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Abstract

Airport security screening processes are essential to ensure the safety of both pas-

sengers and the aviation industry. Security at airports has improved noticeably in

recent years through the utilisation of state-of-the-art technologies and highly trained

security officers. However, maintaining a high level of security can be costly to op-

erate and implement. It also lead to delays for passengers and airlines. Nowadays,

research is focused to build efficient and effective systems to reduce the congestion

caused by the security screening process while maintaining a high level of safety for

passengers and the aviation industry. Two open security challenges motivates this

thesis: optimize and design the security process at airport, and build an effective

intelligent system to detect anomalies in X-ray images.

This thesis proposes a series of novel using queuing theory and machine learning

models to handle the aforementioned challenges. Particularly, this thesis addresses

the issues related to passengers congestion at the waiting area and improve the per-

formance of the security detection system to ensure the safety of both passengers and

the aviation industry.

There are four contributions in this thesis. Contribution 1 proposes queueing the-

ory method to optimise the security screening process with multi-servers operating

in parallel to serve a different number of passengers during different seasons, such as

1
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Christmas, Easter and school holidays, and time of the day, as this strongly influ-

ences the number of passengers. Contribution 2 proposes a novel method based on

queueing theory augmented with particle swarm optimisation (QT-PSO) to predict

passenger waiting time in a security screening context and to determine the required

number of servers and security officers. Contribution 3 propose a tensor-based learn-

ing approach to extract the informative latent features that will be used as an input

to build a one-class model for anomaly detection. Contribution 4 proposes a feder-

ated learning (FL) approach for anomaly detection in X-ray security imaging using

OCSVM. The innovative machine learning approach can train a centralized model

on data generated and located on multiple airports without compromising the pri-

vacy and security of the collected data. The performance of all novel methods in this

these is evaluated in the context of Sydney airport dataset, synthetic data, and public

datasets for X-ray images. Further, all the results of the novel methods are compared

to the state-of-the-art methods. The experimental results shows that our proposed

methods in the contributions outperform the state-of-the-art and produce promising

results.
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Chapter 1

Introduction

The aviation industry has been growing year after year and has become an essential

mode for passenger transportation and to connect countries and cities around the

world. It also plays a main role in supporting economies development and tourism.

The number of passengers has been continuously increasing in almost all airports

around the world. For example, the number of passengers that travelled through

Sydney airport was 37 million in 2012, and this number is expected to reach 74 million

by 2033. In fact, it is expected that the worldwide number of passengers travelling

by air will grow between 4.2% and 4.7% by 2033 to reach 6 billion passengers. As for

the United States, the number of passengers that travelled by air reached 1 billion in

2015 [65].

This important and complex industry has faced many security challenges that

include aeroplane hijacking, and airport and aeroplane attacks [63]. The attacks of

11th of September in the U.S.A heightened the importance of aviation security and

passenger safety to governments and aviation authorities. A number of legislation’s

have been issued because of that in many countries, where in the United States

the Transportation Security Administration (TSA) was established to enhance the

5
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security level at airports [30]. After introducing security processes such as X-rays and

explosive detection in airports, the number of attacks decreased but the number of

fatalities rose, for example, there were 111 attacks in the 1970’s causing 557 fatalities,

whereas between 2000 and 2009 the number of attacks decreased to 21 attacks but the

number of fatalities increased to 3032, including the 11th of September attack [33].

The increase in the number of passengers, and the threat of attacks on aircraft has

made security screening of passengers before boarding essential, which has reduced

comfort and passengers’ satisfaction. Also, the screening instruments are very costly

to acquire and maintain, hence having enough screening systems to avoid congestion

has a huge economic impact on airlines, and airports [76].

The design of the security screening area is a crucial and complicated process that

has big impact on the safety of the aviation industry and passengers. The security

screening process consists of many processes, machines, instruments, and personnel.

Therefore, managing the security screening process within acceptable budget and de-

lay constrains is becoming increasingly difficult. This has inspired many researchers

to study and optimise the congestion caused by the security screening process and

strike a balance between reducing congestion and delays while maintaining a high

level of safety for passengers and the aviation industry [76]. The propose techniques

incorporate different methodologies, such as queueing theory [34, 69], fuzzy reason-

ing [76], lean management [4], Bayesian networks [84], simulation tools [20], machine

learning [79], tensor analysis [66], and federated learning [38]

As the security process consisting of multi-stages and processes includes passen-

gers arriving security area, joining a queue and scanning bags via X-ray machines.
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In this sense, it is not possible to optimise a single process and neglect others. This

study address the challenges that arise from security screening processes: (i) opti-

mising the security process to reduce average waiting time, (ii) designing the airport

security screening area to determine the number of servers required to serve different

number of passengers, (iii) proposing a novel anomaly detection in X-ray security

screening systems based on tensor analysis and one-class classification model. (iv)

finally, developing a federated learning (FL) approach for anomaly detection in X-ray

security imaging.

Different methods are used to optimise the security process, however, to the best

of our knowledge, there are no studies that investigate the impact of queue forma-

tion, and the size of the security area on the average waiting time of passengers going

through the security screening process. Most of the studies for airport security screen-

ing process, that used a queueing theory as a method, have implemented approaches

based on single server, such as M/M/1 and M/G/1, where M stands for a system

with Poisson arrivals, G generally identically distributed, while 1 is the number of

servers [23], and then multiply the outcome by the total number of servers to deter-

mine the total average waiting time for the whole system. This assumption cannot

be practically applied for many reasons, like differences in human experience, such as

knowledge of the security screening process and the existence of special need passen-

gers which will require more processing time due to passengers with slow motion and

families with a greater number of passengers, as well as differences between machines,

like (X-ray, metal detector, etc). For all these reasons, we consider these issues in our

model during the implementation phase in order to determine the average waiting
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time for the whole system with multiple servers. We therefore considered Poisson

input, exponential service time, multi-servers and the buffer or area size, which is

known as M/M/S/K (where M/M stands for a system with Poisson arrivals and ex-

ponentially distributed service time, S number of servers, and K is the buffer size).

To the best of our knowledge, this study represents the first attempt to explore the

impact of queue formation on optimising the average waiting time for airport secu-

rity screening process. Furthermore, it is considered as the first attempt to use the

multi-parallel servers that are implemented in different scenarios to demonstrate real

life settings.

Furthermore, a reliable security screening process system should handle input

variability, such as the varying number of passengers at different times of the day,

weekdays vs. weekends, and busy seasons (e.g., Christmas and Easter) vs. other

times of the year. Some of the other challenges include handling different types of

security machines, while the number of servers is dynamically adjusted according to

queue length. The security officers must increase the speed of the process and make

accurate decisions as to whether passengers or bags are carrying threatening items.

Passenger variation should also be taken into consideration, such as individual pas-

sengers, frequent flying passengers, families, passengers with special needs and flight

crew.

This study proposes a novel method based on queueing theory augmented with

particle swarm optimisation (QT-PSO) to accurately predict passenger waiting time
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in a security screening context. This new method employs Lindley process as a queu-

ing model with a new parameter named Wwalking to incorporate customers’ walking

time in our model. This parameter is often representing 30–60% of the service time;

thus, it is profoundly affecting the passenger waiting time. However, the value of this

parameter is unknown, and it is very hard to tune it manually based on the given

data. Therefore, we used particle swarm optimisation (PSO) to optimise the walking

time at different distances from the servers. The model also considers three types of

lanes, namely, normal, slow, and express. The Lindley process formula is used here

as our PSO fitness function.

This thesis also addresses the issue of automatic anomaly detection in X-ray secu-

rity screen systems. It is well-known that X-ray machines play an important role in

scanning passengers’ bags to detect prohibited and dangerous items before a threat

occurs. The rationale for using an X-ray scanner is to identify the contents of a

bag without opening it to determine if a manual hand check is required. Baggage

screening takes around 3-15 seconds depending on the type of machine, accuracy of

the image, and the experience of the security officer [47].

To strike a balance between increasing security and reducing scanning time, and

to address the issues of congestion and cost, different machine learning methodolo-

gies have been proposed for anomaly detection in X-ray security screening systems

[79, 27, 1]. This study presents a novel method for anomaly detection in X-ray secu-

rity screening systems based on tensor analysis and a one-class classification model.

Our method initially performs data fusion of multi-angle scanned images in one tensor
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structure from where we extract the informative features, and further constructs a

one-class support vector machine model using these features to detect anomalies. We

evaluate this approach using two image-based datasets and one real X-ray security

baggage data collected from Sydney airport. The results show that our tensor-based

learning method outperforms other state-of-the-art approaches.

Finally, to further improve the anomaly detection capability in X-ray security

imaging, we develop a federated learning (FL) approach using one-class support vec-

tor machine (OCSVM). FL allows the central machine learning model to build its

learning from a broad range of data sets located at different locations. It aims to

train a shared centralized anomaly detection model using datasets stored and dis-

tributed across multiple clients/airports. This innovative machine learning approach

can train a centralized model on data generated and located on multiple airports

without compromising the privacy and security of the collected data. Also, it does

not require transmitting large amount of data which can be a major performance

challenge especially for real-time applications. The FL approach can enable multiple

airports to collaborate on the development of a central anomaly detection model by

only sharing the model coefficients of each client/airport model rather than the whole

data collected by all participating airports.

1.1 Motivations

This section discusses the impact of the security process on passengers and airports.

Delays in the security process can reduce the satisfaction and comfort levels of pas-

sengers. Long processing times may cause flight delays and impact flight scheduling,
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i.e., affect the operation of airlines and airports.

1.1.1 Passenger Satisfaction

Security processes at the airport have undeniable costs for passengers that can make

many passengers unsatisfied, and can be divided into four types: time delay, indirect

financial costs, privacy, and inconvenience. Due to the time cost, passengers must

arrive at the airport three hours before the departure of the plane, and sometimes

passengers miss their flights due to the long delays at the screening process [5, 35].

Due to different reasons, some passengers think that the airport security process

is useless and a waste of their time, leading to their dissatisfaction [65]. However, the

level of satisfaction of passengers waiting in the queue can change if the passengers

know the reason for any delay. Passenger satisfaction can vary based on age, gender,

educational history, and previous knowledge of the dynamic of the process [35].

Due to their expenditure on security technology, most government and airport

administrations have imposed a new tax, known as service cost or passenger screen-

ing cost, which varies from country to country and tends to increase annually. For

example, in the U.S.A., the government first imposed this tax in 2001 and the cost

per passenger one way was $2.50, however, this tax kept increasing and became $5.60

per passenger one way in 2014. Also, in 2014, a proposal to increase this tax 50 cents

yearly until 2019 [33].
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1.1.2 Economic Impact on Airlines and Airports

After explaining why airport security is absolutely indispensable, this section dis-

cusses the economic costs of the airport security processes. Long delays caused by

security processes could cause delay to some flights, which would not only waist fuel

but could also distribute departures and arrivals of other flights [52].

The cost of the security equipment, training security officers and their wages rep-

resent an additional expense deducted from the revenue of governments in general,

and specifically the airport administration [44]. For example, the price of an explo-

sive detector system (EDS) is $1 million and it will cost $1.5 million to $2 million to

install and re-program it, according to [53]. It is estimated that the expenditure on

aviation security of 18 European cities in 2011 reached 5.7 billion euros. In order to

improve security to the United States airports, the government increased its funding

to the transportation security administration to $8 billion in 2013 [33].

Due to the excessive tax and the impact of security processes on passengers,

the number of air travellers decreased in some countries, for example, in Canada,

the number of passengers dropped by 690,000 resulting from air transport security

charges, in 2011 which translates to a loss of $227 million for the aviation industry

and overall national economic loss of $2.2 billion [33].

1.2 Research Objectives and Aims

The objectives of this thesis are to optimize and design the security process at airport,

and build an effective intelligent system to detect anomalies in X-ray images. In order
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to achieve these objectives, this thesis has the following aims:

1. Optimising and designing security screening area.

• To develop a queues queueing theory (QQT) model for optimising the

security screening process

• To develop a queueing theory augmented with particle swarm optimisa-

tion (QT-PSO) model to: (i) designing the security screening process;

(ii) forecasting the average waiting time based on number of servers and

passengers;(iii) determining the number of servers required based on the

number of passengers; (iV) model human and machine variations.

2. X-ray security screening images

• To develop an anomaly detection model in multi-view learning setting.

• To implement a data fusion technique for multi-view images

• To develop central model using a federated learning network approach

1.3 Research Questions

Based on the above research aims, the research questions of this thesis are specified

as follows:

• RQ1: How to optimise the security screening process to reduce passenger’s

average waiting time?

• RQ2: How to design the security screening process and forecast the average

waiting time based on number of passengers and servers?
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• RQ3: How to build an anomaly detection model in multi-view learning settings

of X-ray security screening system?

• RQ4: How to implement a central model for Anomaly detection in X-ray se-

curity screening?

1.4 Contributions to Knowledge

This section presents the following contributions to knowledge based on the four re-

search questions:

1. Optimizing the Waiting Time for Airport Security Screening using Multiple

Queues and Servers-Framework.

We build a framework consists of queueing theory and Lindley process for QQT

(Queues Queueing Theory) model to optimise the security screening process

with multi-servers in parallel to serve different number of passengers during

different seasons.

2. Design of airport security screening using queueing theory augmented with par-

ticle swarm optimisation.

We propose a novel model based on queueing theory augmented with particle

swarm optimisation (QT-PSO) to predict passenger waiting times in a security

screening context.

3. Anomaly Detection in X-ray Security Imaging.
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We construct a tensor-based learning anomaly detection model in X-ray secu-

rity imaging. Our method initially performs data fusion of multi-angle scanned

images in one tensor data structure from where we extract the informative fea-

tures, and further constructs a OCSVM model using these features to detect

anomalies. Our tensor-based learning method also includes a novel algorithm

called Edged Support Vector (ESV) for optimizing the Gaussian kernel param-

eter inherent in OCSVM and a regularised alternating least square (RALS)

method for tensor decomposition.

4. A Federated Learning Anomaly Detection Approach for X-ray Security Imag-

ing.

We develop a federated learning anomaly detection model with a novel method

of learning OCVSM model in FL settings and an efficient communication method

for coefficient’s aggregation.

1.5 Thesis Structure

This Thesis is presented as follows:

Chapter 2 presents background concepts and previous works related to the research

topics of airport security screening area optimisation, anomaly detection in X-ray

security image, and federated learning for X-ray security imaging.

Chapter 3 presents a relevant background of queueing theory, Lindley Process, particle

swarm optimisation ,regression analysis, One-Class Support Vector Machine,Tensor

Analysis.

Chapter 4 proposes QQT to optimise the waiting time for airport security screening
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using multiple queues and servers.

Chapter 5 presents QT-PSO model to design of airport security screening using queue-

ing theory augmented with particle swarm optimisation.The proposed methods are

evaluated and compared to the state-of-the-art and conclude with contribution to

knowledge.

Chapter 6 presents a novel tensor based learning method for anomaly detection in

X-ray security screening system based on tensor analysis and one-class classification

model.The proposed methods are evaluated and compared to the state-of-the-art and

conclude with contribution to knowledge.

Chapter 7 presents a federated learning (FL) approach for anomaly detection on X-ray

security imaging using OCSVM. The proposed methods are evaluated and compared

to the state-of-the-art and conclude with contribution to knowledge.

Chapter 8 concludes the thesis, putting the work into a broader context. It discusses

the strengths and weaknesses of the proposed contributions, and describes future

directions of research.



Chapter 2

Literature Review

This chapter provides the necessary background information for this thesis. Section

2.1 presents the background of security process. Section 2.2 explain the security

procedure. Section 2.3 gives an overview of the time requires for the security process

2.4 presents the instruments used for security screening process . Section 2.5 Discusses

the importance of security officers. Section 2.6 Presents the previous methods for

optimising security processes at airports. Section 2.7 Discusses the recent methods

proposed for anomaly detection in X-ray security imaging. Section 2.8 Discusses the

concept of federated learning approach and presents the recent published methods in

this area.

2.1 Background of Security Process

Technology and security operators play a very important role in improving the secu-

rity of airports and the aviation industry. The aim of these scientific-technological

instruments, such as surveillance cameras, X-ray machines, millimetre wave gates

and explosive detectors is to scan passengers and their bags to detect any threats and

avoid attacks, and hence maintain a safe and secure environment and flights [5],and

17
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to ensure that terrorists are not able to use aviation as a weapon to kill civilians

and destroy buildings and assets in cities. Paul Benda, the former Director of the

US Homeland Security Advanced Research Projects Agency in the US Department

of Homeland Security, says technology has the power to improve the level of security

as well as efficiency and to also provide a better air travel experience for passengers

[76, 33].

The following subsections, explain the security procedure, the time required by pas-

sengers to go through the screening process, the role and functionality of surveillance

cameras, X-ray machines, and millimetre wave and metal detectors. The role of

security officers will also be discussed.

2.2 Security Procedure

The procedure of passenger check-in and moving through the security screening pro-

cess differs from country to country, based on the governments’ laws and airport

administration. When the passengers have checked in, they then go through the se-

curity process, where they are only allowed to carry a small bag, known as a carry-on

bag or hand luggage. This bag should not exceed a certain weight, as decided by the

airline regulations and contain less than 100 ml of liquid.

The security area consists of several lanes of X-ray scanners, metal detectors, and

millimetre wave detectors. In most airports, the passengers’ hand luggage is first

scanned through the X-ray, while electronic devices such as computers and mobile

phones must to be scanned separately for better visualisation. If the security officer

suspects the bag contains a prohibited item, then a manual inspection is carried out.

After this, the passengers walk through a metal detector and millimetre wave gate for
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body image processing to ensure no prohibited or illegal items are being carried; a pat-

down search will be carried out by the security officer if there is an alarm, otherwise

the passenger collects their bag from the X-ray conveyor belt. Some passengers are

selected randomly for additional screening while the others continue to the boarding

gate [5, 72, 15]

2.3 Time Required for the Security Process

The time required for a single passenger to complete the security process varies be-

tween 15 and 60 seconds and takes 25 seconds on average. The ideal time for this

process varies from 20 to 30 seconds for informed passengers, and between 60 to 120

seconds for inexperienced or uncooperative passengers. Also, an additional 20-40 %

of time is required for passengers who have forgotten to remove prohibited items

from their bags either intentionally or non-intentionally, 85-90 % of these items being

harmless liquids, but they exceeded the 100 ml limit [44]

2.4 Security Instruments

The section below illustrates the instrument and machine has being used for the

airport security purpose.

2.4.1 Surveillance Cameras

Surveillance vision systems are currently very popular and are being installed in both

public and private places, such as streets, highways, hospitals, schools, universities,

airports, and in many private companies to increase safety. Surveillance security is

used in airports to quickly identify possible threats such as unattended bags and to
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also search for the person who dropped it. They also have the ability to locate a

suspicious person in a crowd, and they also improve the throughput of the airport

by monitoring travellers’ movements. In 2012, a total of 8 million surveillance cam-

eras were connected through the Internet world-wide and this number is expected to

increase to 170 million by 2021 [44, 60]. Some of the advanced surveillance cameras

are supported by internet protocols and provide digital high definition (HD) images

to improve the image quality and processing [83].

2.4.2 X-Ray

Due to the increased terrorist attacks on aviation, governments introduced X-ray ma-

chines in airports to scan passengers’ bags to increase safety and security by detecting

prohibited and dangerous items before a threat occurs. The rationale for using an

X-ray scanner is to identify the contents of a bag without opening it to determine

if a manual hand check is required. Baggage screening takes around 3-10 seconds

depending on the type of machine and the experience of the security officer [76, 47].

Different types of X-Rays have been developed, 2-D, 3-D, black and white and colour.

This technology uses a pseudo colour technique to distinguish items of different

colours. Several countries, such as some European countries, have installed the most

advanced type of scanner known as CT machines which display the bag in 3-D and

have the ability of 360-degree rotation [5]. According to a recent article published in

the London Telegraph newspaper, passengers do not have to remove their electronic

items and bottles of liquid from their hand luggage before screening by the CAT

scanners [60].
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2.4.3 Body Image Processing

Body Image Processing Body image scanners are used to scan the human body of a

passenger and transform it into an image to reveal if the passenger conceals a pro-

hibited or illegal item, such as explosive, knife or other metals.

There are two types of body image processing: ionizing radiation such as X-ray sys-

tems (active systems) and non-ionizing radiation systems such as millimetre wave

and terahertz (passive systems). Active systems screen passengers by emitting ra-

diation whereas passive systems receive radiation from passengers in order to scan

their bodies. Some European countries use the non-ionizing scanners due to health

and privacy issues, especially in relation to pregnant women and babies, while the

U.S uses ionizing scanners. In relation to the safety of ionizing scanners, it has been

proven that the amount of radiation that the passenger receives is less than 1 % of the

radiation a person will be exposed to during a in high altitude flight [5].The advan-

tage of ionizing scanners is that they are more accurate than non-ionizing scanners;

however the disadvantage is the concern over exposure to radiation, even though it

is a very low level. These instruments, such as X-ray, CT scanners, millimetre wave

and metal detectors can sometimes give false responses, therefore it is important that

security officers are sufficiently experienced to accurately interpret these images and

operate the scanners.

2.5 Security Officers

The technological instruments are operated and controlled by security officers who are

hired by the government or by the airport administration, depending on government

policies. For example, Dubai airport employs locals to undertake security screening
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[5], while in Europe and Australia, security officers are hired through private com-

panies [33].The safety of the passengers and the aviation industry depends on the

experience and skill of the security screening operators or ‘screeners’ [76] to detect

potential threats.

Screeners should possess certain skills and knowledge. Firstly, screeners should have

a full understanding of which items are prohibited, such as knives, guns, explosives,

gas, liquids and gels [48]. In the USA, 1.6 million knives and 11.6 million lighters

were intercepted by transportation Security officers in 2006 as prohibited items [54].

Secondly, screeners should be able to interpret the images from the scanners and dis-

tinguish between different items in a short period of time. Thirdly, they must be able

to work quickly and avoid errors [76, 45, 54]. Fourthly, security officers should assume

all passengers are equally likely to pose a threat [44]. Finally, it is important that

the percentage of false alarms and false clears [14] are reduced and that the screening

process time is kept to a minimum. Most of the screeners’ decisions are considered

from a group context, but sometimes they are based on information from intelligence

agencies and the police department [45, 59].

2.6 Optimising Security Processes at Airports

Due to the growth in the number of passengers around the world, and the delay caused

by screening every passenger, the security process has become very slow and causes

huge delays. However, if a decision was made to only select certain passengers to

scan, this may result in a threat to the security of passengers, aviation, and airports

[52]. Another option is to install extra equipment and hire more employees to deal

with seasonal and peak hour air traffic, but this also has a limitation due to the size of



23

certain airports and security areas [54]. To scan all passengers in the U.S.A. by EDS

only would require the installation of over 6,000 EDS, which will have a total cost

around $12 billion. The number of EDS would vary, based on the airport size and

the growth in the number of passengers. The safest, cheapest and most applicable

option is to optimise the security process by developing a scientific method to reduce

processing time and increase the throughput [53].

Seasonal travel times, such as Easter and the Christmas holidays, the winter season,

and also the growth in the number of passengers motivates the researchers to apply

scientific knowledge, such as queueing theory, lean management, linear programming,

fuzzy reasoning and some stochastic, statistical and different approaches to provide

new models to optimise the security process and minimize the time passengers spend

in queues.

In the following subsections, the background knowledge on fuzzy reasoning, Bayesian

networks, lean management. and queueing theory will be explained, and their general

application in airport check-in will be discussed, followed by an overview of how these

methods are being used to optimise the security screening process.

Other authors have used fuzzy reasoning and linguistic variables to analyse human

and technical factors to enhance the baggage screening process. For instance, [76] use

fuzzy reasoning to improve the efficiency of a baggage screening system with respect

to the uncertainty of machines (X-Ray) and human factors. Later, the authors de-

veloped a Fuzzy Passenger Security Control Assessment (FUPSCA) by using fuzzy

set theory and fuzzy inference to assist security managers in deciding how to organise

the security screening process [77]. Other work proposed by [41] uses Fuzzy Quality

Function Development (QFD) which is based on multi-objective linear programming
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to improve airport service quality. The authors in [42] propose a prediction model

based on linear regression to predict number of passengers arriving to the immigration

and security areas and individual passengers connection time. The authors claimed

that model produce very accurate results, however they did not apply it to predict the

passenger’s average waiting time in the security area. Similarly, Felkel et. al [29] also

use a linear regression model to predict the passenger flow management at Frankfurt

airport. On the other hand, Gaus et. al [32] propose a convolutional neural network

for X-ray security imagery detection and classification of prohibited items. [44] dis-

cusses the cost of passengers behaviour on the security screening process, and others

use the simulation method for optimising the security screening process [71]. These

authors propose a model based on two concepts (AS-IS and To-Be) to determine the

dynamic balance between staff and passenger requirements, such as passenger flow

and also to determine the alternate future design. This work has been implemented

at the Baltimore-Washington International Airport. [31] propose a convolutional neu-

ral network for X-ray security imagery detection and classification of prohibited items.

2.6.1 Queueing Theory Methods for Optimising Airport Se-
curity Screening Area

Several types of security machines are used in airports in the security screening area,

such as several lanes of X-ray, computed tomography (CT) machines, metal detec-

tors and millimetre wave gates to ensure that no prohibited or illegal items are being

carried. The procedure of the security screening process differs from city to city and

between countries, and this process process could be based on governmental laws or

could be determined by airport administration. For example, at Sydney International
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Airport, passengers go through the security screening process after they have com-

pleted the immigration procedure. It is permissible for passengers to take a small

bag, known as hand luggage or carry-on, on to the aircraft. The permissible weight

and size of this bag are determined by the airline, and there is a limit on the volume

of liquids which can be carried on board. Bags are first checked by X-ray or CT

machines, and then, passengers are checked by metal detectors or millimetre wave

gate. A pat-down search is carried out by security officers if it is required or if there

is an alarm [15].

One of the earliest studies to use a general queuing theory to optimise the screening

process for a single server traffic uses intensity as a ratio of arrival rate to service

rate [34]. The researcher stated that, in order to keep the system stable, the ratio

of the intensity rate has to be equal to or less than 1, i.e., the service rate has to be

greater than or equal to the arrival rate. The work in [52] proposes optimal static

and dynamic policies, and the system is composed of a multilevel security system to

optimise the security process.

The aim of the optimal static assignment policy is to reduce the screening process

time, while the optimal dynamic policy is used to balance the time required for a

passenger to finish the security process and reduce the false alarm rate. Due to the

small amount of time required to scan the passengers and their bags, the service

time cannot follow an exponential distribution as the author proposed.The work in

[69, 54] propose similar models which follow the same concept of the multi-level single

server M/M/1 model and the FIFO discipline, where a new parameter β known as

rejection rate is introduced, and in [14], if β = 1, the bag will be rejected and will

be scanned again. The total time required for the bags to be scanned and exit is
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T = Tp + Ts [54], where Tp and Ts are the primary and secondary inspection times

and Tp = λ1/[µ1(µ1 − λ1)], Ts = λ2/[µ2(µ2 − λ2)].

The method developed by [69] is known as security speed and accuracy operating

characteristic (SAOC), and is based on the same concept. If the bag is rejected in

the first stage, it will be redirected to the second stage scanning system, where λ1,

λ2, µ1, and µ2 are the arrival and service rate at stage 1 and stage 2, respectively.

This approach has been applied in the busiest airport in the U.S. (Atlanta Hartsfield),

where the number of passengers travelling through this airport yearly is around 90

million, which is 22 million passengers more than Heathrow airport.

The work in [68] uses a stochastic process to design, build and operate a security

process, which is composed of two stages: the first stage is to determine the number

of security devices to be installed; the second stage is to use the stochastic process

to optimise the security process by screening the passengers through the available

security devices. This screening is subject to assignment constraint of the passengers.

The work in [58] applies Parkinson’s Law to minimize the service time as the queue

length increases, i.e. speed up when the queue length is long, and slow down when

the queue length is small. It is one of the proposed methods to reduce processing

time without affecting the security. In [67], the author proposed a model to enhance

the security process by assigning passengers who may represent a risk or threat to

a selected lane, and also to improve the passenger checkpoint screening system by

achieving a higher probability of a true alarm. The author used the basic concept

of stochastic process and the theorem of total and conditional probability to propose

his model.

Most of the reported work in the literature only use the traditional queueing theory to
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optimise the security screening process following the M/M/1 and M/G/1 approaches

[23] where M represents a system with Poisson arrivals and exponentially distributed

service time; G is the general identical distribution, which is independent of the ar-

rival process and must be a non-negative random variable; and finally 1 is the number

of servers. These approaches simply multiply the outcome of M/G/1 or M/M/1 by

the total number of servers to determine the total passengers’ average waiting time.

However, this assumption cannot be practically applied and does not produce accu-

rate results for various reasons, such as differences in staff and passenger experience,

knowledge of the security screening process and the existence of special needs pas-

sengers who require more processing time. Furthermore, walking time is another

important factor that needs to be considered since it has a great influence on the

passengers’ waiting time. For example, passengers with special needs and families

require longer walking time, thus more processing time. Finally, the variation among

different screening machines, such as X-ray machines and metal detectors also affects

the total processing time [65].

For the aforementioned reasons, we propose a model that attempts to incorporate

all these aspects in the implementation phase. So, an M/M/S queueing system with

Poisson input, exponential service time, and multiple servers is used to determine the

average waiting time for a system with multiple servers. As the model requires the

average walking and processing times, we decided to optimize the walking time pa-

rameters using particle swarm optimization. However, the service time is tuned based

on previous historical data and previous experience. To the best of our knowledge,

this study is the first attempt to use multiple parallel servers that are implemented

in different scenarios to replicate airport security screening real-life settings.
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2.7 Anomaly Detection in X-ray Security

Different machine learning methods have been reported in the literature for anomaly

detection and classification of prohibited items automatically for intelligent X-ray

baggage security screening. Some researchers have used anomaly detection while oth-

ers have used supervised learning techniques.

For instance, the authors in [79] state that instead of focusing on abnormal objects,

human operators appear to do a better detection when focused on benign objects.

In addition, experience of every day normal object inspection contributes to a much

better result in detection. The same approach is used in anomaly detection prin-

ciple, where the model is only trained with normal samples and evaluated on nor-

mal/abnormal examples. Moreover, according to [74] in the absence of label, unsu-

pervised anomaly detection can be used to uncover rules that are able to separate

normal and abnormal data. The most popular approach is to use One-Class SVM

(OCSVM) to detect anomalies, which builds a smooth boundary around most of the

probability mass of data.

The author in [1] propose a model composed of generative adversarial networks

(GANs) and encoder-decoder encoder subnetworks which is known as (GANomaly).

The aim of the model is to minimise the distance between real, generator images and

their latent representation. While the author in [2] propose a Skip-GANomaly by us-

ing an encoder-decoder convolution neural network (CNN) with skip connection. The

enhancement added to [1] is in the generator network to cope with higher resolution

image. The work in [36] use a CNN to extract the features of the X-ray images for

parcels, then trains a multivariate Gaussian model to capture the normal distribution

of center for ‘Applied Science and Technology’ dataset. The work developed by [31]
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introduces a dual automatic convolutional neural network design to detect the ab-

normal inside complex surveillance X-ray image. The authors use recent advantage

in region-based (R-CNN) mask-based advances CNN (Mask R-CNN) and architec-

tures of identification such as RetinaNet to provide variants of object localization for

unique objects Interest classes.

While the author in [10] use CNN and decision-tree learning to develop a model to

detect anomalies items in X-ray images inside cargo containers. Menon and Chawla

[21] propose a one-class neural network (OC-NN) model to detect abnormal features

or data in complex data sets. The work presented by An and Cho [6] use the re-

construction probability from the variational autoencoder, which is combination of

variational inference with deep learning to propose an anomaly detection method

known as (VAE). The author in [9] use a CNN based on decision-tree learning to pro-

pose an anomaly detection algorithm to detect a threat in X-ray cargo image. The

work in [62] propose an end-to-end trainable consist of Convolutional Long Short-

Term Memory (Conv-LSTM) networks which is known as (AnoGAN). The model is

able to predict the evolution of video sequence from a limited number of input frames.

The author in [86] develop an EGBAD model which is based on GAN at the same

time to learn the encoder during training which is used for image anomaly detection.

The authors have used supervised machine learning such as a class-balanced hier-

archical refinement (CHR) which use deep learning to model X-ray image detection.

Authors use a dataset consist of 1 million X-ray images where only less than 1% have

prohibited items proposed by [64]. The work in [85] proposed a model consist of GAN

and CNN to enhance the GAN training to produce better X-ray images. The studies
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in [75] used a deep convolution neural network (CNN) to increase the depth by using

an architecture with small (3x3) convolution filters to provide a ConvNet model. The

author in [82] uses the Speed-Up Robust Features (SURF) with Support Vector Ma-

chine (SVM) to model Bag-of-Words (BoW) in order to detect a concealed firearms

in baggage security Xray image. The work in [3] uses transfer learning by train SVM

classification on CNN features to posed for object classification and detection within

X-ray security baggage. In [73] use CNN to detect Small Metallic Threats (SMTs)

hidden amongst legitimate items inside a cargo container by using dual-energy X-

ray images for automated threat detection. The author in [80] combine inception

architecture and residual connection which can accelerate the training of inception

network significantly. This study has been applied for classification purpose.

2.8 Federated Learning

The concept of Federated Learning (FL) was initially proposed by Google for im-

proving security and preventing data leakages in distributed environments [49]. FL

allows the central machine learning model to build its learning from a broad range of

data sets located at different locations. It aims to train a shared centralized machine

learning model using datasets stored and distributed across multiple devices or sen-

sors. FL has gained a lot of interest in recent years and as a result, it has attracted

AI researchers as a new and promising machine learning approaches [40, 81].

This FL approach attracts several well-suited practical problems and application

areas due to its intrinsic settings where data needs to be decentralized and privacy to

be preserved. However, only a few studies, that have been reported in the literature,

utilized the FL approach to construct a global model. For instance, Bonawitz et
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al.[39] employed FL model settings to develop a system that solves the problem of

next-word prediction in mobile devices. On the other hand, other studies focused on

addressing the training challenges of a central model to support all local data training

especially when the distribution of data across clients is highly non-IID (independent

and identically distributed).

McMahan et al.[61] proposed the first FL-based algorithm named FedAvg. It uses

the local Stochastic Gradient Descent (SGD) updates to build a global model by

taking average model coefficients from a subset of clients with non-IID data. This

algorithm is controlled by three key parameters: C, the proportion of clients that are

selected to perform computation on each round; E, the number of training passes

each client makes over its local dataset on each round; and B, the local mini-batch

size used for the client updates. Selected clients perform SGD locally for E epochs

with mini-batch size B. Any clients which, at the start of the update round, have

not completed E epochs (stragglers), will simply not be considered during aggrega-

tion. Subsequently, Li et al.[55] introduced the FedProx algorithm, which is similar to

FedAvg. However, FedProx makes two simple yet critical modifications that demon-

strated performance improvements. FedProx would still consider stragglers (clients

which have not completed E epochs at aggregation time) and it adds a proximal

term to the objective function to address the issue of statistical heterogeneity. Simi-

larly, Manoj et al.[11] addressed the effects of statistical heterogeneity problem using

a personalization-based approach (FedPer). In their approach, a model is viewed as

base besides penalization layers. The base layers will be aggregated as in the standard

FL approach with any aggregation function, whereas the personalized layers will not

be aggregated. Several other methods have been proposed to achieve personalization
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in FL. Recently, Smith et al.[78] proposed a new algorithm named MOCHA-based

multi-task learning (MTL) framework to address the non-IID challenge in FL. Hanzel

et al.[38] also proposed an L2GD algorithm that combines the optimization of the

local and global models. Similarly, Deng et al.[26] developed an adaptive personalized

federated learning (APFL) algorithm which mixes the user’s local model with the

global model.
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Preliminaries

In the following chapter, we present a relevant background of queueing theory, Lindley

Process, particle swarm optimisation ,regression analysis, One-Class Support Vector

Machine,Tensor Analysis.

3.1 Queueing Theory

Queueing theory was the first method used to optimise the security screening pro-

cess in 1970. It was introduced in 1907 by Agner Kraup Erlang to describe the

Copenhagen (Denmark) telephone exchange to deal with computer systems and call

applications and aims to analyse and determine the length of queues, average waiting

time, service and sojourn time. Recently, queueing theory has been used in other

reallife application such as trains, hospital, banks, supermarkets and, most notably,

airports [23].

Queueing theory is based on probability estimation and mathematical formalisation.

Some parameters and values of queueing theory must be predetermined, such as ser-

vice and arrival type, the number of servers or channels, buffer size, queue discipline,

33
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average service rate (µ) and average arrival rate (λ) [23]. A revised version of queue-

ing theory was described in 1953 by Kendall, which is known as Kendall notation.

The behaviour of this notation is denoted as A/B/C/D/E, where A is the inter-arrival

time distribution, B is the service time distribution, C is the number of servers, D

is the buffer size and E is the discipline, such as LIFO (last-in–first-out) or FIFO

(first-in–first-out).

Models M/M/1, M/G/1 and M/D/1 are mainly used for security optimisation. In

this research, an M/M/S queueing theory method assumption is used (where M rep-

resents a system with Poisson arrivals and exponentially distributed service time and

S is the number of servers), to build the security screening area which is applicable

for real-life airport security settings.

In general, according to [23], for M/M/S, the fraction of time a server is assumed to

be busy can be expressed as:

C(s, a) =

as

s!(1−a
s
)∑s−1

k=0
ak

k!
+ as

s!(1− a
s)

(3.1.1)

The average waiting and response (sojourn) times, respectively, are:

E(W ) =
C(s, α)× µ

(1− ρ)S
(3.1.2)

E(W ) = E(W ) + µ =
C(s, α)× µ

(1− ρ)S
+ µ (3.1.3)

where c(s,α) is the fraction of time servers assumed to be busy, S is the number of

servers, ρ is the utilisation or an average number of busy servers and α is the offered

load or the number of passengers to arrive at the security area.

Several studies such as [69, 83, 19] have used M/M/1, M/D/1 and SM/M/1 as a
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queueing theory method to optimise the security screening process without consider-

ing variations in the service time and walking time factors.

3.2 Lindley Process

The Lindley equation is based on a discrete time stochastic process, which is used to

describe the evolution of a queue length over time or to determine the average waiting

time of passengers in a queue as expressed in equation 3.2.1. For example, the first

passenger to arrive does not need to wait, so Wn = 0. The next passengers to arrive

will need to wait if they arrive at a time before the previous passengers are served

[12].

Wn + 1 = Wn +Xn − IAn (3.2.1)

where Wn is the waiting time of the previous passenger, Xn is the service time of

passenger n , IAn is the inter-arrival time, that is, the time between the previous and

current arrival (when both passengers are in the service or waiting mode). Figure 3.1

illustrates the concept where Tn is the arrival time of passenger n and Tn+1 is the

arrival time of passenger n+ 1.

This method has gained much popularity in this field due to its simplicity. For ex-

ample, one equation is used to determine the average waiting and sojourn time instead

of applying more than one formula as we observed in 3.1.1 and 3.1.2. Furthermore,

Lindley’s equation takes into consideration the time between the passenger’s arrivals

during the service time.
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Figure 3.1: Lindley process principle

3.3 Particle swarm optimisation

Many methods have been used as an optimiser to find the optimal solution, such as

a genetic algorithm, neural networks, evolutionary programming, evolution strate-

gies, ant colony optimisation and particle swarm optimisation. PSO produces very

accurate result for various parts of applications [17, 25]; therefore, we decided to in-

corporate PSO with the proposed queueing theory model, and hence, our proposed

model is termed QT-PSO. Particle swarm optimisation is used in our model to op-

timise and find the optimal values for the walking time for the security screening

process. Therefore, it is helpful to illustrate some of its fundamentals and to describe

the process and parameters.

PSO is a simple mathematical and stochastic model used to describe the social

behaviour of animals such as birds and fish to solve optimisation problems, which is

based on swarm intelligence.Aswarm is a seemingly disorganised population of moving

individuals that tend to cluster together, while each individual seems to be moving

in a somewhat random direction. A PSO population member is called a particle.
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Every particle is treated as a point in the D-dimensional space to be a possible solu-

tion to the problem. These particles have two vectors known as direction and velocity.

PSO had several advantages being efficient, effective on a variety of problems,

easy to implement, a simple concept and a powerful algorithm which is based on

communication and learning. It also contains a memory to memorise the optimal

solution. The two patterns that implement the concept are known as personal and

global best (Pbest, Gbest). Pbest is a personal or individual best particle (personal

best), and Gbest is a global best for the best in the population (globalbest).

The PSO concept starts by initialising the population by assigning random ve-

locities and positions, at every step changing the velocity for every particle, so the

particles will cooperate to find the best location in the search space to find the op-

timal solution towards its Pbest and Gbest. Finally, the acceleration is weighted by

a random term, with separate random numbers being generated for acceleration to-

wards Pbest, Gbest. According to [25], if we have a particle (i), the update velocity

and position at time (t + 1) will be as follows:

Vi(t+ 1) = (wvi(t) + r1c1(pi(t)− xi(t)) + r2c2(g(t)− xi(t))) (3.3.1)

xi(t+ 1) = xi(t) + vi(t+ 1) (3.3.2)

where xi(t) is the particle position for particle i, vi(t) is the particle velocity for par-

ticle i, r1, r2 are the uniform distribution random number between 0 and 1, c1, c2 are

are acceleration coefficients ω is the inertia coefficient and the aim of introducing this

coefficient is to control the impact of the previous velocity on the updated velocity,

and ωvi(t) is the inertia term.
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3.4 Regression analysis

Regression analysis is a straightforward approach to mathematically model the rela-

tionship between two or more variables by using linear algebra. This approach uses a

predictor variable (X) to forecast a quantitative response or dependent variable (Y ).

Y = hθ(x) = θ0 + θ1x1 + θ2x2 + ...+ θdxd =
d∑
j=0

θjxj = θTx (3.4.1)

where Y = hθ is the dependent or quantitative response, Xj, j = 1...d are the inde-

pendent variables. θ0 is the constant or intercept and θj, j = 1...d are the coefficients.

The aim of linear regression is to create a linear model that minimises the sum of the

square of the residual error (SSE) which defines the cost function:

J(θ) =
1

2n

n∑
i=1

(hθ(x(i))− y(i))2 (3.4.2)

In this model, we used a regression model that takes two features as input which

is the number of passengers and the number of servers to predict the average waiting

time.

The regression model is used in this research for comparison purposes to compare the

actual state-of-the-art and the proposed method (QT-PSO).

3.5 One-Class Support Vector Machine

Given a set of data X = {xi}ni=1, n is the number of training samples, OCSVM maps

these samples into a high dimensional feature space using function φ through the
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kernel K(xi, xj) = φ(xi)
Tφ(xj). Then OCSVM tries to learn a decision boundary

that maximally separates the training samples from the origin [74]. The primary

objective of OCSVM is to optimize the following equation:

min
w,b,ξ,ρ

1

2
‖w‖2 − ρ+

1

νn

n∑
i=1

ξi (3.5.1)

s.t w.φ(xi) ≥ ρ− ξi, ξi ≥ 0, i = 1, . . . , n.

where ν is a user defined parameter used to control the rate of anomalies in the

training data, ξ are the slack variables, w is a perpendicular vector to the decision

boundary and ρ known as the bias term. This can also be expressed as minimization

of the term 1
2
‖w‖2 − ρ appeared in Equation 3.5.1.

Considering the second term of the primary objective which is the minimization

of the slack variables ξ for all points, the problem turns into a dual objective solved

using the following quadratic programming formula .

min
α

1

2

n∑
ij

αiαjK(xi, xj) (3.5.2)

s.t 0 ≤ αi ≤
1

νn
,

n∑
i=1

αi = 1.

where K(xi, xj) is the kernel matrix and α are the Lagrange multipliers. After we

obtain the solution α of the dual optimization problem, the variable ρ is calculated to

compute the anomaly score for a query sample using the following decision function:
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g(x) =
ns∑
i=1

αiK(xi, xnew)− ρ. (3.5.3)

Where ns is the number of support vectors obtained from the constructed model.

The OCSVM will use Equation 3.5.4 to identify whether a query point belongs to the

positive class when returning a positive value and vice versa if it generates a negative

value.

f(x) = sgn(g(x)) (3.5.4)

3.6 Tensor Analysis

A tensor is a multi-way extension of a matrix to represent a series/set of matrices. It

is often used when standard two way-data a.k.a matrices are not enough to capture

the underlying structures inherited in multi-way data. Given a three-way tensor

X ∈ <I×J×K , we can decompose X into three matrices A ∈ <I×R, B ∈ <J×Rand

C ∈ <K×R, where R is the latent factors.

X(ijk) ≈
R∑
r=1

Air ◦Bjr ◦ Ckr (3.6.1)

where ”◦” is a vector outer product. R is the latent element, Air, Bjr and Ckr are

r-th columns of component matrices A ∈ <I×R, B ∈ <J×Rand C ∈ <K×R.

The CANDECOMP/ PARAFAC (CP) method is often used for tensor factor-

ization/decomposition. The main goal of CP decomposition is to decrease the sum

square error between the model and a given tensor X. Equation 6.3.3 shows our loss
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function to optimize.

loss = L = min
A,B,C

‖X −
R∑
r=1

Air ◦Bjr ◦ Ckr‖2f , (3.6.2)

where ‖X‖2f is the sum squares of X and the subscript f is the Frobenius norm. It

seems at first that the function presented in Equation 6.3.3 is a non-convex problem

since it aims to optimize the sum squares of three matrices. However, we can reduce

it a linear square problem by alternatively solve one matrix and fixed the other two.

The alternating least square (ALS) technique can be employed now which repeatedly

solves each component matrix by locking all other components until it converges. The

rational idea of the least square algorithm is to set the partial derivative of the loss

function to zero with respect to the parameter we need to minimize. In this sense, we

need to calculate the partial derivative of L with respect to A,B and C alternatively.

Below we show the three equations we need to optimize.

∂L

∂A
= 2(X − A× (C ◦B))× (C ◦B)

∂L

∂B
= 2(X − B × (C ◦ A))× (C ◦ A) (3.6.3)

∂L

∂C
= 2(X − C × (B ◦ A))× (B ◦ A)

Setting ∂L
∂A

= 0 for optimal solution and using matrixization explained in Section

6.3, we can obtain the following three equations, one per mode to find A,B and C.

A = X(1) × ((C � B)T )† (3.6.4)

B = X(2) × ((C � A)T )† (3.6.5)
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C = X(3) × ((B � A)T )† (3.6.6)

where † represents the pseudo-inverse of a matrix. The complete ALS algorithm

is presented in Algorithm 1 .

Algorithm 1: Alternating Least Squares for CP

Input: Tensor X ∈ <I×J×K
Output: Matrices A ∈ <I×R, B ∈ <J×R and C ∈ <K×R

1: Initialize A,B,C

2: Repeat

3: A = arg min
A

1
2
‖X(1) − A(C � B)T‖2

4: B = arg min
B

1
2
‖X(2) − B(C � A)T‖2

5: C = arg min
C

1
2
‖X(3) − C(B � A)T‖2

(X(i) is the unfolded matrix of X in a current mode)

6: until converged

3.6.1 Incremental Tensor:

Resolving the CP decomposition from scratch in online applications seems impractical

in case of big training set of healthy samples. Therefore, there is an urgent need

for incremental learning of tensor in online applications to update its components

matrices when addition training data arrived. Similar to the ALS approach described

in Algorithm 1, we fix the two components B and C then update the temporal mode

A, and sequentially update the non-temporal modes B and C, by fixing the other

two.
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Update temporal mode C:

A = arg min
A

1

2
‖X(1) − A(C � B)T‖2 = arg min

C

1

2

∥∥∥∥∥
[

X
(1)
old − Aold(C � B)T

X
(1)
new − Anew(C � B)T

]∥∥∥∥∥
2

The new time mode Anew can be by projecting the new arrived training sample

Xnew(1) into the old matrices B and C. The new component A is then updated as

follows

A =

[
Aold

Anew

]
=

[
Aold

X
(1)
new((C � B)T )†

]
(3.6.7)

where † represents the pseudo-inverse of a matrix

Update non-temporal modes B and C: The optimization functions for B and

C can be written as 1
2
‖X(2)−B(C �A)T‖2 and 1

2
‖X(3)−C(B �A)T‖2, respectively.

The resultant derivatives of these two functions w.r.t B and C and setting them to

zero are:

B =

P︷ ︸︸ ︷
X(2) − (C � A)

(C � A)T (C � A)︸ ︷︷ ︸
Q

(3.6.8) and
C =

U︷ ︸︸ ︷
X(3) − (B � A)

(B � A)T (B � A)︸ ︷︷ ︸
V

(3.6.9)

The computational time of (C�A) and (B�A) is costly since the resultant matrix

size is very large. Therefore the simplified version of this equation can be estimated

based on the old and new information of X(i)32
and A as follows:



44

P = Pold +X(2)
new(Anew � B) (3.6.10)

Q = Qold + ATnewAnew ◦BTB (3.6.11)

U = Uold +Xnew(2)(Anew � C) (3.6.12)

V = Vold + ATnewAnew ◦ CTC (3.6.13)



Chapter 4

A Framework for Optimizing the
Waiting Time for Airport Security
Screening using Multiple Queues
and Servers

This chapter presents a novel queue formation method based on a queueing theory

model and Lindley process known as QQT(Queues Queueing Theory) to optimise the

security screening process with multi-servers in parallel to serve different number of

passengers during different seasons, such as Christmas, Easter and school holidays,

and time of the day, as this strongly influences the number of passengers, in order to

improve the average waiting time in airport security areas.

Most of the reported work in chapter 2 section 2.6.1 only use the traditional

queueing theory to optimise the security screening process following the M/M/1 and

M/G/1 approaches [76] where M represents a system with Poisson arrivals and ex-

ponentially distributed service time; G is the general identical distribution, which is

independent of the arrival process and must be a non-negative random variable; and

finally 1 is the number of servers. These approaches simply multiply the outcome of

45
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M/G/1 or M/M/1 by the total number of servers to determine the total passengers’

average waiting time.

However, this assumption cannot be practically applied and does not produce

accurate results for various reasons, such as differences in staff and passenger experi-

ence, knowledge of the security screening process and the existence of special needs

passengers who require more processing time. Furthermore, walking time is another

important factor that needs to be considered since it has a great influence on the

passengers’ waiting time. For example, passengers with special needs and families

require longer walking time, thus more processing time. Finally, the variation among

different screening machines, such as X-ray machines and metal detectors also affects

the total processing time [65].

To the best of our knowledge, this study is the first attempt to use multiple par-

allel servers that are implemented in different scenarios to replicate airport security

screening real-life settings.

The contributions of this chapter are summarised as follows:

• Construct a new queue formation model named QQT based on the Lindley

process (queueing theory) to improve the average waiting time for multi-servers

operating in parallel for security screening areas.

• Incorporate a new “walking time” parameter in our QQT model to improve

prediction accuracy.

• Implement M/M/S/K for airport security screening system.
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The rest of this chapter is organised as follows. Section 4.1 Security Screening

procedure. Section 4.2 Queue Formation QQT and Module Description. Section 4.3

Experimental Setting. Section 4.4 Results, followed by a summary of this chapter in

Section 4.5

4.1 Security Screening Procedure

Passenger security screening process procedures vary from country to country, and

may be determined by the airport administration or based on government laws. For

example, in Sydney airport when passengers have checked in and completed the im-

migration process, they go through the security process, where they are allowed to

carry only a small bag known as a carry-on bag or hand luggage. This bag should

not exceed a certain weight, as decided by the airline regulations and should contain

less than 100 ml of liquid. Different types of machine are used in various airports to

ensure that no prohibited or illegal items are being carried. These include traditional

X-ray machines, CT (computed tomography) machines which can display bags in

3-D and allow 360-degree rotations, and metal detector devices that are used to scan

passengers’ bodies [13, 5].

4.2 Queue Formation QQT and Module Descrip-

tion

In general, most airports use a single passenger queue for the security screening

process. However, in this study we consider three queuing scenarios: single, two and



48

Figure 4.1: One Queue Scenario

three queues i.e. multiple server in parallel with different service distribution, i.e.

M/M/S queueing theory assumption, to be applicable to real-world airport security

settings. Also, we investigate their impact on passenger waiting time. Initially we

assume we have fourteen available allocated to the security screening area.

The numbers of servers allocated for each queue according to scenarios of the proposed

queue formation are presented as follows:

(i) One-queue scenario: all fourteen servers are allocated to one queue area and the

passenger at the top of the queue is allocated to one of the S parallel servers, as shown

in Figure 4.1.

(ii) Two-queue scenario: The total area A is divided into two equal queues or buffers

and when there is an even number of servers, each area has the same number, whereas

when there is an odd number of servers, the size of each buffer is based on the number

of servers allocated to it. For example, in the case of fourteen servers, seven servers

are allocated to each queue, as shown in Figure 4.2.

(iii) Three-queue scenario: The total area is divided into three queues. The size of

each buffer is based on the number of servers allocated to it. For example, if there
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Figure 4.2: Two Queues Scenario

Figure 4.3: Three Queues Scenario

are fourteen servers, the first two queues are allocated five servers each and the third

queue is allocated four servers, as shown in Figure 4.3.

Depending on the queue formation, a passenger is assigned by the security officers to

join a certain queue (1, 2 or 3), based on the available free space and based on the type

of passengers, such as normal passengers (aka economy passengers), crew, business

passengers, families or passengers with special needs. Passengers are expected to be

served by one of the S servers according to an exponential distribution with a mean

service rate of µ and service completion rate of 1/µ while the capacity of the area is

assumed to be finite.

If N is the total number of passengers in the security area waiting to be served by S
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servers, then PN is the steady state probability of N passengers in the system.

In general, PNQ1 =
∑S

i=1Q1Si is the total number of passengers served by S servers

in the first queue, while the total number of passengers served in the second queue is

PNQ2, and the total number of passengers served in the system (all queues) is:

PNQtotal = PNQ1 + PNQ2 + ...+ PNQN (4.2.1)

The probability of blocking is defined as the chance that a customer will lose service

due to high demand and lack of resources. For example, a probability of blocking of

0.01 means that 1% of customers will be denied or will lose service.

The probability of blocking for different numbers of queues for M/M/S/Q (where M

represents a system with Poisson arrivals and exponentially distributed service time,

S stands for the number of servers and Q is the number of queues) is:

PQ =

Q∑
q=1

s∑
r=1

(
1− λµ

r

) (
λµ
r

)q(
1− λµ

r

)q+1 (4.2.2)

Equation 4.2.2 illustrates that the probability of blocking decreases when the number

of queues increases.

In this model, queueing theory is used to build a system that follows M/M/S/K

concept. A modified Lindley equation 4.2.3 is use to determine the average waiting

time of N passengers.

The lindley equation 3.2.1 or Lindley process is based on dis create time stochastic

process, which can be used to describe the evolution of a queue length over time or

to determine the average waiting time of passengers in a queue. For example, the the

first arriving passenger does not need to wait, so Wn = 0. Subsequent passengers will
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need to wait if they arrive at a time before the previous passengers are served [12].

The Lindley equation 3.2.1 is used in this work due to its simplicity and suitability for

the security area queue formation. The simplicity is manifested by the applicability

of a single equation for determining the waiting and sojourn time of passengers. Also,

equations 3.1.1 and 3.1.2 do not take into consideration the difference in arrival times

IA and the execution time of the previous passenger in determining the waiting time

of passengers.

To be more applicable to queueing processes such as those at an airport security

screening area and to produce accurate results, another parameter such as walking

time must be incorporated in Lindley equation 3.2.1. Thus, the modified formula is:

Wn + 1 = Wn +Xn +Wwalking − IAn (4.2.3)

where Wwalking is the time required by a passenger to walk when the passenger comes

to the top of the queue and is the first to be served.

A modified Lindley equation 4.2.3 is used to determine the average waiting time of

N passengers.

4.3 Experimental Settings

As in most implementations, some parameters must be predetermined or initialised

before the simulation. These include service time (µ), number of arrivals, time be-

tween arrivals (1/λ), size of the security area, number of servers available (S) and

finally walking time.

According to [44] the time required for a passenger to complete the security screening

process varies between 15 and 60 seconds and is 25 seconds on average, so a time of 25
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seconds is chosen as the mean average of the exponentially distributed service time.

The number of passengers is initially considered to start at 500 and then sequentially

increased by 500 passengers to reach a maximum of 8000. The inter-arrival rate be-

tween two consecutive passengers is exponentially distributed at the rate of 1 second.

The inter-arrival rate between two consecutive passengers is exponentially distributed

at the rate of 1 second. Small, medium and large security areas are considered, i.e.,

A=50, 75 and 100 m2, and the total number of servers S is assumed to be 14 and

they are available. Finally, the walking speed of a passenger with a carry-on bag who

is at the top of the queue and the first to be served is assumed to be 1.5 seconds per

metre. The three different sized areas are applied in each case to study the impact of

this implementation on the average waiting time.

4.4 Results

We first consider the small area size of 50 m2 and consider all three queuing scenarios

of 1, 2 and 3 queues. Figure 4.4 shows the average waiting time when the number of

passengers is varied between 500 and 8000. It also shows that the average waiting time

per passenger for the three-queue formation is less than that of the two-queue, which

in turn is less than that of the one-queue formation. This indicates that the average

waiting time per passenger decreases when the number of queues increases, but the

enhancement in waiting time between Q2 and Q3 is less than that between Q1 and Q2.

Figures 4.4 show that when the number of passengers increases from 500 to 8000

and the area size is 50 to 75 then 100 m2, the average waiting time per passenger

increases respectively. But if the size of the area is doubled from 50 to 100 m2,
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Figure 4.4: Normal variation - Area 50 m2

the average waiting increases for the larger value only at the beginning, until the

number of passengers reaches the maximum capacity of the area (saturation value),

and then the increase becomes less for all scenarios. For example, when the area size

is 50 m2 and the passengers numbers 500, 5000 and 8000, the values of the average

waiting time per passenger for the one-queue formation (1Q) are 19.9, 140.8 and

224.4 respectively, whereas if the size of the area changes to 100 m2, the values are

34.4, 145.2 and 228.3 as shown in table 4.1. This increment in average waiting time

looks very obvious at the beginning but subsequently becomes slower. This finding

is similar in all the different cases. The impact of area size on average waiting time

is due to the following:

Firstly, the waiting time of n+1 passenger is the cumulative sum of the previous n

passengers, according to the Lindley equation or process 4.2.3.

Secondly, larger security areas can accommodate more passengers.

Thirdly, the walking time required for a passenger to reach the top of the queue is
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greater.

The results obtained from Tables 4.1 indicate that the three-queue formation is less

sensitive to the increment in number of passengers than the one-queue formation.

This finding is applicable to all scenarios, adding another advantage to the queue

formation model. As shown in Figures 4.4, there is a noticeable difference between

the graph of one queue and that of two and three queues. This could be justified

by the walking time that passengers need to spend to reach the service lanes from

the top of the queue. This time could be noticeably higher in the case of one queue,

as the distance to the furthest service lanes is much greater than in the case of two

queues. However, the differences in distance (and consequently in walking time) begin

to decrease as the number of queues increases, which justifies the smaller difference

between the waiting times of two queues compared to three queues. From this result,

we believe that there will be no noticeable improvement if we increase the number

of queues from three to four, and this also depending on the size of the security area

and the number of servers.

Table 4.1: Waiting time per passenger vs. number of Queues

Waiting time per passenger (minutes) for 1, 2 and 3 queues normal variation for area (50 m2)

Number
of pax

500 1000 2000 2500 3500 4000 5000 6000 6500 7000 7500 8000

1 Q 19.9 32 60.4 73.7 101.2 115.5 140.8 170.5 183.2 197 210 224.4

2 Q 16.6 29.5 50.7 61.6 87 99.9 122.7 143.3 155.7 169.8 179.9 191.2

3 Q 15.4 23.5 45.1 56.1 75.2 85.3 108.2 128.1 140.1 154.3 160.8 168.6

Waiting time per passenger (minutes) for 1, 2 and 3 queues normal variation for area (75 m2)

1 Q 24.7 35.4 63 75.8 104.4 115.3 144.5 172.3 184.6 199.4 213.8 224.4

2 Q 21.1 29.8 52.6 65 86 98.3 121.9 145.6 158.1 171.8 177.9 192.9

3 Q 18.7 26.8 47.9 58.5 77.2 89.2 109.9 131.7 138.2 152 164.3 173.5

Waiting time per passenger (minutes) for 1, 2 and 3 queues normal variation for area (100 m2)

1 Q 34.4 39 65 79.8 105.6 118 145.2 175.2 185.9 202.3 214.2 228.3

2 Q 29.5 34.6 54.8 66.4 90.2 102 126 148 158.3 173.4 186.8 193.4

3 Q 25.1 29.9 49.7 58.5 79.7 91 110.7 132.3 143.3 152.1 162.9 176.9
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It is worth mentioning that we have chosen the model parameters that include

service time, number of passengers and the time difference between arrivals to be as

close as possible to real-life values. The service time formula will be verified when we

collect real airport data and it will be implemented and discussed in the next chapter

or contribution.

4.5 Summary

Airport security screening is essential to provide safety for the aviation industry and

passengers travelling by air. Experienced officers and advanced technological instru-

ments help to enhance security. However, the delay caused by security screening re-

mains a concern. Technical methods have been proposed to model and optimise this

process. Despite the achieved improvements, delays still present a major concern.

In this chapter queueing theory M/M/S is used to build a system with multi-lane

parallel servers to study the impact of queue formation and area size on the average

waiting time. Unlike existing methods which uses M/M/1 and M/G/1 and do not

consider the impact of multiple queues and area size. The result outperforms the pro-

posed model compared to existing models, which addresses Contributions 1, 2 and 3

of this thesis. This implementation will be evaluated in the next chapter with real

data collected from Sydney International Airport.

The second chapter proposes a new model QT-PSO to predict the average waiting

times for multi-servers operating in parallel, which taking into consideration human

and machine factors (variations). Further, the new model identifies the optimal walk-

ing time parameter to determine the optimal numbers of servers and security officers
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to maintain low average waiting time.



Chapter 5

Design of airport security screening
using queueing theory augmented
with particle swarm optimisation

Designing an efficient and reliable airport security screening system is a critical and

challenging task. It is an essential element of airline and passenger safety which aims

to provide the expected level of confidence and to ensure the safety of passengers and

the aviation industry. In recent years, security at airports has gone through noticeable

improvements with the utilisation of advanced technology and highly trained security

officers. However, for many airports, it is important to find the best compromise

between the capacity of the security area, the number of passengers, and the number

of screening machines and officers to maintain a high level of security and to ensure

that the cost and waiting times for passengers and airlines are at acceptable levels.

This Chapter proposes a novel method based on queueing theory augmented with

particle swarm optimisation (QT-PSO) to predict passenger waiting times in a secu-

rity screening context. This model consists of multiple servers operating in parallel

and takes into consideration the complete scenario such as normal, slow and express

57
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lanes. Such an approach has the potential to be a reliable model that is able to assim-

ilate variations in the number of passengers, security officers and security machines

on the service time.

To evaluate our proposed method, we collected real-world security screening data

from Sydney international airport from December to March for the two consecutive

years of 2016 and 2017. The results show that our proposed QT-PSO method is supe-

rior to predict the average waiting time of passengers compared to the-state-of-the-art.

The contributions of this chapter are summarised as follows:

• Constructing a new model named QT-PSO based on the Lindley process (queue-

ing theory) to predict the average waiting times for multi-servers operating in

parallel in a security screening area.

• Optimising the new parameter was introduced to Lindley process in previous

chapter named “walking time” which optimised by PSO.

• Modelling variations of servers and passengers to be compatible with real-world

applications.

• Evaluating the performance of our model on real data collected from Sydney

International Airport to demonstrate the effectiveness of the proposed method.

The rest of this chapter is organised as follows. Section 5.1 QT-PSO Method. Sec-

tion 5.2 Data Collection. Section 5.3 Experimental results and discussion, followed

by a summary of this chapter in section 5.4 .
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5.1 QT-PSO Method

In this Chapter, we propose a QT-PSO method to model a security screening process.

The main idea of QT-PSO is to implement the M/M/S queueing theory augmented

with PSO to optimise the walking time parameter. Our QT-PSO method also consid-

ers variations in service time for different passengers and security officers. As shown

in Figure 5.1, the QT-PSO framework is composed of multiple steps as follows

Step 1: Collect the data from the airport and divide it into two sets as explained

in section 5.2. The first set is used to train the PSO to optimise Wwalking. The second

set is used to test the QT-PSO model to determine the average waiting time.

Step 2: Particle swarm optimisation is considered a general-purpose search process

for optimization problems. It aims to optimise an objective function called a fitness

function. In this setting, we followed a wrapper approach based on PSO to seek the

global best walking time to minimize our fitness function defined in Equation (9) as

illustrated in Figure 5.2.

PSO iteratively tries to select the best walking time which generates a similar

result to the real data. In every iteration, PSO generates a new set of population

walking time. This walking time is evaluated based on our fitness function to choose

the best value that minimises the fitness function. For each evaluation, PSO optimises

a different number of walking time sets, based on the number of servers used during

this time. Some parameters in PSO must be predetermined before optimisation and

this includes the following:

varmin and varmax are the minimum and maximum time to walk when the passengers

reach the head of the queue and are the first to be served. The minimum time should
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Figure 5.1: The QT-PSO Framework

Figure 5.2: Weight-learning PSO
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not be less than 1 sec to walk for any distance. However, the maximum time should

not exceed 25 seconds, according to [72].

So, the lower bound of the decision variables varmin = 1 second and the upper bound

of the decision variables varmax = 25 seconds.

The population size pop= 50, and the number of iterations= 100. Figure 5.3 shows

the cumulative distribution frequency (CDF) of the optimised walking time. From

the figure, we can see that the smallest value of the walking time is 4 sec which is

more than the chosen varmin, while the maximum value of walking time is 10 sec-

onds which is less than the selected varmax. This proves that the optimised values of

walking time lie between the chosen boundaries of varmin and varmax.

Step 3: Build a system known as QT-PSO to produce an average waiting time sim-

ilar to the actual result. The aim of this work is to design a security screening

process similar to Sydney International Airport, as shown in Figure 5.4. The secu-

rity screening area comprises seventeen servers to serve the passengers according to a

first-come-first-serve (FCFS) principle. The passenger’s arrival is assumed to follow a

Poisson distribution, with a mean arrival rate named λ The successive time between

consecutive arrivals is defined by 1/λ. A passenger at the head of the queue will be

assigned to be served by one of the SN , where N is the number of servers equal to

seventeen servers based on the current number of operating servers. Passengers will

be served according to an exponential distribution with mean service rate of µ and

service completion rate of 1/µ. Finally, PNSi is the total number of passengers being

served by server Si in the security area.
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Figure 5.3: Walking time CDF

Figure 5.4: Security Area with Multi-servers in Parallel
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Our proposed method is based on the Lindley equation which was defined in Equa-

tion 3.2.1.

We introduce a new walking time parameter to the Lindley process denoted by

Wwalking in previous chapter (chapter 4) to consider the time required by a passenger

to walk from the head of the queue to the target server. The modified formula is

defined in Equation 4.2.3.

According to the experts and as proposed in [38], the time required for a passenger

to complete the security screening process varies between 15 and 60 seconds for or-

dinary (Economy class) passengers. Business class passengers and crew require (aka

express lanes) half the time (β) required by ordinary passengers whereas families and

passengers with a special need (aka slow lanes) require three and half (α) more time

than ordinary passengers. So, a time of 30 seconds is chosen as the mean average of

the exponentially distributed service time.

Three different cases are considered while we optimise the walking time using PSO

as follows:

1. Normal variation: this type of service is for ordinary passengers where the

service time is assumed to be exponentially distributed with an average service

mean and is then multiplied by a random number generator uniformly [1, 2].

The aim of this variation is to ensure variability among the passengers. The

service time of passengers in the normal lane is expressed by the equation:

−θ ln(R) (5.1.1)

where θ is the exponential distributed service time and (R) is random number

[1, 2] generated uniformly.
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2. The slow lanes are used to serve families and passengers with special needs. Such

passengers may require α time, where α is equivalent to three and half times

more the service time of ordinary passengers. The service time of passengers in

the slow lane is expressed by the equation:

(−θ ln(R)× α) (5.1.2)

3. The fast or express lane serves such as crew, business passengers and staff.

This kind of passengers require half the service time of ordinary passengers.

The service time of the express lane is calculated using the equation:

(−θ ln(R)× β) (5.1.3)

The variation in service time is applied in this model for several reasons. Firstly,

according to [14], knowledge of the passenger screening process is different from one

passenger to another and is influenced by previous travel experience which affects the

service time. Secondly, efficacy can vary from one machine to another according to

[5, 83, 59]. Thirdly, security officers vary in their experience, which could affect the

time needed to screen luggage (service time). Screeners should be able to interpret

images from scanners and distinguish between different items in a short period of time

to be familiar with the content of the bag without opening it and to check whether

the carry-on luggage contains any threat.

5.2 Data Collection

Our experiments are performed on real data collected from Sydney International Air-

port (T1). This data was collected from 17 lanes (aka servers). These servers are
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classified into three categories: express lanes, ordinary lanes, and slow lanes for spe-

cial needs passengers and families. The data was collected at different periods of the

year to ensure it incorporates all the seasonal variations including a busy period (e.g.

Christmas and Easter) and a non-busy period which often occurs in January and

February.

Moreover, the collected data also captures various types of passengers such as expe-

rienced passengers (who usually use the express lanes), non-experienced passengers

(who usually use the ordinary lanes) and passengers with special needs or families

who often use the slow lanes.

The data collected from Sydney International Airport was initially segmented in win-

dows of 10 minutes. The resultant data windows contain 11036 samples for the year

2016 and 10453 samples for year 2017, where both data sets belong to the same time

frame. Each has three features representing the number of passengers, number of

servers and average waiting time. We built our training dataset using 2016 data to

ensure it contains all the different periods of time and servers. The 2017 data set is

used for testing to evaluate the performance of our proposed model. The allocation

of time for training and testing data set contains both busy and non-busy periods.

5.3 Experiment results and discussion

For the sake of experiments and in order to have an objective comparison with the

current implemented system in Sydney international airport, we conducted these

experiments using one queue design.

Our initial experiment was to apply the PSO algorithm to optimise the walking

time parameter introduced in Equation 4.2.3. The inter-arrival rate between two
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consecutive passengers is exponentially distributed at the rate of 1/λ seconds.

To evaluate the performance of our model, we used the mean square error (MSE)

and standard error (s) defined in Equations 5.3.1 and 5.3.2, respectively. The paired t

test was further conducted in these experiments to statistically compare the difference

between our results obtained by QT-PSO and the actual airport data in addition to

the other state-of-the-art methods.

MSE =
1

n

n∑
i=1

(hθ(x(i)− y(i))2 (5.3.1)

S =
√
MSE (5.3.2)

where hθ(x(i)) is the predicted average waiting time for our model, y(i) is the actual

average waiting time and n is the number of samples.

5.3.1 Results

In the following sections, we present the results of our QT-PSO model, and then we

compare the QT-PSO model’s results with the actual result (Airport), the state-of-

the-art and the regression model. Finally, we draw a conclusion.

Generally speaking, the aims of this experimental study are twofold. One is to exam-

ine how closely the results of the proposed hybrid QT-PSO model are to the results

obtained by the actual airport system. The second is to compare it with various

existing systems, such as the state-of-the-art and the regression model.
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Figure 5.5: Walking Time (sec) Heat Map

5.3.2 PSO Result

Figure 5.5 shows the heat map of the optimised walking time values for a different

number of servers. The x-axis represents time (seconds) and the y-axis represents

the number of servers which varies from one to seventeen. The number of values of

walking time is based on the number of servers in service at that time. From this

figure, we can see that the smallest value for walking time is located in the middle.

However, the largest values are on the far left and right sides. This is based on the

location of the servers from the top of the queue and the first to be served. Also,

we notice that when an extra server is added to increase the number of servers, the

walking time value related to the new server is expected to increase too.
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5.3.3 QT-PSO Result

The main aim of this experiment is to compare the standard error and similarity of

the predicted average waiting time between the proposed model and the actual results

from the airport.

From Table 5.1, although we take into consideration the variations of service time be-

tween passengers, security offices and machine, the proposed model able to produce

an average standard error of 14.60. The percentage of similarity in the average waiting

time between the actual and QT-PSO results is very high, which varies between 95%

and 99% when the number of servers exceeds three. However, the proposed model

does not perform well when the number of servers is less than four. For example,

for server one, two and three, the similarity varies between 66%, 84% and 88% re-

spectively, which is an accurate and similar result compared to the real model. Also,

the total average waiting time similarity is approximately 94%. This shows that the

accuracy of the proposed model for average waiting time exceeds 95% similarity for

14 servers. This reflects the robust and efficient nature of our model to meet varying

airport requirements. The reason for the lower accuracy for servers one, two and

three is because the proposed model has difficulty distinguishing between different

types of passengers based on the process experience knowledge. However, in reality,

when the number of servers exceeds 3, at least one server will be allocated to serve

the express passengers, one to three servers for families and passengers with special

needs and the remaining servers to serve ordinary passengers.

Further, we performed a paired t-test between the actual results and QT-PSO.



69

Table 5.1: Average waiting time and Standard Error (QT-PSO and Actual Result)

No of Servers
Average waiting
Time

Similarity % MSE Standard Er-
ror

(Second) QT-PSO Actual (Second2) (Second)

Actual
Result

QT-PSO
Model

(QT-PSO Actual)

17 389.002 397.406 97.885 48.14 6.938

16 174.557 180.167 96.886 198.966 14.105

15 170.535 175.397 97.227 160.71 12.677

14 256.651 253.112 98.621 205.557 14.337

13 201.054 196.695 97.832 245.742 15.676

12 161.045 165.578 97.262 164.089 12.809

11 160.1 159.545 99.653 163.206 12.775

10 159.125 162.772 97.759 57.98 7.614

9 179.37 177.626 99.027 442.227 21.029

8 150.931 148.6 98.455 216.483 14.713

7 146.261 140.907 96.339 586.994 24.227

6 120.291 116.852 97.141 285.481 16.896

5 98.314 93.915 95.525 44.275 6.653

4 135.742 129.267 95.229 889.174 29.819

3 84.228 74.721 88.712 499.668 22.353

2 77.983 65.972 84.597 122.123 11.05

1 26.285 39.775 66.084 20.549 4.533

Average 158.322 157.548 94.367 255.962 14.6
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Figure 5.6: Average Waiting Time (QT-PSO-Actual Airport Result)

This test produces a p value of 0.637 which suggests that the difference is not signif-

icant. Thus, our prediction results are very similar to the airport results.

Figure 5.6 shows the average waiting for the proposed model’s result compared to the

actual result from the airport. From this figure, it becomes more obvious that the

QT-PSO produces very accurate results compared to the actual results and it also

follows the same trend. The only improvement needed is to enhance the prediction

when the number of servers is below three.

5.3.4 Comparison with other methods

The following subsection compares the proposed QT-PSO with two other methods.

One is the-state-of-the-art which is based on queueing theory proposed by [69], and

the second method is the regression model proposed by [37, 29].
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5.3.4.1 QT-PSO and State-of-the-Art Methods

Queueing theory was the first method used to optimise the security screening process

in 1979. M/M/1, M/G/1 and S M/M/1 were the most preferred methods. So, the

aim of this section is to compare QT-PSO with the state-of-the-art M/M/1.

During the implementation and testing of M/M/1, the following assumptions were

considered:

Firstly, the system is designed to follow Poisson arrivals, exponentially distributed

service time and only one server is in service at all times.

Secondly, to make an objective comparison between our proposed method and the

M/M/1, the number of passengers assigned to both models is based on the number

of passengers being served by SN server from the real airport data, where N is the

number of servers varying from one to seventeen.

Table 5.2 shows the difference in average waiting time between QT-PSO, M/M/1 and

the actual results from the airport and Figure 5.7 illustrates the results.

From Table 5.2, we can observe the following: the M/M/1 model is able to produce

a similar average waiting time compared to the actual result when the number of

passengers is small. However, when the number of passengers increases to match

the real number of passengers, the result of the M/M/1 model increases significantly

to produce a higher result than the actual result. The S M/M/1 model produces a

similar result for the first two servers and forecasts less than the actual time when

the number of servers increases to more than 2. Furthermore, the overall average

waiting time for both state-of-the-art models is very different from the actual, where

the overall average results for M/M/1 is double the actual, the results of S M/M/1

is quarter of the actual however, the results of the proposed QT-PSO are similar to
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Table 5.2: Average waiting time (QT-PSO, State of the Arts and Actual Airport
Result)

Average Waiting Time

No of Servers QT-PSO
State-of-the-Art

Actual Result
State-of-the-Art

M/M/1 S M/M/1

17 397.406 724.835 389.002 42.637

16 180.167 477.287 174.557 29.83

15 175.397 500.822 170.535 33.388

14 253.112 614.818 256.651 43.915

13 196.695 501.038 201.054 38.541

12 165.578 429.829 161.045 35.819

11 159.545 419.744 160.1 38.158

10 162.772 412.882 159.125 41.288

9 177.626 410.751 179.37 45.639

8 148.6 322.733 150.931 40.341

7 140.907 325.469 146.261 46.495

6 116.852 251.343 120.291 41.89

5 93.915 202.837 98.314 40.567

4 129.267 165.162 135.742 41.29

3 74.721 100.476 84.228 33.492

2 65.972 74.153 77.983 37.076

1 39.775 39.775 26.285 39.775

Overall Average waiting Time 157.548 351.409 158.322
39.42
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Figure 5.7: Average Waiting Time (QT-PSO, M/M/1, Actual Airport Result and
M/M/1 S)

the actual result, as shown in Table 5.3.

Figure 5.7 illustrates the average waiting time for both state-of-the-art models com-

pared to the actual and QT-PSO. From Figure 5.6, we note that the average waiting

time for M/M/1 follows the pattern for the actual airport results and QT-PSO, but

it is not close to the actual or QT-PSO, whereas the graph for the S M/M/1 model

does not follow the pattern and also its forecast average waiting time is less than the

actual.

Table 5.3: Standard Error(QTPSO- Actual, State-of-the-Art Methods- Actual)

M/M/1- Actual S M/M/1 - Actual QT-PSO - Actual

Standard Error (Second) 193.537 120.488 14.6

Table 5.3 presents the standard error between the actual, the state-of-the-art

(M/M/1, S M/M/1) methods and QT-PSO. The standard error for QT-PSO is 14.6

seconds whereas the standard error prediction for M/M/1 and S M/M/1 is 193.5 and

120.4 seconds, respectively. This means the interval error for QT-PSO is very small
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compared with both state-of-the-art methods. This adds value to our proposed model

which considers a system with multi-servers operates in parallel and with variations

in scenarios.

[56] stated that the combination of S M/M/1 performs better and achieves good

performance compared to M/M/S, whereas our experiment results show that our

proposed QT-PSO model which is based on M/M/S produces much better and more

accurate results compared to the real airport result.

5.3.4.2 QT-PSO and Regression Model

A regression model which is a part of machine learning can be used to predict the

average waiting time. Our assumption is that there is a relationship between the

number of servers and the number of passengers to predict the average waiting time.

The regression model is used in this research as an additional comparison model.

The aim of this experiment is to compare the average waiting time and standard error

of the predicted average waiting time between the regression model, the proposed

model and the actual result from the airport.

From Table 5.4, we can see that the overall average waiting time for the actual result

is 158.32 seconds. The regression model produced an overall average waiting time

of 145.03 seconds, but the result of proposed model is 157.54 which is closer to the

actual result. The standard error of our proposed model varies between 4.5 and 29.8

seconds for all servers with an average of 14.6 seconds. However, the standard error

for the regression model varies between 2.6 and 101 seconds for all servers and 38.6

seconds on average.

From Table 5.4, we can also see that the regression model produces a close result to
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the actual, only when the number of servers is 1, 5, 8 and 10 whereas the proposed

model produces a similar result to the actual when the number of servers exceeds

three.

Table 5.4: Average Waiting Time and Standard Error (QT-PSO, Regression, and
Actual)

Average Waiting Time (second) Standard Error (Second)

No of Servers Regression Model QT-PSO Model Actual Result QTPSO-Actual Regression-Actual

17 351.658 397.406 389.002 6.938 33.498

16 150.003 180.167 174.557 14.105 30.294

15 148.063 175.397 170.535 12.677 38.184

14 234.969 253.112 256.651 14.337 29.084

13 176.276 196.695 201.054 15.676 35.348

12 141.053 165.578 161.045 12.809 31.746

11 140.426 159.545 160.1 12.775 32.214

10 167.419 162.772 159.125 7.614 38.755

9 195.046 177.626 179.37 21.029 44.657

8 153.239 148.6 150.931 14.713 46.476

7 128.021 140.907 146.261 24.227 57.632

6 124.942 116.852 120.291 16.896 41.436

5 89.795 93.915 98.314 6.653 32.018

4 113.027 129.267 135.742 29.819 101.015

3 71.417 74.721 84.228 22.353 32.506

2 51.628 65.972 77.983 11.05 29.443

1 28.612 39.775 26.285 4.533 2.627

Overall Aver-
age Waiting
Time

145.035 157.548 158.322 14.6 38.643

Figure 5.8 plots the average waiting time for the regression and the proposed

model compared to the actual. From this figure, we can notice that the regression

model produces a result which is less than the actual when the number of servers
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Figure 5.8: Average Waiting Time (QT-PSO, Actual Airport Result, and Regression)

exceeds 10 and is less than 5. Also, the plot of the average waiting time of the re-

gression model does not follow the pattern of the actual, which makes it easy to see

that QT-PSO produces very accurate results compared to the actual result and it

also follows the same trend.

Further, we performed the paired t− test between the actual result and QT-PSO,

and between the regression model and the actual. This test produces a p− value of

0.637 which suggests that the difference is not significant. However, the regression

model produces a p-value of 0.002 at p ≤ 0.05 which suggests that the difference is

significant as shown in Table 5.5. Thus, our proposed model predicts results which

are very similar to the airport result.

Figure 5.9 shows the box plot for the average waiting time, minimum and maxi-

mum values for the actual, QT-PSO and regression models per server. Overall, this
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Table 5.5: Statistical T-test (Actual vs Regression, Actual vs QT-PSO)

Statistical Test Regression-Actual QT-PSO - Actual

t-value 3.704 0.479

p-value 0.002 0.637

Figure 5.9: Average Waiting Time for All Servers (QT-PSO, Regression, and Actual)
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figure shows that the average waiting time of QT-PSO is closer to the actual average

than the regression model and per server when the number of servers is more than 3.

Also, the minimum and maximum values per server for QT-PSO are approximately

similar to the actual minimum and maximum. However, the regression model mini-

mum and maximum values are not close to the actual minimum and maximum. We

excluded the M/M/1 from this box plot as the average waiting time results were not

close to the actual result.

From Figure 5.10 and the results that were discussed previously in sections 5.3.3,

5.3.4.1 and 5.3.4.2, we can arrive at the following conclusion. The regression model

can produce an accurate average waiting time and a lower standard error than the

state-of-the-art M/M/1 and S M/M/1 which means neither M/M/1 and S M/M/1

are applicable for a real case scenario for the airport security screening process and

especially when multiple parallel lanes are used. However, QT-PSO produces a more

accurate average waiting time than the regression model and the state-of-the-art

methods. Also, the proposed model produces a lower standard error compared to the

regression and state-of-the-art models. This study verifies that the QT-PSO which

is based on the M/M/S system performs best in terms of efficiency in all cases and

produces accurate results compared to the actual result provided by Sydney Interna-

tional Airport. This model gives an opportunity for different types of passengers to

use the appropriate lanes to complete the security screening process. For example,

experienced passengers, business class passengers and the crew can use the express or

fast lanes, families and passengers with special needs use the slow lanes, and ordinary

passengers use the normal lanes.

[56] stated that the combination of S M/M/1 performs better and achieves good
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Figure 5.10: Average Waiting Time (QT-PSO, Actual Airport Result, M/M/1, and
Regression)

performance compared to M/M/S, however our experiment results show that our

proposed QT-PSO model which is based on M/M/S produces much better and more

accurate results compared to the real airport result. However, [16] stated that M/M/S

is much more efficient than the combination of S M/M/1.

The QT-PSO model recommends the number of servers required to serve a differ-

ent number of passengers at different times to achieve an acceptable waiting time.

However, the linear regression model does not consider or anticipate the different

number of servers required to serve the different types of passengers at different sea-

sons throughout the year, such as busy and non-busy periods. The regression model

does not consider the variation in service time for passengers, security officers, and

machines. Finally, the regression model does not consider the walking time factor

and inter-arrival time.
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5.4 Summary

Airport security screening is essential to ensure the safety of the aviation industry

and passengers travelling by air. Different methods are used to determine the average

waiting time for passengers to move through this complex system.

The main contributions of this chapter are as follows: firstly, various methods are

considered, and a mathematical model is constructed. Secondly, all service variations

for passengers, security officers, and machines are considered in our model. Thirdly,

this paper presents a new novel hybrid model knows as QT-PSO based on the Lindley

process (queueing theory) and particle swarm optimisation to predict passenger’s

average waiting time. Fourthly, a new parameter “walking time” is introduced in the

Lindley formula and is incorporated and optimised in our QT-PSO model to improve

prediction accuracy. Finally, various new findings are provided to show how the new

proposed model is efficient for an airport security screening.

The results demonstrate that the QT-PSO method produces better average waiting

time results and produce a lower standard error compared to the other state-of-the-

art methods and the regression model. Finally, the results show that M/M/S is much

more suitable and produces a more accurate result than M/M/1 and S M/M/1.

Extensive results were carried out in this paper to evaluate the performance of our

model. These experiments used real datasets collected from the Sydney International

airport. The results clearly indicated that our proposed QT-PSO model significantly

produce average waiting time similar to the actual airport waiting time.

Furthermore, QT-PSO can anticipate the optimal number of servers required to obtain

the best trade-off between the number of passengers and number of servers, which

means it can send a notification to increase the number of servers if the number
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of the passengers increases. Therefore, it would be more beneficial for the security

managers to adopt our proposed model. Our next chapter proposes a novel tensor-

based learning method for anomaly detection in X-ray security screening systems

based on tensor analysis augmented with a one-class classification model to enhance

and fasten the security screening process.



Chapter 6

Anomaly Detection in X-ray
Security Imaging

This chapter proposes a novel tensor based learning method for anomaly detection

in X-ray security screening systems based on tensor analysis augmented with one-

class classification model. Anomaly detection in X-ray security screening systems has

earned a lot of interests in recent years and has attracted many researchers working

in the area of machine learning. With the advances in computing technology, it is

becoming more feasible to develop an approach for automated anomaly detection in

security screening systems based on images collected via X-ray machines. Analyzing

these X-ray images and constructing a detection model is considered as a challenging

problem because of the lack or limited number of samples of anomalous objects.

Furthermore, in the context of X-ray security screening system, the X-ray machine

for scanning luggage generates a set of multi-view images for each event at a specific

time. These collected images for each individual luggage are considered as multi-way

data which are not only correlated with each other in time but also auto correlated

in terms of angle views. Two-way matrix analysis which deals with each view-image

as one event can not capture all of these correlation and relationships together. This

82
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approach may adds bias that could separate the distribution of the training data

from different cameras. Thus, the extracted features will be separate images based

on different view rather than anomalous and non-anomalous data. A naive approach

would concatenate the multi-view images (aka multi-way data) for a certain event to

form a single data instance at a specific time for anomaly detection in time dimension.

However, unfolding the multi-way data and analyzing them using two-way methods

may result in information loss and misinterpretation since it breaks the modular

structure inherent in it. The contribution of this chapter is threefold:

• A tensor-based learning anomaly detection model in X-ray security imaging.

• A novel algorithm for optimizing the Gaussian kernel parameter inherent in

OCSVM.

• A regularised alternating least square (RALS) method for tensor decomposition

The rest of this chapter paper is structured as follows. Section 6.1 presents our tensor-

based learning approach for anomaly detection in X-ray imaging. Section 6.2 shows

our data structure in X-ray machine settings. Sections 6.3 and 6.4 present our tensor

analysis for data fusion and OCSVM for anomaly detection, respectively. Section 6.5

presents the experimental setup and Section 6.6 presents the results. Section 6.7 gives

a summary of this chapter.

6.1 Tensor-Based Learning Approach for Anomaly

Detection in X-ray Security Imaging

This thesis introduces a new novel method for anomaly detection in X-ray security

image in multi-view settings. It performs data fusion of multi-view scanned images
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in a tensor data structure from where we extract the informative features. Fur-

ther, it constructs a one-class support vector machine model using these features

to detect anomalies. Specifically, our approach constructs first a three-way tensor

image-node which contains: the multi-view images as one event, the number of pix-

els for each image, and the total number of events from the X-ray machine. We

then use CANDECOMP/PARAFAC (CP) to decompose the tensor image-node into

three subspace matrices which represents the latent information of each mode. in this

sense, we propose a new regularised alternating least squares method to optimize the

factor matrices in decomposition by adopting the L1 regularization norm to achieve

smooth representation of the factors. We further propose a new adaptive OCSVM

model constructed based on the subspace matrix in time mode, extracted the from

the three-way tensor, which contains events of positive instances (normal data).

6.2 Data Structure

Consider a set of s camera nodes located at different positions in the X-ray machine

for scanning baggage’s carried on a conveyor belt. The collected colour-mapped X-ray

images are assumed to be a vector as Xi =
[
x1, x2, . . . , xn

]
; where i = 1, . . . , s are

the camera nodes, and n is the total number of images at each camera node. Due

to the lack of available data of X-ray scans with prohibited items, the training is

achieved with the data corresponding to non-anomalous images (positive samples).

Each positive training image sample {xi}ni=1 ∈ {Xi}ni=1 is an m-dimensional feature

vector P p = p1, p2, . . . , pjm, where p = 1, . . . ,m are the number of pixels. The total

number of pixels m depends on the image size, and the total number of data points

(n) in Xi depends on the number of collected baggage’s images we call it events. In
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our approach, we employ tensor learning as a data fusion method to merge images

from the multi-angle image nodes into one multi-way image structure known as tensor

T . In the training phase, we extract the informative features from the T to construct

a one-class model using the positive data. This model will be used later to classify a

new raw X-ray image as either anomalous or non-anomalous.

6.3 Tensor Data Fusion

Our proposed approach employs tensor learning method as a data fusion step which

merges data from a set of s image nodes into one data structure unit know as ten-

sor. As we mentioned before, a naive approach would simply concatenate the pixels

obtained from the multi-view images related to one particular event into one single

two-dimensional image. However, unfolding the multi-view images data and analyzing

them using two-way methods could leads to redundancy in reporting the events, and

information loss since it breaks the modular structure inherent in the data. Therefore,

a tensor data fusion approach will allow us to arranges the data from a set of multi-

view images as one single image node T which we call it a tensor image-node. This

tensor image-node T has data in a form of a three-way tensor X ∈ RI×J×K where

I represents the number of multi-angle images, J represents the number of pixels in

each image, and K is the total number of events scanned by the X-ray machine. The

structure of this tensor is shown in Figure 6.1

The aim now is to extract the latent features related to the multi-angle images

which will be used later to construct a one class model for anomaly detention. In this

paper we decompose our tensor using (CANDECOMP/PARAFAC decomposition)

CP method due to its ease of interpretation compared with the Tucker method [46].
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Figure 6.1: Multi-angle images fused in a tensor.

The tensor X ∈ RI×J×K is decomposed by CP into three matrices A ∈ RI×R, B ∈

<J×R and C ∈ <K×R where R is the latent factors. Each matrix represents latent

information for each mode or dimension. It can be written as follows:

X(ijk) ≈
R∑
r=1

Air ◦Bjr ◦ Ckr (6.3.1)

where ”◦” is a vector outer product.

We formulate the problem as follows:

min
A,B,C

‖X −
R∑
r=1

λr Ar ◦Br ◦ Cr‖2f , (6.3.2)

where ‖X‖2f is the norm value which is the sum squares of all elements of X , and the

subscript f denotes the Frobenius norm. Ar, Brand Cr are r-th columns of component

matrices A ∈ RI×R, B ∈ RJ×R and C ∈ RK×R.

6.3.1 L1 Regularization for Learning Tensor:

Given a tensor X ∈ <I×J×K , CP method decomposes it into three matrices A, B and

C as shown in Fig. 6.1. Matrix A represents the view mode, B represents pixels mode

and C represents time mode. The matrix C ∈ <K×R, which is associated with the

event mode will be used later for constructing the anomaly detection model. This

matrix has K rows, each of which represents one event data instance aggregated from

all the multi-view images at a specific time.
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The main goal of CP decomposition is to decrease the sum square error between

the model and a given tensor X:

min
A,B,C

‖X −
R∑
r=1

λr Ar ◦Br ◦ Cr‖2f , (6.3.3)

where ‖X‖2f is the sum squares of X, and the subscript f is the Frobenius norm.

It seems at first that the function presented in Equation 6.3.3 is a non-convex problem

since it aims to optimize the sum squares of three matrices. However, the problem

can be reduced to a linear least squares problem by fixing two of the factor matrices,

and solve only the third one. Following this approach, the ALS technique can be

employed here which repeatedly solves each component matrix by locking all other

components until it converges [70].

We remark that ALS can lead to sensitive solutions and it is not in general robust

and hence motivates the need to incorporate the notion of penalty and regularization.

The incorporation of regularization and penalization parameters into the L1 norms

make it possible to achieve smooth representations of the outcome and thus bypassing

the perturbation surrounding the local minimum problem. The algorithm for CP

decomposition using regularized ALS (RALS) is described in Algorithm 1. The L1

penalty terms ||X||L1 =
∑
· |x·| enforces the intensity of sparsity in X.

6.3.2 Incremental Tensor:

Resolving the CP decomposition from scratch in online applications seems impractical

in case of big training set of healthy samples. Therefore, there is an urgent need for

incremental learning of tensor in online applications to update its components ma-

trices when addition training data arrived. Similar to the RALS approach described
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Algorithm 2: Regularized ting Least Squares for CP

Input: Tensor X ∈ <I×J×K
Output: Matrices A ∈ <I×R, B ∈ <J×R, C ∈ <K×R, and λ

1: Initialize A,B,C

2: Repeat

3: A = arg min
A

1
2
‖X(1) − A(C � B)T‖2 + γXA

||X(1)||L1

4: B = arg min
B

1
2
‖X(2) − B(C � A)T‖2 + γXB

||X(2)||L1

5: C = arg min
C

1
2
‖X(3) − C(B � A)T‖2 + γXC

||X(3)||L1

(X(i) is the unfolded matrix of X in a current mode)

6: until converged

in Algorithm 1 and as proposed by [88], we fix the two components A and B then

update the temporal mode C, and sequentially update the non-temporal modes A

and B, by fixing the other two.

6.3.2.0.1 Update temporal mode C:

C = arg min
C

1

2
‖X(1) − C(B � A)T‖2 = arg min

C

1

2

∥∥∥∥∥
[

Xold(3) − Cold(B � A)T

Xnew(3) − Cnew(B � A)T

]∥∥∥∥∥
2

The new time mode Cnew can be estimated by projecting the new arrived training

sample Xnew(3) into the old matrices A and B. The new component C is then updated

as follows

C =

[
Cold

Cnew

]
=

[
Cold

Xnew(3)((B � A)T )†

]
(6.3.4)

where † represents the pseudo-inverse of a matrix
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6.3.2.0.2 Update non-temporal modes A and B: The optimization functions

for A and B can be written as 1
2
‖X(1) − A(C � B)T‖2 and 1

2
‖X(2) − C(B � A)T‖2,

respectively. The resultant derivatives of these two functions w.r.t A and B and

setting them to zero are:

A =

P︷ ︸︸ ︷
X(1) − (C � B)

(C � B)T (C � B)︸ ︷︷ ︸
Q

(6.3.5) and B =

U︷ ︸︸ ︷
X(1) − (C � A)

(C � A)T (C � A)︸ ︷︷ ︸
V

(6.3.6)

The computational time of (C�B) and (C�A) is costly since the resultant matrix

size is very large. Therefore the simplified version of this equation can be estimated

based on the old and new information of X(i)21
and C.

P = Pold +Xnew(1)(Cnew � B) (6.3.7)

Q = Qold + CT
newCnew ◦BTB (6.3.8)

U = Uold +Xnew(2)(Cnew � A) (6.3.9)

V = Vold + CT
newCnew ◦ ATA (6.3.10)

6.4 Adaptive One-Class Support Vector Machine

Based Spatial Distance Algorithm

The one-class support vector machines (OCSVM) [74] has been widely applied in

several application domains, such as medical [87], geology [43] and structural [8, 24]

for anomaly detection purposes. It is an extension of the traditional two class support

vector machines (TCSVM) method to handle the unsupervised learning problem when

only samples from one class are available and the samples from other classes are very
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few or do not exists.

While the TCSVM learns to distinguish between two classes in a given data set

by fitting a hyperplane that maximally divides both classes, the OCSVM learns a

hyperplane that maximally separates the one-class data from the origin. In both cases,

kernel functions such as Radial Basis function (aka Gaussian) are often employed

when the data points are not easily separable in its original dimensional space. The

kernel function aims to take the original positive data samples and increases their

dimensionality to make them separable by a hyperplane.

The choice of kernel function in OCSVM represents a critical component for the

success of this algorithm [28]. The Gaussian kernel function defined in Equation 1 is

a popular and powerful kernel used in machine learning and it has turned out to be

an appropriate kernel choice for OCSVM.

This kernel requires tuning for the proper value of Gaussian kernel parameter

denoted by σ in Equation 6.4.1. This parameter has a great influence on the con-

struction of a classification model as it controls how loosely or tightly the decision

boundary fits the training data.

K(xi, xj) = exp(−‖xi − xj‖
2

2σ2
) (6.4.1)

As σ → 0, the model will suffer from over-fitting since K(xi, xj)→ 0 will increase

the number of support vectors. This will generate a tight decision boundary that

yields to a complex over-fitted classifier lacking for the generalization. When σ →∞,

OCSVM will suffer from under-fitting since K(xi, xj)→ 1 causes all the samples to be

coincide at one point in the high dimensional space. This will generate a loose decision

boundary that results in a simple trivial model which classifies all new samples as
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positive class.

This parameter can be simply optimized in TCSVM by stepping through a range

of values for σ [σmin, σmax] seeking for optimal performance of a model (e.g F1-score

measure) with positive/negative instances in the training data. However, this problem

is much more challenging in OCSVM where training validation is difficult due to the

lack of negative instances.

In order to visualize the effect of parameter σ on the decision boundary in OCSVM,

we used a synthetic two-dimensional Ring-shaped data set which allows us to visually

observe the constructed OCSVM model. We applied OCSVM on the that dataset

using different set of values for the parameter σ, and then we plotted the resultant

decision boundary of OCSVM at each value of σ as shown in Figure 6.2.

It can be observed from this demonstration that the decision boundary starts

tightly (as shown in Figure 6.2 (a)) when the value of σ was very small thus produces

many interior and edge support vectors denoted by blue and red dots, respectively.

This situation improved in Figure 6.2(b) and exceptional in Figure 6.2 (c) when all

the support vectors in the training data exclusively located on the boundary of the

training data i.e. edge samples. The value of σ was further increased in Figure 6.2(d)

but it produces a loose decision boundary which may lead the model to miss-classify

anomaly data points. Accordingly, the optimal value of σ should be selected once

the spatial location of the support vectors exclusively exist on the boundary of the

training data. In other words, the best value of σ is the one for which all the support

vectors are edged support vectors. In this context, the problem is converted into

inspection the spatial location of the support vectors in the training data rather than

the classification performance (such as F1-score measure) which can’t be calculated
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in one-class learning algorithms.

6.4.1 The Edged Support Vector Method

This thesis presents a novel algorithm called Edged Support Vector (ESV) for op-

timizing the Gaussian kernel parameter inherent in OCSVM. The idea of the ESV

method is based on the spatial locations of the support vectors in OCSVM. Previously

in Figure 6.2, we illustrated the relation between the geometric location of the sup-

port vectors with the appropriateness of the decision boundary. We observed that to

generate a model converges on an optimal solution for the decision boundary which is

judged neither too loose (under-fitting) or too tight (over-fitting), its support vectors

must reside on the surface of the training data. On the other hand, the model may

suffers the over-fitting when most of its support vectors located at the interior of the

sample distribution form (denoted as interior support vectors from hereafter). Con-

sequently, the first goal of ESV method is how to identify whether a support vector

is sitting on the surface of the training data or not.

It is intuitive that an edge support vector xe will have all or most of its neighbours

sitting on one side of the hyperplane passing through xe. Therefore, our edge pattern

selection method uses a hard margin linear OCSVM to construct a hyperplane for

each selected support vector xs with its k-nearest neighbours data points. The method

initially selects the k-nearest data points to each xs, and then centralized them around

xs by computing the unit vectors xi − xs. This xs stands now as an origin for

its neighbours. Then we can apply a hard margin linear OCSVM to construct a

hyperplane trying to separate these normalized unit vectors from their origin. If

all or most of the vectors are separable (sitting on one side of the hyperplane), we

consider xs as an edge support vector xe, otherwise it is consider as interior support
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vector.

In order to illustrate this theory of identifying the edge support vectors, we used a

two-dimensional ring-shaped data set and we manually picked two edge samples from

the concave and convex region as shown in purple colour in Figs 6.3(a) and 6.4(a).

For each selected sample we computed its k-nearest neighbours points (shown in blue

colour) and we centred them around their corresponding sample as shown in Figs

6.3(b) and 6.4(b). Then we constructed a hard margin linear OCSVM to separate

the centred neighbours from the origin. As can be seen from Figs 6.3(b) and 6.4(b),

all the nearest neighbour samples for the selected edge pattern were successfully

separated from the origin and are sitting on one side of the plane. On the other hand

and as we expected, the constructed hyperplane in Figure 6.5 was not able to separate

from the origin all the k-nearest neighbours of an interior sample.

The algorithm of selecting the edge samples is described as follows: given a set of

support vectors xs(i = 1, . . . , ns), the (normalize to unit length) of the difference of

a certain support vector xs with its k closest points xj is computed as follows:

usj = (xij − xs)/norm(xij − xs) (6.4.2)

where j = 1, . . . , k, s = 1, . . . , ns, and xi1 , . . . , xik are the k nearest neighbours of xs.

Then we employ a hard margin linear OCSVM to separate vkj , the closest points

to xs, from the origin by solving the OCSVM optimization problem of the obtained

unit vectors in Equation (6.4.2). Once we get the optimal solution αj, j = 1, . . . , l

and calculating ρ, we estimate the value of the decision function using,
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g(vj) =
ns∑
i=1

αivi.vj − ρ. (6.4.3)

The next step is to evaluate the optimization of the constructed linear OCSVM

using the following equation

s =
1

k

k∑
j=1

f(g(vj)) > 0 (6.4.4)

where s represents the success accuracy rate of the model. If all the closest points

vkj are successfully separated from the origin (decision value is positive), then we count

xs as an edge support vector. In order to be lenient in identifying the edge support

vectors, we used a threshold 1 − γ (γ is a small positive parameter), to control the

number of edge support vectors by setting up a percentage for the acceptable success

rate for each sample xs. For γ = 0.05, if 95% of the closest points to a sample xs are

successfully separated from the origin, then the sample xs can be still considered as

an edge support vector, otherwise xs is considered as an interior support vector. The

pseudo code of the ESV method is presented in Algorithm 3.

The algorithm starts with the entire set of positive samples. Two parameters

are used in this algorithm; k, the number of the nearest neighbours which has been

thoroughly studied by [57] and they set k = 5ln(n), and γ is a small positive number

takes a value in the range of [0, 0.1].

The proposed method for ESV is described as follows: given a dataset of xi(i =

1, . . . , n), the first step in the algorithm generates a candidate set for parameter σ.

Empirically, σ values should be in the form of [ln d2min, ln d
2
max] where the dmin and dmax

are the minimal and maximal distances between the training samples, respectively.
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Algorithm 3: The Edged Support Vector.

Input: A set of n positive samples x = {xi}ni=1

Generate a candidate set σi (i = 1, . . . ,m.).
For each σi.

• Generate the OCSVM model (M)

• Set the value of the over-fitting factor O = 0.

• Get the set of support vectors {xs}ns
s=1.

• For each xs(s = 1, . . . , ns).

∗ Find the k closest points to xs: xj, j = 1, . . . , k.

∗ Calculate the unit vectors vkj of xs according to (6.4.2).

∗ Separate vkj from the origin using a hard margin linear OCSVM.

∗ Calculate the decision values of vkj according to (6.4.3).

∗ Calculate the success factor si according to (6.4.4).

∗ If ss ≤ 1− γ then
O = O + 1 (xs is an interior support vector).

• O% = O/ns

• Terminate when O remains 0;

Output: σi and (M).
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This interval is then divided equally into m values and the exponential of these values

comprise the candidate set of σi(i = 1, . . . ,m) which represents the upper and lower

bound of that parameter. Once we defined the candidate set of σ, we solve the

optimization problem of OCSVM at each value of σi (starting from the minimum

value) to identify the set of support vectors xs(i = 1, . . . , ns) in the training dataset.

For each obtained solution, we inspect the spatial location of each support vector to

see whether it is an interior sample or it is sample sitting on the surface of the training

data. Then we estimate the percentage over-fitting factor O% with respect to the total

number of the support vector ns. Since we are starting with the minimum value of

σ, we expect to have a large value for the factor O% at the beginning which tends to

decrease as we approaching the maximum value of σ. The algorithm terminates when

we reach the first zero value for O% because afterwards we actually start under-fitting

the model as illustrated in Figure 6.2(d).

Figure 6.6 shows the optimization process of the ESV algorithm using the ring-

shaped dataset. As can be seen, the over-fitting percentage factor O% was very high

in the first few iterations before it is dropped to zero when the value of σ became

equal to 0.04. This O% remains zero after that but the model starts to suffer the

under-fitting problem as we shown that in Figure 6.2(d).

6.5 Experimental Setup

We conduct three different experiments using three types of datasets in the context of

anomaly detection and X-ray security screening to illustrate and evaluate the perfor-

mance of our proposed tensor-based learning model. The first dataset is the MNIST

handwritten digit database [51], and the second one is the CIFAR dataset [50]. The
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MNIST has a total of 70,000 images each with a size of 28× 28 separated evenly into

10 classes. The CIFAR data has a total of 60,000 images each with a size of 32 × 32

which are also separated evenly into 10 classes. These two datasets are publicly avail-

able, and we have used them in the same way as in [86] and [1] to replicate their

results and to be objective in comparison analysis. In this sense, for each of these

two datasets we treat one class out of the ten classes as anomaly, while the remaining

classes are considered as normal samples. This process results in ten sets of data from

each datasets of which one class is considered as anomaly.

The third one is the Airport Baggage (AB) Dataset comprises 7,025 X-ray security

screening events collected from Sydney airport. This data is naturally made up of two

classes. The first class is the anomalous data related to objects such as knife, scissors

and saw, etc. This class contains 417 events in contrast to the normal class which

contains 6,608 events related to benign objects such as laptop, smartphone, brush,

etc (see Figure 6.7). Each event comprises eight multi-angle X-ray images scanned

from multiple perspectives. Each X-ray image has a size of 64 × 64 extracted using

an overlap sliding window approach

For all datasets, we randomly select 80% of the normal data for training, and the

remaining 20% are used for testing in addition to the anomalous data. For all experi-

ments, the core consistency diagnostic technique (CORCONDIA) technique described

in [18] is used to determine the number of rank-one tensors R when it is decomposed

using the CP method. The ESV method proposed in [7] is used to tune the Gaussian

kernel parameter σ in OCSVM. All the reported accuracy values were obtained using

the area under the curve (AUC) of the Receiver Operating Characteristic (ROC) and

F-Score (FS), defined as F-score = 2 · Precision× Recall

Precision + Recall
, Precision =

TP

TP + FP
and
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Recall =
TP

TP + FN
, where the number of true positive is abbreviated by (TP), false

positive (FP), and false negative (FN), respectively.

6.6 Experimental Results and Discussions

6.6.1 The MNIST Dataset

We start the experiments by validating our tensor-based learning approach using

MNIST dataset described in Section 6.5. This data doesn’t have any multi-angle

images, but for the sake of our approach, we deal with each eight images from the same

class as one event, and then we arrange them in a three-way tensor X . The resultant

three-way training and test tensor data has a structure of Xtrain ∈ <8×784×6300 and

Xtest ∈ <8×784×2450, respectively.

The ALS method described in Algorithm 2 is initially applied to decompose the

training tensor Xtrain into three matrices A, B and C, and the CORCONDIA method

[18] selects R = 10 in ALS alogrithm. The resultant matrix C ∈ R6300×10 represents

events data in time mode. To illustrate the performance of our tensor based learning

approach, we plot the resultant matrix C in two dimensional spaces to see whether

the tensor based features are able to distinguish between the ten different classes

given in our data. It can be clearly observed from Figure 6.9(a) how only the first

two features in matrix C can efficiently separate the 10 digits. These data are then

used to construct an anomaly detection model using OCSVM with the ESV method

for tuning the Gaussian kernel parameter. Figure 6.8(a) shows how the decision

boundary of OCSVM with a tuned σ can precisely describe the shape of the training

data, neither over-fitted nor under-fitted. On the other hand, the default value of σ

in OCSVM leads to a loose decision boundary as can be seen in Figure 6.8(b).
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Table 6.1: F-score of various methods.

TOCSVM GANomaly EGBAD AnoGAN SGAN

MNIST 0.92±0.02 0.80±0.01 0.51±0.05 0.45±0.06 0.35±0.06

CIFAR 0.79±0.03 0.60±0.02 0.46±0.05 0.44±0.06 0.73 ±0.03

AB 0.95±0.02 0.66±0.01 - - 0.92±0.06

For each new incoming Xtest datum, we use Equation 6.3.4 to calculate Cnew

which represents the tensor-based features. The decision function defined in Equation

3.5.4 is then used to generate the anomaly score for Cnew which specifies whether

this new event is normal or abnormal. The average AUC accuracy for all models

constructed at each digit designated as anomalous class is recorded at 0.92. The

results of our proposed tensor-OCSVM (TOCSVM) method outperforms the other

state-of-art methods proposed in [1, 86, 62, 6] which are described in Section 2.7 (see

Figure 6.10(a) and Table 6.1 ). This is what we anticipated discovering from the

OCSVM model which is trained based on latent features extracted from data fused

in a three-way tensor.
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6.6.2 The CIFAR Dataset

We apply the same process again here on CIFAR dataset described in Section 6.5.

We fuse eight images from the same class in a three-way tensor X as one single event.

The resultant three-way training and test tensor data has a structure of Xtrain ∈

<8×1024×5400 and Xtest ∈ <8×1024×2100, respectively.

We decompose the training tensor Xtrain into three matrices A, B and C, and the

CORCONDIA method [18] selects R = 4 in ALS alogrithm. The matrix C ∈ R5400×4

represents event data in time mode. We again plot here the resultant C matrix to

illustrate the performance of our tensor based learning approach and to see whether

the tensor based features are able to distinguish the ten different classes given in

CIFAR data.

We can observe from Figure 6.9(b) that some classes were difficult to separate

in this dataset such as samples belong to the classes of ”cat”, ”bird” and ”deer”.

On the other hand, tensor data analysis was able to capture meaningful features

and to successfully distinguish classes of ”truck”, ”dog”, ”car” and ”plane”. The

constructed OCSVM model using Ctrain generates comparable results to the methods

of [1, 86, 62, 2] (see Figure 6.10 (b) and Table 6.1) with an average AUC accuracy of

0.79.

6.6.3 The AB Dataset

The last experiments we conduct are based on our main AB Dataset collected from

Sydney airport. Each event in this data is naturally comprises 8 multi-angle images.

The three-way training and test tensor data has a structure of Xtrain ∈ <8×784×5286
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and Xtest ∈ <8×784×1739, respectively. We initially apply ALS to decompose the train-

ing tensor Xtrain into three matrices A, B and C at R = 16 set by CORCONDIA.

Then we construct our OCSVM model using C ∈ R5286×16 to classify each new in-

coming Ctest datum whether its normal or abnormal. In this experiment we use the

10-fold cross validation methods to generate 10 different sets of training and test

data. Our model generates an average AUC accuracy of 0.95 with a low false alarm

rate. We compare these results to other related methods reported in the literature i.e

GANomaly and SGAN. The resulted accuracies are shown in Figure 6.11 and Table

6.1 which demonstrates that our TOCSVM consistently outperforms the other ap-

proaches at each fold except for ”fold 8”. We didn’t compare our experimental results

of AB dataset to the results of EGBAD and AnoGAN since the source code of these

two methods are not available.

These results justify our arguments on how tensor data analysis is able to fuse

multi-way data in one structure from where we can extract the most informative and

latent features which we can use to detect anomalous data. In fact, there is also

another factor leads to these promising results which is the ESV method we used to

tune the Gaussian kernel parameter σ in OCSVM.

6.7 Summary

This chapter presents an anomaly detection approach augmented with data fusion for

X-ray security imaging in screening applications in airports. Our approach employs

OCSVM based on latent features extracted from multiple images fused in a tensor

via ALS technique. This approach performed successfully in three case studies based

on two publicly available datasets and real X-ray baggage data collected from the
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Sydney airport. The results show the importance of tensor analysis in extracting

anomalous sensitive features as well as reducing the dimensionality of the data. In

this approach, the OCSVM model was built using a self-tuning method of Gaussian

kernel parameter for constructing an optimal decision boundary without suffering

from the over-fitting nor the under-fitting problems. Our next chapter proposes the

implementation this approach in a federated learning setting to build a central model

learnt from data distributed at different airports.
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Figure 6.2: Experimental results using a ring-shaped dataset.
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Figure 6.3: Concave edge sample selection.
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Figure 6.4: Convex edge sample selection .
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Figure 6.7: Exemplary X-ray images for the normal (row 1) and anomaly (row 2)
classes in AB dataset.
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Figure 6.8: The resultant decision boundary of OCSVM.
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Figure 6.9: Two-dimensional plot of the resultant C matrix of tensor X .
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Figure 6.10: Comparison of AUC accuracy on the ten classes.
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Chapter 7

A Federated Learning Anomaly
Detection Approach for X-ray
Security Imaging

This chapter proposes a federated learning (FL) approach for anomaly detection in

X-ray security imaging using OCSVM. FL allows the central machine learning model

to build its learning from a broad range of data sets located at different locations.

It aims to train a shared centralized anomaly detection model using datasets stored

and distributed across multiple clients/airports. This innovative machine learning

approach can train a centralized model on data generated and located on multiple

airports without compromising the privacy and security of the collected data. More-

over, it does not require transmitting large amount of data which can be a major

performance challenge especially for real-time applications. FL approach can enable

multiple airports to collaborate on the development of a central anomaly detection

model by only sharing the model coefficients of each client/airport model rather than

the whole data collected by all participating airports. The contribution of this chapter

is twofold.

• A novel method of learning OCVSM model in FL settings
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• An efficient communication method for coefficient’s aggregation.

The rest of this chapter is structured as follows. Section 7.1 gives a brief review of

problem formulation in federated learning setting. Section 7.2 presents our federated

learning network with a novel method for Optimising coefficient’s aggregation. Sec-

tion 7.3 presents the experimental setup and the results. Section 7.4 gives a summary

of this chapter.

7.1 Problem Formulation of OCSVM in Federated

Learning

In FL setting, a set of S clients (airports) each of which has access to its local data,

but they are connected to a central server to solve the following problem:

min
w∈Rd

f(w) :=
1

C

C∑
c=1

fc(wc) (7.1.1)

where fc is the loss function corresponding to a client c that is defined as follows:

fc(wc) := E[Lc(wc;xi)] (7.1.2)

where Lc(wc;xi) measures the error of the model wc (e.g. OCSVM) given the input

xi. The Sequential Minimal Optimization (SMO) is often used in the support vector

machine. However, in the case of the nonlinear kernel model as in OCSVM, SMO does

not suit the FL settings well. Therefore, we propose a new method for solving the

OCSVM problem in FL setting using the SGD algorithm. The SGD method solves

the above problem defined in Equation 7.1.2 by repeatedly updating w to minimize
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L(w;xi). It starts with some initial value of w(t) and then repeatedly performs the

update as follows:

w(t+1) := w(t) + η
∂L
∂w

(x
(t)
i , w

(t)) (7.1.3)

Thus, we need now to formulate the cost function of OCSVM defined in Equation

7.1.4 to be optimized with SGD subject to the constraints 0 ≤ αi ≤ 1
νn

maxL(α) =
n∑
i

αi −
1

2

n∑
i

n∑
j

αiαjK(xi, xj) (7.1.4)

s.t 0 ≤ αi ≤
1

νn
,

n∑
i=1

αi = 1,

where K(xi, xj) is the kernel matrix and α are the Lagrange multipliers.

Let us assume L(α) is given at the Lagrange multiplier αk:

maxL(αk) = αk −
1

2
α2
kK(xk, xk)− αk

n∑
i=1,i6=k

αiK(xi, xk)

The gradient of L(αk) at αk is given as:

∇L(αk) = 1−
n∑
i=1

αiK(xi, xk) (7.1.5)

Starting from an initial value of α, the gradient descent approach successively updates

α as follows:

αt+1 = αt + η∇J(αt) (7.1.6)
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Algorithm 4: Our OCSVM Using SGD

Require: : X, kernel function φ , η, ε
K = φ(xi, xj)i,j=1,...,n

Ensure: Initialize α
t = 0
repeat
α = αt
for k ← 1 to n do
αk = αk + η(1−

∑n
i=1 αiK(xi, xk))

if αk ≤ 0 then αk = 0
if αk ≥ 1

νn
then αk = 1

νn

end for
αt+1 = α
t = t+ 1

until ‖αt − αt+1‖ ≤ ε
return α

In SGD approach, the update rule for the kth component is given as:

αk = αk + η∇J(αk) (7.1.7)

Recall that the optimization of α is subject to the constraints 0 ≤ αi ≤ 1
νn

. Thus

in the above update step, if αk ≤ 0 we reset it so that αk = 0, and if αk ≥ 1
νn

we

reset it so that αk = 1
νn

. Therefore, our OCSVM using SGD algorithm is presented

in Algorithm 4.

In fact, the SGD algorithm in OCSVM focuses on optimizing the Lagrange mul-

tiplier α for all patterns xi where xi : i ∈ [n], αi > 0 are called support vectors. Thus,

exchanging gradient updates in FL for averaging purposes is not applicable. Con-

sequently, we modified the training process of SGD to share the coefficients of the

features in the kernel space under the constraints of sharing an equal number of sam-

ples across each client C. In this sense, our SGD training process computes the kernel

matrix K = φ(xi, xj)i,j=1,...,n before looping through the samples. Then it computes
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the coefficients w after performing a number of epochs as follows:

w(t+1) = αK; (7.1.8)

s.t α = α + η(1−
n∑
i=1

w)

Each client performs a number of E epochs at each round to compute the gradient

of the loss over its local data and to send the model parameters wt+1 to the central

server S along with their local loss. The server then aggregates the gradients of

the clients with a condition that a client should have generated a loss below the

overall median loss, and applies the global model parameters update by computing

the average value of all the selected clients model’s parameters as follows:

w(t+1) :=
1

C

C∑
i=1

w(t+1); (7.1.9)

where C is the number of selected clients.

The server then share the w(t+1) to all selected clients in which each one performs

another iteration to update w(t+1) but with setting w
(t)
i = w(t+1) as defined in the

traditional FedAvg method.

7.2 Optimising coefficient’s aggregation in Feder-

ated Learning

We also address the communication and aggregation problems that arise in the Fe-

dAvg method where several distributed models (clients) communicate with the central

model to report its learning to the central model (the server). In fact, the perfor-

mance of FedAvg is affected by the low-performing clients when their coefficients are
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shared are included in the aggregation at the central server. Therefore, we design

a new method called Optimised-FedAvg (Opt-FedAvg) to mitigate this problem by

selecting the optimal client’s coefficients and filtering out the low-performing clients

based on their local performance. The rationale behind this design is that at each

update round, all the clients initially send their local loss values to the central model

which in turn calculates the overall median loss. Then, only clients with their local

loss value is lower than the overall median loss will be included in the aggregation at

the central model, and the rest will be dropped until the next round. This would cater

for different local clients, with varying progress, to perform more local computation.

The completed algorithm of our Opt-FedAvg learning process is given in Algorithm

5

7.3 Experimental Results and Discussion

We conduct three different experiments using the same datasets we used in 6 i.e X-

ray security screening, MNIST and CIFAR. For the sake of federated learning setting,

we split each dataset into 5 subsets with 20% each to virtually represent five clients

in our federated learning network. For all datasets, we randomly select 80% of the

normal data for training, and the remaining 20% are used for testing in addition to the

anomalous data. The same OCSVM setting is used here with ESV method described

in Algorithm 3 for tuning the Gaussian kernel parameter σ. All the reported accuracy

values were obtained using the area under the curve (AUC) of the Receiver Operating

Characteristic (ROC) and F-Score (FS).
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Algorithm 5: Optimised-FedAvg

K = φ(xi, xj)i,j=1,...,n

Server executes:
Initialize α,w
for each client c ∈ C in parallel do
wt+1
c , losst+1

c = ClientUpdate(wt)
end for
find the median M = median(losst+1

c )
select clients with losst+1

c ≤ M
compute the average w(t+1) := 1

C

∑C
c=1w

(t+1)
c

send w(t+1) to the selected clients

ClientUpdate(w):
Require: X, kernel function φ , η
Require: K = φ(xi, xj)i,j=1,...,n

for k ← 1 to n do
αk = αk + η(1−

∑n
i=1w(k, i))

if αk ≤ 0 then αk = 0
if αk ≥ 1

νn
then αk = 1

νn

end for
w = αK
compute loss
return w and loss to server

7.3.1 Experiments on the AB Dataset

We initially study the effect of the number of local training epochs E on the perfor-

mance of the four experimented federated learning methods as suggested in previous

works [61, 22]. The candidate local epochs we consider are E ∈ 5, 10, 20, 30, 40, 50.

For each of the candidate E, we run all the methods for 40 rounds and report the

final f1-score accuracy generated by each method. The result is shown in Figure 7.1.

We observe that conducting longer epochs on the clients improves the performance of

Opt-FedAvg and FedPer, but it slightly deteriorates the performance of FedProx and

FedAvg. The second experiment was to compare our Opt-FedAvg method to FedAvg,
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FedPer and FedProx in terms of accuracy and the number of communication rounds

needed for the global model to achieve good performance on the test data. We set the

total number of epochs E for Opt-FedAvg and FedPer to 50, and 30 for FedProx and

FedAvg as determined by the first experimental study related to the local training

epochs E. The results showed that Opt-FedAvg outperforms FedAvg, FedProx and

FedPer in terms of local training models and performance accuracy. Table 7.1 shows

the accuracy results of all experiments using F-score. Although no data from the

anomalous classes has been employed to construct the central model, each local client

model was able to identify the anomalous events with an average F-score accuracy of

0.85± 0.02.

7.3.2 Experiments on the MNIST Dataset

Similar to the experimental setup we did in Chapter 6, we treat one class out of the

ten classes as anomaly, while the remaining classes are considered as normal samples.

This process produces ten sets of data of which one class is considered as anomaly.

The reported F-score accuracy is the overall average over the tens datasets.

We also study here effect of the number of local training epochs E on the perfor-

mance of the four experimented FL methods. The results are summerised in Figure

7.2. Both Opt-FedAvg and FedPer benefit from doing longer epochs on clients in

contrast to FedProx and FedAvg which are slightly deviated from the optimal con-

vergence. The second experiment was to compare our method to FedAvg, FedPer

and FedProx in terms of accuracy and the number of communication rounds needed

for the global model to achieve good performance on the test data. We set the total

number of epochs E for Opt-FedAvg and FedPer to 40, and 20 for FedProx and Fe-

dAvg as suggested from Figure 7.2(b). As shown, Opt-FedAvg outperforms FedAvg,
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FedProx and FedPer in terms of local training models and performance accuracy.

Table 7.1 shows the accuracy results of all experiments using F-score.

7.3.3 Experiments on the CIFAR Dataset

As we did with MNIST dataset, we selected one class out of the ten classes to be our

anomalous samples, and we considered the remaining classes as normal samples. We

reported the overall average F-score accuracy over the obtained tens datasets. We

also study here effect of the number of local training epochs E on the performance

of the four experimented FL methods. The results are summerised in Figure 7.3.

Similarly, both Opt-FedAvg and FedPer benefit from doing longer epochs on clients

in contrast to FedProx and FedAvg which are slightly deviated from the optimal

convergence. We run another experiment to compare our method to FedAvg, FedPer

and FedProx in terms of accuracy and the number of communication rounds needed

for the global model to achieve good performance on the test data. We set the

total number of epochs E for Opt-FedAvg and FedPer to 40, and 20 for FedProx

and FedAvg as suggested from Figure 7.3(b). Again here, Opt-FedAvg outperforms

FedAvg, FedProx and FedPer in terms of local training models and performance

accuracy. Table 7.1 shows the accuracy results of all experiments using F-score.

7.4 Summary

We present a novel machine learning approach for an effective and efficient anomaly

detection model in such applications like anomaly detection in X-ray images which

may require information derived from many spatially-distributed locations. Our

method employs a Federated Learning (FL) approach to OCSVM as an anomaly
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Table 7.1: F-score of various methods.

Opt-
FedAvg

FedProx FedPer FedAvg

AB 0.85±0.02 0.82±0.01 0.83±0.03 0.80±0.04

MNIST 0.87±0.03 0.85±0.02 0.82±0.05 0.83±0.06

CIFAR 0.75±0.03 0.74±0.02 0.73±0.05 0.71±0.06

detection model augmented with a novel efficient communication method for co-

efficient’s aggregation. Our experimental evaluation on AB, MNIST and CIFAR

datasets showed promising anomaly detection accuracy compared to other state-of-

the-art methods. In the ”AB” dataset, our Opt-FedAvg method achieved an accuracy

of 85%. In the MNIST and CIFAR datasets, our Opt-FedAvg method achieved 87%

and 75% anomaly detection accuracy, respectively. The experimental results of these

three datasets demonstrated the capability of our FL-based anomaly detection ap-

proach with the coefficient’s aggregation method to add extra learning experience to

each local model using data located on multiple airports without compromising the

privacy and security of the collected data.
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Figure 7.1: Convergence rates of various methods in federated learning applied on
AB dataset with five clients.
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Figure 7.2: Convergence rates of various methods in federated learning applied on
MNIST dataset with five clients.
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Figure 7.3: Convergence rates of various methods in federated learning applied on
CIFAR dataset with five clients.



Chapter 8

Conclusion

Airport security screening is essential to ensure the safety of the aviation industry and

passengers travelling by air. Security processes at the airport have undeniable costs

for passengers that can make many passengers unsatisfied and can be divided into

four types: time delay, indirect financial costs, privacy, and inconvenience. However,

with the increased number of passengers.

The goal of this research was to develop essential models: (i) to optimise the se-

curity screening process by reducing the average waiting time; (ii) to design security

screening area by predicting the number of servers and security officers; (iii) to re-

duce time and enhance the X-ray security screening system by automating anomaly

detection in cabin bags; and (iv) to build a federated learning model from a broad

range of data sets located at different locations without data pooling. The main data

used in this study was collected from Sydney International Airport.

Four main research questions have been addressed in this thesis: (i) How to op-

timise the security screening process to reduce passenger’s average waiting time; (ii)
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How to design the security screening process and forecast the average waiting time

based on number of passengers and servers; (iii) How to build an Anomaly detection

model in multi-view learning settings of X-ray security screening system; (iv) How to

implement federated learning network for anomaly detection in X-ray security screen-

ing.

8.1 Contribution 1: Optimizing the Waiting Time

for Airport Security Screening using Multiple

Queues and Server

Section 4.2 presents the framework is a combination of queueing theory and Lindley

process to propose QQT (Queues Queueing Theory) model to optimise the security

screening process with multi-servers in parallel to serve different number of passengers

during different seasons, such as Christmas, Easter and school holidays, and time of

the day, as this strongly influences the number of passengers, in order to improve the

average waiting time in airport security areas.

8.2 Contribution 2: Design of airport security screen-

ing using queueing theory augmented with par-

ticle swarm optimisation

This model proposes a novel method based on queueing theory augmented with par-

ticle swarm optimisation (QT-PSO) is presented in section 5.1 to address the second

research question. This model is used to predict passenger waiting times in a security

screening context. This model consists of multiple servers operating in parallel and
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takes into consideration the complete scenario such as normal, slow and express lanes.

Such an approach has the potential to be a reliable model that is able to assimilate

variations in the number of passengers, security officers and security machines on the

service time.

8.3 Contribution 3: Anomaly Detection in X-ray

Security Imaging

This model proposes a novel tensor-based learning method for anomaly detection in

X-ray security screening systems based on tensor analysis augmented with one-class

classification model, introduced in section 6.1 to address the third research question.

Our method initially performs data fusion of multi-angle scanned images in one tensor

structure from where we extract the informative features, and further constructs a

one-class support vector machine model using these features to detect anomalies.

8.4 Contribution 4: A Federated Learning Anomaly

Detection Approach for X-ray Security Imag-

ing

This model proposes a federated learning (FL) approach for anomaly detection in X-

ray security imaging using OCSVM, introduced in section 7.2 to address the fourth

research question. This innovative machine learning approach can train a centralized

model on data generated and located on multiple airports without compromising the

privacy and security of the collected data. Moreover, it does not require transmitting

large amount of data which can be a major performance challenge especially for

real-time applications. FL approach can enable multiple airports to collaborate on
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the development of a central anomaly detection model by only sharing the model

coefficients of each client/airport model rather than the whole data collected by all

participating airports.

8.5 Future Work

The ultimate goal of this thesis is to build a complete model for airport security

screening process which includes optimising and designing the security process at air-

port. Although our QQT and QT-PSO models were able to reduce passengers average

waiting, predict passengers average waiting time and determine number of services,

future work is required on this research project to handle the case when the number

of servers are less than three.

Similarly, our federated learning network for anomaly detection based on tensor anal-

ysis and OCSVM was able to successfully detects anomalous objects in X-ray images

with an average accuracy of 85%. However, it is important to improve this accu-

racy and address the case when the data across different airports are not independent

and non-identically distributed (Non-IID). Another challenge to address in our future

work is to incorporate deep learning methods such as Generative Adversarial Network

(GAN) for efficient anomaly detection methods.
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[49] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
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