophy (**PhD**) requirements

under the supervision of A/Prof. Alison Ung A/Prof. Hui Chen & Senior Lecturer Dr. Mehra Haghi

University of Technology Sydney (UTS) School of Mathematical and Physical Sciences (MAPS) Faculty of Science

19/05/2022

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Bishwajit Bokshi, declare that this thesis has been submitted to fulfill the requirements for obtaining PhD in the Faculty of Science, School of MAPS, UTS, Sydney.

This thesis paper is entirely my work unless specifically referenced or acknowledged. It also ensures that all sources and literature used are revealed in the thesis.

This work has not been submitted so far for qualification at any other educational institution.

This research is supported by the Australian Government Research Training Program.

Signature:

Production Note: Signature removed prior to publication.

Date: 19/05/2022

ACKNOWLEDGEMENTS

PhD is a long journey and the journey cannot be completed without the help, guidance, generosity of others. However, it is really tough to mention everyone's name individually. Still, I would like to mention some words without which I would not feel good.

Firstly, I would like to express profound gratitude to my principal supervisor A/Prof Alison Ung, UTS Sydney, without whom this project would not see the light of completion even any shape. A/Prof Alison Ung, you supported, guided, mentored in many ways through my last about 4 years. No words will be enough to express my deep gratitude to you for the efforts you played in my PhD. I will remember your great intellectual input, constructive guidance, vision, intuitive advice, inspiration, and patience throughout my PhD.

My sincere gratitude to my co-supervisor, A/Prof Hui Chen, for her insightful remarks and advice, constructive criticism and warm encouragement, meaningful discussions, and motivational guidance throughout this project.

I am also candidly grateful to my other co-supervisor senior lecturer Mehra Haghi, UTS, for her advice, motivational mentoring, and technical assistance with the cell biology assays.

My special thanks to Dr Ronald Shimmon, Dr Verena Taudte, Dr Dayanne Bordin, Dr Linda Xiao, and Dr Alexander Angeloski of MAPS for their timely assistance with the use of GC, HPLC, NMR, IR, and HRESIMS.

Dr Jason Ashmore assisted me in measuring the optical rotation of my three pure compounds and analysing NMR data, without which my research output could not be concluded, and that is why I am indebted to him.

Dr. Luke Beebe, who assisted me in the cell biology lab and operating the microplate reader, deserves special thanks.

I am grateful to A/Prof Louise Cole, Christian Evenhuis, Dr Michael Johnson, and Dr Amy Bottomley for their help in the MIF lab for imaging and data processing of the lipid accumulation assay.

I took help from the C3 team in using the HPLC facilities to separate two pure phytochemicals and cordial thanks to them, especially Taya Lapshina.

I mention Hugh Hiscocks and Anjar Asmara for their friendship and help. Working with this friendly group has been a wonderful experience. It is insufficient for me to express my gratitude to both of them for their help to prepare the stage 3 presentation and for constructive feedback, comments, and ideas. Special thanks go to the lab-mates of 04.05.531 for making it a pleasant place to work.

Sunita Nilkhet, Behjat Sheikholeslamibourghanifarahani, and Varsha Komalla helped and supported me in learning cell culture techniques and data analysis, and I would like to thank all of you from the core of my heart.

I would like to thank Dr Jane Ng, Dr. Yik Chan, Gerard Li, and Baoming Wang for helping me develop the glucose uptake assay and nuclei counting by the Hoechst staining method.

Deep gratitude to UTS for awarding me the IRTP Scholarship, which favoured me to complete my PhD program smoothly.

I am grateful to my working university authorities, Khulna University, Bangladesh, for granting me a study leave to pursue this degree. Also, special thanks to my colleagues there who helped me anyways in this challenging time.

I want to express my special thanks to my friends, family, and relatives. I am deeply grateful to my parents for this precious life and for all their support, selfless love, and encouragement throughout my wonderful journey.

I would like to express my gratitude to the Australian Govt and its people for their economic support, kindness, and compassion. Finally, I am grateful to Almighty God for the sound health and well-being essential to completing this project.

Impact of Covid-19 on research

The COVID-19 lockdown in two phases has created challenges regarding my project progress. With the lockdown, I experienced delays with the delivery of chemicals and reagents for biological assays. There were other obstacles to accessing the laboratories, university-provided software, and technical assistance required for my experiments. At first, the lockdown was received with optimism, to focus on writing and research. However, as the lockdown prolonged, the pressure and stress began to increase. The extended period at home provided obstacles and challenges that were deeply underestimated. I have lost approximately 3 months during a core period of my tenure, with which I would have delivered a better outcome. I am thankful for the encouragement and support I received from supervisors and team members during this time.

Table of content

CERTIFICATE OF ORIGINAL AUTHORSHIP	i
ACKNOWLEDGEMENTS	ii
Impact of Covid-19 on research	iv
List of Abbreviations	10
Abstract	12
Chapter 1: Introduction	14
1.1 Overview of Diabetes	14
1.2 Type 2 Diabetes (T2D)	14
1.2.1 Glucose regulation	14
1.2.2 Pathophysiology of T2D	15
1.2.2.1 Insulin resistance (IR)	15
1.2.2.2 Role of β-cell in T2D	18
1.3 Current therapies for T2D	18
1.4 Management of diabetes using medicinal plants	23
1.5 Bioactive natural products with antidiabetic properties	26
Chapter 2: Selection of medicinal plants, rationale and objectives of the study	37
2.1 Overview of selected medicinal plants	37
2.1.1 Andrographis paniculata	37
2.1.1.1 Ethnobotanical Uses of A. paniculata	
2.1.1.2 Phytochemicals of A. paniculata	
2.1.1.3 Safety of A. paniculata	42
2.1.2 Clerodendrum viscosum	44
2.1.2.1 Ethnobotanical Uses of C. viscosum	44
2.1.2.2 Phytoconstituents isolated from C. viscosum	45
2.1.2.3 Safteyty of C. viscosum	48
2.2 Rationale of the study	49
2.3 Objectives of the study	50
Chapter 3: Results and discussion of phytochemistry	51
3.1 Results and discussion: Phytochemistry of A. paniculata	51
3.1.1 Preparation of <i>A. paniculata</i> crude extracts	51
3.1.2 Chlorophyll removal and acid-base fractionation of A. paniculata crude extract	51

3.1.3 GC-MS analysis and identification of volatile components present in acid (APFA), basic
(APFB), and neutral fraction (APFN) of <i>A. paniculata</i>
3.1.4 Purification of the neutral fraction <i>A. paniculata</i> crude extract
3.1.5 Structure elucidation of pure compounds isolated from <i>A. paniculata</i>
3.1.5.1 Structure elucidation of A160
3.1.5.2 Structure elucidation of D169
3.1.5.3 Structure elucidation of D2
3.2 Result and discussion: Phytochemicals of C. viscosum
3.2.1 Preparation of <i>C. viscosum</i> crude extract
3.2.2 Chlorophyll removal and acid-base fractionation of C. viscosum crude extract
3.2.3 GC-MS analysis and identification of volatile components present in acid (CVFA), basic
(CVFB), and neutral fraction (CVFN) of C. viscosum
3.2.4 Purification of the neutral fraction <i>C. viscosum</i> crude extract94
Chapter 4: Results and discussion of Biological study97
4.1 Result and discussion (A. paniculata)97
4.1.1 Cell viability of 3T3-L1 preadipocytes treated with A. paniculata fractions and pure
compounds97
4.1.2 Cell viability of 3T3-L1 adipocytes treated with A. paniculata fractions and pure
compounds
4.1.3 Insulin mediated glucose uptake by A. paniculata fractions and pure compounds treated
3T3-L1 adipocytes
4.1.4 Lipid accumulation activity of three fractions of A. paniculata ethanol crude extract and
pure compounds by Oil Red O staining110
4.1.5 In vitro α-glucosidase enzyme inhibition of A. paniculata fractions and pure compounds
4.2 Result and discussion (<i>C. viscosum</i>)
4.2.1 Cell viability of 3T3-L1 preadipocytes treated with <i>C. viscosum</i> fractions127
4.2.2 Cell viability of 3T3-L1 adipocytes treated with C. viscosum fractions
4.2.3 Insulin mediated glucose uptake by <i>C. viscosum</i> fractions treated
3T3-L1 adipocytes
4.2.4 Lipid accumulation activity of three fractions of C. viscosum by Oil Red O staining .134
4.2.5 <i>In vitro</i> α-glucosidase enzyme inhibition of <i>C. viscosum</i>
Chapter 5: Conclusion and future direction140
Chapter 6: Experimental methods142

6.1 Chemistry of A. paniculata and C. viscosum
6.1.1 General Experimental Procedures for A. paniculata and C. viscosum
6.1.2 Plant materials collection and crude extracts preparation from A. paniculata and C.
viscosum
6.1.2.1 Chlorophyll removal and acid-base fractionation of A. paniculata crude extract 143
6.1.2.2 GC-MS analysis and identification of volatile components present in APFA, APFB,
and APFN145
6.1.2.3 Purification of the neutral crude fraction A. paniculata (APFN)145
6.1.2.4 Structure elucidation of pure compounds145
6.1.2.5 Chlorophyll removal and acid-base fractionation of C. viscosum crude extract 147
6.1.2.6 GC-MS analysis and identification of volatile components present in CVFA, CVFB,
and CVFN148
6.1.2.7 Purification of the neutral fraction C. viscosum crude extract
6.2 In vitro study of the effect of crude fractions of A. paniculata, C. viscosum, and pure
compounds151
6.2.1 Cell culture and treatments
6.2.1.1 Materials
6.2.1.2 Cell culture
6.2.1.3 Cell differentiation
6.2.2 Cell viability of premature 3T3-L1 adipocytes treated with crude fractions and pure
compounds154
6.2.3 Cell viability of Mature 3T3-L1 adipocytes treated with crude fractions and pure
compounds154
6.2.4 Insulin mediated glucose uptake by Mature 3T3-L1 adipocytes treated with crude
fractions and pure compounds154
6.2.5 Lipid accumulation activity of crude fractions and pure compounds by Oil Red O staining
6.2.6 In vitro α -glucosidase enzyme inhibition of crude fractions and pure compounds156
6.2.7 Statistical analysis
References
Appendix

List of Figures

Figure 1.1 Mechanism of IR
Figure 1.2 Pathophysiological abnormalities in T2D and treatment with available therapies.19
Figure 1.3 Chemical structures of metformin, and pioglitazone
Figure 1.4 Chemical structure of sitagliptin
Figure 1.5 Chemical structure of glibenclamide21
Figure 1.6 Chemical structures of acarbose, voglibose, and dapagliflozin
Figure 1.7 Chemical structure of glucomannan25
Figure 1.8 Chemical structures of chlorogenic acid and β-glucan25
Figure 1.9 Chemical structures of quercetin and rutin
Figure 1.10 Chemical structures of naringin and hesperidin
Figure 1.11 Chemical structures of polyphenols: epigallocatechin gallate, resveratrol, and
curcumin
Figure 1.12 Chemical structures of abscisic acid, oleanolic acid, and genipin
Figure 1.13 Chemical structure of diosgenin
Figure 1.14 Chemical structures of ginsenoside compound K, and ginsenoside Rg133
Figure 1.15 Chemical structure of mangiferin
Figure 1.16 Chemical structures of berberine, jatrorrhizine, and tetrandrine
Figure 1.17 Chemical structures of heliotrine, echimidine, and senecionine
Figure 2.1 Image of <i>A. paniculata</i>
Figure 2.2 Chemical structures of andrographolide, 14-deoxyandrographolide, and 14-deoxy
Figure 2.3 Chemical structures of andrograpanin, andropanolide, bisandrographolide A, and neoandrographolide
Figure 2.4 Chemical structures of apigenin, 7-O-methylwogonin, and luteolin
Figure 2.5 Chemical structures of 1,2-dihydroxy-6,8-dimethoxyxanthone, 1,8-dihydroxy-3,7-
dimethoxyxanthone, 3,7,8-trimethoxy-1hydroxyxanthone, and 4,8-dihydroxy-2,7-
dimethoxyxanthone
Figure 2.6 Chemical structure of 3,4-dicaffeoylquinic acid
Figure 2.7 Image of C. viscosum
Figure 2.8 Chemical structures of acteoside and leucoseptoside A46
Figure 2.9 Chemical structures of steroids: clerodone, clerodolone, clerodol, and clerosterol.

Figure 2.10	Chemical structures	of apigenin,	apigenin	7-O-glucuronide,	and scutellarin	47
Figure 2.11	Chemical structure	of ellagic aci	d			48

Figure 3.1.1	Flow	diagram	consisting	of the	amount	of extract	or pure	compounds	obtained
from A. pan	iculata								59

Figure 3.2.1 1H COSY NMR spectrum of A1, showing the connectivities: H9-H11-H12 (in
blue) and H14–H15 (in green)61
Figure 3.2.2 1H COSY NMR spectrum of A1, showing the connectivities: H1-H2-H3 (in
blue), H5–H6–H7 (in green)61
Figure 3.2.3 HSQC NMR spectrum of A1 (Part 1)62
Figure 3.2.4 HSQC NMR spectrum of A1 (Part 2)62
Figure 3.2.5 HMBC NMR of A1, showing the key correlation and linkage: H ₂ -2, H ₃ -18 and
H ₂ -19 to C-4 (in red); H ₂ -2, H ₂ -6, H ₃ -20 and H-5 to C-10 (in black); H-7 and H-11 to C-8 (in
blue); H-11 to C-14 (in violet); H-15 and H-12 to C-16 (in green)63
Figure 3.2.6 (a) Numbering of A1 and (b) Selected key COSY (bold red bonds) and HMBC
(blue arrows) correlations for A164
Figure 3.2.7 NOESY NMR spectrum of A1, showing the key cross-peaks between H-3, and H-
5, H-9 and H-18 and between H-11, H-19 and H-2067
Figure 3.2.8 Chemical structure of A1 with relative stereochemistry

Figure 3.3.1 1H COSY NMR spectrum of D1, showing the connectivities: H9–H11–H12 (in
blue) and H14-H15 (in green) and70
Figure 3.3.2 1H COSY NMR spectrum of D1, showing the connectivities: H1-H2-H3 (in blue)
and H5-H6-H7 (in green)70
Figure 3.3.3 HSQC NMR spectrum of D1 (Part 1)71
Figure 3.3.4 HSQC NMR spectrum of D1 (Part 2)71
Figure 3.3.5 HMBC NMR of D1, showing the correlation and linkage: H ₂ -11, H ₂ -12, H-14 and
H ₂ -15 to C-13 (in blue); H ₂ -12, H-14 and H-15 to C-16 (in green)72
Figure 3.3.6 (c) Numbering of D1 and (d) Selected key COSY (bold red bonds) and HMBC
(blue arrows) correlations for D172
Figure 3.3.7 NOESY NMR spectrum of D1, showing the key cross-peaks: between H-3, and
H-5, H-9 and H-18; between H-11, H-19 and H-20

Figure 3.3.8 Structure of D1 with relative stereochemistry	77
--	----

Figure 3.4.1 1H COSY NMR spectrum of D2, showing the connectivities: H9-H11-H12 (in
blue) and H14–H15 (in green)79
Figure 3.4.2 1H COSY NMR spectrum of D2, showing the connectivities: H1-H2-H3 (in
blue) and H5-H6-H7 (in green)79
Figure 3.4.3 HSQC NMR spectrum of D2 (Part 1)80
Figure 3.4.4 HSQC NMR spectrum of D2 (Part 2)80
Figure 3.4.5 HMBC NMR of D2, showing the correlation and linkage: H-11, H-12, H-14 and
H ₂ -15 to C-13 (in blue); H-14, H ₂ -15 and H-12 to C-16 (in green)81
Figure 3.4.6 (e) Numbering of D2 and (f) Selected key COSY (bold red bonds) and HMBC
(blue arrows) correlations for D2
Figure 3.4.7 Structure of (3R), (4R), (5S), (9R), (10R)-14-deoxy-11, 12-Didehydro
Figure 3.4.8 NOESY NMR spectrum of D2, showing the key cross-peaks between H-5, H-9
and H-18, as well as H-685
Figure 3.4.9 NOESY NMR spectrum of D2, showing the key cross-peaks between H-20 and
H-11, H-19, H-3, H-3 and H-6, and between H-19 and H-3
Figure 3.4.10 (g) Molecular model of compound D2 (Hartree–Fock 3-21G model at the AM1
level) showing the distances between H-9, H-5 and H-18 and CH ₃ -20 and H-19 and H-19 and
H-3; (h) Proposed structure for D2 as (3S), (4R), (5S), (9R), (10R)-14-deoxy-11, 12-
didehydroandrographolide

Figure	3.5.1	Flow	diagram	consisting	of the	amount	of	different	fractions	separated	from
CVFN	of C.	viscos	<i>um</i> crude	extract							96

Figure 4.1 Effect of crude fractions of <i>A. paniculata</i> on cell viability of 3T3-L1 preadipocytes.
Figure 4.2 Effect of pure compounds of <i>A. paniculata</i> on cell viability of 3T3-L1 preadipocytes.
Figure 4.3 Effect of crude fractions and pure compounds of A. paniculata on cell viability of
3T3-L1 adipocytes
Figure 4.4 Effect of pure compounds of <i>A. paniculata</i> on cell viability of 3T3-L1 adipocytes.
Figure 4.5 Structures of A1, D1, and D2 where only A1 possess hydroxyl group at C-14104

Figure 4.6 Effect of insulin-mediated glucose uptake in 3T3-L1 adipocytes treated with APFA,
APFB, APFN, A1, D1, and D2106
Figure 4.7 Effect of crude fractions and pure compounds of <i>A. paniculata</i> on lipids in 3T3-L1
adipocytes
Figure 4.8 Representative images of Oil Red O in 3T3-L1adipocytes treated with DMSO, crude
fractions, and pure compounds of <i>A. paniculata</i> after 48 h of treatment117
Figure 4.9 Structural variation of A1, D1, and D2; D1 and D2 process the furan-2(5H)-one
moiety (in blue), while A1 contains the dihydofuran-2(3H)-one (in red)119
Figure 4.10 α -Glucosidase enzyme inhibition by acarbose at <i>p</i> NPG of 500 μ M and 1000 μ M.
Figure 4.11 Effect of crude fractions and pure compounds of <i>A. paniculata</i> on the α -glucosidase enzyme
Figure 4.12 Effect of crude fractions and pure compounds of <i>A</i> . <i>paniculata</i> on the α -glucosidase
Figure 4.13 Effect of crude fractions of <i>C. viscosum</i> on cell viability in 3T3-L1 preadipocytes.
Figure 4.14 Effect of fractions of <i>C. viscosum</i> on cell viability in 3T3-L1 adipocytes130
Figure 4.15 Effect of insulin-mediated glucose uptake in 3T3-L1 adipocytes treated with CVFA, CVFB, and CVFN
Figure 4.16 Effect of crude fractions of <i>C. viscosum</i> on lipids in 3T3-L1 adipocytes
Figure 4.17 Representative microscopic images of 3T3-L1adipocytes treated with DMSO,
crude fractions, and pure compounds of <i>C. viscosum</i>
Figure 4.18 Effect of crude fractions of <i>C. viscosum</i> on the α -glucosidase enzyme139
Figure 6.1 Flow diagram of different steps for removing chlorophyll of <i>A. paniculata</i> 143
Figure 6.2 Flow diagram of Acid-Base fractionation of A. paniculata chlorophyll-free crude
extract
Figure 6.3 Flow diagram consisting of different fractions obtained from A. paniculata146
Figure 6.4 Removing chlorophyll from C. viscosum crude extract
Figure 6.5 Flow diagram of Acid-Base fractionation of C. viscosum chlorophyll-free crude
extract148
Figure 6.6 Flow diagram consisting of different fractions obtained from C. viscosum150
Figure 6.7 Images (10 x magnification) of the differentiation of 3T3-L1 cells in the respective
media153

List of Tables

Table 2.1 Traditional uses of A. paniculata	38
Table 2.2 Pharmacological potentials of crude extracts of A. paniculata	38
Table 2.3 Traditional uses of C. viscosum	44
Table 2.4 Pharmacological activities of C. viscosum	45

Table 3.1 GC-MS analysis of volatile components in the three crude fractions of A. paniculata
Table 3.2 Group composition of GC-MS analysis phytochemicals54
Table 3.3 Phytochemicals identified by GC-MS the three crude fractions of A. paniculata and
their reported bioactivities
Table 3.4 NMR spectra of A1 65
Table 3.5 Comparative study between experimental (A1) and reported NMR data of
(3R), (4R), (5S), (9R), (10R), (14R)-andrographolide
Table 3.6 2D NOESY spectra of A1
Table 3.7 NMR spectra of D1 73
Table 3.8 Comparative study between D1 and reported NMR data of
(3R),(4R),(5S),(9R),(10R)-14-deoxyandrographolide
Table 3.9 NOESY NMR spectra of D1 77
Table 3.10 NMR spectra of D2 82
Table 3.11 Comparative study between NMR data of D2 and (3R),(4R),(5S),(9R),(10R)-14-
deoxy-11,12-didehydroandrographolide
Table 3.12 D2 NOESY cross-peaks
Table 3.13 GC-MS analysis of volatile components in the three crude fractions of C. viscosum
Table 3.14 Group composition of GC-MS analysis phytochemicals 91
Table 3.15 Phytoconstituents identified by GC-MS from the three crude fractions of C.
viscosum and their reported bioactivities

Table 4.4 Result of the α -glucosidase enzyme inhibition by acarbose and three crude fractions
Table 4.5 Result of the α -glucosidase enzyme inhibition by acarbose and three pure compounds
Table 4.6 Comparison between safe dose determined from the cell viability of both 3T3-L1
preadipocytes and adipocytes treated with crude fractions of C. viscosum
Table 4.7 Effect of insulin-mediated glucose uptake in 3T3-L1 adipocytes treated with CVFA,
CVFB, and CVFN133
Table 4.8 Comparison between DMSO and crude fractions based on average cell size, the
average diameter of LDs/cell, and average number of LDs/cell134

Table 6.1 Details of materials used for 3T3-L1 adipocyte cultures
Table 6.2 Different crude fractions and pure compounds with their concentrations154
Table 6.3 Different crude fractions and pure compounds of A. paniculata with their
concentrations
Table 6.4 Different crude fractions of C. viscosum with their concentrations
Table 6.5 Different crude fractions and pure compounds of A. paniculata with their
concentrations
Table 6.6 Different crude fractions of C. viscosum with their concentrations
Table 6.7 Different crude fractions and pure compounds of A. paniculata with their
concentrations
Table 6.8 Different crude fractions of C. viscosum with their concentrations

List of Abbreviations

A. aspera	Achyranthes aspera
A. paniculata	Andrographis paniculata
ANOVA	Analysis of variance
APFA	A. paniculata acidic fraction
APFB	A. paniculata basic fraction
APFN	A. paniculata neutral fraction
BCS	Bovine calf serum
C. viscosum	Clerodendrum viscosum
COSY	¹ H– ¹ H correlation spectroscopy
CVFA	C. viscosum acidic fraction
CVFB	C. viscosum basic fraction
CVFN	C. viscosum neutral fraction
DAG	Diacylglycerol
DPP-4	Dipeptidyl peptidase 4
EGCG	Epigallocatechin gallate
ER	Endoplasmic reticulum
FFA	Free fatty acid
GC-MS	Gas chromatography-mass spectrometry
GIP	Glucose-dependent insulinotropic
GLP-1	Glucagon-like peptide-1
GLUT4	Glucose transporter type 4
H. Indicum	Heliotropium indicum
HFD	High-fat diet
HMBC	Heteronuclear multiple bond correlation
HSQC	Heteronuclear single quantum correlation
ΙΚΚβ	I _K B kinase-β
IPA	Isopropanol
IR	Insulin resistance
IRSs	Insulin receptor substrates
JNK1	JUN amino-terminal kinase 1
LDs	Lipid droplets
MSI	Metabolomics Standards Initiative

MTT	3-(4,5-Dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide
2-NBDG	2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-Deoxyglucose
NCD	Noncommunicable diseases
NF-κB	Nuclear factor KB
NOESY	Nuclear overhauser effect spectroscopy
NPH	Neutral protamine Hagedorn
PERK	PRKR-like ER kinase
PFA	Paraformaldehyde
PI3K	Phosphatidylinositol 3-kinase
PKCs	Protein kinase C
pNPG	p -Nitrophenyl- α -D-glucopyranoside
PPAR	Peroxisome proliferator-activated receptors
ROS	Reactive oxygen species
SGLT2	Sodium-glucose co-transporter 2
SOCS	Cytokine signalling suppressors
STZ	Streptozotocin
T2D	Type 2 Diabetes
TH1	T helper 1
TLRs	Toll-like receptors
TZDs	Thiazolidinediones
UPR	Unfolded protein response
WHO	World Health Organisation

Abstract

Plants have provided novel compounds to develop drugs against various diseases, including Type 2 Diabetes (T2D). It is characterised by hyperglycaemia due to insulin resistance and insufficient insulin release, or both of them. This project aimed to identify novel antidiabetic compound/s or novel antidiabetic activities of known compounds isolated from two medicinal plants, *Andrographis paniculata (A. paniculata)* and *Clerodendrum viscosum (C. viscosum)*.

A. paniculata crude extract was fractioned into acidic (APFA), basic (APFB), and neutral fractions (APFN). A total of three pure *ent*-labdane diterpenoids were isolated from APFN, and they are known andrographolide (A1) and 14-deoxyandrographolide (D1), and new (3S), (4R), (5S), (9R), (10R)-14-deoxy-11,12-didehydroandrographolide (D2). Other sub-fractions of APFN were subjected to further separation; however, no pure compounds were isolated from sub-fractions due to lack of purity and time constrain. APFA (0.131 g) and APFB (0.2057 g) were not feasible for purification to yield sufficient pure compounds for structural elucidation and biological assays.

All the three crude fractions and three pure compounds have been subjected to insulin-mediated glucose uptake assay in 3T3-L1 adipocytes. APFA significantly enhanced the glucose uptake by approximately 82% at 25 μ g/ml; however, at 2.5 μ g/ml, it failed to enhance glucose uptake significantly. At 10 and 100 μ g/ml, APFB significantly enhanced the glucose uptake by 51% and 82%, respectively, whereas APFN significantly enhanced glucose uptake by 29% and 78%. Of the three pure compounds, A1 at 1 μ M significantly enhanced the glucose uptake by approximately 38%; however, no significate uptake found at 10 μ M. Both D1 and D2 significantly enhanced glucose uptake by approximately 45% and 65% at 1 μ M and 10 μ M, respectively.

The lipid accumulation study by Oil Red O staining reflected that APFA, AFFB, and APFN significantly increased lipids in 3T3-L1 adipocytes. APFA increased lipids by increasing the size of adipocytes (11% and 13% at 2.5 and 25 μ g/ml, respectively), and APFB increased lipids by increasing the size of adipocytes by about 10% at both 10 and 100 μ g/ml. APFN increased lipids by significantly increasing the size of adipocytes (9.17% at 10 μ g/ml); however, it did not show any significant change at 100 μ g/ml. A1 increased lipids by increasing the size of adipocytes by 9% at 10 μ M without significant change at 1 μ M. Increasing the number of new small adipocytes and adiponectin might increase lipid accumulation and increase glucose uptake. APFA, AFFB, and APFN, and A1 might increase glucose uptake following this mechanism. At both 1 and 10 μ M, D1 decreased lipids by decreasing the size of adipocytes by

about 10% and the number of LDs by about 27%. D2 decreased lipids by decreasing the size of adipocytes by about 11% and the diameter of LDs by about 39% at both 1 and 10 μ M. The decrease of lipid accumulation by D1 and D2 might increase glucose uptake by decreasing the level of free fatty acids, triglycerides, and adiponectin. None of the crude fractions of *A*. *paniculata* and pure compounds showed significant inhibition of the *a*-glucosidase enzyme. APFA, APFB, APFN, and A1 could control blood glucose levels by increasing glucose uptake and lipid accumulation. However, D1 and D2 may control blood glucose levels by increasing glucose uptake and decreasing lipid accumulation.

Three crude fractions of *C. viscosum* were fractioned into acidic (CVFA), basic (CVFB), and neutral fractions (CVFN) and subjected to insulin-mediated glucose uptake assay in 3T3-L1. CVFA was found to significantly increase glucose uptake by 30% and 46% at 10 μ g/ml and 100 μ g/ml, respectively, whereas CVFB significantly enhanced glucose uptake similar to CVFA, by 40% and 49% at 10 μ g/ml and 100 μ g/ml, respectively. The CVFN significantly improved glucose uptake by 56% and 52% at 10 μ g/ml and 100 μ g/ml, respectively.

The result of the lipid accumulation study showed that CVFB could not change the size of 3T3-L1 adipocytes, number, and dimeter of LDs/cell significantly. At 10 and 100 μ g/ml, CVFA only significantly reduced LDs diameter by 38% and 49%, respectively, without significant change in the size of adipocytes and number of LDs/cell. CVFN significantly increased the number of LDs by 44.3% at 10 μ g/ml. Overall, CVFA might increase glucose uptake by decreasing lipid accumulation, which might be due to the decrease of fatty acids or triglycerides. CVFN might increase glucose uptake by increasing lipid accumulation due to increased adiponectin and small new adipocytes.

No pure compounds were separated from either of the three fractions of *C. viscosum*. The phytochemicals in the crude extract of *C. viscosum* might undergo decomposition during the preparation of the crude extract or long duration of storage in refrigeration. Therefore, these results should be considered very preliminary, which requires further investigation.

In summary, two known compounds (A1 and D1) and a new compound (D2) have been separated from *A. paniculata*. This research demonstrated controlling blood glucose levels by APFN, which could justify the ethnopharmacological use of *A. paniculata*. Moreover, A1, D1, and D2 could serve as a novel treatment against T2D by increasing glucose uptake in 3T3-L1 cells at the low dose of 1 μ M. Especially, D1 and D2 could be better therapy as they may control blood glucose levels by increasing glucose uptake and decreasing lipid accumulation.