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Doctor of Philosophy

Parametric Array Loudspeakers and Applications in Active Noise Control

by Jiaxin Zhong

Parametric array loudspeakers (PALs) are known for their capability of generating highly direc-
tional audio sound waves. Owing to this feature, they are used as secondary sources in active
noise control (ANC) systems to mitigate the unwanted noise in the target regions whilst at
the same time minimizing spillover effects on other areas. The primary aim of this thesis is
to investigate the feasibility of using multiple PALs in an ANC system to create a large quiet
zone. To achieve this, a partial wave expansion model is proposed first based on the quasilinear
solution of both Westervelt and Kuznetsov equations to predict the audio sound generated by
a PAL in a free field. The model is then extended to accommodate reflection, transmission,
and scattering phenomena, which are common in real applications and can have significant
effects on the noise reduction performance of ANC systems. The proposed model is validated
by experiments conducted in anechoic rooms, and the validated model incorporated with the
multi-channel ANC theory is then used to investigate the quiet zone size controlled by multiple
PALs.

It is found the existing prediction models for PALs are either inaccurate or time-consuming,
while the proposed model is more than 100 times faster in both near and far fields without
any loss of accuracy. It therefore enables reliable and fast simulations for multi-channel ANC
systems, which require heavy computations due to large numbers of PALs. A key finding is that
the directivity of the audio sound generated by a PAL is severely deteriorated if sound waves
are reflected from a non-rigid surface, truncated by a thin partition, or scattered by a sphere
(simulating a human head). This implies the sharp directivity for PALs is not guaranteed as
expected when they are used in complex acoustic environments. Finally, both simulations and
experiments showed that multiple PALs can create a large quiet zone of comparable size when
compared to traditional omnidirectional loudspeakers. However, the spillover effects of using
PALs on the sound field outside the quiet zone are much smaller, which demonstrates PALs
provide a promising alternative as secondary sources in multi-channel ANC systems.
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L Lagrangian density
m Index distinguishing different modes
n Index distinguishing different modes
Ne the number of error sensors in ANC systems
Np the number of primary sources in ANC systems
Ns the number of secondary sources in ANC systems
O orgin of coordinate systems
p(r, k) the sound pressure field at the field point r and the wavenumber k
P ambient pressure
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q(r) the virtual source denstiy at point r for audio sound generated by a PAL
r field point position; vector from origin to point with coordinates (x, y, z)
rs position on the transducer surface
rs,< min(r, rs)
rs,> max(r, rs)
rv,< min(r, rv)
rv,> max(r, rv)
R the radial component for audio sound generated by a PAL
R Rayleigh distance; pressure-amplitdue reflection coefficient
S the radiation surface of a planar source
t time
T pressure amplitude transmission coefficient
v(r, k) the velocity field (also known as acoustic particle velocity vector) at the field

point r and the wavenumber k
vx, vy, vz the components of the velocity field v in x, y, and z directions, respectively
vr, vθ, vφ the components of the velocity field v in radial r, zenithal θ, and azimuathal

φ directions, respectively
vρ the component of the velocity field v in polar radial ρ direction
V the volume of the virtual audio sound source
(x, y, z) rectangular (also known as Cartesian) coordinates

Greek letters

Symbol Description

α pure-tone sound absorption coefficient for atmospheric absorption, describing
amplitude decay with distance, Np/m

δ the sound diffusivity parameter
δmn Kronecker delta function; the value is 0 if m ̸= n, and 1 if m = n

ϵ error function
εn Neumann factor
θ zenith (also known as polar) angle in spherical coordinates
Γ(·) Gamma function
ρ the polar radius in cylindrical coordinates (ρ, φ, z)
ρ0 linear ambient density of air
ρ̃ the fluid density
ρ the transverse coordinate vector (x, y)
τ retarded time
Φ(r, k) the velocity potential field at the field point r and the wavenumber k
ω angular frequency
ω1, ω2 the angular frequency of ultrasound
ωa the angular frequency of audio sound
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Other symbols

Symbol Description

∇ Gradient operator
∇2 Laplace operator
∇2

⊥ the transverse Laplace operator
n! factorial of n(
a b c

d e f

)
Wigner 3j symbol

Constants

Symbol Description

c0 = 343m/s linear speed of sound
ρ0 = 1.21 kg/s3 linear ambient density of air
β = 1.2 the nonlinear coefficient in air
π = 3.1415926 Archimedes’s constant
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