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Doctor of Philosophy

Parametric Array Loudspeakers and Applications in Active Noise Control

by Jiaxin Zhong

Parametric array loudspeakers (PALs) are known for their capability of generating highly direc-
tional audio sound waves. Owing to this feature, they are used as secondary sources in active
noise control (ANC) systems to mitigate the unwanted noise in the target regions whilst at
the same time minimizing spillover effects on other areas. The primary aim of this thesis is
to investigate the feasibility of using multiple PALs in an ANC system to create a large quiet
zone. To achieve this, a partial wave expansion model is proposed first based on the quasilinear
solution of both Westervelt and Kuznetsov equations to predict the audio sound generated by
a PAL in a free field. The model is then extended to accommodate reflection, transmission,
and scattering phenomena, which are common in real applications and can have significant
effects on the noise reduction performance of ANC systems. The proposed model is validated
by experiments conducted in anechoic rooms, and the validated model incorporated with the
multi-channel ANC theory is then used to investigate the quiet zone size controlled by multiple
PALs.

It is found the existing prediction models for PALs are either inaccurate or time-consuming,
while the proposed model is more than 100 times faster in both near and far fields without
any loss of accuracy. It therefore enables reliable and fast simulations for multi-channel ANC
systems, which require heavy computations due to large numbers of PALs. A key finding is that
the directivity of the audio sound generated by a PAL is severely deteriorated if sound waves
are reflected from a non-rigid surface, truncated by a thin partition, or scattered by a sphere
(simulating a human head). This implies the sharp directivity for PALs is not guaranteed as
expected when they are used in complex acoustic environments. Finally, both simulations and
experiments showed that multiple PALs can create a large quiet zone of comparable size when
compared to traditional omnidirectional loudspeakers. However, the spillover effects of using
PALs on the sound field outside the quiet zone are much smaller, which demonstrates PALs
provide a promising alternative as secondary sources in multi-channel ANC systems.
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L Lagrangian density
m Index distinguishing different modes
n Index distinguishing different modes
Ne the number of error sensors in ANC systems
Np the number of primary sources in ANC systems
Ns the number of secondary sources in ANC systems
O orgin of coordinate systems
p(r, k) the sound pressure field at the field point r and the wavenumber k
P ambient pressure
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q(r) the virtual source denstiy at point r for audio sound generated by a PAL
r field point position; vector from origin to point with coordinates (x, y, z)
rs position on the transducer surface
rs,< min(r, rs)
rs,> max(r, rs)
rv,< min(r, rv)
rv,> max(r, rv)
R the radial component for audio sound generated by a PAL
R Rayleigh distance; pressure-amplitdue reflection coefficient
S the radiation surface of a planar source
t time
T pressure amplitude transmission coefficient
v(r, k) the velocity field (also known as acoustic particle velocity vector) at the field

point r and the wavenumber k
vx, vy, vz the components of the velocity field v in x, y, and z directions, respectively
vr, vθ, vφ the components of the velocity field v in radial r, zenithal θ, and azimuathal

φ directions, respectively
vρ the component of the velocity field v in polar radial ρ direction
V the volume of the virtual audio sound source
(x, y, z) rectangular (also known as Cartesian) coordinates

Greek letters

Symbol Description

α pure-tone sound absorption coefficient for atmospheric absorption, describing
amplitude decay with distance, Np/m

δ the sound diffusivity parameter
δmn Kronecker delta function; the value is 0 if m ̸= n, and 1 if m = n

ϵ error function
εn Neumann factor
θ zenith (also known as polar) angle in spherical coordinates
Γ(·) Gamma function
ρ the polar radius in cylindrical coordinates (ρ, φ, z)
ρ0 linear ambient density of air
ρ̃ the fluid density
ρ the transverse coordinate vector (x, y)
τ retarded time
Φ(r, k) the velocity potential field at the field point r and the wavenumber k
ω angular frequency
ω1, ω2 the angular frequency of ultrasound
ωa the angular frequency of audio sound
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Other symbols

Symbol Description

∇ Gradient operator
∇2 Laplace operator
∇2

⊥ the transverse Laplace operator
n! factorial of n(
a b c

d e f

)
Wigner 3j symbol

Constants

Symbol Description

c0 = 343m/s linear speed of sound
ρ0 = 1.21 kg/s3 linear ambient density of air
β = 1.2 the nonlinear coefficient in air
π = 3.1415926 Archimedes’s constant
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Chapter 1

Introduction

1.1 Background and motivation

Noise pollution is becoming more and more serious nowadays due to the development of trans-
portation systems (e.g., cars, airplanes, ships, trains), manufacturing plants (e.g., transformer
stations), electrical appliances (e.g., vacuum cleaners, refrigerators, air-conditioners), and so on
[1]. Exposures to high levels of noise could cause health issues to human beings, such as the
hearing loss, cardiovascular diseases, cognitive impairment, and tinnitus [2, 3]. Therefore, it is
necessary to control the noise levels. Noise can be mitigated at three different stages: at the
noise source, along the wave propagation path, and at the human ear (receiver). Different noise
control techniques have been proposed to control noise at different stages.

Passive noise control (PNC) techniques include the installation of enclosures covering noise
sources [4, 5], building sound barriers and insulation walls in highways, around airports, and
construction sites [6, 7], and wearing earplugs and earmuffs around the human ears [8]. The
size of the devices and/or materials used in PNC techniques (e.g., porous absorbers [9, 10] and
Helmholtz resonators [11]) depends on the wavelength and is usually sizable at low frequencies,
which may limit their applications when there are weight and volume constraints. Active noise
control (ANC) is a method to mitigate noise at target regions by introducing additional loud-
speakers (called “secondary sources”) [12, 13]. It provides an alternative solution to control the
low frequency noise. The theory and physical mechanism of ANC methods have been well es-
tablished and investigated, and successful applications include the ANC systems in headphones
[14], headrests in cars [15, 16], domenstic windows enabling natural ventilation [17, 18], and so
on [19].

Figure 1.1 shows the typical structure of an ANC system. In practice, the unwanted noise
is time varying, so a controller is required to process the real time audio signals. The reference
sensors (e.g., microphones or tachometers) are placed near the noise source (called the “primary
source”) to capture the noise signal, which is called the “reference signal”. The error sensors
(e.g., microphones or accelerometers) are used to obtain the residual noise level at the error
points. The reference signals are filtered by control filters in the controller to generate the
real time anti-noise signal for secondary sources, resulting in a noise reduction at error points.
There are various kinds of algorithms to obtain the control filters, all of which aim to maximize
the noise reduction level at error points. The filtered-x least mean square (FxLMS) algorithm
is desgined to minimize the sum of the square of sound pressure at all error points [20]. It
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has low computational cost, stable performance, and commonly employed in commercial ANC
controllers, so it is adopted in this work.

Figure 1.1: Structure of an ANC system.

There are two strategies of ANC systems, namely global active control and local active
control [12]. The global active control aims to reduce the total sound power radiated from
the noise and secondary sources [21]. Although the radiation of the system can be globally
mitigated when the distance between secondary and noise sources is small, the noise reduction
performance deteriorates significantly when the distance is larger than half of a wavelength
[22–24]. When global control cannot be achieved, local active control can be used to mitigate
the noise in a particular region and form a so called “quiet zone”, which is defined as the region
where the noise reduction is larger than 10 dB [25–27]. It is noted that the sound field in
other areas is not taken into account in the local active control strategy. When the traditional
dynamic loudspeakers are used as secondary sources in ANC systems, the noise in some other
areas outside the quiet zone can be amplified because traditional dynamic loudspeakers are
approximately omnidirectional. This phenomenon is referred to as the “spillover effect” in the
literature [28–30].

To illustrate the spillover effect, Fig. 1.2 is presented showing the physical configuration of
a single channel ANC system. When a secondary source (denoted by a cross mark) is used to
cancel the noise radiated by a point source (denoted by a circle mark) at an error point (denoted
by a square mark), the quiet zone is formed around the error point. The spillover effect can be
observed that the sound pressure in some other areas is amplified due to the omnidirectional
sound waves generated by the traditional secondary loudspeakers, which is undesirable in real
applications. Moreover, such property increases the instability of the ANC system because
the reference signal is contaminated by the secondary source signal received by the reference
sensors [30]. As shown in Fig. 1.3, placing the secondary source close to the target point can
mitigate the increase of total energy in the other areas [31, 32], but it reduces the quiet zone
size [25], and also brings extra obstructions to the target point. The spillover effect is annoying
in applications. For example, when a quiet zone is created in the main driver’s seat inside a
car cabin, the occupants sitting in other seats experience the noise amplification [33, 34]. It is
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therefore desirable to manipulate the secondary sound waves so that they propagate only in the
direction of error points.

(a) (b)

Figure 1.2: Sound pressure level (SPL; dB re 20 µPa) generated by a point source
located at (x, z) = (0, 6m) at 1 kHz: (a) primary (noise) field; (b) the noise at the
(x, z) = (0, 0) is controlled by introducing a secondary source at (x, z) = (0, 4m).

Circle, primary source; cross, secondary source; square, error point.

(a) (b)

Figure 1.3: SPL (dB re 20 µPa) generated by a point source located at (x, z) =
(0, 6m) at 1 kHz and the sound at the (x, z) = (0, 0) is controlled by a traditional
omnidirectional loudspeaker at: (a) (x, z) = (0, 0.5m); and (b) (x, z) = (0, 2m).

Circle, primary source; cross, secondary source; square, error point.

The spillover effect is also occurred in the multi-channel local active control system, which
aims to create multiple quiet zones or a larger quiet zone using multiple secondary sources [12].
For example for a binaural ANC system as shown in Fig. 1.4, two secondary sources are intro-
duced to mitigate the noise at two ears. The secondary field at each ear is the superposition
of the sound waves radiated by two secondary loudspeakers. Except for two secondary paths
between either loudspeakers and the ipsilateral ears, there are another two crosstalk secondary
paths between either loudspeakers and the contralateral ears. If the secondary source is omni-
directional, the crosstalk secondary paths are non-negligible and must be taken into account in
signal processing algorithms. They would double the computational cost in the ANC controller
[35].



4 Chapter 1. Introduction

Figure 1.4: Sketch of a binaural ANC system using two PALs. From Fig. 6 in
[35].

The sound waves radiated by directional sources focus on their propagation axis, and have
small effects in other directions. Owing to this feature, using directional sources in ANC systems
can mitigate the spillover effect [36–38] as well as reduce the crosstalk secondary paths [35, 39].
Parametric array loudspeakers (PALs) are a special kind of loudspeakers, which has sharp
radiation directivity when compared to existing traditional dynamic loudspeakers. The sharp
directivity for PALs can be clearly identified in a comparison of the sound field radiated by a
PAL and a traditional loudspeaker of the same radiation surface, as shown in Fig. 1.5. The
advantage of using PALs in ANC systems has been demonstrated in some studies [30, 35, 39,
40]. For example, after replacing the omnidirectional secondary source in Fig. 1.3 by the PAL,
the noise reduction performance is shown in Fig. 1.6 and , it is clear the spillover effect is much
reduced. However, most existing studies focus on using one or two PALs to cancel the noise at
error points, where the generated quiet zone is rather small. It is necessary to investigate the
feasibility of using multiple PALs to generate a large quiet zone.

(a) (b)

Figure 1.5: SPL (dB re 20 µPa) at 1 kHz generated by: (a) a traditional loud-
speaker; (b) a PAL located at the origin and of the same radiation surface.

ANC and related audio systems are used in various kinds of acoustic environments, where the
sound waves experience the reflection, transmission, scattering, and other physical phenomena.



1.2. Objectives 5

(a) (b)

Figure 1.6: SPL (dB re 20 µPa) generated by a point source located at (x, z) =
(0, 6m) at 1 kHz and the sound at the (x, z) = (0, 0) is controlled by a PAL at:
(a) (x, z) = (0, 0.5m); and (b) (x, z) = (0, 2m). Circle, primary source; cross,

secondary source; square, error point.

When traditional dynamic loudspeakers are adopted as secondary sources, they are usually
modelled as point monopoles at low frequencies, the theory of which is trivial. At middle
and high frequencies, more accurate models can be used to predict the sound field, such as the
model taking into account the radiation directivity or the aperture size of the loudspeakers. The
theory for traditional dynamic loudspeakers has been well developed and used in investigating
the effects of the physical properties of secondary sources on ANC performance. For example,
it has been demonstrated that the noise reduction performance can be much improved by
optimally setting the locations of secondary sources and reflecting surfaces for both global and
local active control [21–24, 41]; the ANC system can be used to increase the insertion loss of a
passive partition [42–44] and enclosures [45]; the scattering effects caused by a human head is
beneficial to the ANC system in terms of performance robustness with regard to the movements
of the human head [46–49]. All of aforementioned studies demonstrate the physical properties
(e.g., reflection, transmission, and scattering) of secondary sources have significant effects on
the performance of ANC systems. However, these properties for audio sound generated by PALs
are still unclear, which will be investigated in this thesis.

1.2 Objectives

The primary aim of this thesis is to investigate the feasibility of using multiple PALs in an ANC
system to create a large quiet zone. This thesis aims to improve the fundamental understanding
of how PALs affect the noise reduction performance and the quiet zone size in a multi-channel
ANC systems. In particular, since heavy computations for the audio sound generated by PALs
are required in modelling the noise reduction performance of a multi-channel ANC system, a new
partial-wave expansion method is proposed to reduce the computational load without causing
loss of accuracy. In addition, the proposed method is extended to investigate the reflection,
transmission, and scattering phenomena for PALs, which are common in real applications but
the relevant studies are rare. Finally, the proposed model incorporated with the multi-channel
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ANC theory is used to investigate the quiet zone size controlled by multiple PALs. The spillover
effect will be evaluated quantitatively and compared to the systems using traditional dynamic
loudspeakers which have omnidirectional radiation pattern.

1.3 Thesis outline

The structure of the thesis is as follows:

Chapter 1: Introduction

This chapter gives a brief introduction on the concepts of PAL and ANC, and the motivation
and objectives of this thesis. The thesis outline and contributions are also presented.

Chapter 2: Literature Review

This chapter presents a systematic review of PAL and ANC. For PALs, it includes the
physical mechanism and properties of the audio sound generated by a PAL, the prediction
models, implementations and applications. For ANC, it includes the methods to generate a
quiet zone and ANC systems using directional loudspeakers and PALs.

Chapter 3: Sound Fields Generated by a PAL

This chapter firstly reviews the governing equations for audio sound generated by a PAL.
The quasilinear solutions for both three-dimensional and two-dimensional models are presented.
The front side for a baffled PAL is proposed to be divided into three regions: the near field,
the Westervelt far field, and the inverse-law far field. The widely used Gaussian beam expan-
sion (GBE) model and the convolution model are concluded to predict the sound fields in the
Westervelt far field and the inverse-law far field, respectively. The sound field on the back side
for a non-baffled PAL is predicted using the non-paraxial PAL model and the disk scattering
theory. Experimental results are presented to validate the proposed model.

Chapter 4: Improved Prediction Models for PALs

This chapter proposes two improved prediction models for PALs. The first model is called
the spherical wave expansion (SWE) model which is used to calculate the radiation from a
circular piston source, and the audio sound generated by a circular PAL. The second model is
called the cylindrical wave expansion (CWE) model which is used to calculate the audio sound
generated by a phased array PAL. The advantages of the proposed models are illustrated by
numerical simulations.

Chapter 5: Physical Properties for Audio Sound Generated by a PAL
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This chapter provides a systematic investigation on the physical properties for audio sound
generated by a PAL. The reflection of audio sound generated by a PAL is investigated first when
an infinitely large reflecting surface is placed near the PAL. A theoretical model is then developed
to predict the transmission of audio sound generated by a PAL through a thin partition, and
is used to quantitatively analyze the insertion loss. The scattering effects of a rigid sphere
(simulating a human head) on audio sound generated by a PAL are investigated. Experimental
results are presented to validate the models proposed in this chapter.

Chapter 6: ANC using PALs

This chapter investigates the feasibility of using a PAL to reduce a broadband (up to 6 kHz)
noise at the human ears. Then the feasibility of using multiple PALs to create a large quiet
zone is investigated, and the physical limitations are explored. Experiments of both single and
multi-channel ANC systems are conducted to verify the findings.

Chapter 7: Conclusions and Future Work

This chapter concludes the work in this chapter. The future work and outlook are also
presented.

1.4 Contributions

The main original contributions of this thesis are as follows:

1. A spherical wave expansion method for calculating the audio sound generated by a PAL
has been proposed for both Westervelt [50] and Kuznetsov [51] equations. The proposed
method is found to be not only more accurate but also 15 times faster than the widely
used Gaussian beam expansion method, and is more than 100 times faster than the direct
integration method without any loss of accuracy.

2. A closed-form solution for calculating the radiation from a circular piston source has been
proposed using the spherical wave expansion method [52].

3. A cylindrical wave expansion method for calculating the audio sound generated by a
phased array PAL has been proposed [53]. It improves the agreement with the experi-
mental results when compared to the existing convolution model.

4. The reflection from a reflecting surface [54], the transmission through a thin partition
[55], and the scattering by a rigid sphere (simulating a human head) [56], for audio sound
generated by a PAL have been investigated by both simulations and experiments. The
work provides a framework and a guidance for investigating these physical properties of
audio sound generated by a PAL.

5. An ANC system has been designed and implemented to cancel the noise at human ears,
where the secondary source is a commercial PAL and the error signal is remotely detected
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by an optical microphone using the laser Doppler vibrometer technique [57]. Experiments
are conducted to test the performance of such a system.

6. The feasibility of using multiple PALs to create a large quiet zone has been validated by
both simulations and experiments [58]. The empirical formulae to estimate the quiet zone
size have been proposed.
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Chapter 2

Literature Review

This chapter presents a literature review on PALs and ANC in Secs. 2.1 and 2.2, respectively.
The physical mechanisms and the basic properties of the PAL are introduced in Sec. 2.1.1. The
governing equations and existing prediction models are reviewed in Sec. 2.1.2. Implementations
and applications of the PAL are presented in 2.1.3. The approaches and algorithms to realize
an ANC system are introduced in Sec. 2.2.1. The mechanism of the quiet zone generation for
an ANC system is introduced in Sec. 2.2.2. The ANC system using directional loudspeakers
and PALs are reviewed in Secs. 2.2.3 and 2.2.4, respectively.

2.1 Parametric array loudspeakers (PALs)

2.1.1 Physical mechanisms

It is well known that a sound wave distorts as it propagates, and this can be seen as a nonlinear
interaction of the sound wave with itself [59]. If there are two sound waves of frequencies f1 and
f2 with f1 > f2, it is expected that four components of these frequencies: 2f1, 2f2, f1 ± f2 will
be generated when subject to the second-order nonlinearity, where the component of frequency
f1 − f2 is known as the difference frequency wave (DFW). The occurrence of these components
has been demonstrated and observed in many studies, and this nonlinear phenomenon is known
as “the scattering of sound by sound”, although it usually refers to the generation of DFW
outside the nonlinear interaction region [60–65]. There are also further studies and applications
on utilizing the higher order nonlinear components [66–72].

Enlightened by these findings, Westervelt was the first to propose the concept of parametric
acoustic array (PAA) in 1963 [73]. When a PAA radiates two collimated primary sound waves of
frequencies f1 and f2, a DFW that has sharp directivity is generated at a frequency of f1−f2. As
shown in Fig. 2.1, the second-order nonlinear effects cause such a beam to act like a distribution
of virtual sources for the DFW [74]. The source density of these virtual sources is proportional to
the amplitude of the primary waves, which is approximately exponentially attenuated along the
propagation axis (end-fire direction of the virtual source array [75]). These sources form a so-
called “end-fire array” with a semi-infinitely long length [76], which can produce low frequency
directional sound beams in the end-fire direction without side lobes [77–80].

The PAA was firstly used in underwater applications, such as sub-bottom profiling [81, 82],
underwater communications [83], detection of buried objects [84], and so on; a review can be
found in [85]. The application of PAA in air is called a PAL, where the primary sound and DFW



10 Chapter 2. Literature Review

Figure 2.1: Demonstration of the generation of audible sound beam by using the
PAA. From Fig. 1 in [76].

correspond to ultrasonic and audio waves, respectively. The parametric effect in air was firstly
experimentally observed by Bennett and Blackstock in 1975 [86]. This work was followed by
Yoneyama et al. who designed and fabricated a new type of loudspeaker based on the principles
of PAA [87]. They used 547 PZT bimorph ultrasonic transducers with the center frequency
of 40 kHz to generate the audio sound from 200 Hz to 20 kHz, and sharp directivity patterns
for audio waves were observed in measurements as expected. Although it is called the “audio
spotlight” in their work (shown in Fig. 2.2), it is more often called a PAL in the literature.
They also showed the demodulated wave has a rate of 12 dB/octave decrease as the frequency
is halved. However, it is possible to get a flat response for the reproduced audio sound generated
by the PAL by using an equalizer.

Figure 2.2: Front view of the first audio spotlight (PAL). From Fig. 2 in [87].

Although PALs are capable of generating narrow beams at low frequencies, the amplitude
of the beams decreases slightly with distance, which is a disadvantage in some appliations. For
example, the audio beam at 1 kHz radiated by a PAL with the dimensions of 60 cm × 60 cm
attenuates only around 6 dB at the distance of 4 m on the propagation axis [88]. This means
undesirable multiple reflections from walls and floor would happen when using PALs in a room.
Recently, a so-called “length-limited PAL” is proposed which can produce audible sound only in
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a limited range in front of the transducer [89]. The idea is to cancel out the sound generated by
the PAL by using another PAL of different carrier frequency producing audible sound of equal
amplitude but in anti-phase. A finite-difference time-domain (FDTD) method was proposed
to numerically model the sound propagation generated by an axisymmetric length-limited PAL
[90]. Their simulation results shown in Fig. 2.3 demonstrate the feasibility of realization of
such a length-limited PAL, where the audible sound decreases rapidly at the axial distance of
2 m. Skinner and et al. used pairs of commercial off the shelf PAL and conducted a series of
measurements to assess the practicality of a length-limited PAL [91].

Figure 2.3: Contour lines indicate the SPL normalized by each maximum level
from −6 to 0 dB in steps of 1 dB. The carrier frequencies for sources 1 and 2 are

77 kHz and 52 kHz, respectively. From Fig. 10 in [90].

Except for limiting the audio sound in the near field of the PAL, there are also studies
in remotely creating an audio spot [92–95]. As shown in Fig. 2.4, the idea of this technique
is to emit the carrier wave (f1) and sideband wave (f2) by two separated PALs. The two
sound beams are inaudible along their propagation path because they are ultrasonic waves.
However, the sound in the overlap region of these two sound beams is audible due to the
parametric nonlinear interactions between them. Therefore, a small locally audible space is
remotely created. This feature enables delivering the sound secretely and has been used to
“attack” (performs a secret malicious voice command) the voice assistance system, such as Siri,
Google Assistant, and Amazon Alexa [95].

2.1.2 Prediction models

Accurate and computationally efficient prediction model for PALs is necessary in simulating the
performance of ANC and other related audio systems using PALs. The fundamental model
is a baffled circular PAL installed on an infinitely large reflecting surface [96]. When a PAL



12 Chapter 2. Literature Review

Figure 2.4: Audio spot creation using two PALs. From Fig. 1 in [95].

radiates two intensive ultrasonic waves at different frequencies, a secondary wave containing the
DFW (the audio sound in air) is generated due to the second-order nonlinearity. The nonlinear
interactions of primary waves are rather complex, and some approximations and simplifications
have to be made in the mathematical modelling. Because the ultrasound level generated by
a PAL is limited for safety concerns [76, 97, 98], the nonlinearity is normally weak and the
quasilinear approximation is usually assumed. By expanding the sound field up to second-order
under the quasilinear assumption, one then obtains a set of hierarchical linear wave equations for
both the ultrasound and the audio sound [59, 99]. This enables the ultrasound to be modelled as
the radiation from a planar source, so the field can be obtained using the well-known Rayleigh
integral. The audio sound is then seen as radiation from an infinitely large volume source with
the source density proportional to the product of the ultrasonic pressure.

Far field
The calculation of audio sound pressure in the far field is of great interest because the expression
of the solution is usually much simpler and can be used to analyze the directivity of the PAL
[100]. The first closed-form expression for audio beam directivity was proposed in Westervelt’s
seminal work, and this is usually termed the Westervelt directivity [73]. In this model, it is
assumed that the ultrasonic waves are collimated and fully attenuated in the near field of the
PAL, and the audio sound is seen to be generated by a line array of virtual sources with the
source density exponentially decreasing along the radiation axis of the PAL [73]. The solution
demonstrates the sharp directivity of the PAL. However, large differences between predictions
obtained using Westervelt’s directivity and experimental measurements have been reported
[100], and this is thought to be because of the assumptions in the original model.

Many attempts have been made to improve the accuracy of the directivity predictions. Berk-
tay [101] and Berktay and Leahy [102] modified Westervelt’s directivity by taking into account
effects arising from the cylindrical/spherical spreading of ultrasonic waves, and they improved
prediction accuracy by introducing an aperture factor for the transducer and the product di-
rectivity of ultrasonic waves. The Berktay’s solution is given as a simple expression in the time
domain, which provides the basis for the signal modulation techniques in the realization of PALs
[76, 103]. Berktay described the generation of the audio sound as a self-modulated process, so
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the audio sound is sometimes referred to as the demodulated signal. Several modifications to
the Berktay model were later proposed to improve the prediction accuracy for the sidelobes of
PALs [104].

The most accurate approach to date for the far field prediction is to employ the convolution of
the ultrasonic wave directivities and Westervelt’s directivity [105–107]. An arbitrary directivity
for the ultrasound can then be set in the convolution model to calculate the audio sound
directivity, and reported experimental results have demonstrated that it outperforms other
existing models in the far field for a steerable PAL [100, 105]. However, the ultrasound beams
are assumed to be exponentially attenuated in each direction, which is not true in reality because
of the complexity of the ultrasound beams in the near field, where the majority of the nonlinear
interactions take place. Furthermore, the far field is usually more than 10 m away from a PAL
when its size is larger than 0.04 m [51, 108], which is too far when compared to real applications.
Therefore, differences between predictions and measurements continue to be observed, even for
the sound pressure 4 m away from the PAL [105].

KZK equation
It has been shown that the aforementioned far field solution is inaccurate to predict the near
field audio sound [51]. Several governing equations have been proposed to obtain more accurate
results in the near field. In early studies, the most widely used model is based on the Khokhlov-
Zabolotskaya-Kuznetsov (KZK) equation, which is a second-order model and considers the
diffraction, absorption and nonlinearity of both the ultrasonic and the audio sound waves [59,
109, 110].

Various kinds of methods have been proposed to numerically solve the KZK equation in
both frequency [111–113] and time [114, 115] domains. The paraxial (Fresnel) approximation
is assumed for both the ultrasound and the audio sound in KZK equation, so it is valid only
in the vicinity of the propagation axis, approximately 20 degrees from the transducer axis
[59]. The solution based on the KZK equation is therefore called “the paraxial solution”. This
approximation is generally acceptable for ultrasound because the ultrasonic wavelength (e.g.,
8.6 mm at 40 kHz) is usually much smaller than the aperture size of the PAL. However, the
prediction for audio sound is inaccurate because the audio sound wavelength is much larger
(e.g., 34.3 cm at 1 kHz), and the error increases as the audio frequency decreases [96]. In
addition, the KZK equation is difficult to use when calculating the sound propagation in complex
environments, such as the reflection, transmission, and/or scattering, where the accuracy is
known to reduce [116].

Westervelt equation
A more accurate governing equation is called the Westervelt equation. Actually, the KZK equa-
tion can be seen as a parabolic approximation of the Westervelt equation, which is applicable
in the paraxial region only [96, 111]. In this model, the ultrasound is calculated first using
a two-fold Rayleigh integral over the area of the transducer surface. Next, the audio sound
is calculated by a three-fold integral over the full space of the product of the source density
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(determined by ultrasound field) and the Green’s function for a point source. This approach
results in a five-fold integral and this can be very time-consuming to solve [50].

To simplify the calculation, the Gaussian beam expansion (GBE) method is usually used as
this simplifies the two-fold integral required for both the ultrasound and the audio sound [96,
117]. The GBE method approximates the vibration velocity profile of the transducer surface
by using multiple Gaussian functions. Because the radiation from a planar source that has
a Gaussian profile has the closed-form solution under the paraxial (Fresnel) approximation,
the calculation of ultrasound field is then simplified by a superposition of the radiation from
multiple Gaussian beams. If the radiation surface for the planar surface is circular, then the
two-fold integral can be simplified by a one-fold summation. It has been shown that various
kinds of velocity profiles can be approximated by Gaussian beams using the optimization theory
[117–124].

In addition to a planar source with a circular surface, the GBE method can also be used for
a source that has other shapes, such as rectangular and elliptical, and the two-fold integral is
simplified by a two-fold summation [120, 122, 123]. They are then extended for calculation of
the audio sound generated by a rectangular PAL [125–127] and the array of PAL consisting of
circular elements [128]. In early studies, the GBE method is applied for both the ultrasound and
the audio sound, and the prediction accuracy is therefore equivalent to that obtained using the
KZK equation [128]. In 2013, Cervenka and Bednaík employed the GBE only for the ultrasound
and obtained a more accurate solution, which is called “the non-paraxial model” [96].

The GBE model assumes the paraxial approximation, and some extensions on this model
have been proposed which is applicable in the non-paraxial region [129, 130]. Although the
GBE method consumes less calculation time than the direct integration approach, the Gaussian
functions are not a complete set so it is not an exact solution of the Westervelt equation under
the quasilinear approximation. Furthermore, Gibbs oscillations occur for a uniform piston
source no matter how many Gaussian beams are used [117, 124], and the calculation of the
off-axis audio sound is still time consuming due to the triple-integral over the whole space.

Kuznetsov equation
Even if the five-fold integral based on the Westervelt equation is calculated without additional
approximations, the predictions can be inaccurate when the so-called “local effects” are dom-
inant in the nonlinear interactions of the ultrasound [111]. In this case, the process can be
modelled using a second-order nonlinear wave equation if cubic and higher order terms are
neglected [111]. The Lagrangian density, which characterizes the local effects, is contained in
this equation and, it reduces to the Westervelt equation if the Lagrangian density is neglected.
However, this equation is rarely used in numerical calculations due to the difficulty of evaluating
the spatial second derivatives of the Lagrangian density [131]. Instead, the Kuznetsov equation
is more convenient, which is identical to the second-order nonlinear equation but is expressed
in terms of the velocity potential [111, 132]. For a progressive plane wave, it has been shown
that the influence of the Lagrangian density is small enough to be neglected at field points away
from the PAL. However, the accuracy is reduced significantly at points close to the PAL [132].
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Model Company Center frequency Used in

Airducer AT-50 AirMar 50 kHz [89, 134]
Airducer AT-75 AirMar 75 kHz [89]
FBULS1007P-T Ningbo Best Group Factory 40 kHz [135]
MA40H1S-R Murata 40 kHz [136]
MA40S4S Murata 40 kHz [135–144]

MCUSD16A40S12RO MultiComp 40 kHz [135]
MCUST10P40B07RO MultiComp 40 kHz [135, 145, 146]
MSO-A1625H12T Manorshi 25 kHz Not found
MSO-P1640H10TR Manorshi 40 kHz [135]
MSO-A1640H10T Manorshi 40 kHz [135]
MSO-P1040H07T Manorshi 40 kHz [135]

T4010B4 Nippon Ceramic 40 kHz [147]
ZT40-16 Shanghai Nicera Sensor 40 kHz [141, 148]

Table 2.1: Commercial ultrasonic emitters.

2.1.3 Implementation and applications

The implementation of a PAL consists of 4 parts, which are the ultrasonic emitter, the power
amplifier, the signal processor, and the peripheral circuit. As shown in Fig. 2.5, the audio signal
is fed into a signal processor and it is modulated with carrier (ultrasonic) signals based on various
kinds of modulation algorithms [87, 94, 133]. After passing through the power amplifier, the
modulated signal is radiated by the ultrasonic emitter and the audio sound is then demodulated
(generated) in air due to the parametric effect.

Signal
processing

Ultrasonic
emitterAmpli�er

Audio signal

Ultrasonic
signal

Modulated
signal

Demodulated
audio sound

Figure 2.5: Block diagram of the implementation of a PAL. From Fig. 11 of [76].

Ultrasonic emitter
The piezoelectric transducers are the most common ultrasonic emitters used in PALs. Table 2.1
and Fig. 2.6 present some commercial emitters. It is found the emitter type MA40S4S from
Murata is the most popular one.

The electroacoustic efficiency is usually very low for traditional ultrasonic emitters. The
main reason is the large acoustic impedance mismatch between air (415Rayls) and the emitter
(e.g., 34MRayls for PZT4) [149]. A promising approach is to reduce the characteristic mechan-
ical impedance of the emitter by using a thin-film structure, which can be fabricated using the
micromachined technique [150]. Piezoelectric micromachined ultrasonic transducers (PMUTs)
are compact and efficient emitters for PALs . Lee et al. designed and fabricated a PMUT and
the electroacoustic efficiency is measured to be 21.9% [150]. Later, they improved the efficiency
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(a) Murata MA40S4S. From
Fig. 2.17(a) in [136].

(b) Murata MA40H1S-R. From
Fig. 2.17(b) in [136].

Figure 2.6: Commercial ultrasonic emitters.

to 58.4% [151] and then 71% [152]. Furthermore, the PMUT has a wide bandwidth, and a
±3 dB bandwidth of 17 kHz was reported for the ultrasonic waves [152].

Power amplifier
The class D amplifier is usually used due to its high efficiency in electroacoustic conversion
[153]. Early implementation of PALs used analog circuits, see [98] for example. Modern PALs
are adopting digital circuits, where the digital signal processor (DSP) and field programmable
gate array (FPGA) are usually used as the signal processor. Karnapi et al. designed and
implemented a PAL system in FPGA platform using the Altera 1S10 device [154]. Recently,
the metal-oxide-semiconductor field-effect transistor (MOSFET) is introduced to amplify the
ultrasonic emitters [137, 138]. In 2021, a phased array PAL was realized by Hahn et al. using a
microcontroller and MOSFET drivers [137]. It is showed that the switching mechanism of the
MOSFETs benefit to the signal processing and steering the sound beam.

Signal processing methods
The audio signal cannot be radiated by the ultrasonic emitter directly, as it has to be modulated
into ultrasonic signals via signal processors. A fundamental preprocessing technique is the am-
plitude modulation, which is usually called the double sideband (DSB) amplitude modulation
in the literature [87]. However, the lower and upper sideband introduced in the DSB amplitude
modulation suffer from interference which causes distrotions. The single sideband (SSB) modu-
lation method was proposed, where a quadrature path is used to cancel the nonlinear distortion
[155]. Kamakura et al. proposed the square root (SRT) modulation method in 1984, which can
be used to eliminate all of the undesired harmonics theoretically [156]. However, the SRT mod-
ulation method requires an ideal ultrasonic emitter that has a perfect flat response (i.e., infinite
bandwidth to produce the square-root), which is impossible in real implementations [133]. The
effects of the ultrasonic emitter on the distortion performance for different modulation methods
are compared and reviewed in [133]. A more practical technique called modifield amplitude
modulation was proposed based on the quadrature amplitude modulation [157–159].

In addition to the efforts on eliminating the harmonic distortion, signal processing techniques
are used to equalize the frequency response of the PAL. According to the Berktay’s far field
solution [101], there is a decrement of 12 dB/octave in the frequency response of the audio sound
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generated by a PAL [87]. In 1998, Kite et al. proposed a method to equalize by introducing a
double integral [160]. More concerns are focuesd on the virtual bass enhancement, which is a
psychoacoustic signal processing technique enhancing the low frequency sound by adding the
harmonics of the fundamental frequency [161–164].

Applications and commercial products
The PAL has attracted much attention in audio applications because of its sharp directivity,
small size, and negligible sidelobes compared to the traditional loudspeakers. Due to these
advantages, PALs have been widely used in applications including ANC systems [30, 35, 39,
40], personal communications [165], museum exhibitions and service and multimedia booths
[166], measurement of the acoustic parameters of materials [167, 168], mobile robotic navigation
[91], stand-off concealed weapons detection [169], directivity control [100], constructions of
omnidirectional loudspeakers [145, 146], sound reproduction systems [170]; and many other
areas. The applications of PALs in ANC systems will be introduced in detail in Sec. 2.2.4. Due
to its potential in audio applications, some commercial PALs are available on the market and
presented in Table 2.2 and Fig. 2.7.

Model Company Country

Audio Spotlight Holosonics USA
Hypersound Turtle Beach Corporation France
MSP-50E Mistubishi Electric Engineering Company Japan
Acouspade speaker Ultrasonic Audio Technologies Slovenia
Focusound directional speaker Audfly Technology (Suzhou) China
Soundlazer Richard Haberkern USA

Table 2.2: Commercial products of the PAL.

2.2 Active noise control (ANC)

Lueg was the first to introduce the concept of an ANC system, which was reported in a US
patent granted in 1936 [177]. It demonstrated the cancellation of a sound field can be realized by
superimposing an electroacoustically generated secondary sound field that has an opposite phase
[177, 178]. Early ANC applications focused on the control of noise radiated by a transformer
[179]. Nowadays, more and more applications are reported, and the theory and signal processing
techniques can be found in textbooks [12, 20, 180–182]. In general, there are two types of ANC
systems: the global and the local active control. For a global control system, the aim is to
reduce the total radiation from the noise source. However, it is possible and practical only
when the secondary source is close to the noise source (smaller than half of the wavelength)
[12]. Therefore, local control is more popular which aims to create a small quiet zone at target
regions [31]. This section focuses on the review of approaches and algorithms to realize an ANC
system, the quiet zone generation, and existing ANC systems using directional loudspeakers
and PALs.
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(a) Audio Spotlight AS-24i from
[171]

(b) HyperSound HSS3000 from
[172]

(c) MST-50E from
[173]

(d) Acouspade from [174] (e) Focusound Model R from [175]
(f) Soundlazer SL-01

from [176]

Figure 2.7: Several commercial products of the PAL.

2.2.1 Approaches and algorithms

Depending on the use of reference sensors, the ANC system can be classified as the feedforward
strcture and the feedback structure [20]. Figure 1.1 shows the feedforward structure of an ANC
system, where the reference sensors are placed near the noise source to acquire the primary
noise. The anti-noise control signal emitted by the secondary sources is calculated based on
the reference signal. It goes through the secondary path (the acoustic path from the secondary
source and the error point) and entirely cancels the primary nosie at the error sensors. The
residual error signal at error sensors is used to dynamically adjust the output of the control
signal enabling the maximum noise reduction. A disadvantage of the feedforward structure is
that the reference signal is affected by the sound radiated by the secondary source when the
reference signal is recorded by the acoustic based sensors (e.g., microphones), which makes the
system unstable [183]. This can be solved by using directional loudspeakers as secondary sources
so that the secondary sound waves do not propgate in the direction of the reference sensors.
Compared to the feedforward strucutre, the feedback structure does not need reference sensors.
Instead, the information of the primary noise is captured from the error signal. Although the
feedback structure requires less sensors than the feedforward structure, it is hard to predict
broadband signals due to the limitation of system causility, so it is only used to deal with the
narrowband noise [20]. The feedforward ANC is more stable and used in applications, and it is
therefore adopted in this thesis.

It is hard to implement a feedforward ANC system using analog circuits. Digital processors
with adaptive filter algorithms are generally used nowadays. The aim of the adaptive filter
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algorithm in an ANC controller is to find the control filter which enables the maximum noise
reduction at error sensors. There are various kinds of algorithms to obtain the control filter,
while the FxLMS is the most practical one, and also used in commercial ANC controllers [184,
185]. The mechanism of FxLMS algorithm can be illustrated by Fig. 2.8. P (z) and S(z)
represent the path from the primary noise and secondary srouce to the error point, respectively.
Ŝ(z) is an estimation of S(z). The reference signal denoted by x(n) is filtered by the control
filter W (z) and becomes the control signal y(n). The control filter W (z) is adaptively updated
according to the minimize the square of the error signal e(n). There are also other algorithms
to improve the convergence speed and reduce the computational cost of the control filter, such
as the normalized FxLMS algorithm [186, 187]; a more detailed review can be found in [184].

Figure 2.8: Block diagram of the FxLMS algorithm. From Fig. 2.3 in [184].

2.2.2 Quiet zone generation

The ANC technique is effective in controlling a noise source at the error point. However, it
only creates a small quiet zone around the error point, and the quiet zone is usually defined
as the region where the noise reduction is larger than 10 dB [26]. Furthermore, the size of the
quiet zone becomes smaller as the frequency increases. For an ANC system with one secondary
source, the size of the quiet zone is only about one tenth of the wavelength in a diffuse sound
field [25, 188]. The challenge to be addressed with ANC involves maximizing the size of this
quiet zone.

To enlarge the quiet zone, a multi-channel ANC system that has multiple secondary sources
and error microphones is usually used [189]. The sound pressure inside a closed surface sur-
rounded by multiple secondary sources can be controlled if the spacing between the secondary
sources is sufficiently small [190]. In a free field, the quiet zone size is found to be proportional
to the number of secondary sources [28]. Experimental measurements show that more than 20
dB of noise reduction can be obtained inside a sphere with a radius of 0.3 m for frequencies
from 100 Hz and 500 Hz, when using 30 secondary sources on a spherical surface [191]. In an
ordinary room, experimental results with 16 secondary sources distributed over a cylindrical
surface demonstrate that a cylindrical quiet zone with a height of 0.2 m and a radius of 0.2
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m is possible below 550 Hz [192]. A large quiet zone usually requires a larger number of sec-
ondary sources and error microphones, so recent work has focused on reducing the number of
microphones [193] and loudspeakers [194].

In these ANC systems, omnidirectional loudspeakers were used as secondary sources. Al-
though the noise inside the target region is reduced, the sound pressure outside the region often
increases, which is known as the spillover effect [28, 30]. This causes noise amplification outside
the target areas, which can be mitigated by optimizing some parameters such as the separation
between the secondary sources and the distance between secondary sources and the error sensors
[28, 31, 32]. To address this problem, directional loudspeakers have been shown to have the
potential to lower this external sound field [30, 38]. PALs have sharper directivity than most
traditional dynamic loudspeakers [76], but the feasibility of using them to create a quiet zone
is not clear, and so this will be investigated here.

2.2.3 ANC using directional loudspeakers

The type of secondary source in an ANC system is crucial for delivering high levels of noise
reduction [195, 196]. It is common for a single monopole, or an array of monopoles, to be
used as secondary sources in ANC systems. However, directional sources can be used as sec-
ondary sources in multiple channel ANC systems to improve performance. For example, tripole
secondary sources with a cardioid radiation pattern have been used to reduce noise source ra-
diation [36]. In 2011, Chen et al. designed a unidirectional source consisting of two closely
located loudspeakers with pre-adjusted phase difference [37]. In an active noise barrier (ANB)
system as shown in Fig. 2.9, both numerical and experimental results from 160 Hz to 300 Hz
have showed that the noise reduction performance can be improved significantly by replacing
monopole sources with unidirectional sources. Furthermore, a large quiet zone around the error
points was observed [37].

Figure 2.9: Sketch of an ANB system. From Fig. 1(a) of [37].

In 2019, Hu and Tang proposed a directional source consisting of a central circular core
enclosed within an annulus, as shown in Fig. 2.10(a). It has been demonstrated that the
proposed source is much more directional than a traditional piston source, even though its size
is much smaller than the latter if the magnitude and the phase of the two parts are optimally
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designed [38]. Hu and Tang used these directional sources to cancel the noise generated by a
finite length coherent line source, as shown in Fig. 2.10(b). The numerical results show that
the proposed directional sources can make the ANC system more compact and improve noise
reduction performance, when compared to traditional piston sources [38]. These directional
secondary sources have been chosen because they radiate only in the direction of the target
region, and so they have less effect on the other areas reducing the effects of noise amplification
outside of the quiet zone.

(a) (b)

Figure 2.10: (a) The proposed directional source; (b) a coherent line source of
length l is controlled by 3 secondary sources. From Figs. 1 and 5 in [38].

2.2.4 ANC using PALs

In 2005, Brooks et al. was the first to investigate the feasibility of using PALs in ANC systems
as secondary sources [197]. They pointed out two concerns in practical applications which
might adversely affect the performance of such an ANC system. The first is that the frequency
response of a PAL is poor at low frequencies, so that the noise reduction performance would
deteriorate significantly as the frequency decreases. The second is that the demodulated audio
sound in air is found to vary quickly as a function of time, so that the performance controlling
wideband noise would be degraded. It is noted that the low frequency response of PALs may
be improved by focusing the sound beams [198–201].

The quiet zone is usually generated around a fixed error microphone for ANC systems. To
overcome this limitation, Kidner et al. proposed an ANC system using PALs to create a moving
local quiet zone with the aid of virtual sensing techniques, as shown in Fig. 2.11 [29]. Their
results showed that the quiet zone created by the PAL can be extended further in the radial
direction when compared to a traditional piston source. The reason is that the sound wave
generated by a PAL decays slowly resulting in a better matching between the primary (noise)
and secondary sound fields.

Despite the advantages of using PALs in ANC systems, the target point is limited along
the radiation direction of the PAL due to its sharp directivity. To cope with this problem, a
steerable PAL employing the phased array technique was proposed by Tanaka and Tanaka in
2010 [30]. As shown in Fig. 2.12, the noise at an error point (denoted by circle markers) in the 30◦

direction can be reduced by a secondary source (denoted by square markers) at the origin. Both
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Figure 2.11: Illustration of the concept of a directional control source (PAL,
denoted by “Spotlight”) being used in combination with a virtual sensor to allow
tracking of a local quiet zone, without spillover in the rest of the field. The shaded
area shows the region that is affected by the secondary source. From Fig. 1 of

[29].

numerical and experimental results show similar noise reduction performance can be achieved
around the error point, but the noise amplification (spillover effect) in the surrounding areas
is negligible for the case with a PAL. This successful realization of the steerable PAL is an
attractive technique for tracking control of a moving target without mechanically rotating the
PAL, as shown in Fig. 2.11.

Tanaka and Tanaka continued their work and proposed a focused PAL, shown in Fig. 2.13,
to achieve a mathematically trivial global control of the sound radiated by a point source [40].
The measured and predicted audio sound pressure is shown in Fig. 2.14. It is well known that
the global control is very limited when the separation of the primary and secondary sources
is larger than the half of the wavelength, which is 0.17 m at 1 kHz [12]. However, they claim
global control is observed when using a focused PAL even when the distance between primary
and secondary sources (0.3 m in Fig. 2.13) is larger than half of wavelength. It should be noted
that the trivial method is hard to realize in applications, and the performance for broadband
noise still needs to be investigated. The global sound power control using PALs in an ANC
system has also been investigated numerically by Ye et al. [202]. They developed a framework
to analyze the sound power output by a PAL in ANC systems. A useful conclusion is that the
minimization of the total power output of the system is the same as the minimization of the
power output only by the PAL, due to its sharp directivity. However, it should be noted that
the power output of the PAL is calculated based on a far field solution in [202], which is rather
inaccurate.

Except for the ANC systems used in free field, the PAL has also been used to cancel the
noise in a room [203]. As shown in Fig. 2.15, a commercial PAL (Audio Spotlight AS-24i [171])
is used as a secondary source in an ANC system. Contrary to the aforementioned literatures, an
adaptive ANC algorithm (leaky normalized least mean square) was used, so that the wideband
noise can be reduced adaptively.
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Figure 2.12: Sound fields steered by 30◦. Left column, numerical results; right
column, experimental results; top row, before control; middle row, after control
using a traditional loudspeaker; bottom row, after control using a PAL. Cross,
noise source; Square, secondary source; Circle, error point. From Figs. 11 and 12

in [30].

Figure 2.13: The laboratory made focused PAL in [40].

Later, PALs have been extended to the multi-channel ANC systems. For example, in 2017
a two-channel ANC system using PALs was proposed to reduce the binaural factory noise at
human ears [35], and the sketch is shown in Fig. 1.4. This demonstrated two advantages of
using PALs in multi-channel ANC systems. First, the noise at target points can be reduced
while the sound pressure in other areas is not affected. Second, the crosstalk between secondary
paths is negligible so the crosstalk cancellation technique is not required. As shown in Fig. 2.16,
it is clear that the noise reduction performance without the crosstalk cancellation is almost the
same as that with the crosstalk.

The length-limited PAL has also been used for ANC. Shi and Gan proposed a theoretical
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Figure 2.14: Simulation (left column) and measurement (right column) audio
sound pressure of locally global noise control at 1 kHz: (top row) before control,
(middle row) after control with the focused PAL, and (bottom) after control with
an ideal point source. Cross mark, primary source; square mark, secondary source;

circle mark, error point. From Figs. 3 and 8 in [40].

Figure 2.15: Experimental setup of an ANC system using a commercial PAL in a
room. From Fig. 5 in [203].

framework based on the KZK equation for a length-limited PAL that has a concentrically-
nested structure to cancel the noise in an ANC system [204]. The length-limited PAL is shown
in Fig. 2.17. The speaker is made up of an inner hexagonal array of 36 emitters with a center
frequency of 40 kHz, and an outer annulus of 36 emitters with a center frequency of 25 kHz.
Based on this framework, Lam et al. investigated the feasibility of using a length-limited PAL
in an ANC system [205]. Their experimental results show that a noise source at 1.5 kHz in a
pipe is reduced by 18.4 dB at 8 m using such a length-limited PAL. A preliminary numerical
study on the formation of a quiet zone using length-limited PAL is also presented in [206].
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(a) Left ear (b) Right ear

Figure 2.16: Experiment results of the dual-channel ANC system that achieves
10.4 dB and 11.6 dB noise reductions at the left and right ears, respectively. From

Fig. 8 in [35].

Figure 2.17: A concentrically-nested length-limited PAL made for ANC. From
Fig. 2 in [205].

2.3 Summary

This chapter presents a literature review on the PAL and ANC systems in Secs. 2.1 and 2.2,
respectively. In Sec. 2.1.1, the physical mechanisms and fundamental properties of audio sound
generated by a PAL are introduced. Section 2.1.2 then reviews existing prediction models,
which include the quasilinear approximation, the far field solution, and the governing equations.
The implementation and applications of PALs, including commercial products, are presented
in Sec. 2.1.3. The approaches and algorithms to realize an ANC system are introduced in
Sec. 2.2.1. In Sec. 2.2.2, the ANC system for the purpose of the generation of a quiet zone is
surveyed. Section 2.2.3 focuses on the ANC system using directional loudspeakers and Sec. 2.2.4
reviews the existing work on ANC using PALs.





27

Chapter 3

Sound Fields Generated by a PAL

Section 3.1 introduces the governing equations for describing the propagation of sound waves
generated by a PAL. Section 3.2 proposes both the three-dimensional (3D) and two-dimensional
(2D) PAL radiation models, and reviews the corresponding quasilinear solutions. The audio
sound field on front side of a baffled PAL is proposed to be divided into three regions in Sec. 3.3:
the near field, the Westervelt far field, and the inverse-law far field. The reason and advantage
for this division are presented. The widely used GBE model and the convolution model are
concluded in Secs. 3.3.2 and 3.3.3, respectively. They are used to predict the audio sound in
the Westervelt far field and the inverse-law far field, respectively. Section 3.4 investigates the
audio sound field on both front and back side of a non-baffled PAL. A non-paraxial prediction
model utilizing the disk scattering theory is proposed. Experimental results are presented to
validate the proposed model.

3.1 Governing equations

In Westervelt’s seminal work, the sound field generated by a PAL is derived from the Lighthill
equation, which is expressed as [73, 208](

∇2 − 1
c20

∂2

∂t2

)
ρ̃ = − 1

c20

∂2

∂xi∂xj

[
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)
δij
]

(3.1)

where ∇2 is the Laplace operator, c0 is the linear sound speed in air, t is the time, P is the
ambient pressure, ρ̃ is the fluid density, ρ̃vivj describes unsteady convection of flow (also known
as Reynolds’ stress), σij describes sound generated due to viscosity, and (P − ρ̃c20)δij represents
the nonlinear acoustic generation process.

Lighthill’s equation (3.1) is derived from the conservation of mass and the conservation
of momentum equations without approximations. Combining with the equation of state and
ignoring cubic and higher terms, the second-order nonlinear wave equation is obtained as [111]
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The work presented in this chapter have been published in [51, 207].
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where p is the sound pressure. The third term on the left-hand side of Eq. (3.2) accounts for
the fluid thermo-viscosity, where δ is the sound diffusivity parameter and this is related to the
sound attenuation coefficient α. The first term on the right-hand side of Eq. (3.2) accounts
for the nonlinearity, where ρ0 is the static fluid density and β is the nonlinear coefficient; the
second term characterizes the local non-cumulative effects, where L stands for the Lagrangian
density and is given by

L = ρ0v · v
2

− p2

2ρ0c20
(3.3)

where v is the acoustic particle velocity vector.
Equation (3.2) is time-consuming to obtain numerical results due to the evaluation of the

second derivatives of the square of sound pressure p and velocity v [131, 132]. The Kuznetsov
equation is more often convenient to use which is equivalent to the second-order nonlinear wave
equation (3.2) but is expressed in terms of the velocity potential, Φ, [111, 132]
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The L term in Eq. (3.2) can only produce local effects in the wave solution. They cannot
lead to cumulative effects for progressive waves which are occurred in most PAL applications.
By neglecting the Lagrangian density L , a simpler equation (called “Westervelt equation”) is
obtained as [111]
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The Westervelt equation given by Eq. (3.5) can be further simplified in the case of narrow
collimated beams by utilizing the parabolic approximation for the Laplace operator ∇2. In this
approximation, the second derivative along of propagation direction, i.e., the positive z axis, is
approximated by a first derivative. The KZK equation is written as [111]
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where τ = t − z/c0 is the retarded time, ∇2
⊥ = ∂2/∂x2 + ∂2/∂y2 is the transverse Laplace

operator.

3.2 Quasilinear solution

Starting from this equation, it is assumed that the ultrasound of frequencies f1 and f2 with
condition f1 > f2 is radiated by the PAL, and the average of them, i.e., fu = (f1 + f2)/2, is
denoted as the carrier ultrasonic frequency. The audio frequency is then denoted by fa, which
is f1 − f2. In the application of PALs, the nonlinearity is weak due to safety concerns [76, 97,
98], so the quasilinear approximation can be safely assumed in the mathematical modelling. By
expanding the acoustic quantity up to second-order in governing equations [99], we have a set
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of hierarchical linear wave equations taking the form of [51](∇2 + k2i )Φ(r, ki) = 0, i = 1, 2

(∇2 + k2a)Φ(r, ka) = q
(3.7)

where the harmonic sound field is assumed, ki = ωi/c0 + iαi is the complex wavenumber of
ultrasound, αi is the ultrasound attenuation coefficient at frequency of fi, i = 1, 2, ka = ωa/c0

is the wavenumber of audio sound, ωi = 2πfi is the angular frequency of ultrasound, i is the
imaginary unit, ωa = 2πfa is the angular frequency of audio sound, Φ(r, k) represents the
velocity potential at the field point r of wavenumber k, and q is the source density for audio
sound. It can be found the ultrasound is governed by a homogeneous wave equation, while the
audio sound is governed by a inhomogeneous one. It can be seen that the original nonlinear
problem is transformed into a combined linear problem.

The form of the source density, q, depends on the governing equation to be used. For
Kuznetsov equation given by Eq. (3.4), it takes the form of [51, 132]

q(r) = ωa
ic20

[
(β − 1)ω1ω2

c20
Φ(r, k1)Φ∗(r, k2) + v(r, k1)v∗(r, k2)

]
(3.8)

where v(r, ki) is the velocity vector at the field point r and of wavenumber ki, i = 1, 2. The
sound pressure of audio sound is obtained using its second-order relationship with the velocity
potential as [132]

p(r, ka) = iρ0ωaΦ(r, ka) +
ρ0
2

[
ω1ω2
c20

Φ(r, k1)Φ∗(r, k2)− v(r, k1)v∗(r, k2)
]

(3.9)

where Φ(r, ka) is the velocity potential of audio sound.
For Westervelt equation given by Eq. (3.5), the source density is reduced to [51]

q(r) = βωaω1ω2
ic40

Φ(r, k1)Φ∗(r, k2) (3.10)

and the sound pressure is obtained directly from the linear version of Eq. (3.9), which yields

p(r, ka) = iρ0ωaΦ(r, ka) (3.11)

3.2.1 Three-dimensional model

The 3D model is shown in Fig. 3.1. A circular PAL with a radius of a generates two harmonic
ultrasound of frequencies f1 and f2 (f1 > f2) and the boundary condition on the transducer
surface is written as

u(ρ, t) = u(ρ, k1)e−iω1t + u(ρ, k2)e−iω2t (3.12)

where ρ = (x, y) are 2D transverse coordinates. A rectangular coordinate system Oxyz is
established with its origin at the center of the PAL, and the positive z axis is in the direction
of the radiation axis.
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Figure 3.1: Sketch of a PAL and the geometric description of rectangular and
spherical coordinate systems.

The ultrasound field of frequency fi, i = 1, 2, can be calculated using the Rayleigh integral
[209]

Φ(r, ki) = −2
¨

S
u(ρs, ki)g(r, rs, ki)d2ρs (3.13)

where S is the radiation surface area, ρs = (xs, ys), rs = (xs, ys, zs = 0), d2ρs = dxsdys, and g

is the Green’s function in a free field from a point r1 to a point r2 of a wavenumber of k, which
is expressed as [209]

g(r1, r2, k) =
eik|r1−r2|

4π|r1 − r2|
(3.14)

where the Euclidean distance between the points ri = (xi, yi, zi), i = 1, 2 is

|r1 − r2| =
√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (3.15)

It is noted Eq. (3.13) is validated only when the source is baffled. This is usually satisfied in
real applications even the PAL is non-baffled, because the ultrasonic wavelength (e.g., 8.6 mm
at 40 kHz) is much smaller than the aperture size of the PAL.

The orthogonal components under the rectangular coordinate system Oxyz of the velocity
field v(r, ki) for ultrasound can be obtained by using the relation v = ∇Φ as [132]

vx(r, ki) =
∂Φ(r, ki)

∂x
= 1

2π

¨
S
u(ρs, ki)

(x− xs)(1− iki|r− rs|)
|r− rs|3

eiki|r−rs|d2ρs

vy(r, ki) =
∂Φ(r, ki)

∂y
= 1

2π

¨
S
u(ρs, ki)

(y − ys)(1− iki|r− rs|)
|r− rs|3

eiki|r−rs|d2ρs

vz(r, ki) =
∂Φ(r, ki)

∂z
= 1

2π

¨
S
u(ρs, ki)

z(1− iki|r− rs|)
|r− rs|3

eiki|r−rs|d2ρs

(3.16)

The velocity potential for audio sound is then obtained according to Eq. (3.7) as

Φ(r, ka) = −
˚

V
q(rv)g(r, rv, ka)d3rv (3.17)
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where V represents the full space to be integrated.
The integral in Eq. (3.17) is singular when r = rv. The following substitution can be used

to eliminate the singularity 
xv = r′v cosφ′

v sin θ′v + x

yv = r′v sinφ′
v sin θ′v + y

zv = r′v cos θ′v + z

(3.18)

and Eq. (3.17) becomes

Φ(r, ka) = − 1
4π

∫ 2π

0

∫ π

0

∫ ∞

0
q(rv)eikar

′
vr′v sin θ′vdr′vdθ′vdφ′

v (3.19)

The substitution of the source density given by Eqs. (3.8) or (3.10) into Eqs. (3.17) or (3.19),
and the utilization of Eqs. (3.9) or (3.11) yields the audio sound pressure.

3.2.2 Two-dimensional model

The rectangular phased array PAL is the most common one in industrial applications. Due
to the poor convergence of the Rayleigh integral, it is hard to directly calculate the radiation
from a rectangular source. When one dimension of the radiation surface of a piston source is
much larger than the wavelength, the radiated sound field can be approximately modelled as
the radiation from infinitely long strips [210, 211]. After using the integral expression of the
Hankel function (also known as the 2D Green’s function), the two-fold Rayleigh integral can be
simplified into a onefold one. Based on such a model, the sound field radiated by a traditional
loudspeaker has been extensively studied. In this thesis, a similar model for the PAL radiation
is proposed as shown in Fig. 3.2, which is denoted as 2D model.

The rectangular (x, y, z) and the cylindrical (ρ, φ, z) coordinate systems are established
with their origin, O, at the center of the PAL and the positive y axis pointing to the radiation
direction, where ρ and φ are the radial and polar angle coordinates, respectively. It is assumed
that the dimension of the PAL along the z axis is infinitely long, so that only the sound field
on the plane xOy needs to be considered. The length of the phased array PAL along the x axis
is 2a.

In this model, the velocity boundary on the radiation surface is a simplification of Eq. (3.12)
a

u(x, t) = u(x, k1)e−iω1t + u(x, k2)e−iω2t (3.20)

The ultrasound potential can be obtained as, see [211] and Eq. (2.46) in [212]

Φ(ρ, ki) = −2
∫ a

−a
u(xs, ki)g2D(ρ,ρs, ki)dxs (3.21)

where ρ = (x, y) and ρs = (xs, ys = 0), and g2D is a 2D Green’s function in free field

g2D(ρ1,ρ2, k) =
i
4
H0(k|ρ1 − ρ2|) (3.22)
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Figure 3.2: Sketch of a phased array PAL and the geometrical description of
rectangular and cylindrical coordinate systems.

where H0(·) is the Hankel function of first kind of order 0, and the Euclidean distance between
points ρi = (xi, yi), i = 1, 2 is

|ρ1 − ρ2| =
√
(x1 − x2)2 + (y1 − y2)2 (3.23)

The components of velocity field for ultrasound v(ρ, ki) are

vx(ρ, ki) =
1
2i

∫ a

−a
u(xs, ki)

ki(x− xs)
|ρ− ρs|

H ′
0(ki|ρ− ρs|)dxs

vy(ρ, ki) =
1
2i

∫ a

−a
u(xs, ki)

kiy

|ρ− ρs|
H ′

0(ki|ρ− ρs|)dxs

vz(ρ, ki) = 0

(3.24)

The velocity potential for the audio sound is then

Φ(ρ, ka) = −
¨ ∞

−∞
q(ρv)g2D(ρ,ρv, ka)d2ρv (3.25)

The Hankel function in Eq. (3.25) is singular when r = rv, resulting a singular integral. To
eliminate the singularity, the following substitutions can be usedxv = ρ′v cosφ′

v + x

yv = ρ′v sinφ′
v + y

(3.26)

The integral given by (3.25) becomes

Φ(ρ, ki) =
1
4i

∫ 2π

0

∫ ∞

0
q(ρv)H0(kaρ′v)ρ′vdρ′vdφ′

v (3.27)
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3.3 The sound field on front side of a baffled PAL

3.3.1 The near field, Westervelt far field, and inverse-law far field

The near and far fields of traditional loudspeakers are differentiated by whether the sound
pressure amplitude is inversely proportional to the propagating distance in the region [213], but
the audio sound fields generated by a PAL are more complicated due to its nonlinear nature
[132]. In this thesis, it is proposed to divide the audio sound field on front of a baffled PAL into
three regions: the inverse-law far field, the Westervelt far field, and the near field. With this
proposed classification, appropriate models can be chosen for different regions to enable faster
and more accurate sound field calculation.

In the inverse-law far field, the inverse-law holds, and the solutions are the simplest. Starting
from the Lighthill equation, Westervelt obtained a closed-form formula for the audio sound in
the inverse-law far field by assuming the ultrasound is collimated and nonlinear interactions of
ultrasound take place only over a limited distance [73]. Berktay [101] and Berktay and Leahy
[102] modified Westervelt’s formula by taking into account effects arising from the cylindrical
and/or spherical spreading of ultrasonic waves, and they improved prediction accuracy by in-
troducing an aperture factor for the transducer and the product directivity of ultrasonic waves.
The Berktay solution is given as a simple expression in the time domain, which provides the
basis for the signal modulation techniques in the realization of PALs. Several modifications to
the Berktay model were later proposed to improve the prediction accuracy for the sidelobes of
PALs [104]. A more accurate model has been proposed which employs the convolution of the
Westervelt directivity and the ultrasonic wave directivities [105, 106, 108, 214]. Although the
ultrasonic waves are not assumed as collimated in the convolution model, they are assumed to
be exponentially attenuated along each direction, which is not true in practice because of the
complexity in the near field of ultrasonic transducers. The boundary of the inverse-law field is
often far away from the transducer [108].

The Westervelt far field is defined as the region where Westervelt equation given by Eq. (3.5)
is accurate enough, and the local effects characterized by the ultrasonic Lagrangian density given
by Eq. (3.3) are negligible. When the quasilinear approximation is assumed, the audio sound
can be considered as the radiation from an infinitely large virtual volume source, with the source
density proportional to the product of the ultrasonic pressure. In earlier studies, the ultrasonic
beams were simply assumed to be spherically spreading with a directivity function [108, 214].
Recently, the nonlinear interactions of actual ultrasonic beams generated by a transducer were
modelled to improve prediction accuracy [50, 207]. To simplify the calculation, the paraxial
(Fresnel) approximation is usually assumed for ultrasonic waves and this enables a Gaussian
beam expansion method to be used because the ultrasonic wavelength is usually much smaller
than the PAL radius [96]. If the paraxial approximation is assumed for both ultrasonic and
audio waves, then the Westervelt equation reduces to the well known Khokhlov-Zabolotskaya-
Kuznetsov (KZK) equation after approximating a second order derivative of sound pressure
with respect to the propagating direction by a first order derivative. The calculation is further
simplified, although the result is accurate only inside the paraxial region, which is inside about
20◦ from the transducer axis [59].
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Item Description

Transducer surface radius a = 0.05m
Average ultrasonic frequency fu = 39.5 kHz
Audio frequency fa = 1kHz
Sound attenuation coefficients α1 = α2 = 2.8× 10−2Np/m
Helmholtz number for ultrasound kua = 14.7
Rayleigh distance for ultrasound 0.146m

Table 3.1: The parameters used in the simulations.

In the near field, the local effects characterized by the ultrasonic Lagrangian density cannot
be neglected. The audio sound pressure distribution is more complicated and local maxima and
minima occur in a similar way to that observed in the near field of traditional loudspeakers.
The general second-order nonlinear wave equation is accurate in the modelling of the near field
audio sound [111]. However, its equivalent form written in terms of the velocity potential (the
Kuznetsov equation), is often used because the evaluation of the second-order spatial derivatives
of the ultrasonic Lagrangian density can be avoided [131, 132]. Unfortunately, the calculation
of the quasilinear solution of the Kuznetsov equation is rather time-consuming, so the audio
sound in the near field of PALs is rarely calculated using this equation. The audio sound in
the near field of the PAL can also be obtained by using the direct numerical calculation of the
Navier-Stokes equations in the time domain, although this again incurs heavy computational
expenditure [90]. Thus, the near field for audio sound generated by PALs is complicated and
difficult to calculate, which means that it is convenient to separate out the sound pressure field
and to apply different models to different regions.

Figure 3.3 shows the audio SPL generated by a PAL as a function of the propagating distance
at 1 kHz. The parameters used in simulations are presented in Table 3.1. The curves denoted
by “Kuznetsov” and “Westervelt” are obtained using the Kuznetsov and Westervelt equations
given by Eqs. (3.4) and (3.5), repectively. The curve denoted by “Inverse-law” is obtained by
an extrapolation of the inverse-law formula according to the method described in Sec. 4.2.3.
Here, the results obtained by the 3 methods are different, from which the audio sound field is
proposed to be divided into 3 regions.

In the near field, the audio SPL is complicated and local maxima and minima take place
due to strong local effects characterized by the ultrasonic Lagrangian density given by Eq. (3.3),
so the Kuznetsov equation must be used here. When the radial distance is larger than 0.42 m
and 0.19 m in Figs. 3.3(a) and (b), respectively, the difference between the curves denoted by
“Kuznetsov” and “Westervelt” is less than 0.1 dB, and so the Westervelt equation may be used
to predict the audio sound in the Westervelt far field. The inverse-law far field is the region
where the radial distance is larger than 28.7 m and 7.3 m in Figs. 3.3(a) and (b), respectively,
and the difference between the curves denoted by “Westervelt” and “Inverse-law” is less than 1
dB . The transitions from the near field to the Westervelt far field, and to the inverse-law far
field will be discussed in Sec. 4.2.
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Figure 3.3: The audio SPL (dB re 20 µPa) as a function of the propagating
distance at 1 kHz calculated with different methods: (a) on the radiation axis
(0◦), and (b) in the direction of the angle 10◦. The parameters in Table 3.1 are

used.

3.3.2 Gaussian beam expansion

The GBE method is widely used to simplify the calculation of the radiation from a PAL.
Considering a circular radiation surface for the PAL as shown in Fig. 3.1, the velocity profile is
written as the superposition of N Gaussian functions

u(ρ, ki) = u0

N∑
n=1

An exp
(
−Bn

ρ2

a2

)
(3.28)

If one applies the following paraxial approximation for the Green’s function

(x1 − x2)2 + (y1 − y2)2 ≪ (z1 − z2)2 (3.29)

The one-order approximation is satisfied as [215, 216]

g(r1, r2, k) =
eik|r1−r2|

4π|r1 − r2|
≈ 1

4π|z1 − z2|
exp

(
ik
[
|z1 − z2|+

(x1 − x2)2 + (y1 − y2)2

2|z1 − z2|

])
(3.30)
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By using the integral given by Eq. (5) in [120], the Rayleigh integral given by Eq. (3.13) is
approximated by the superposition of multiple Gaussian beams

Φ(r, ki) =
u0
iki

N∑
n=1

An

1 + iBnz/R(ki)
exp

(
ikiz −

Bn

1 + iBnz/R(ki)
ρ2

a2

)
(3.31)

where the Rayleigh distance R(ki) = kia
2/2. The GBE coefficients An, Bn, and N are obtained

by the heuristic method where the transducer vibration velocity profile is approximated by
the superposition of multiple (N) Gaussian velocity profiles. For a circular piston source, the
expansion coefficients have been calculated for N = 10 [117], N = 15 [217], N = 25 [218], and
N = 40 [124] where larger N provides more accurate results.

Figure 3.4 compares the normalized sound pressure calculated using the GBE method and
the closed-form formula, which is given by, see Eq. (5.7.3) in [209]

Φ(z, k) = −2u0
k

exp

ika
2

√1 + z2

a2
+ z

a

 sin
ka

2

√1 + z2

a2
− z

a

 (3.32)

Although the results obtained using the GBE method is inaccurate at the points near the
transducer, the calculation error becomes negligible in the transition region and far field [117].
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Figure 3.4: Normalized sound pressure along the radiation axis. Solid line, calcu-
lated using the closed-form solution given by Eq. (3.32). Dashed line, calculated
using the GBE method, where the transducer radius a = 0.1m, and the GBE

coefficients are chosen from [117].

The substitution of Eq. (3.31) into Eq. (3.10) and the utilization of Eq. (3.11) yields

(3.33)
q(r) = βωa|u0|2

ic20
ei(k1−k∗2)z

N∑
n,m=1

An

1 + iBnz/R(k1)
A∗

n

1− iB∗
mz/R∗(k2)

× exp
[
−
(

Bn

1 + iBnz/R(k1)
+ B∗

m

1− iB∗
mz/R∗(k2)

)
ρ2

a2

]
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By substituting Eq. (3.33) into Eq. (3.17), one obtains the audio sound field as

Φ(r, ka) = −2π
∫ π

0

∫ ∞

0
q(rv)g(r, rv, ka)ρvdρvdθv (3.34)

where the symmetric property about φv has been used.
Equation (3.34) is referred to “non-paraxial model” in [96] because the paraxial approxima-

tion is not assumed for audio sound. If one applies the GBE for audio sound in Eq. (3.34), the
so-called “paraxial solution” is obtained as

(3.35)
Φ(r, ka) =

β|u0|2

2c0

∫ z

0

N∑
n,m=1

AnA
∗
m

Cn,1C∗
m,2

1
1 + iDnm|z − zv|/R(ka)

× exp
[
i(k1 − k∗2)zv + ika|z − zv| −

Dnm

1 + iDnm|z − zv|/R(ka)
ρ2

a2

]
dzv

where
Cn,1 = 1 + iBnzv/R(k1), Cm,2 = 1 + iBmzv/R(k2) (3.36)

Dnm = Bn

Cn,1
+ B∗

m

C∗
n,2

(3.37)

It is noted that Eq. (3.35) can be used only for a circular piston source. The GBE model can
also be used for the piston source that has other shapes, such as rectangular and elliptical [120,
122, 123]. The GBE model mentioned in this section is based on the assumption of paraxial
approximation, some extensions on this model have been proposed which is applicable in the
non-paraxial region [129, 130].

3.3.3 Convolution model

In the inverse-law far field, where the audio sound pressure is inversely proportional to the prop-
agating distance, the expression of the audio sound can be further simplified. The directivity
for the audio sound is defined as

D(θ, ka) =
∣∣∣∣ p(ϑ, ka)
p(ϑ = 0, ka)

∣∣∣∣ (3.38)

where ϑ is defined as the angle between the field point and the radiation axis (φ = π/2 in
Fig. 3.2) so that ϑ = |φ− π/2|. The convolution method assumes the field point is in the
inverse-law far field, where good agreement between predictions and measurements has been
shown using this method. This method is, therefore, used for the purpose of comparison against
the proposed alternative approach and is briefly summarized here.

The directivity of the audio sound is obtained by the convolution model as

D(ϑ, ka) = [D(ϑ, k1)D(ϑ, k2)] ∗ DW(ϑ, ka) (3.39)



38 Chapter 3. Sound Fields Generated by a PAL

where D(ϑ, k1) and D(ϑ, k2) are directivities of ultrasound, ∗ denotes the linear convolution
operation, and DW(ϑ, ka) is Westervelt’s directivity [73]

DW(ϑ, ka) =
1√

1 + k2a tan4 ϑ/(α1 + α2)2
(3.40)

The ultrasound in the convolution model is assumed to be exponentially attenuated in each
direction, which is not true in reality because of the complexity of ultrasound beams in the near
field of the transducers. Therefore, some discrepancies are observed between measurements and
predictions in [105].

3.4 The sound field on back side of a non-baffled PAL

It has been reported that audible sound can be heard behind a PAL in free field [219]. However,
there is no analytical model for a non-baffled PAL at present. The finite element method (FEM)
and the boundary element method (BEM) are promising techniques for solving linear acoustic
problems and they are well built in much commercial simulation software. However, it is very
difficult to compute and predict audio sound generated by non-baffled PALs directly with the
existing commercial software because the model is nonlinear. Although the FEM model for the
nonlinear sound wave propagation is available, it is time-consuming and hard to compute the
sounds generated by non-baffled PALs in open space [131]. Therefore, an analytical prediction
model for non-baffled PALs is needed.

PALs are usually manufactured in circular or square shapes with small thickness, so it can
be treated as a finite size disk or square plate. The sound scattering by a finite size disk can be
solved analytically [220, 221], so the disk-shaped PAL is considered in this section. The solution
consists of the spheroidal wave functions derived from the oblate spheroidal coordinate system.
Although the computation of spheroidal wave functions is complicated, some software or codes
are available [222, 223]. In this section, a non-paraxial model is developed for a finite size
and disk-shaped PAL based on the quasilinear approximation and the disk scattering theory.
Each virtual audio source generated by ultrasound is regarded as a point monopole so that its
scattered sound by the finite size disk can be solved. The non-paraxial solution of total audio
sounds is exact on both front and back sides of the non-baffled PAL. The sound on both front
and back sides are calculated numerically and compared with the existing non-paraxial model
for the parametric source installed in an infinitely large baffle.

3.4.1 Theory

The oblate coordinates (η, ξ, φ) are related to the rectangular coordinates (x, y, z) as follows
[220, 224] 

x = a
√
(1− η2)(1 + ξ2) cosφ

y = a
√
(1− η2)(1 + ξ2) sinφ

z = aηξ

(3.41)

where 2a is the focal distance.
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The boundary of the disk is assumed to be rigid for audio sound, so it follows the condition

∂Φ(r, ka)
∂ξ

∣∣∣∣
ξ=ξb=0

= 0 (3.42)

The total sound field for the audio sound is obtained using Eq. (3.17) as

Φ(r, ka) = −a3
∫ 2π

0

∫ 1

0

∫ ∞

0
q(rv)G(r, rv, ka)(ξ2v + η2v)dξvdηvdφv (3.43)

where the relation dxvdyvdzv = a3(ξ2v+η2v)dξvdηvdφv is used. G(r, rv, ka) is the Green’s function
in the presence of a rigid disk and can be expressed as [220]

G(r1, r2, k) =
ik
2π

∞∑
m=0

∞∑
n=m

εmχmn(−ika, iξ1, iξ2)Smn(−ika, η1)Smn(−ika, η2) cos [m(φ1 − φ2)]

(3.44)

where εm is the Neumann factor, εm = 1 when m = 1, εm = 2 when m ̸= 1, and the radial
component is

(3.45)
χmn(−ika, iξ1, iξ2) = R(1)

mn(−ika, iξ<)R(3)
mn(−ika, iξ>)

− R
(1)′
mn(−ika, iξb)

R
(3)′
mn(−ika, iξb)

R(3)
mn(−ika, iξ1)R(3)

mn(−ika, iξ2)

where rv = (ηv, ξv, φv) is the location of the virtual audio source in the oblate spheroidal co-
ordinate system, εm is the Neumann factor i.e. εm = 1 for m = 0 and εm = 2 for m ̸= 0,
ξ> = max(ξ, ξv) and ξ< = min(ξ, ξv). The notations of spheroidal wave functions follow that
in [222, 223], where Smn(ikaa, η) is the normalized angular oblate spheroidal wave function,
R

(i)
mn(−ikaa, iξ) and R

(i)′
mn(−ikaa, iξ) are the i-th kind of the radial oblate spheroidal wave func-

tions and their derivatives with respect to ξ, respectively, i = 1, 3. The readers may refer to
[222, 223] for the computations of these special functions.

It is hard to calculate the audio sound due to the threefold integral in Eq. (3.43), and
the two-fold summation of Green function in Eq. (3.44) When the surface of the transducer is
axisymmetric about its axis, the source density function of audio virtual sources is axisymmetric,
so the total audio sound of the non-baffled model can be simplified by integrating the azimuthal
angle φv, yielding

Φ(r, ka) = −2πa3
∫ 1

0

∫ ∞

0
q(rv)G0(r, rv, ka)(ξ2v + η2v)dξvdηv (3.46)

where
G0(r, rv, ka) =

ika
2π

∞∑
n=0

χ0n(−ikaa, iξ, iξv)S0n(−ikaa, η)S0n(−ikaa, ηv) (3.47)

3.4.2 Results and discussions

In this section, both simulation and experiment results are presented. As shown in Fig. 3.5, the
experiments were conducted in the hemi-anechoic room with dimensions of 7.20m × 5.19m ×
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6.77m (height) and the PAL used in experiments is a Holosonics Audio Spotlight AS-24i [171]
with a surface size of 0.6m × 0.6m. In the simulations, a circular piston was driven with a
uniform surface vibration velocity amplitude and the radius was set as 0.3385 m so that its area
is the same as that of the rectangular PAL used in experiments, i.e., 0.62 ≈ π× 0.33852.

Figure 3.5: The experimental setup.

The relative humidity and the temperature in the experiments were 60% and 25◦C, respec-
tively. The carrier frequency of the PAL is 64 kHz measured by a Brüel & Kjær Type 4939
microphone. All of the aforementioned measured data are set as known parameters in the sim-
ulations and the air absorption coefficients are calculated according to ISO 9613-1 [225]. The
air absorption of audio sounds is neglected to simplify the computation of the spheroidal wave
functions that are obtained by modifying the codes of [223].

The sound field was measured at a rectangular grid with 60× 61 = 3661 points in the yOz

plane at the height of 1.8 m. In all cases, 60 microphones were located in the y direction from
y = −1.45m to y = 1.5m with a spacing of 5 cm and they were measured simultaneously
with a customary made 60-channel microphone array. The microphone array was located at
61 different positions in the z direction from z = −3m to z = 3m with a spacing of 10 cm.
All the measurement microphones are Brüel & Kjær Type 4957 calibrated by Brüel & Kjær
4231 calibrator and the sound pressure at the microphones was sampled with a Brüel & Kjær
PULSE system (the analyzer 3053-B-120 with the front panel UA-2107-120). The fast Fourier
transform (FFT) analyzer in PULSE LabShop was used to obtain the FFT spectrum. To avoid
the spurious sounds at microphones induced by the intensive ultrasounds radiated by the PAL,
all the microphones are covered by a piece of small and thin plastic film [141]. The experimental
results show the insertion loss of this plastic film is more than 30 dB at 64 kHz, which is sufficient
for blocking the ultrasonic sounds, and less than 0.6 dB below 1 kHz, which is negligible for the
audio sound under tests.

Figure 3.6 shows SPLs of audio sound along the z axis generated by the finite size disk-
shaped PAL using the baffled and non-baffled models and the experimental results. All SPLs
in the simulations are normalized to a value so that the SPL at z = 2.0m for the baffled PAL is
the same as that measured in the experiments. For the audio sounds on the back side (z < 0),
it cannot be predicted by the baffled model, so there are no data for this model.
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Figure 3.6: Audio SPL (dB re 20 µPa) along the z axis at different audio frequen-
cies: (a) 315 Hz, (b) 500 Hz, (c) 800 Hz, and (d) 1 kHz. Solid line, baffled model
given by Eq. (3.17); dashed line, non-baffled model given by Eq. (3.46); triangle,

measurement.

It can be found that the values from both the models at all frequencies are almost the same
at locations far away in front of the PAL, and the maximum difference is less than 0.4 dB for
z > 1m. The experimental results on both front and back sides of the PAL are generally in
accordance with those predicated by the non-baffled model. Large errors occur at 500 Hz when
z < 0.2m which might be caused by the measurement errors, the reflection of grounds, the
shape of the PAL, and the scattering effects of the equipment.

The curves of SPL for the non-baffled PAL at z = −0.1m, 0.25m,−0.5m,−1.0m, and
−2.0m at different frequencies are shown in Fig. 3.7. The surface SPL of ultrasounds, i.e. the
level of ρ0c0|vi|, i = 1, 2, is set as 125 dB at all curves for better comparison. Both Figs. 3.6
and 3.7 demonstrate that there are audible audio sounds on the back side of the PAL which is
caused by the diffracting of the finite size disk. For example, the SPL is 45 dB at z = −0.1m
at 315 Hz while the audio sound at z = 1.0m in front of the PAL is about 61.4 dB.
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Figure 3.7: Audio SPL (dB re 20 µPa) along the z axis obtained using the non-
baffled model at 1/3 octave center frequencies from 160 Hz to 1.6 kHz when
the surface SPL of ultrasound is 125 dB. Red circle, z = −2m; Blue square,
z = −1m; green triangle, z = −0.5m; purple diamond, z = −0.25m; orange

pentagon, z = −0.1m.
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Figure 3.8: Audio SPL (dB re 20 µPa) predicated by the proposed non-baffled
model at (a) 315 Hz and (b) 800 Hz; and the measurements at (c) 315 Hz and
(d) 800 Hz. The PAL is placed at the origin and the radiation surface is on the

plane z = 0, denoted by the dashed line.

The SPL is largest at 315 Hz (the wavelength is 1.09 m) for all cases because the constructive
interference of waves is largest for point monopoles when the radius of the PAL is approximately
0.35 times of the wavelength [221]. As the frequency decreases from 315 Hz, the SPL on the back
side decreases due to the fact that the frequency response of the PAL decreases significantly
(12 dB) as the audio frequency is halved [86]. As the frequency increases from 315 Hz, the SPL
on the back side decreases firstly and then reaches the local maxima at 800 Hz and 1250 Hz
because the diffraction effects are weakened firstly as the wavelength becomes smaller until it
reaches other resonant frequencies where the constructive interference of waves is significant.
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The SPL distribution in yOz plane at 315 Hz and 800 Hz are shown in Fig. 3.8, where
the simulation and experiment results agree well, so the sound fields on the back side of the
PAL can be well predicated by the proposed non-baffled model. There are some resonances in
the measured sound fields which is caused by the concrete ground floor in experiments. It is
also found that the audio sound is audible over a large area on the back side of the PAL. For
example, at 315 Hz, there is an approximately circular region centered at the PAL with the
radius of about 1.3 m where the SPLs are more than 35 dB. Therefore, the effects of the finite
size of the PAL should be taken into account.

3.5 Summary

The governing equations including the Lighthill equation, second-order nonlinear wave equation,
Kuznetsov equation, Westervelt equation, and KZK equation, are introduced in Sec. 3.1. The
quasilinear solutions for both Kuznetsov and Westervelt equations are both obtained using the
successive method in Sec. 3.2. Both the 3D and 2D models for a PAL were proposed, and the
corresponding solutions are found to be a five-fold and three-fold integrals, respectively. The dif-
ficulty is the simplification of the numerical calculations for these integrals in the mathematical
modelling.

In Sec. 3.3, the sound field is proposed to be divided into 3 regions: the near field, the
Westervelt far field, and the inverse-law far field, according to the properties of audio sound
on front side of a baffled PAL. The near field is defined as the region where the local effects
cannot be neglected, so that the Kuznetsov equation given by Eq. (3.4) should be used. The
Westervelt far field is defined as the region where Westervelt equation given by Eq. (3.5) is
accurate enough, and the local effects characterized by the ultrasonic Lagrangian density given
by Eq. (3.3) are negligible. Many existing methods, such as the GBE method introduced in
Sec. 3.3.2, aim to obtain numerical results in the Westrevelt far field. The inverse-law far field is
the region where the audio sound pressure is inversely proportional to the propagation distance.
The most existing accurate model in this region is the convolution model, which is introduce in
Sec. 3.3.3.

A non-paraxial model for the radiation of a non-baffled PAL in free field is developed in
Sec. 3.4 based on the quasilinear approximation and the disk scattering theory. In this model,
each virtual audio source generated by the ultrasound in space is regarded as a point monopole
and its scattered sound by a finite size disk is computed. Both simulation and experiment
results demonstrate that audible audio sound exists on back side of the PAL, indicating that
the effects of the finite size of the PAL should be taken into account when calculating the low
frequency audio sound field.
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Chapter 4

Improved Prediction Models for
PALs

The prediction models for PALs are very important for PAL applications. As described in
Chap. 3, the audio sound field is calculated based on the ultrasound field. Therefore, the
ultrasound is required to obtain first, which can be modelled as a radiation from a baffled
piston source. A SWE for the radiation from a circular piston source is proposed in Sec. 4.1,
which aims to simplify the two-fold Rayleigh integral. The SWE is then extended to calculate
the radiation from a circular PAL as presented in Sec. 4.2. For a rectangular PAL, a CWE is
proposed in Sec. 4.4, and is used to analyze the radiation from a steerable PAL.

4.1 Spherical wave expansion (SWE) for a circular source

The sound radiated by a baffled circular piston can be obtained using Rayleigh integral given by
Eq. (3.13), which is unsolvable in most cases [226]. The direct numerical integration of Rayleigh
integral can be used to obtain the result while the calculation time and required memory size
increase significantly with frequency [227]. The reason accounts for the poor convergency is
that the Green’s function given by Eq. (3.14) in the integrand is highly oscillatory. An efficient
but rigorous calculation method currently available is decomposing the integral into a series
of spherical harmonics where the angular and radial components are related to Legendre and
spherical Bessel functions, respectively [226, 228]. The expression of the series is different in
different regions, resulting in paraxial, interior, and exterior expansions. The existing methods
work fine for the paraxial and interior expansions, but the calculation of the exterior expansion
is rather time-consuming at middle and high frequencies which will be focused on in this section.

The paraxial expansion is used when the distance between the field point and the radiation
axis is less than the transducer radius. In this expansion, each term of the series is obtained with
a finite step of recurrences [226]. It converges rapidly, but the coordinates of the field point and
the transducer radius are coupled in the argument of special functions. Although the paraxial
region covers the major energy of a sound beam at high frequencies, it is sometimes necessary to
calculate the sound pressure in other regions. For example, the ultrasound outside the paraxial

The work presented in this chapter have been published in [50–52] and submitted to The Journal of the
Acoustical Society of America [53].
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region needs to be taken into consideration, otherwise the prediction of audio sounds generated
by nonlinear interactions of intensive ultrasounds would be inaccurate [50, 96].

The interior expansion is valid when the distance between the field point and the transducer
center is less than the transducer radius. Although the interior expansion converges slowly, the
field coordinates are uncoupled in the argument of special functions which means the radial
and angular components can be calculated separately for a large number of field points [226,
228]. To improve the convergence performance, a feasible technique is estimating the values
of truncated terms of the series [228]. The interior expansion is not widely used because this
region is small and it is also covered by the paraxial region.

For the field point in the exterior region where the distance between the point and the
transducer center is larger than transducer radius, the exterior expansion needs to be used. The
widely used expression of the exterior expansion is related to the generalized hypergeometric
function (GHF). Although it converges rapidly at low frequencies, its convergence performance
is poor at middle and high frequencies because the GHF is an alternating series, the calculation
involves subtractions between large numbers resulting in loss of significant figures, and the num-
ber of summation terms increases rapidly as the frequency increases. Therefore, the extended
precision of float numbers in computers or other special techniques have to be used, resulting
in an increase of computation complexity [229, 230]. Besides, the GHF is difficult to analyze if
further operations on the solution are required, such as integrals [96, 231] and derivatives [232]
with respect to the coordinates and the transducer radius.

In this section, the interior and exterior expansions for Rayleigh integral is given in an easier
way. The integral over spherical Bessel functions is simplified rigorously into a closed-form based
on the recurrence method. Compared to the existing GHF method, Gauss-Legendre quadrature,
and Bessel expansion method, the proposed expression is accurate and computationally efficient
in the whole frequency range. It can also be extended to other scenarios such as a baffled piston,
an unbaffled resilient disk with axisymmetric velocity and pressure profiles, and some baffled
rotating sources where the velocity profile is asymmetric.

4.1.1 Theory

The model to be investigated in shown in Fig. 4.1. In this section, we assumed an axisymmetric
velocity profile on the transducer surface, i.e., u(ρs, k).

a

Baffled circular piston

r

θ

Field point
(x, y, z)

Radiation
axis

Source point
(xs, ys, zs = 0)

u0e−iωt

φ

z

x

y

O

Figure 4.1: Sketch of the radiation from a baffled circular rigid piston source.
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The sound field generated by the source can be calculated by the Rayleigh integral given by
Eq. (3.13). The Green’s function in a free field used in Eq. (3.13) is given by Eq. (3.14). It can
be expanded under the spherical coordinates as the summation of spherical harmonic terms [50]

g(r1, r2, k) =
ik
4π

∞∑
n=0

n∑
m=−n

(2n+ 1)(n−m)!
(n+m)!

jn(kr<)hn(kr>)Pm
n (cos θ1)Pm

n (cos θ2)eim(φ1−φ2)

(4.1)
where r< = min(r1, r2), r> = max(r1, r2), jn(·) is the spherical Bessel function of order n, hn(·)
is the spherical Hankel function of the first kind of order n, Pm

n (·) is the associated Legendre
function of order n and degree m, and ! represents the factorial.

From the geometric relation, it is clear that θs = π/2 since zs = 0. The substitution of
Eq. (4.1) into Rayleigh integral given by Eq. (3.13) and the utilization of the relation rs = ρs,
yields

(4.2)
Φ(r, k) = 1

ik

∞∑
n=0

n∑
m=−n

(2n+ 1)(n−m)!
(n+m)!

Rn(r, k)Pm
n (cos θ)Pm

n (cos θs)

×
[ 1
2π

∫ 2π

0
eim(φ−φs)dφs

]
The radial component is defined as

Rn(r, k) =
∫ a

0
u(rs, k)jn(krs,<)hn(krs,>)k2rsdrs (4.3)

where rs,< = min(r, rs) and rs,> = max(r, rs).
Performing the integral with respect to φs,

1
2π

∫ 2π

0
eim(φ−φs)dφs = δm0 (4.4)

where δm0 is the Kronecker delta. Equation (4.2) is then reduced to

Φ(r, k) = 1
ik

∞∑
n=0

CnRn(r, k)Pn(cos θ) (4.5)

after omitting the terms when m ̸= 0, where the constant Cn is defined as

Cn = (2n+ 1)Pn(cos θs) (4.6)

By using the explicit expression of Pn(0) and the geometric relation θs = π/2, see Eq. (4.2.4)
in [222]

Pn(cos θs) = Pn(0) =


(−1)n/2

Γ
(
n
2 + 1

2

)
√
πΓ
(
n
2 + 1

) , n = even

0, n = odd

(4.7)

where Γ(·) is the Gamma function. Equation (4.5) can be further simplified after omitting the
odd terms as

Φ(r, k) = 1
ik

∞∑
n=0

C2nR2n(r, k)P2n(cos θ) (4.8)
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where the coefficient given by Eq. (4.6) is simplified by using Eq. (4.7)

C2n = (−1)n
(4n+ 1)Γ

(
n+ 1

2

)
√
πΓ(n+ 1)

(4.9)

The radial component defined by Eq. (4.3) can be written in the interior (r < a) and exterior
(r > a) regions as

(4.10)R2n(r, k) =

Rint
2n (r, k), r < a

Rext
2n (r, k), r > a

where
(4.11)Rint

2n (r, k) = h2n(kr)
∫ kr

0
u(t/k, k)j2n(t)tdt+ j2n(kr)

∫ ka

kr
u(t/k, k)h2n(t)tdt

(4.12)Rext
2n (r, k) = h2n(kr)

∫ ka

0
u(t/k, k)j2n(t)tdt

Given a wavenumber k and a radius of the circular baffled source a, the velocity potential field
at the field point of spherical coordinates r = (r, θ, φ) can then be obtained by Eqs. (4.8), (4.9),
and (4.10). The sound pressure p(r, k) is obtained using Eq. (3.11) and the calculated results
for Φ(r, k).

The components of the velocity field under the spherical coordinate system can be obtained
directly from Eq. (4.8) to give



vr(r, k) =
∂Φ(r, k)

∂r
= −i

∞∑
n=0

C2n
dR2n(r, k)

d(kr)
P2n(cos θ)

vθ(r, k) =
1
r

∂Φ(r, k)
∂θ

= −i
∞∑
n=0

C2n
R2n(r, k)

kr

dP2n(cos θ)
dθ

vφ(r, k) =
1

r sin θ
∂Φ(r, k)

∂φ
= 0

(4.13)

4.1.2 Calculation of the radial component

The SWE solution is expressed in a one-fold summation as shown by Eq. (4.8). However, the
numerical computation of a one-fold integral in the radial component given by Eqs. (4.11) and
(4.12) is required. The existing methods for calculating this integral is reviewed in Sec. 4.1.2.1,
and a closed-form solution will be proposed in Sec. 4.1.2.2.

For convenience, an auxiliary indefinite integral is defined as

J µ
ν (x) =

∫
xµjν(x)dx (4.14)

and the related definite integral is defined as

J µ
ν (x1, x2) = J µ

ν (x2)− J µ
ν (x1) (4.15)
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4.1.2.1 Existing methods

The integral is mostly calculated by the GHF, 1F2, [226, 228]

J 1
2n(0, x) =

√
π

(
x

2

)2n+2 1
(n+ 1)Γ

(
n+ 3

2

) 1F2

(
n+ 1; 2n+ 3

2
, n+ 2;−x2

4

)
(4.16)

The substitution of he explicit expression of the GHF into Eq. (4.16) yields (denoted by “GHF
series”)

J 1
2n(0, ka) =

√
π

(
ka

2

)2n+2 ∞∑
i=0

(−1)i

4i(n+ 1 + i)Γ
(
2n+ 3

2 + i
) (ka)2i

i!
(4.17)

Equation (4.17) is usually calculated as the summation of truncated terms and converges
rapidly when ka is small [231]. However, it shows poor convergence performance when ka is
large (300 for example) for the following three reasons. First, it is an alternating series due to the
factor (−1)i; therefore, the calculation involves subtractions of large numbers when ka is large,
resulting in a substantial loss of significant figures. Second, the number of summation terms
required for a specified accuracy increases rapidly as ka increases, resulting in excessive com-
putational load. Last, it easily leads to an arithmetic overflow for large ka before convergence
because the terms in the summation are proportional to (ka)2i.

To solve these problems, the extended precision of float numbers in computers and other
special techniques have to be used to calculate GHFs with large arguments [229, 230]. Some
techniques have been adopted in MATLAB for the built-in function “hypergeom” to calculate
GHFs numerically, but the calculation is still time-consuming and the obtained results are
sometimes unreliable [230]. For example, when “hypergeom(1, 200, 1)” is called, the answers
returned in MATLAB 2008b and MATLAB 2018a are different, which are 6.69 × 10299 and
1.005, respectively [230]. Furthermore, it is difficult for further operations on the expressions
containing GHFs, which are necessary for some cases. For example, the derivative with respect
to the disk radius, a, is used in [232] to obtain the radiation of a ring monopole source; the
integral with respect to the radial coordinate of the field point, r, is used in [231] to obtain
the sound generated from general radiator; and integrals with respect to both the radial and
angular coordinates, r and θ, are used in [96] for the calculation of the audio sound generated
by nonlinear interactions of intensive ultrasounds.

There are another two existing ways to calculate the integral in Eq. (4.14) numerically.
One is using fundamental integration techniques such as the Gauss-Legendre quadrature (de-
noted by “Gauss-Legendre”), and the other is using infinite spherical Bessel function expansion
(Eq. (11.1.1) in [233]; denoted by “Bessel expansion”)

J 1
2n(0, ka) = ka

Γ(n+ 1)
Γ
(
n+ 1

2

) ∞∑
i=0

(
2n+ 2i+ 3

2

)Γ(n+ i+ 1
2

)
Γ(n+ i+ 2)

j2n+2i+1(ka) (4.18)

Although these two methods work fine when n is comparable to or larger than ka, they
also show poor convergence performance when n is smaller than ka because j2n(x) oscillates
significantly. For example, when ka = 300 and n = 10 as shown in the next section, more
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than 75 and 150 terms are required for these two methods, respectively, to reach satisfactory
precisions. Furthermore, the required maximal terms of Gauss-Legendre quadrature and Bessel
expansion are unclear for different orders n and arguments ka.

4.1.2.2 Proposed closed-form solution

In following paragraphs, we will show that the integral can be rigorously simplified into a closed-
form so the sound field given by Eq. (4.8) can be calculated quickly and analytically. For µ = 1
and ν = 0 in Eq. (4.14), the closed-form of

J 1
0 (x) = − cosx (4.19)

can be obtained by substituting the explicit expression of j0(x) = sinc(x) into Eq. (4.14). For
the case ν ≥ 1, it is hard to obtain the integral directly, so the following recurrence relation is
introduced

J µ
ν (x) = (µ+ ν − 1)J µ−1

ν−1 (x)− xµjν−1(x) (4.20)

which can be verified using the recurrence relation of spherical Bessel functions. The recurrence
steps for the calculation of J 1

2n(x) are

J 1
2n(x) = 2nJ 0

2n−1(x)− xj2n−1(x), l = 0

J 0
2n−1(x) = 2(n− 1)J −1

2n−2(x)− j2n−2(x), l = 1
...

J 1−l
2n−l(x) = 2(n− l)J −l

2n−l−1(x)− x1−lj2n−l−1(x), l

...

J 2−n
n+1 (x) = 2J 1−n

n (x)− x2−njn(x), l = n− 1

J 1−n
n (x) = 0× J −n

n−1(x)− x1−njn−1(x), l = n

(4.21)

which stop when l = n because the coefficient of J −n
n−1(x) becomes 0. Following above relation-

ships, J 1
2n(x) can be represented as

J 1
2n(x) = −

n∑
l=0

2l Γ(n+ 1)
Γ(n− l + 1)

x1−lj2n−l−1(x) (4.22)

with
J 1
2n(0) = −

√
πΓ(n+ 1)
Γ
(
n+ 1

2

) (4.23)

Equation (4.22) is given in closed-form because j2n−l−1(x) can be represented by a finite number
of trigonometric functions, which are much easier to calculate than the GHF given by Eq. (4.16),
the Gauss-Legendre quadrature or the Bessel expansion in Eq. (4.18), especially when n is small
and ka is large. For example, when ka = 300 and n = 0, Eq. (4.22) shows that only the
calculation of the fundamental function j−1(300) = cos(300)/300 is required to obtain the exact
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result. It is also noteworthy that no approximations are assumed in the derivation of Eq. (4.22),
so it is accurate in the whole frequency range.

4.1.3 Results and discussions

The efficiency of the proposed method given by Eq. (4.22) for calculating the integral J is
firstly demonstrated by comparing the numerical results with the ones obtained by using the
Gauss-Legendre quadrature, Bessel expansion given by Eq. (4.18), and the GHF series given
by Eq. (4.17). Figure 4.2 shows the results of the integral obtained with the four methods
at different ka and n. The abscissa represents the number of truncated terms in the Bessel
expansion and GHF series, or the terms in the Gauss-Legendre quadrature, or the summation
steps in the proposed solution.
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Figure 4.2: Numerical calculation of the integral J 1
2n(0, ka) using four methods

when (a) ka = 10 and n = 0; (b) ka = 300 and n = 10; (c) ka = 900 and
n = 10; and (d) using the GHF series at n = 10. In (a), (b), and (c): red circle,
proposed method; blue square, Gauss-Legendre quadrature; green triangle, Bessel
expansion; purple diamond, GHF series. In (d): red circle, ka = 300; blue square,
ka = 900; dashed line, overflow. The function log10 represents the common loga-

rithm with the base of 10.

It can be found in Fig. 4.2(a) that all the results converge rapidly when ka = 10, which
is in the low frequency range. However, the spherical Bessel functions oscillate significantly at
large ka, so more terms are required in the Gauss-Legendre quadrature and Bessel expansion
to obtain accurate results, such as more than 75 and 200 for Gauss-Legendre quadrature in
Figs. 4.2(b) and (c), respectively. However, only 10 steps are required while using the proposed
solution. When the frequency is high, e.g. ka = 300 or 900, the curve for the GHF series are
not included in Figs. 4.2(b) and (c), because the results exceed the vertical axis range. These
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Case Calculation time (s)

GHF method Proposed method

ka = 300, N = 200 9.47 0.0048
ka = 500, N = 350 23.12 0.016
ka = 900, N = 600 62.75 0.043

Table 4.1: Comparison of the calculation time when the GHF is calculated by the
built-in function “hypergeom” of MATLAB R2018a (based on a personal com-

puter with a 2.5 GHz CPU) and the proposed method.

curves are plotted separately in Fig. 4.2(d) with larger vertical axis ranges. The first term of
the GHF series of Eq. (4.17) is up to 1028 and 1038 for ka = 300 and 900, respectively, while
the accurate results of the integral are only 5.05 and 5.84, respectively. The result for ka = 900
overflows when the truncated terms exceed 183, and the curve for ka = 300 converges to an
incorrect result much larger than 5.84 due to the loss of significant figures.

The GHF can also be calculated using the built-in function “hypergeom” in MATLAB where
better but not publicly known techniques are used to solve the problems occurred in the direct
summation of truncated terms of the GHF series Eq. (4.17). Table 4.1 compares the calculation
time using the GHF calculated by this built-in function and the proposed method for the orders
0 to N , where N is the maximal order required for calculating the sound pressure to give
satisfactory precisions. The calculation time using the GHF method increases as the ka and N

increase and is more than 60 s when ka = 900 and N = 600, while the time with the proposed
method is less than 0.1 s for all cases. Furthermore, it is noteworthy that the values calculated
by MATLAB are sometimes unreliable and efforts should be spent to validate the accuracy case
by case [230].

In the following simulations, the common parameters used in modelling audio sound gen-
erated by a PAL, are used to verify the accuracy of the proposed solution. The radius of the
transducer a = 0.3m, the frequency f = 65 kHz, and ka = 350 + 0.09i, where the sound speed
c0 = 343m/s and the sound attenuation coefficient in air α = 0.3Np/m, which is calculated
according to ISO 9613-1 at the temperature of 25◦C and the relative humidity of 70%.

Figure 4.3 shows the normalized sound pressure on the radiation axis of the transducer and
the directivity index for the surface velocity profile of the piston (u0) and the simply supported
disk (2u0[1−(ρs/a)2]). In the proposed method, the on-axis pressure is calculated by Eq. (4.5) by
setting θ = 0, the directivity index is calculated by Eq. (4.5) after using the far field asymptotic
formula h2n(kr) ∼ (−1)nh0(kr) at kr → ∞,

p(r, k) = ρ0c0u0h0(kr)
∞∑
n=0

C2nP2n(cos θ)J 1
2n(0, ka), kr → ∞ (4.24)

and the number of truncated terms is set as 200. The exact values of the on-axis pressure
and the directivity index are presented for comparison, which are calculated with Eqs. (20-21)
and Eq. (29) in [234], respectively. The results obtained with the proposed method agree well
with those from the exact solutions. This validates the accuracy of the proposed method in the
exterior region where no closed-form exact solution is available at present.
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Figure 4.3: Calculated normalized sound pressure on the radiation axis (a) and
the directivity index (b) when ka = 350 + 0.09i for a baffled circular radiator
with the uniform (rigid piston) and quadratic (simply supported disk) velocity
profiles. Red circle, rigid piston, proposed method; blue sqaure, rigid piston, exact
solution; green triangle, simply supported, proposed method; purple diamond,

simply supported, exact solution.

4.2 SWE for a circular PAL

As demonstrated in Chap. 3, the ultrasound field is required first to calculate the audio sound
field. In the SWE for a circular PAL, the ultrasound field is calculated using the results given
by Eqs. (4.8) and (4.13) obtained in Sec. 4.1. The SWE for the audio sound field is derived in
the following sections.

4.2.1 Quasilinear solution of Westervelt equation

The source density for the virtual audio source at rv under the spherical coordinate system can
be obtained by substituting Eq. (4.8) into Eq. (3.10), which is

q(rv) =
βωa
ic20

∞∑
l,m=0

C2lC2mR2l(rv, k1)R∗
2m(rv, k2)P2l(cos θv)P2m(cos θv) (4.25)

The velocity potential for audio sound given by Eq. (3.17) can be represented under the
spherical coordinates as

Φ(r, ka) = −
∫ 2π

0

∫ π

0

∫ ∞

0
q(rv)g(r, rv, ka)r2v sin θvdrvdθvdφv (4.26)

By substituting Eq. (4.1) into Eq. (4.26), one obtains

(4.27)
Φ(r, ka) = −ika

∞∑
n=0

n∑
m=−n

(
n+ 1

2

)(n−m)!
(n+m)!

∫ π

0

∫ ∞

0
jn(karv,<)hn(karv,>)

× Pm
n (cos θ)Pm

n (cos θs)
[ 1
2π

∫ 2π

0
q(rv)eim(φ−φv)dφv

]
r2v sin θvdθv

According to Eq. (4.25), it is clear the source density q(rv) is independent of the azimuth angle
φv. We then have

1
2π

∫ 2π

0
q(rv)eim(φ−φv)dφv = q(rv)δm0 (4.28)
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By substituting Eq. (4.28) into Eq. (4.27), one obtains

(4.29)
Φ(r, ka) = −ika

∞∑
n=0

(
n+ 1

2

)
Pn(cos θ)

×
∫ π

0

∫ ∞

0
q(rv)Pn(cos θv)jn(krv,<)hn(krv,>)r2v sin θvdrvdθv

By substituting the SWE for source density given by Eq. (4.25), Eq. (4.29) becomes

(4.30)Φ(r, ka) = − β

ωa

∞∑
l,m,n=0

C2lC2mW2l,2m,nR2l,2m,n(r, ka)Pn(cos θ)

where the radial component for audio sound is defined as

R2l,2m,n(r, ka) =
∫ ∞

0
R2l(rv, k1)R∗

2m(rv, k2)jn(karv,<)hn(karv,>)k3ar2vdrv (4.31)

and the auxiliary notation

W2l,2m,n =
(
n+ 1

2

)∫ π

0
P2l(cos θv)P2m(cos θv)Pn(cos θv) sin θvdθv (4.32)

By using Eq. (A.1), the integral in Eq. (4.32) is eliminated and it is expressed using Wigner 3j
symbol as

W2l,2m,n = (2n+ 1)
(
2l 2m n

0 0 0

)2

(4.33)

According to Eq. (A.2), W2l,2m,n = 0 when n is odd. Therefore, Eq. (4.30) takes the form of

Φ(r, ka) = − β

ωa

∞∑
l,m,n=0

C2lC2mW2l,2m,2nR2l,2m,2n(r, ka)P2n(cos θ) (4.34)

For the special case when the field point is on the z axis, i.e., θ = 0, Eq. (4.34) is reduced to

Φ(r, ka) = − β

ωa

∞∑
l,m,n=0

C2lC2mW2l,2m,2nR2l,2m,2n(r, ka) (4.35)

by utilizing the fact that P2n(1) = 1.
The explicit expressions for the interior and the exterior radial components are

(4.36)

Rint
2l,2m,2n(r, ka) = h2n(kar)

∫ r

0
Rint

2l (rv, k1)
[
Rint

2m(rv, k2)
]∗
j2n(karv)k3ar2vdrv

+ j2n(kar)
∫ a

r
Rint

2l (rv, k1)
[
Rint

2m(rv, k2)
]∗
h2n(karv)k3ar2vdrv

+ j2n(kar)
∫ ∞

a
Rext

2l (rv, k1)
[
Rext

2m(rv, k2)
]∗
h2n(karv)k3ar2vdrv, r < a

(4.37)

Rext
2l,2m,2n(r, ka) = h2n(kar)

∫ a

0
Rint

2l (rv, k1)
[
Rext

2m(rv, k2)
]∗
j2n(karv)k3ar2vdrv

+ h2n(kar)
∫ r

a
Rext

2l (rv, k1)
[
Rext

2m(rv, k2)
]∗
j2n(kvrv)k3ar2vdrv

+ j2n(kar)
∫ ∞

r
Rext

2l (rv, k1)
[
Rext

2m(rv, k2)
]∗
h2n(karv)k3ar2vdrv, r > a
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respectively. It will be shown that only the exterior region of Eq. (4.37) is required for most
scenarios because the interior region is very small compared to the space of interests.

Equation (4.30) is the main result of this section. It is an exact solution to the audio sounds
generated by a PAL solved by the Westervelt function with the quasilinear assumption. Because
no additional assumptions are made in the derivation, it is equivalent rigorously to the original
solution Eq. (4.26) which has five-fold integrals and is more accurate than the GBE solution.
Equation (4.30) can be calculated more efficiently for three reasons. First, it is a series with
threefold summation consisting of uncoupled spherical angular and radial components, so it
can be calculated quickly for a large number of field points. Second, the radial component
R2l,2m,2n(r, ka) can be transformed into a rapidly converged integral using the property of
spherical Bessel functions. Finally, due to the restrictions of the triangular inequality, many
values of Wigner 3j symbol are zero, so many terms do not need to be calculated

4.2.2 Quasilinear solution of Kuznetsov equation

When the local effects are considered, the Kuznetsov equation should be used in the math-
ematical modelling. The source density for this case is given by Eq. (3.8). After expanding
the components of the velocity field under the spherical coordinate system, Eq. (3.8) can be
rewritten as a summation of three components

q(r) = qp(r) + qr(r) + qθ(r) (4.38)

where
qp(r) =

(β − 1)ωaω1ω2
ic40

Φ(r, k1)Φ∗(r, k2) (4.39)

qr(r) =
ωa
ic20

vr(r, k1)v∗r (r, k2) (4.40)

qθ(r) =
ωa
ic20

vθ(r, k1)v∗θ(r, k2) (4.41)

Similar to Eq. (4.25), we have the SWE for the source density by substituting Eqs. (4.8 and
(4.13) into Eqs. (4.39), (4.40), and (4.41)

qp(rv) =
(β − 1)ωa

ic20

∞∑
l,m=0

C2lC2mR2l(rv, k1)R∗
2m(rv, k2)P2l(cos θv)P2m(cos θv) (4.42)

qr(rv) =
ωa
ic20

∞∑
l,m=0

C2lC2m
dR2l(rv, k1)
d(k1rv)

[dR2m(rv, k2)
d(k2rv)

]∗
P2l(cos θv)P2m(cos θv) (4.43)

qθ(rv) =
ωa
ic20

∞∑
l,m=0

C2lC2m
R2l(rv, k1)

k1rv

[
R2m(rv, k2)

k2rv

]∗dP2l(cos θ)
dθv

dP2m(cos θv)
dθv

(4.44)

The velocity potential field of audio sound can then be written as a sum of the contribution
from 3 components of virtual source density given on the right-hand side of Eq. (4.38)

Φ(r, ka) = Φp(r, ka) + Φr(r, ka) + Φθ(r, ka) (4.45)
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Similar to the derivation of Eq. (4.34), the corresponding velocity potential fields are obtained
as

Φp(r, ka) = −β − 1
ωa

∞∑
l,m,n=0

C2lC2mW2l,2m,2nRp,2l,2m,2n(r, ka)P2n(cos θ) (4.46)

Φr(r, ka) = − 1
ωa

∞∑
l,m,n=0

C2lC2mW2l,2m,2nRr,2l,2m,2n(r, ka)P2n(cos θ) (4.47)

Φθ(r, ka)

= − 1
ωa

∞∑
l,m,n=0

C2lC2mW2l,2m,2n[l(2l + 1) +m(2m+ 1)− n(2n+ 1)]Rθ,2l,2m,2n(r, ka)P2n(cos θ)

(4.48)

where we have used the results given by Eq. (A.10), where the integrals of triple Legendre
polynomials are derived.

The triangular inequality should also be satisfied, so that |l −m| ≤ n ≤ l +m. The radial
components of audio sound R2l,2m,2n(r, ka), Rr,2l,2m,2n(r, ka), and Rθ,2l,2m,2n(r, ka) are then
given by

Rp,2l,2m,2n(r, ka) =
∫ ∞

0
R2l(rv, k1)R∗

2m(rv, k2)j2n(karv,<)h2n(karv,>)k3ar2vdrv (4.49)

Rr,2l,2m,2n(r, ka) =
∫ ∞

0

dR2l(rv, k1)
d(k1rv)

dR∗
2m(rv, k2)
d(k∗2rv)

j2n(ka, rv,<)h2n(karv,>)k3ar2vdrv (4.50)

Rθ,2l,2m,2n(r, ka) =
∫ ∞

0
R2l(rv, k1)R∗

2m(rv, k2)j2n(karv,<)h2n(karv,>)
k3a
k1k∗2

drv (4.51)

Equations (4.45) to (4.51) are the main results of this section. Equation (4.45) is solved by
the Kuznetsov equation with the quasilinear assumption and this is exact over the entire field.
Because no additional assumptions are made in the derivation, it is equivalent to the original
solution to Eq. (3.9) that contains five-fold integrals. The proposed expressions in Eqs. (4.46)
to (4.48) can be calculated more efficiently for three reasons: (1) it is a series with a threefold
summation consisting of uncoupled spherical angular and radial components; (2) the radial
components Rp,2l,2m,2n(r, ka), Rr,2l,2m,2n(r, ka), and Rθ,2l,2m,2n(r, ka) can be transformed into a
rapidly converged integral using the property of spherical Bessel functions ; and (3) a number
of the terms do not need to be calculated because many values of the Wigner 3j symbol are
zero due to the restrictions of the triangular inequality.

4.2.3 Approximation in the inverse-law far field

The asymptotic formula for spherical Hankel functions at kar → ∞ yeilds

h2n(kar) ∼ (−1)nh0(kar) = (−1)n e
ikar

ikar
(4.52)
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Item Value

Average ultrasound frequency fu = 39.5 kHz
Audio frequency fa = 1kHz

Sound attenuation coefficients α1 = α2 = 2.8× 10−2Np/m
Transducer surface radius a = 0.02m

Helmholtz number kua = 14.7
Rayleigh distance 0.146m

Table 4.2: The parameters used for validating the proposed method in Sec. 4.2

so that the radial component given by Eq. (4.31) can be simplified as

R2l,2m,2n(r, ka) = (−1)n e
ikar

ikar

∫ ∞

0
R2l(rv, k1)R∗

2m(rv, k2)j2n(karv)k3ar2vdrv (4.53)

Equation (4.53) can be calculatd as

(4.54)
R2l,2m,2n(r, ka) = (−1)n e

ikar

ikar

∫ a

0
Rint

2l (rv, k1)
[
Rint

2m(rv, k2)
]∗
j2n(karv)k3ar2vdrv

+ (−1)n e
ikar

ikar

∫ ∞

a
Rext

2l (rv, k1)
[
Rext

2m(rv, k2)
]∗
j2n(kvrv)k3ar2vdrv

which is the limiting form of Eq. (4.37). By substituting Eq. (4.53) into Eq. (4.30), it is clear
that the audio sound pressure amplitude is inversely proportional to the propagating distance,
r, so that the audio sound in the inverse-law far field is obtained. It is noteworthy that the
solution obtained here is more accurate than existing ones, such as the GBE and convolution
models introduced in Secs. 3.3.2 and 3.3.3, because the complex nonlinear interactions in the
near field of the PAL are more accurately captured.

4.2.4 Numerical simulations

4.2.4.1 Validation of the SWE

To illustrate the accuracy and efficiency of the proposed method, the parameters in [132] are
used and also listed in Table 4.2. Figure 4.4 shows the audio SPL as a function of the truncated
term N at several typical field points when y = 0. It is clear that all the curves converge with
sufficient terms. The truncated error is less than 0.1 dB when the truncated term N is larger
than 10.

For comparison, the direct integration of Eq. (3.17) is performed (denoted by “direct method”),
where the Simpson’s 1/3 rule is used for numerical integrations. Simpson’s 1/3 rule is a clas-
sical numerical technique for evaluating integrals, and it was used here because it is quick and
sufficiently accurate for this particular integral. This approach was verified by ensuring the nu-
merical integration converged. The integrated coordinates are evenly discretized, and the field
coordinate is set as the middle point between adjacent integrated coordinates to avoid singu-
larities of Green’s functions. The infinitely large integral domain is reduced to a cylindrical
column centered along the axis of the PAL with a radius of 1.5 m and a length of 3 m to cover
the major energy of ultrasonic beams.
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Figure 4.4: Convergence of the audio SPL (dB re 20 µPa) as a function of the
truncated term N at several typical field points when y = 0, where the parameters

in Table 4.2 are used.

Figure 4.5 shows the audio SPL as a function of the propagating distance in different di-
rections at 1 kHz, where the results obtained by the proposed method are same as that from
the direct method. But the proposed method is faster than the direct method to calculate the
audio sound in different directions because the polar angle coordinate, θ, of the field point is
uncoupled in the expression. For example, the radial components in Eqs. (4.49) to (4.51) need
to be calculated only once when obtaining the 3 curves in Fig. 4.5.
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Figure 4.5: The audio SPL (dB re 20 µPa) as a function of the propagating
distance in different directions at 1 kHz, where the circles are that obtained by
using the direct method. Solid line, θ = 0◦; dashed line, θ = 10◦; dash dotted line,

θ = 20◦.

Table 4.3 lists the computation time of the proposed SWE and direct integration methods
at 3 typical field points. The precision criterion is used to identify the difference between the
SPL calculated with the two methods to be less than 0.05 dB. The calculation was conducted
on a personal computer witha 2.5 GHz CPU and 16 GB random access memory. Table 4.3
demonstrates that the computation time of the proposed SWE method remains similar for all
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Field point coordinates Caclulation time (s)

SWE method Direct integration method

On-axis (x, y, z) = (0, 0, 0.05m) 0.59 75.2
Off-axis (x, y, z) = (0.05m, 0, 0.05m) 0.56 82.5

On the PAL (x, y, z) = 0 0.64 354.6

Table 4.3: Comparison of the calculation time of the SWE method and the direct
integration method.

the cases, but is at least 100 times faster than the direct integration method. The reason for the
computation saving is that the direct integration method has to calculate the sound pressure of
the ultrasound at many virtual source points and then integrate over a large space, but this is
not required in the SWE method.

4.2.4.2 The transition distance from the near field to the Westervelt far field

Figure 4.6 shows the audio SPL at 1 kHz and the ultrasound field at 40 kHz on the radiation
axis as a function of the propagating distance, where the transducer radius is 0.05 m. The
ultrasound pressure is calculated with the closed-form formula given by Eq. (3.32)

L (z, ku) =
ρ0
2
v2z(z, ku)−

p2(z, ku)
2ρ0c20

(4.55)

where vz(z, ku) is the particle velocity component in z direction and can be obtained by the
relation vz(z, ku) = (ikuρ0c0)−1 ∂p(z, ku)/∂z

vz(z, ku) = u0eikuz − u0
z

a

(
1 + z2

a2

)−1/2

exp

ikua
√
1 + z2

a2

 (4.56)

The obtained ultrasound pressure and Lagrangian density on the radiation axis are then nor-
malized by 2ρ0c0u0 and 2ρ0u0, respectively, and are shown in Fig. 4.6(b).
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Figure 4.6: Audio SPL (dB re 20 µPa) at 1 kHz as a function of the propagating
distance on the radiation axis, where the transducer radius is 0.05 m
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Figure 4.7: The level of normalized ultrasound pressure and Lagrangian density
at the average ultrasound frequency 40 kHz.

The ultrasound pressure amplitude has several local minima and maxima in the near field.
From Eq. (3.32), the radial distance at the local minima can be obtained by, see Eq. (5.7.4)
in [209]

rmin(n) =
[(

a

λu

)2
− n2

]
λu
2n

, n = 1, 2, . . . ,
⌊
a

λu

⌋
(4.57)

where λu is the wavelength at the average ultrasound frequency fu and ⌊·⌋ rounds down the
quantity inside. Similarly, the radial distance at the local maxima can be obtained by

rmax(n) =
[(

a

λu

)2
−
(
n− 1

2

)2
]

λu
2n− 1

, n = 1, 2, . . . ,
⌊
a

λu
+ 1

2

⌋
(4.58)

The first two (n = 1 and 2) local minima and maxima are plotted in Figs. 4.6 and 4.7. It
appears that the locations of local maxima and minima of ultrasonic Lagrangian density are
close to that of the ultrasound pressure.

The ultrasonic Lagrangian density is non-cumulative as the propagation of the ultrasound
beams [111]. In the near field, where the field point is close to a PAL, the ultrasonic Lagrangian
density fluctuates significantly, and the audio sound calculated with the Kuznetsov equation in
Fig. 4.6 is complicated which means that the results obtained with the Westervelt equation are
inaccurate. Figure 4.7 shows that the ultrasonic Lagrangian density is small when the radial
distance is larger than the first local maximum (0.29 m in this case), and the results calculated
with the Westervelt equation in Fig. 4.6 are also accurate.

The transition from the near field to the Westervelt far field is affected by the local minima
and maxima of the ultrasound pressure amplitude. As shown in in Fig. 4.7, at the first two
local minima, the normalized Lagrangian density is more than 30 dB lower than that near the
PAL, so it can be neglected in the calculation of audio sounds and the results obtained by the
Kuznetsov and Westervelt equations are almost the same. At the distance of the first two local
maxima, the Lagrangian density amplitude is near its local maxima, so its effects are prominent
and the difference between the results obtained by the Kuznetsov and Westervelt equations is
large. The difference decreases as the ordinal number of the local maximum decreases. For
example, the difference is 3.0 dB at the second local maximum (0.09 m) and it decreases to 0.3
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dB at the first local maximum (0.29 m).
Figures 4.8 shows the difference of the audio SPL calculated with the Kuznetsov and West-

ervelt equations as a function of the propagating distance on the radiation axis, with different
transducer radii at different ultrasound frequencies for an audio frequency of 1 kHz. The radial
distance to the first maximum of the ultrasound pressure amplitude is listed in Table 4.4 and
calculated by setting n = 1 in Eq. (4.58), so that

rmax(1) =
a2

λu
− λu

4
(4.59)

At large radial distances, the audio SPL difference approaches 0 dB indicating the accuracy
of using the Westervelt equation. At small radial distances, the number of local minima and
maxima increases as the transducer radius and ultrasound frequency increases, as predicted
from Eqs. (4.57) and (4.58).
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Figure 4.8: The audio SPL difference calculated with the Kuznetsov and Wester-
velt equations as a function of the propagating distance on the radiation axis (a)
with different transducer radii when the average ultrasound frequency is 40 kHz,
and (b) at different average ultrasound frequencies when the transducer radius is

0.05 m, where the audio frequency is 1 kHz.

The distance at the n-th local maximum of the ultrasound pressure amplitude increases
as the transducer radius and ultrasound frequency increase, where n is any positive integer
number restricted by the condition in Eq. (4.58). The audio SPL difference at the location of
the corresponding local maximum decreases if the transducer radius and ultrasound frequency
increase. This is because the ultrasound beam is more collimated when the transducer radius
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Transducer
radius a (m)

Ultrasound fre-
quency fu (kHz)

First maximum
rmax(1) (m)

Transition distance from the near
field to the Westervelt far field (m)

0.02 40 0.04 0.04 (n0 = 1)
0.05 40 0.29 0.29 (n0 = 1)
0.1 40 1.16 0.38 (n0 = 2)
0.15 40 2.62 0.51 (n0 = 3)
0.2 40 4.67 0.65 (n0 = 4)
0.25 40 7.29 0.79 (n0 = 5)
0.05 60 0.44 0.44 (n0 = 1)
0.05 80 0.58 0.19 (n0 = 2)
0.05 100 0.73 0.24 (n0 = 2)

Table 4.4: The first maxima of the ultrasound pressure amplitude and the tran-
sition distances from the near field to the Westervelt far field for several sets of

parameters.

and the ultrasound frequency are larger. The ultrasound beams can also be approximated by
plane waves when they are highly collimated. In this case, the ultrasonic Lagrangian density
L approaches zero after substituting the plane wave condition p(z, ku) = ρ0c0|vz(z, ku)| into
Eq. (4.55), which means the local effects are negligible and the Westervelt equation is accurate.
Therefore, the magnitude of the audio SPL difference can be determined by how much the
ultrasound beams behave like plane waves, which is measured by defining an error function as

ϵ(z) =
[
1− ρ0c0|vz(z, ku)|

|pz(z, ku)|

]
× 100% (4.60)

If the error function is small, the ultrasound beams are more collimated and the effects of the
ultrasonic Lagrangian density would also be small.

Because the audio SPL difference calculated with the two equations is large at points near
the local maxima of the ultrasound pressure amplitude, the transition distance from the near
field to the Westervelt far field can be defined as the distance at the n0-th local maximum of the
ultrasound pressure amplitude, such that the error function at this point is less than a threshold
ϵ0 > 0. To obtain n0, the following condition should be satisfied as

ϵ[rmax(n0)] ≤ ϵ0 (4.61)

The substitution of Eqs. (4.58) and (4.60) into Eq. (4.61), n0 is obtained by

n0 = max

1,
 a

λu

1√
ϵ−1
0 − 1

+ 1
2

 (4.62)

where max(1, ·) is used to ensure n0 is at least 1. The choice of a smaller threshold for ϵ0 leads to
higher precision when using the Westervelt equation to predict audio sounds in the Westervelt
far field, region r ≥ rmax(n0). The transition distance at several sets of parameters are listed in
Table 4.5 when ϵ0 = 2.5%, and the numerical simulations show the error using the Westervelt
equation is less than 0.6 dB under this condition.
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Figure 4.9 shows the audio SPL difference at different audio frequencies when the transducer
radius is 0.05 m, and the average ultrasound frequency is 40 kHz. At high audio frequencies,
the audio SPL difference is small at small radial distances. This is because the audio SPL
calculated with the Westervelt equation increases by about 12 dB when the audio frequency
is doubled, but the amplitude of the ultrasonic Lagrangian density changes little at different
audio frequencies, so its effect on the audio SPL is relatively small at high audio frequencies.
The locations of local minima and maxima in the ultrasound pressure amplitude do not change
at different audio frequencies, so the transition distance from the near field to the Westervelt
far field does not vary with the audio frequency.
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Figure 4.9: The audio SPL difference calculated with the Kuznetsov and West-
ervelt equations as a function of the propagating distance on the radiation axis
at different audio frequencies (transducer radius is 0.05 m and the average ultra-

sound frequency is 40 kHz).

In this section, the formula of the transition distance from the near field to the Westervelt
far field is derived based on the transducer with a uniform velocity profile. For other velocity
profiles such as parabolic and quartic ones [132], an appropriate formula can be obtained using
a method similar to the one described above. For a specific velocity profile, the key step is to
find the location of the local maxima of ultrasound pressure amplitude on the transducer axis,
where the Lagrangian density amplitude is large and the local effects are significant.

4.2.4.3 The transition distance from the Westervelt far field to the inverse-law far
field

Figure 4.10 shows the difference between the audio SPL calculated with the Westervelt equation
and the inverse-law property, as a function of the propagating distance on the radiation axis
with different transducer radii at different ultrasound and audio frequencies. This difference
increases as the radial distance increases, and then decreases and approaches 0 dB at large
radial distances, where the prediction based on the inverse-law property is accurate. Taking 1
dB as the error bound, this defines the region where the audio SPL difference is less than 1 dB
to be the inverse-law far field. Table 4.5 lists the transition distances from the Westervelt far
field to the inverse-law far field for the parameters used in Fig. 4.10.

Figure 4.10(a) shows that the transition distance increases as the transducer radius increases.
For example, it increases from 10.6 m to 29.1 m as the transducer radius increases from 0.02 m
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Figure 4.10: The audio SPL difference calculated with the Westervelt equation
and the inverse-law property as a function of the propagating distance on the
radiation axis (a) with different transducer radii when the average ultrasound
frequency is 40 kHz and the audio frequency is 1 kHz, (b) at different average
ultrasound frequencies when the transducer radius is 0.05 m and the audio fre-
quency is 1 kHz, and (c) at different audio frequencies when the transducer radius
is 0.05 m and the average ultrasound frequency is 40 kHz, where SPL = 1 dB for

the dashed lines.

Transducer
radius a (m)

Ultrasound fre-
quency fu (kHz)

Audio frequency
fa (Hz)

Inverse-law transition distance
(m) when ∆SPL < 1 dB

0.02 40 1000 10.6
0.05 40 1000 29.1
0.1 40 1000 31.8
0.15 40 1000 33.0
0.05 60 1000 17.8
0.05 80 1000 12.8
0.05 100 1000 10.2
0.05 40 250 32.3
0.05 40 500 30.6
0.05 40 2000 23.9

Table 4.5: The transition distance from the Westervelt far field to the inverse-law
far field for the parameters.

to 0.05 m. This is because the effective virtual source containing the major ultrasonic energy
becomes larger as the transducer radius increases. Figure 4.10(b) shows that the transition
distance decreases as the ultrasound frequency increases. For example, it decreases from 29.1
m to 17.8 m when the ultrasound frequency increases from 40 kHz to 60 kHz. This is because
the effective virtual source becomes smaller as the sound attenuation coefficient of ultrasound
beams in air becomes larger. Although the transition distance decreases as the audio frequency
increases Fig. 4.10(c), the effects are relatively small. For example, it decreases by only 1.5 m
(4.9%) when the audio frequency increases from 500 Hz to 1 kHz.

The effects of the transducer radius, and the ultrasound and audio frequencies on the inverse-
law transition distance, are more complicated than the one from the near field to the Westervelt
far field. It seems that the ultrasound frequency is the most important parameter because the
ultrasound attenuation coefficient in air changes significantly as the frequency and meteoro-
logical conditions change. Therefore, an empirical formula, for example 4/αu, can be used to



4.3. Cylindrical wave expansion (CWE) for a phased array source 65

estimate the inverse-law far field transition distance, where u is the ultrasound attenuation co-
efficient in air at the average ultrasound frequency fu. The physical meaning of this formula is
that the ultrasound pressure amplitude at this location has been attenuated to 2%(e−4 ≈ 0.02).
However, the formula does not hold for the very small sound absorption coefficient.

4.3 Cylindrical wave expansion (CWE) for a phased array source

4.3.1 Theory

The model considered in this section is shown in Fig. 3.2. A rectangular coordinate system
(x, y, z) and a cylindrical coordinate system (ρ, φ, z) is used for reference.

To express Eq. (3.21) as a cylindrical expansion, the addition theorem for the Hankel function
is introduced, so that [211, 235]

H0(k|ρ1 − ρ2|) =
∞∑

n=−∞
Jn(kρ<)Hn(kρ>)ein(φ1−φ2) (4.63)

where Jn(·) is the Bessel function of order n, Hn(·) is the Hankel function of order 0, ρ< =
min(ρ1, ρ2) and ρ> = max(ρ1, ρ2).

For the source point on the positive x axis, xs = ρs and φs = 0; for the source point on the
negative x axis, xs = −ρs and φs = π . Substituting Eq. (4.63) into Eq. (3.21) yields

Φ(ρ, k) = 1
2ik

∞∑
n=−∞

Rn(ρ, k)einφ (4.64)

where the radial component is expressed as

Rn(ρ, k) =
∫ a

0
Jn(kρs,<)Hn(kρs,>)u(ρs, k)kdρs + e−inπ

∫ a

0
Jn(kρs,<)Hn(kρs,>)u(−ρs, k)kdρs

(4.65)
where ρs,< = min(ρ, ρs) and ρs,> = max(ρ, ρs). By introducing the substitution

un(ρs, k) = u(ρs, k) + (−1)nu(−ρs, k) (4.66)

Eq. (4.65) is rewritten in a more compact form

Rn(ρ, k) =
∫ a

0
Jn(kρs,<)Hn(kρs,>)un(ρs, k)kdρs (4.67)

It is easy to show that

u−n(ρs, k) = u(ρs, k) + (−1)−nu(−ρs, k) = u(ρs, k) + (−1)nu(−ρs, k) = un(ρs, k) (4.68)

J−n(·)H−n(·) = Jn(·)Hn(·) (4.69)

Therefore, the symmetry property of the radial component given by Eq. (4.67) yields

R−n(ρ, k) = Rn(ρ, k) (4.70)
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The substitution of
einφ + e−inφ = 2 cosnφ (4.71)

into Eq. (4.64) yields another form of the velocity potential without the negative order terms

Φ(ρ, k) = 1
2ik

∞∑
n=0

εnRn(ρ, k)einφ (4.72)

where εn is the Neumann factor, εn = 1 when n = 0 and εn = 2 when n = 1, 2, 3, . . ..
Similar to Eqs. (4.10) and (4.12), Eq. (4.67) can be written in the interior and exterior parts

as

Rn(ρ, k) =

Rint
n (ρ, k), ρ < a

Rext
n (ρ, k), ρ > a

(4.73)

with
Rint

n (ρ, k) = Hn(kρ)
∫ kρ

0
u(t/k, k)Jn(t)dt+ Jn(kρ)

∫ ka

kρ
u(t/k, k)Hn(t)dt (4.74)

Rext
n (ρ, k) = Hn(kρ)

∫ ka

0
u(t/k, k)Jn(t)dt (4.75)

To obtain the directivity of the ultrasound used in the convolution method in Eq. (3.39),
the radial component in Eq. (4.67) can be simplified using the limiting forms of the Hankel
functions for large arguments, see Eq. (5.1.17) in [222], so that

lim
ρ→∞

Rn(ρ, k) =
√

2
πkρ

eikρ

in+1/2

∫ a

0
Jn(kρs)un(ρs, k)kdρs (4.76)

The components of the velocity field under the cylindrical coordiante system can be obtained
directly from Eq. (4.64) to give

vρ(ρ, k) =
∂Φ(ρ, k)

∂ρ
= 1

2i

∞∑
n=−∞

dRn(ρ, k)
d(kρ)

einφ

vφ(ρ, k) =
1
ρ

∂Φ(ρ, k)
∂φ

= 1
2

∞∑
n=−∞

Rn(ρ, k)
kρ

neinφ

vz(ρ, k) =
∂Φ(ρ, k)

∂z
= 0

(4.77)

Similarly, Eq. (4.77) can be represented as

vρ(ρ, k) =
1
2i

∞∑
n=0

εn
dRn(ρ, k)
d(kρ)

cos(nφ)

vφ(ρ, k) =
i
2

∞∑
n=0

nεn
Rn(ρ, k)

kρ
sin(nφ)

vz(ρ, k) = 0

(4.78)

The derivative of the radial component is required to calculate in Eqs. (4.77) and (4.78).
The radial components in interior and exterior regions can be obtained using Eqs. (4.74) and
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(4.75), respectively, to give

dRint
n (ρ, k)
d(kρ)

= H ′
n(kρ)

∫ kρ

0
u(t/k, k)Jn(t)dt+ J ′

n(kρ)
∫ ka

kρ
u(t/k, k)Hn(t)dt (4.79)

dRext
n (ρ, k)
d(kρ)

= H ′
n(kρ)

∫ ka

0
u(t/k, k)Jn(t)dt (4.80)

4.3.2 The radial component

As shown in the radial component given by Eqs. (4.74) and (4.75), the numerical calculation
of the integral over Bessel and Hankel functions is required. The uniform velocity profile,
u(ρ, k) = u0, is the most common one. For covenience, the auxiliary integrals are defined as

Jn(x) =
∫

Jn(x)dx (4.81)

Hn(x) =
∫

Hn(x)dx (4.82)

The following recurrence relation holds for both Bessel and Hankel functions, see Eq. (5.1.24)
in [222]

Jn+1(x) = Jn−1(x)− 2J ′
n(x) (4.83)

Therefore, it is easy to obtain that

J2n+1(x) = J1(x)−
n∑

m=1
J2m(x) (4.84)

According to the recurrence relation between orders 0 and 1 for Bessel functions

J ′
0(x) = −J1(x) (4.85)

Equation (4.84) is reduced to

J2n+1(x) = −
n∑

m=0
εmJ2m(x) (4.86)

Similar to Eq. (4.84), it can be obtained for the even orders as

J2n(x) = J0(x)− 2
n∑

m=1
J2m−1(x) (4.87)

According to Eq. (A.27), Eq. (4.87) is expressed as

J2n(x) =
πx

2
[J1(x)H0(x)− J0(x)H1(x)] + xJ0(x)− 2

n∑
m=1

J2m−1(x) (4.88)

where Hn(·) is the Struve function of order n.
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4.4 CWE for a phased array PAL

4.4.1 Quasilinear solution of Westervelt equation

This section aims to obtain the quasilinear solution of Westervelt equation by using the CWE
method. The substitution of Eqs. (3.22) and (4.63) into the potential for audio sound given by
Eq. (3.25) yields

Φ(ρ, ka) =
1
4i

∞∑
l=−∞

∫ 2π

0

∫ ∞

0
q(ρv)Jl(kρv,<)Hl(kρv,>)eil(φ−φv)ρvdρvdφv (4.89)

where ρv,< = min(ρ, ρv) and ρv,> = max(ρ, ρv).
Substituting Eq. (4.64) into the source density of the audio sound given by Eq. (3.10), one

obtains the cylindrical expansion at the virtual source point ρv as

q(ρv) =
βωa
4ic20

∞∑
m,n=−∞

Rm(ρv, k1)R∗
n(ρv, k2)ei(m−n)φv (4.90)

The substitution of Eq. (4.90) into Eq. (4.89) yields

Φ(ρ, ka) = − βπ

8ωa

∞∑
l,m,n=−∞

eilφ ×
[ 1
2π

∫ 2π

0
ei(m−n−l)φvdφv

]

×
∫ ∞

0
Rm(ρv, k1)R∗

n(ρv, k2)Jl(ka, ρv,<)Hl(ka, ρv,>)k2aρvdρv

(4.91)

Only those terms that are present when l = m− n are retained in Eq. (4.91) because

1
2π

∫ 2π

0
ei(m−n−l)φvdφv =

1, l = m− n

0, l ̸= m− n
(4.92)

The audio sound pressure may then be reduced to a cylindrical expansion, which yields

Φ(ρ, ka) = − βπ

8ωa

∞∑
m,n=−∞

Rmn(ρ, ka)ei(m−n)φ (4.93)

where the radial component for audio sound is expressed as

Rmn(ρ, ka) =
∫ ∞

0
Rm(ρv, k1)R∗

n(ρv, k2)Jm−n(ka, ρv,<)Hm−n(kaρv,>)k2aρvdρv (4.94)

According to Eq. (4.94), it is observed when m,n ≥ 0, the following symmetric relations hold

R−m,−n(ρ, ka) = Rm,n(ρ, ka) (4.95)

R−m,n(ρ, ka) = Rm,−n(ρ, ka) (4.96)
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Equation (4.93) can then be simplified as

Φ(ρ, ka) = − βπ

8ωa

∞∑
m,n=0

εm+n[Rmn(ρ, ka) cos(m− n)φ+Rm,−n(ρ, ka) cos(m+ n)φ] (4.97)

4.4.2 Quasilinear soultion of Kuznetsov equation

This section aims to obtain the quasilinear solution of Kuznetsov equation by using the CWE
method. Similar to the discussion in Sec. 4.2.2, after expanding the components of the velocity
field under the cylindrical coordinate system, the sourcen density given by Eq. (3.9) can be
rewritten as a summation of three components

q(ρ) = qp(ρ) + qρ(ρ) + qφ(ρ) (4.98)

where
qp(ρ) =

(β − 1)ωaω1ω2
ic40

Φ(ρ, k1)Φ∗(ρ, k2) (4.99)

qρ(ρ) =
ωa
ic20

vρ(ρ, k1)v∗ρ(ρ, k2) (4.100)

qφ(ρ) =
ωa
ic20

vφ(ρ, k1)v∗φ(ρ, k2) (4.101)

Similar to Eq. (4.90), we have the CWE for the sourcen density by substituting Eqs. (4.64)
and (4.77) into Eqs. (4.99), (4.100), and (4.101)

qp(ρv) =
(β − 1)ωa

4ic20

∞∑
m,n=−∞

Rm(ρv, k1)R∗
n(ρv, k2)ei(m−n)φ (4.102)

qρ(ρv) =
ωa
4ic20

dRm(ρv, k1)
d(k1ρv)

[dRn(ρv, k2)
d(k2ρv)

]∗
ei(m−n)φv (4.103)

qφ(ρv) =
ωa
4ic20

∞∑
m,n=−∞

Rm(ρv, k1)
k1ρv

[
Rn(ρv, k2)

k2ρv

]∗
mnei(m−n)φv (4.104)

The velocity potential field of audio sound can then be written as a sum of the contribution
from 3 components of virtual source density given on the right-hand side of Eq. (4.98)

Φ(ρ, ka) = Φp(ρ, ka) + Φρ(ρ, ka) + Φφ(ρ, ka) (4.105)

Similar to the derivation of Eq. (4.93), the corresponding velocity potential fields are obtained
as

Φp(ρ, ka) = −(β − 1)π
8ωa

∞∑
m,n=−∞

Rp,mn(ρ, ka)ei(m−n)φ (4.106)

Φρ(ρ, ka) = − π

8ωa

∞∑
m,n=−∞

Rρ,mn(ρ, ka)ei(m−n)φ (4.107)

Φφ(ρ, ka) = − π

8ωa

∞∑
m,n=−∞

mnRρ,mn(ρ, ka)ei(m−n)φ (4.108)
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The radial components of audio sound are given by

Rp,mn(ρ, ka) =
∫ ∞

0
Rm(ρv, k1)R∗

n(ρv, k2)Jm−n(ka, ρv,<)Hm−n(kaρv,>)k2aρvdρv (4.109)

Rρ,mn(ρ, ka) =
∫ ∞

0

dRm(ρv, k1)
d(k1ρv)

dR∗
n(ρv, k2)
d(k∗2ρv)

Jm−n(ka, ρv,<)Hm−n(kaρv,>)k2aρvdρv (4.110)

Rφ,mn(ρ, ka) =
∫ ∞

0
Rm(ρv, k1)R∗

n(ρv, k2)Jm−n(ka, ρv,<)Hm−n(kaρv,>)
k2a

k1k∗2ρv
dρv (4.111)

4.4.3 Approximation in the inverse-law far field

In the far field, Eq. (4.94) has the limiting form

lim
ρ→∞

Rmn(ρ, ka) =
√

2
πkaρ

eikaρ

im−n+1/2

∫ ∞

0
Rm(ρv, k1)R∗

n(ρv, k2)Jm−n(ka, ρv)k2aρvdρv (4.112)

As the main result of this section, the cylindrical expansion of the audio sound given by
Eq. (4.93) consists of a series of two summations with the uncoupled radial and angular compo-
nents, so it can be calculated quickly for many field points. It can be seen as a two-dimensional
version of the spherical expansion as developed in Sec. 4.2, which is a series of triple summa-
tions. It has been demonstrated the calculation of the spherical expansion is more than 100
times faster than the direct integration of the fivefold in Eq. (3.17). The cylindrical expansion
is simpler than the spherical expansion, so the computational efficiency is further improved.
In addition, arbitrary excitation velocity profiles, u(x, ki), can be assumed for the ultrasound
source in the radial component for ultrasound given by Eq. (4.67), so it can be used to model
a phased array PAL.

4.4.4 Velocity profiles for a steerable PAL

In this section, a steerable PAL is used as an example of the proposed cylindrical expansion,
which aims to steer the audio beam in a desired direction. The phased array technique assumes
that an excitation of an array of PALs consists of an amplitude and a phase at each PAL unit
[100].

For the ideal configuration, when the size of the PAL unit is infinitely small, a continuous
velocity profile can be assumed as

u(x, ki) = u0eikia cosφ0 (4.113)

whre u0 is a constant with the unit of m/s, and φ0 is the steering angle so that 0 ≤ φ0 ≤ π.
For the non-ideal configuration, when the PAL unit has a finite size of a0 (also known as the

sub-array size), the phase distribution on the radiation surface of each unit must be uniform.
Therefore, the discrete profile is given by a relation to the continuous one as

udis(x, ki) = u

((⌊
x

a0
+ 1

2

⌋)
a0, k1

)
(4.114)
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In real applications, the separation between the centers of adjacent PAL units may be larger
than their size to give a blank region on the rigid baffle [105, 212]. This can be modelled by
multiplying the profiles in Eqs. (4.113) and (4.114) with a weighting function such that the
weight is zero in the blank region, which reads

A(x) =


1, −a1

2
≤ x−

(⌊
x

a0
+ 1

2

⌋
+ 1

2

)
a0 ≤

a1
2

0, otherwise
(4.115)

where a1 is the separation between the centers of the adjacent PAL units.
To better understand the continuous and discrete velocity profiles for a steerable PAL,

Fig. 4.11 shows a comparison between them for amplitudes and phases. The parameters used
are the same as in Fig. [100, 105]: the PAL is steered at 70◦ with a carrier frequency of 40 kHz;
the phased array PAL size is 2a = 0.1m; the size of each PAL unit is a0 = 0.01m; and the
separation of the centers of adjacent units is a1 = 0.0125m.
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Figure 4.11: Comparison of the continuous and discrete velocity profile for the
ultrasound: (a) normalized amplitude distribution, and (b) normalized phase dis-

tribution.

4.4.5 Results and discussions

The cylindrical expansion of the audio sound in Eq. (4.64) is a series which must be truncated
to obtain numerical results. The truncation limit is set to 70 for both m and n in the following
simulations, which delivers an error of less than 0.1 dB for the parameters used in this section.
The onefold integral in Eqs. (4.67) and (4.94) are calculated using the classical Gauss-Legendre
quadrature method, although the computation efficiency can be further improved using the
series expression and the complex plane method [50, 211]. The sound attenuation coefficients
for both ultrasound and audio sound are estimated according to ISO 9613 [225]. The directivities
of the ultrasound used in Eq. (3.39) of the convolution model are obtained using the cylindrical
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expansion in Eq. (4.64) with the limiting form of the radial component at large arguments in
Eq. (4.76).

To compare against experimental data in the literature, the parameters are set to be the
same as those in [105]. The center frequency of the ultrasound is 40 kHz, and all the SPLs in
the following simulations are normalized, with a maximum of 0 dB to aid comparison.

4.4.5.1 Conventional PAL with a uniform excitation

In this section, a continuous uniform velocity profile is assumed, as this best represents a
conventional PAL. Figure 4.12 shows the audio sound fields generated by a conventional PAL
with a size of 2a = 0.08m at 500 Hz, 1 kHz, 2 kHz, and 4 kHz. The results are obtained using
the proposed cylindrical expansion. It is observed that the main lobe of the generated audio
beam is on the radiation axis so that φ = 90◦, and the beam becomes more focused as the
frequency increases.

Figure 4.12: Audio SPL (dB re 20 µPa) generated by a conventional PAL with a
uniform profile and a size of 0.08 m at (a) 500 Hz, (b) 1 kHz, (c) 2 kHz, and (d)

4 kHz.

The directivity of the audio sound beam in the far field at different angles and frequencies
is shown in Fig. 4.13 using the far field solution of the cylindrical expansion [Eqs. (4.93) and
(4.112)]. Because the sound pressure was measured at 4 m away from the PAL in [105], the
results at a radial distance of 4 m are calculated using the cylindrical expansion [Eqs. (4.93)
and (4.94)], and these are also presented in Fig. 4.13. It is interesting to note that the difference
between these two curves is large at most angles. For example, the difference at 70◦ is 3.3 dB,
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2.7 dB, 1.7 dB, and 2.1 dB, at 500 Hz, 1 kHz, 2 kHz, and 4 kHz, respectively. It indicates
that 4 m cannot be regarded as far enough away from this PAL source. This is because the
assumptions and approximations made in the far field imply that the observation point should
be far away from the virtual source of the audio sound rather than the radiation surface of the
PAL, and this is usually more than 10 m away, as demonstrated in [51]. Therefore, only those
results at a radial distance of 4 m obtained using the cylindrical expansion are presented in the
following figures.
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Figure 4.13: Audio SPL (dB re 20 µPa) generated by a conventional PAL with
a uniform profile and a size of 0.08 m calculated using the convolution method
and the cylindrical expansion at (a) 500 Hz, (b) 1 kHz, (c) 2 kHz, and (d) 4 kHz.
Red hollow square, convolution model; blue hollow circle, cylindrical expansion
at 4 m; orange triangle, cylindrical expansion in the far field; green solid square,

convolution method from [105]; purple solid circle, measurement from [105].

The directivity of the audio sound beam in the far field can also be obtained using Eq. (3.39)
of the convolution model, so the results calculated using this approach are presented in Fig. 4.13
for comparison. It can be seen in Fig. 4.13 that the SPL values calculated using the convolution
model are slightly larger than the cylindrical expansion at a radius of 4 m for angles around
90◦, and smaller at other angles. For example, in Fig. 4.13(d) the SPL obtained at 4 m using
the convolution model for a frequency of 4 kHz is 0.8 dB larger, and 1.6 dB smaller, than that
obtained with a cylindrical expansion at 94.1◦ and 102.1◦, respectively. This difference becomes
larger as the frequency decreases, indicating that the accuracy using the convolution model
deteriorates at low frequencies.

The measured audio sound directivities at 4 kHz are available from Fig. 6 of [105], and
they are presented in Fig. 4.13(d). The ultrasound directivities are required to obtain the
audio sound directivity in the convolution model as shown in Eq. (3.39). They are predicted
using Eqs. (4.64) and (4.76), but obtained by measurement in [105]. Therefore, the results
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obtained using the convolution model in [105] can be different and they are also presented in
Fig. 4.13(d) for comparison. It can be seen in Fig. 4.13(d) that the SPL values obtained with
the cylindrical expansion at 4 m provides better agreement with measurement when compared
to the convolution model, for angles larger than 85◦. For example, the difference between
measurement and the value obtained using the cylindrical expansion is only 0.5 dB at 94.8◦,
while it increases to 1.5 dB when compared to the convolution model.

4.4.5.2 Steerable PAL generating one beam

The steerable PAL with a steering angle of 70◦ used in Sec. III.C of [105] is considered in this
subsection. Figure 4.14 shows the audio sound fields at 4 kHz generated by a steerable PAL
with a continuous or discrete profile, where the size of the phased array PAL is 2a = 0.08m, and
the size of the PAL unit is a0 = 0.01m. Comparing Fig. 4.14(a) to Fig. 4.12(d), demonstrates
the ability of a phased array PAL to steer the audio beam in a desired direction. When the
velocity profile is discrete (which is usually limited by the size of real ultrasonic transducers),
a side lobe would occur around 120◦ as shown in Fig. 4.14(b). This is known as the spatial
aliasing phenomenon arising from the fact that the size of the PAL unit (0.01 m) is greater than
the half of the wavelength of the ultrasound (0.0086 m at 40 kHz) [236].
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Figure 4.14: Audio SPL (dB re 20 µPa) at 4 kHz generated by a steerable PAL
with a steering angle of 70◦ (denoted by dashed lines), a size of 0.08 m, and a (a)

continuous, or (b) discrete profile with a PAL unit size of 0.01 m.

Figure 4.15 compares the audio SPL at different angles using the convolution model and
the cylindrical expansion at a radial distance of 4 m. The measurement data and the results
obtained using the convolution model and measured ultrasound directivities in [105] are also
presented for comparison. It can be found both models can predict similar results around the
main lobe at 70◦. The side lobe is 115◦ for the data in [105] while it is 120◦ for the predictions
in this section. The reason may arise from the measurement error, imperfect positioning of the
phased array, and so on. The experimental result at the side lobe (115◦) in [105] is 3.1 dB
below the prediction from the convolution model, which can be more accurately predicted by
the cylindrical expansion as a decrement (3.0 dB) can be observed at the side lobe (120◦). It
indicates the cylindrical expansion is more appropriate for the prediction of a steerable PAL
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with a discrete profile. Furthermore, the cylindrical expansion can predict the details of the
sound field in the near field as shown in Fig. 4.14.
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Figure 4.15: Audio SPL (dB re 20 µPa) at 4 kHz at different angles generated
by a steerable PAL with a steering angle of 70◦, a size of 0.08 m, and a discrete
profile with a PAL unit size of 0.01 m. Red hollow square, convolution model;
blue hollow circle, cylindrical expansion at 4 m; green solid square, convolution

model from [105]; purple solid circle, measurement from [105].

4.4.5.3 Steerable PAL generating dual beams

The generation of an unwanted side lobe when using a discrete velocity profile for a steerable
PAL was shown in Sec. 4.4.5.2. However, this effect can be utilized to generate dual audio
beams, see [236] for more details. For example, Fig. 4.16 shows a 4 kHz dual audio beam at
70◦ and 110◦ using the parameters in Fig. 8 of [105], and this was achieved by steering the
ultrasound beams to 69◦ and 71◦ at 38 kHz and 42 kHz, respectively. The size of the phased
array PAL is 2a = 0.1m, the size of the PAL units is a0 = 0.01m, their center separation is
a1 = 0.0125m, and the velocity profile is illustrated in Fig. 4.11. The details of the audio sound
in the near field shown in Fig. 4.16 demonstrates that this method can successfully generate
dual beams with an acceptable acoustic contrast in the full field.

The audio SPL at different angles, obtained using the proposed cylindrical expansion and
the convolution model is compared in Fig. 4.17. The measurement data and the results ob-
tained using the convolution model and ultrasound directivities in [105] are also presented. As
shown in Fig. 4.17, it is clear the cylindrical expansion provides a much better agreement with
the measurement data. At the angles between two lobes the SPL values obtained using the
convolution model are lower than those found using the cylindrical expansion. The difference
between the two is a maximum of 5.8 dB at 90◦. The nonlinear interactions between ultrasonic
waves in the near field becomes more complex in this case when compared to a conventional
PAL with a uniform excitation. These interactions cannot be captured in the convolution model
because only the far field directivity for ultrasound is used. The prediction accuracy is, there-
fore, deteriorated significantly in this case. However, no simplifications for ultrasound are made
in the cylindrical expansion, so it provides a more accurate solution.
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Figure 4.16: Audio SPL (dB re 20 µPa) at 4 kHz generated by a steerable PAL
generating dual beams at 70◦ and 110◦ (denoted by dashed lines), where the size
of the phased array PAL is 0.1 m, the size of PAL units is 0.01 m, and their center

separation is 0.0125 m.

50 60 70 80 90 100 110 120 130
−30

−25

−20

−15

−10

−5

0

φ(◦)

SP
L

(d
B)

Figure 4.17: Audio SPL (dB re 20 µPa) at 4 kHz at different angles generated
by a steerable PAL generating dual beams at 70◦ and 110◦, where the size of
the phased array PAL is 0.1 m, the size of PAL units is 0.01 m, and their center
separation is 0.0125 m. Red hollow square, convolution model; blue hollow circle,
cylindrical expansion at 4 m; green solid square, convolution model from [105];

Purple solid circle, measurement from [105].

4.5 Summary

A SWE is derived for the sound radiation from a baffled circular source in Sec. 4.1. A closed-
form for the calculation of the radial component is proposed based on the recurrence relation of
spherical Bessel functions. Unlike the existing GHF method, the Gauss-Legendre quadrature,
and the infinite Bessel expansion, the proposed expression can be calculated exactly with finite
terms in the whole frequency range. In the proposed expression, the spherical coordinates of
the field point and the disk radius are uncoupled, which is convenient for obtaining derivatives
and integrals with respect to these parameters. The proposed method can also be extended to
other scenarios, such as the radiation from a baffled circular piston with axisymmetric velocity
profiles, a resilient disk in free space, and a baffled rotating source [52].

Section 4.2 extends the SWE for the radiation of a baffled circular PAL. The key step is to
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express the Green’s function of a point monopole in free field by a series consisting of trigono-
metric, Legendre, and spherical Bessel functions, so that the five-fold integral in the expression
of audio sounds generated by a PAL can be simplified to three-fold summations by using the
orthogonal properties of the trigonometric and Legendre functions. The proposed expression
has the uncoupled angular component determined by Legendre polynomials and the radial
one which is a rapidly converged integral involving spherical Bessel functions which converges
rapidly. Unlike the widely used GBE method, the proposed expansion avoids the additional
Fresnel approximation and can be calculated efficiently. In the numerical simulations, the GBE
method is at least 15 times slower than the proposed method and shows poor convergence in
the near field while the proposed method is computationally efficient in both the near and far
fields.

In Sec. 4.3, a cylindrical expansion for the radiation from infinitely long strips was reviewed.
The cylindrical expansion was then extended in Sec. 4.4 for the audio sound generated by a
PAL after adopting the phased array technique based on a quasilinear solution of the Westervelt
equation. The expansion is a series of twofold summations with uncoupled angular and radial
components in the cylindrical coordinate system. The angular component is determined by the
trigonometric functions, and the radial one is an integral containing the Bessel functions and an
arbitrary excitation velocity profile. The proposed expansion converges much faster than the
direct numerical integration of the quasilinear solution.

The numerical results are presented for several steerable PALs and compared to predictions
obtained using the convolution model. A comparison with measurements reported by Shi and
Kajikawa, in Figs. 4.13, 4.15, and 4.17 demonstrates that the proposed cylindrical expansion
provides better agreement with measurement when compared to the convolution model. This
is because the complex nonlinear interactions of the ultrasound waves in the near field are
correctly captured by the cylindrical expansion. In addition, the proposed cylindrical expansion
in Eqs. (4.93) and (4.94) can predict the near audio sound field as shown in Sec. 4.4.5, whereas
it is not applicable for the convolution model in Eq. (3.39).

The cylindrical expansion requires that the radiation surface of the PAL array is infinitely
long in one dimension. This requirement is easy to satisfy because the ultrasonic wavelength is
usually much smaller than an ordinary PAL. However, this is not always the case for the audio
sound and so prediction accuracy at low audio frequencies may deteriorate when using the
cylindrical expansion and this remains to be addressed. Nevertheless, the proposed cylindrical
expansion is shown to provide a computationally efficient approach to modelling a PAL after
adopting the phased array technique.
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Chapter 5

Physical Properties for Audio Sound
Generated by a PAL

This chapter focuses on the investigation of the physical properties for audio sound generated
by a PAL. Section 5.1 investigates the reflection from an infinitely large surface. Section 5.2
investigates the transmission through a thin partition and a model for calculating the insertion
loss. Section 5.3 investigates the scattering by a rigid sphere which simulates a human head in
applications.

5.1 Reflection from an infinitely large surface

Existing analytical models of the PAL consider the sound radiation in free space, but do not pay
much attention to its reflection, which is important in many applications [237]. For example,
PALs have been used to measure the sound absorption coefficients of materials in air [168, 238,
239] and the reflection and transmission coefficients of elastomeric materials underwater [81,
240] and to actively control the binaural noise at human ears [35] where the reflection happens
on the material surface or human skin and hair.

When there is a reflecting surface near a PAL, both primary and secondary sound waves
are reflected by the surface. The reflection by a pressure-release surface has been studied for
underwater applications [241]. This model assumes that the primary fields are plane waves
within the Rayleigh distance and spherical waves afterwards, and the analysis is based on the
weak shock wave theory. It was found that the DFW generated by the incident primary waves
is anti-phase with itself after the pressure-release reflection, while the DFW generated by the
reflected primary waves is in-phase with the incident DFW. Therefore, the DFW suffers from
a phase cancellation effect and this phenomenon has been observed in experiments [241]. The
studies were then extended to the finite size planar targets with the weak nonlinearity by using
a more accurate model using the KZK equation [242].

The reflection of the water-air (pressure-release) interface with a small grazing angle was
modeled to investigate its effects on acoustic communication in shallow-water channels [243].
Two theoretical models were proposed: a simplified Westervelt model where the primary waves
are highly attenuated within the collimated zone, and a spherical spreading model where the

The work presented in this chapter have been published in [54–56].
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interaction of primary waves is significant in the far field spherically spreading beam. Experi-
ments were conducted at 5.4◦ and 7.7◦ grazing angles and only the spherical spreading model
was shown to agree well with experiment.

Except for the experimental studies conducted underwater in the aforementioned literatures,
the reflection of audio sound generated by a PAL in air has also been studied experimentally
[98]. It was found that the sound reflected from a rigid wall maintain the same directivity
as the incident beam, but those reflected from a wall covered with a diffusive panel lose the
directivity completely. However, the effects of the reflection of ultrasound were not considered
in this research [98]. When a PAL radiates sound in air in the presence of a reflecting surface,
additional audio sound components are generated by the reflected ultrasound waves. The two
models proposed in [243] are only valid in the far field while the model in [242] is valid in the
near-field but limited to the paraxial region. The non-paraxial model in [50, 96] is more accurate
at wide-angle field but has not considered reflections. In this section, the non-paraxial model
is extended to investigate the reflection of audio sound generated by a PAL. Simulations are
carried out for oblique incident sound first, and then the experimental results are presented to
verify the findings.

5.1.1 Theory

As shown in Fig. 5.1(a), assume a PAL in free field generates two harmonic ultrasound at
frequencies f1 and f2 with the boundary condition on the transducer surface given by Eq. (3.12).
The audio sound generated by the nonlinear interactions of ultrasound is equivalent to the ra-
diation from a virtual source within an infinitely large volume, where the source density is pro-
portional to the ultrasound field. Fig. 5.1(b) shows a PAL radiating ultrasound to an infinitely
large reflecting surface with an incident angle θ, where the distance between the PAL center and
the reflecting surface is D, and the origin of the coordinate system, O, is set at the projection
point of the PAL on the reflecting surface with the positive z axis pointing to the center of
the PAL. When the sound beams impinge on the reflecting surface, both ultrasound and audio
sound are reflected. The total audio sound mainly consists of four components as shown in
Fig. 5.1(b), and can be expressed as

Φtot(r, ka) = Φinc,+(r, ka) + Φinc,−(r, ka) + Φrefl,+(r, ka) + Φrefl,−(r, ka) (5.1)

where Φinc,+ is generated by the nonlinear interactions of incident ultrasound, Φinc,− is the
reflection of Φinc,+ to satisfy the boundary condition on the reflecting surface for audio sound,
Φrefl,+ is generated by the nonlinear interactions of reflected ultrasound, and Φrefl,− is the reflec-
tion of Φrefl,+. The corresponding sound pressure ptot, pinc,±, and prefl,± can be obtained using
Eq. (3.11). These four components will be analyzed individually in the following paragraphs.

It is noteworthy the nonlinear interactions of the incident and reflected ultrasound are ne-
glected in this section because of the phase mismatching of the ultrasonic waves and small source
density of the virtual source. Further simulations show the audio sound generated by them is
at least 35 dB less than that calculated by Eq. (5.1) for the parameters used in this section, so
they can be safely neglected to simplify the model and focus on the reflection phenomenon.
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Figure 5.1: A PAL radiating sound (a) in free field or (b) to an infinitely large
reflecting surface with an incident angle θ.

The audio sound generated by the incident ultrasound is

Φinc,+(r, ka) = −
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
qinc(rv)g(r, rv, ka)d3rv (5.2)

where |r− rv|=
√
(x− xv)2 + (y − yv)2 + (z − zv)2 is the distance between the field point at r

and the virtual source point at rv = (xv, yv, zv). The source density of the virtual source at rv
is given by

qinc(rv) =
βωaω1ω2

ic40
Φinc(rv, k1)Φ∗

inc(rv, k2) (5.3)

where the incident ultrasound Φinc(rv, ki) is generated by the original PAL in free field at
frequencies fi.

To satisfy the boundary condition on the reflecting surface for the audio sound Φinc,+, the
image for each virtual source at rv = (xv, yv, zv) is assumed to be at rv,− = (xv, yv,−zv) with
the source density Rvqinc(rv). Rv(ωa) is the spherical wave reflection coefficient at frequency
fa, and it equals to 0 and 1 when the boundary is absolutely soft and rigid, respectively. For
an arbitrary impedance boundary, Rv(ωa) depends on frequency, the source, and field point
locations, as well as the incident angle and the admittance of the boundary [244]. The audio
sound generated by the image virtual source is then obtained by

Φinc,−(r, ka) = −
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
Rv(ωa)qinc(rv)g(r, rv,−, ka)d3rv (5.4)

where |r− rv,−|=
√
(x− xv)2 + (y − yv)2 + (z + zv)2 is the distance between the field point at

r and the image virtual source at rv,−. It is noted that the spherical wave reflection coefficient
is difficult to measure in experiments. Because the audio beams generated by the PAL behave
like plane waves (e.g., see [168]), the plane wave reflection coefficient can be used for simplicity.

The reflected ultrasound can be assumed to be the ultrasound generated by the same PAL
at the position of its image position multiplied by a plane wave reflection coefficient R(ω1)
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and R(ω2) at frequencies f1 and f2, respectively. The audio sound generated by the reflected
ultrasound is then

Φrefl,+(r, ka) = −
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
R(ω1)R∗(ω2)qimg(rv)g(r, rv, ka)d3rv (5.5)

where the source density of the virtual source is

qimg(rv) =
βωaω1ω2

ic40
Φimg(rv, k1)Φ∗

img(rv, k2) (5.6)

and Φimg(rv, k1) and Φimg(rv, k2) are the sound pressure for the corresponding ultrasound gen-
erated by the image PAL in free field at frequencies f1 and f2, respectively. Similarly, to satisfy
the boundary condition on the reflecting surface for audio sound, the reflection of Φrefl,+ is

Φrefl,−(r, ka) = −
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
R(ω1)R∗(ω2)Rv(ωa)qimg(rv)g(r, rv,−, ka)d3rv (5.7)

5.1.2 Numerical simulations

In the following simulations, a circular piston with a radius of a = 0.1m is considered, which
is driven by a surface vibration velocity amplitude of 0.12m/s. The SPL of ultrasound at both
frequencies is approximately 125 dB at 1 m away on the PAL radiation axis when the PAL is
placed in free field. The ultrasound frequencies are set as f1 = 61 kHz and f2 = 60 kHz, so
the audio frequency is fa = 1kHz. The absorption coefficients of ultrasound in air are 0.232
Neper/m and 0.228 Neper/m, respectively, which are calculated based on ISO 9613-1 at 20◦C
with the relative humidity being 50% and the ambient pressure being the standard atmospheric
pressure. The Rayleigh distance at 60 kHz is 5.5 m and the absorption length is 2.17 m.

To simplify the calculation, the infinitely large integral domain of the triple integral in
Eq. (5.1) is reduced to a specific region covering the major energy of ultrasound beams. In this
section, the integral domain is reduced to two truncated cylindrical columns with a radius of 3
m (30 times the PAL radius) and a length of 10 m (more than 4 times the effective absorption
length) centered on the axis of the PAL and its image. It has been confirmed by simulations using
larger integral domain results in an error of less 0.1 dB for the parameters used in this section.
The first column is for the calculation of the nonlinear interactions of incident ultrasound, i.e.,
Eqs. (5.2) and (5.4), and starts from the PAL surface in the direction of the radiation axis and is
terminated by the reflecting surface. The second column is for the calculation of the nonlinear
interactions of reflected ultrasound, i.e., Eqs. (5.5) and (5.7), and starts from the end of the
first column in the direction of the axis of the image PAL. Only the ultrasound pressure inside
the two columns is considered. All the integrals are calculated numerically using the Simpson’s
1/3 rule (Sec. 2.2 in [245]).

Figure 5.2 shows the audio sound generated by a PAL in free field (at 30◦ incidence) at its
original and image source locations, and the total audio sound field calculated by Eq. (5.1),
where the reflecting surface is rigid for both ultrasound and audio sound, and the distance
to the PAL is D = 1m. It is clear that the total audio sound shown in Fig. 5.2(c) is the
superposition of the other two shown in Figs. 5.2(a) and (b). The interference between the
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reflected and incident waves happens near the reflecting surface like two plane waves because
the audio beams generated by the PAL behave like plane waves. The sound pressure on the
back side (z > D = 1m) focuses on the reflection axis and is almost equivalent to the sound
radiated by the image PAL.
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Figure 5.2: Audio SPL (dB re 20 µPa) at 1 kHz generated by: (a) the original
PAL in free field; (b) the image PAL with respect to the reflecting surface; and

(c) the PAL near a rigid reflecting surface.

For comparison with traditional sources, the incident, reflected, and total sound radiated
by an audio piston source and a traditional directional sound source are calculated and shown
in Fig. 5.3 at 1 kHz. The piston source is the same size as the PAL and mounted on an
infinitely large baffle, so the sound radiates only in the forward direction. The directional
source is a compact end-fire array consisting of five point monopoles with an interval of 0.045
m as described in [80]. By comparing Figs. 5.2 and 5.3, it can be found that the reflection for
the audio sound generated by the PAL is much stronger than that generated by the other two
traditional audio sound sources.

The mechanism of the reflected audio sound generated by the PAL is different from that
generated by traditional audio sources. It can be explained by analyzing the four components
in Eq. (5.1) for the PAL and the calculated sound fields are shown in Fig. 5.4 using the same
parameters in Fig. 5.2. The total sound pressure (shown in Fig. 5.2(c)) is the superposition of the
audio sound generated by the incident ultrasound (pinc,+, shown in Fig. 5.4(a)) and its reflection
(pinc,−, shown in Fig. 5.4(b)), and the audio sound generated by the reflected ultrasound (prefl,+,
shown in Fig. 5.4(c)) and its reflection (prefl,−, shown in Fig. 5.4(d)). The audio sound generated
by the original PAL (shown in Fig. 5.2(a)) is the superposition of pinc,+ and prefl,−, and the one
generated by the image PAL (shown in Fig. 5.2(b)) is the superposition of pinc,− and prefl,+. It
can be found the audio sound generated by the reflected ultrasound (prefl,+) is the dominant
contributor to the directivity of the reflected audio sound of the PAL. The amplitude of the
audio sound generated by reflected sound is affected by the distance between the PAL and
the reflecting surface (D). Figure 5.5 shows the audio sound field generated by the PAL at 30◦

incidence with reflection surface at D = 2m and 4 m. Compared with Fig. 5.2, the amplitude of
the audio sound generated by the reflected sound becomes small as D increases. This is because
the amplitude of the reflected ultrasound becomes smaller when the PAL moves farther away
from the reflecting surface, especially when the distance is larger than the effective absorption
length (2.17 m in this case).
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Figure 5.3: Audio SPL (dB re 20 µPa) at 1 kHz where (a), (b), and (c) are the
incident, reflected, and total sound radiated by a piston source, respectively, and
(d), (c), and (f) are the incident, reflected, and total sound radiated by a 5-channel

end-fire array, respectively.
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Figure 5.4: Audio SPL (dB re 20 µPa) of four components generated by the PAL
at 30◦ incidence near a rigid reflecting surface with a distance of 1 m at 1 kHz: (a)
and (b) the audio sound generated by the incident ultrasound and its reflection,
respectively; (c) and (d) the audio sound generated by the reflected ultrasound

and its reflection, respectively.
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Figure 5.5: Audio SPL (dB re 20 µPa) generated by the original PAL and the
image PAL, and the total sound fields with different distance between the PAL
and the reflecting surface. (a-c) the distance is 2 m, and (d-f) the distance is 4 m.
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Figure 5.6: Audio SPL (dB re 20 µPa) generated by the original PAL and its
image, and the total sound field with different sound absorption coefficient of the
reflecting surface. (a-c) are for ultrasound absorption coefficient of 0.5; and (d-f)

are for ultrasound absorption coefficient of 0.9.

In some applications, reflecting surfaces such as thin carpets can be highly absorbent for
the ultrasound but less absorbent for audio sound. Figure 5.6 shows the audio sound generated
by the original PAL and its image, as well as the total sound fields when the sound absorption
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Figure 5.7: Audio SPL (dB re 20 µPa) generated by the PAL, its image and the
total sound field at 30◦ incidence near a rigid reflecting surface with D = 1m.
(a-c) are for the ultrasound frequencies of 100 kHz and 101 kHz, (d-f) are for the

ultrasound frequencies of 200 kHz and 201 kHz.

coefficient of the reflecting surface is 0.5 and 0.9 for ultrasound (1− |R(ω1)R∗(ω2)|), and 0 for
audio sound. Because the reflected ultrasound is small with a large sound absorption coefficient,
the total sound pressure mainly consists of the audio sound generated by the incident ultrasound.
The directivity of the reflected audio beams becomes worse for a larger ultrasound absorption
coefficient of the reflecting surface.

Sound absorption in air is different at different frequencies, especially at high frequencies.
Figure 5.7 shows the audio sound of PAL at 30◦ incidence with reflection when D = 1m. The
ultrasound frequencies are 100 kHz and 101 kHz, or 200 kHz and 201 kHz. The absorption
coefficients at 100 kHz (101 kHz) and 200 kHz (201 kHz) in air are 0.38 Np/m and 0.95 Np/m,
respectively. The effective absorption lengths at 100 kHz (101 kHz) and 200 kHz (201 kHz) in
free field are 1.32 m and 0.53 m, respectively. It can be found by comparing Fig. 5.7 with Fig. 5.2
that the amplitude of reflected audio beams decreases and the directivity deteriorates as the
ultrasound frequency increases. All of aforementioned analyses demonstrate that the reflection
of audio sound generated by a PAL differ from the traditional directional source because the
properties of ultrasound should be taken into account.

5.1.3 Experiments

Experiments were conducted in a hemi-anechoic room with dimensions of 7.20m × 5.19m ×
6.77m (height). A sketch and photos of the experimental setup are shown in Figs. 5.8 and 5.9,
respectively. The sound field generated by a PAL, a traditional omnidirectional loudspeaker
(point monopole), and a horn loudspeaker (directional source) with and without a cotton sheet
on ground were measured at 1 kHz.
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Figure 5.8: Sketch of the experimental setup when a PAL radiates toward ground
with and without a cotton sheet.

Figure 5.9: Photos of the experimental setups when different loudspeakers radi-
ate toward the ground without the cotton sheet: (a) the PAL, (b) the traditional
omnidirectional loudspeaker, and (c) the horn loudspeaker, and with the cotton
sheet: (d) the PAL, (e) the traditional omnidirectional loudspeaker, and (f) the

horn loudspeaker.

Figure 5.8 shows a sketch of the experimental setup when the PAL radiates toward ground.
The sound field was measured at many points distributed on a vertical plane across the center
of the testing loudspeaker. The length and the height of the measurement plane are 3 m and
2.5 m, respectively. A custom made 60-channel microphone array with the microphone spacing
of 5 cm was used to measure the sound pressure. The spacing between measurement points in
the vertical direction is 5 cm when the microphone array is close to the loudspeaker, and 10 cm
in the other areas. All measurement microphones were Brüel & Kjær Type 4957 microphones
and they were calibrated by a Brüel & Kjær Type 4231 calibrator. The sound pressure was
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sampled with a Brüel & Kjær PULSE system (the analyzer 3053-B-120 with the input panel
UA-2107-120) and the fast Fourier transform (FFT) analyzer in PULSE LabShop was used to
obtain the FFT spectrum. The frequency span was set to 6.4 kHz with 6400 lines and the
averaging type is linear with 66.67% overlap and 30 s duration.

The PAL, point monopole sound source, and traditional directional source used in the ex-
periments are a Holosonics Audio Spotlight AS-24i with the surface size of 60 cm × 60 cm, a
Genelec 8010A traditional voice coil loudspeaker, and a Daichi dome horn loudspeaker with a
24 cm× 8 cm rectangular opening, respectively. The carrier frequency of the PAL is 64 kHz ac-
cording to measurements with a Brüel & Kjær Type 4939 microphone, and the audio frequency
in the experiments was set to 1 kHz. The radiating surface of the PAL is covered by a 6 mm
thick perspex panel with a hole of radius 10 cm at its center to simulate the circular PAL used
in simulations, as shown in Fig. 5.9(a).

To ensure the perspex panel is thick enough to block the audio sound generated by the PAL,
further experimental results (not presented here) show that the sound pressure levels on the
radiation axis of the PAL decrease by more than 30 dB at 1 kHz when the PAL is covered by a
same size perspex panel without the hole. Therefore, a circular piston source was constructed
using the 6 mm thick panel with a hole. To avoid spurious sound at microphones induced by the
intensive ultrasound radiated by the PAL [141], all the microphones were covered by a piece of
small and thin plastic film in the tests. The antialiasing filter in the PULSE system also helps
reduce the contamination of the ultrasound pressure. The experimental results (not presented
here) show the insertion loss of this plastic film is more than 35 dB at 64 kHz and less than
0.6 dB at 1 kHz. The relative humidity and the temperature in the experiments were 68% and
25.4◦C, respectively.

A thin cotton sheet was used in the experiments. The thickness of the sheet is 250 µm
and the surface density is 0.12 kg/m2. The size of the cotton sheet is 2.8m × 4m and placed
on the ground so that the projection of the center of the loudspeaker is on the bisector with
respect to the narrower side (2.8 m), as shown in Fig. 5.8. The impedance tube (Brüel & Kjær
Type 4206) was used to measure the absorption coefficient according to the two-microphone
method specified in ISO 10523-2 [246]. The result measured at 1 kHz is approximately 0.05
demonstrating that a little audio sound energy was absorbed by the cotton sheet. So, it has
negligible effects on the audio sound generated by the traditional loudspeakers.

Figure 5.10 shows the measured sound fields at 1 kHz generated by different loudspeakers at
30◦ incidence, with and without the cotton sheet on ground. Due to operation difficulties, the
sound fields in the rectangular regions (0.85m ≤ z ≤ 2.5m,−0.5m ≤ x ≤ 0.35m), (1m ≤ z ≤
1.2m,−0.5m ≤ x ≤ 0.35m), and (0.9m ≤ z ≤ 1.3m,−0.5m ≤ x ≤ 0.35m) were not measured
for the 3 configurations, respectively, which are marked as blank regions in the figures. It can
be seen in Fig. 5.10(a) that the reflected audio sound is still highly focused on the axis in
the reflection direction. This agrees with the numerical simulations presented in Fig. 5.2(c).
However, the audio sound drops by up to 6 dB on the reflection axis with the cotton sheet
placed on ground, as shown in Fig. 5.10(d). The results are similar to the simulation presented
in Fig. 5.6(f), where the ultrasound absorption coefficient is assumed to be 0.9. It demonstrates
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Figure 5.10: Measured audio SPL (dB re 20 µPa) at 1 kHz generated by different
loudspeakers at 30◦ incidence without the cotton sheet for: (a) the PAL, (b) the
traditional omnidirectional loudspeaker and (c) a horn loudspeaker, and with the
cotton sheet on the ground for: (d) the PAL, (e) the traditional omnidirectional

loudspeaker, and (f) a horn loudspeaker.

the ultrasound reflects a little with respect to the cotton sheet used in experiments and conse-
quently affects the generation of audio sound. However, the reflected sound generated by the
traditional loudspeakers are almost the same with and without the cotton sheet. The results
indicate that the reflected audio sound generated by the PAL are not only the reflection of audio
sound generated by incident ultrasound, and they also contain new audio sound generated by
reflected ultrasound, and it is the latter that determines the directivity of the reflected audio
sound.

5.2 Transmission through a thin partition

It is found in experiments the directivity of audio sound generated by a PAL deteriorates
significantly after introducing a thin and homogeneous partition. Understanding the insertion
loss of the partition for audio sound generated by a PAL is important in applications. For
example, with the capability of producing quasi-plane waves, PALs can be used to measure the
acoustic parameters of materials in situ by measuring the sound pressure on the transmission
side of the specimen [168]. The sharp directivity of PALs is attractive to mobile phone designers
[247]. However, the size of the effective radiation surface should be as large as possible to
generate considerable sound levels. A natural way is to install a PAL under the phone screen,
so the effects of the thin screen on the generated audio sound need to be known. In research,
one may need a circular PAL in experiments for verifying the analytical model, but there are
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only square/rectangular commercial PALs. It is shown in Sec. 5.2.2 that a circular PAL can be
constructed by covering a square one with a 6 mm thick perspex panel.

The thin partition considered in this section implies that the thickness of the partition is
small compared to the audio wavelength and the effective absorption distance of the PAL. The
transmission of an audio plane wave through a thin partition is well known and the mass law is
widely used to predict the insertion loss [209]. The effects of a thin partition on spherical waves
radiated by a point monopole were also studied where the transmission loss and the insertion
loss are derived analytically using the plane wave expansion method [248]. The transmission of
a diffuse incident sound through a partition has also been well studied [249]. However, there is
little research reported on the transmission of audio sound generated by a PAL through a thin
partition. Existing analytical models of PALs consider the sound radiation in free field but pay
little attention to its transmission through a partition, which will be resolved in this section.

5.2.1 Theory

A sketch of a PAL radiating sound through a partition is shown in Fig. 5.11, where the ra-
diation axis of the PAL is perpendicular to the partition surface for simplicity. The density
and the sound speed in air are ρ0 and c0, respectively. A rectangular coordinate system Oxyz

is established with its origin O at the projection of the center of the PAL on the partition
surface and the z-axis is perpendicular to the surface. The center of the PAL is at (0, 0, zP)
where zP < 0. The thickness of the infinitely large partition is assumed to be small enough
compared to the audio wavelength and the effective absorption length of the PAL for simplicity.
The partition is placed at z = 0 and its area density is denoted by M . When ultrasound at

Figure 5.11: Sketch for a PAL near a thin partition.

two different frequencies f1 and f2 (f1 > f2) are generated by the PAL, infinitely many virtual
audio sources with the frequency fa = f1 − f2 are formed everywhere as long as there exists
ultrasound under the quasilinear assumption. When the ultrasound is incident on the partition,
there are reflected and transmitted ultrasound with respect to the partition and they produce
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new virtual audio sources on the incident (z < 0) and transmission (z > 0) sides, respectively.
The audio sound generated by the ultrasound inside the partition is very small, so they are
neglected for simplicity.

The audio sound generated by these three kinds of virtual audio sources, i.e., those generated
by incident, reflected , and transmitted ultrasound, all propagate through the partition and there
are consequently reflected and transmitted audio sound. In this section, only the audio sound
on the transmission side (z > 0) is considered for calculating the insertion loss of the partition.
Based on the above analysis, there are four audio sound components on the transmission side:
the transmitted audio sound generated by the incident and reflected ultrasound, the audio sound
generated by the transmitted ultrasound and its reflection on the transmission side.

Because the audio sound generated by the reflected ultrasound radiates in the direction
which is away from the partition toward the PAL source direction, the transmitted sound of
these audio sound is small and can be neglected. Similarly, the reflection of the audio sound
generated by the transmitted ultrasound can be neglected as well. Therefore, two audio sound
components dominate the sound field on the transmission side, so the total sound pressure of
audio sound can be expressed approximately as

Φtot(r, ka) = Φinc(r, ka) + Φtrans(r, ka), z > 0 (5.8)

where Φinc(r, ka) and Φtrans(r, ka) represent the transmitted sound of the audio sound generated
by incident ultrasound and the audio sound generated by transmitted ultrasound, respectively.

5.2.1.1 Transmission of audio sound generated by incident ultrasound

The incident ultrasound can be calculated by the Rayleigh integral as

Φinc(r, ki) = −2u0
¨

S
g(r, rs, ki + iαi)d2ρs, zs < z < 0 (5.9)

where the time dependence e−iωit is omitted, and the PAL is assumed to be driven by a baf-
fled piston with the velocity amplitude u0 for both ultrasonic waves over the surface S. The
wavenumber ki = ωi/c0, i = 1, 2, |r−rs| is the distance between the field point r and the source
point rs on the PAL surface.

The transmitted sound of the audio sound generated by incident ultrasound at the field
point r on the incident side can be expressed as

Φinc(r, ka) = −
∫ 0

zs

∫ ∞

−∞

∫ ∞

−∞
qinc(rv)g(r, rv, ka + iαa)d3rv, zs < z < 0 (5.10)

where the source density function at the virtual source point rv is

qinc(rv) =
βωaω1ω2

ic40
Φinc(rv, k1)Φ∗

inc(rv, k2), zs < zv < 0 (5.11)

It should be noted that Eq. (5.10) is derived based on the Westervelt equation, where the
Lagrangian density characterizing the local effects is neglected [111, 132]. Further simulations
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verify that the error is less than 0.2 dB when the distance between the field point and the PAL
is larger than 0.3 m for the parameters used in this section, which indicates that the method is
sufficiently accurate for the model investigated.

The transmitted sound of the audio sound generated by incident ultrasound can be calculated
by using the plane wave expansion (Sec. 26 in [250] or Chap. 2 in [235]). For a point monopole
located at rm = (xm, ym, zm) with a source strength of Qm, the transmitted sound at field point
r on the transmission side of the partition can be expressed as [248]

Φtrans,m(r) = −Qm
4π

K(r, rm), z > 0, zm < 0 (5.12)

where the Weyl’s integral is expressed as, see Eq. (2.65) in [235]

K(r, rm) =
i
2π

∫ ∞

−∞

∫ ∞

−∞

Tplane
ka,z

ei[kx(x−xm)+ky(y−ym)+ka,z |z−zm|]dkxdky (5.13)

where
ka,z =

√
(ka + iαa)2 − k2ρ, k2ρ = k2x + k2y (5.14)

the unit of K(r, rm) is the same as the wavenumber. Tplane is the sound pressure transmission
coefficient for the plane wave with the wavevector ka = (kx, ky, ka,z), see Sec. 3.8 in [209].

Tplane =
2ρ0ωa/ka,z

2ρ0ωa/ka,z − iωaM
(5.15)

If the thin partition is porous material, the flow resistance is taken into account and the sound
pressure transmission coefficient is modified as, see Sec. 3.8 in [209]

Tplane =
2ρ0ωa/ka,z

2ρ0ωa/ka,z + [1/Rf − 1/(iωaM)]−1 (5.16)

provided that the material is homogeneous, where Rf is the specific flow resistance.
With the above expressions, the transmitted sound of the audio sound generated by incident

ultrasound on the transmission side in Eq. (5.10) is expressed as

Φinc(r, ka) = − iρ0ωa
4π

∫ 0

zs

∫ ∞

−∞

∫ ∞

−∞
qinc(rv)K(r, rv)dxsdys, z > 0 (5.17)

It is worth noting that Eq. (5.13) is hard to converge because the small sound attenuation
coefficient at the audio frequency makes the integrand singular at ka,z =

√
(ka + iαa)2 − k2ρ ≈ 0

when kρ = ka. By using the variable substitution and the integral representation for the Bessel
function at order zero

J0(x) =
1
π

∫ π

0
eix cos θdθ (5.18)
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Eq. (5.13) can be reduced to

K(r, rv) =i
∫ π/2

0
Tplanek

2
aJ0(kaρv cos γ)ei

√
(ka+iαa)2−k2a cos2 γ|z−zv|

× sin γ cos γ√
(ka + iαa)2 − k2a cos2 γ

dγ

+
∫ ∞

0
Tplanek

2
aJ0(kaρv cosh γ)e−

√
k2a cosh2 γ−(ka+iαa)2|z−zv|

× sinh γ cosh γ√
k2a cosh2 γ − (ka + iαa)2

dγ

(5.19)

where ρv =
√
(x− xv)2 + (y − yv)2 is the transverse distance between the field point and the vir-

tual source point, both integrals on the right-hand side are numerically calculated by the Simp-
son’s 1/3 rule, and the dummy variable of the second integral, γ, is replaced by tan [(γ + 1)π/4]
to transform the infinitely large interval into a finite one.

5.2.1.2 Audio sound generated by transmitted ultrasound

Because it is hard to apply the plane wave expansion directly on the incident ultrasound, the
Gaussian beam expansion (GBE) method is used in this work to simplify the Rayleigh integral
into a finite summation [117]. Although the GBE method assumes the paraxial approximation
for the ultrasonic waves, further simulations without the paraxial approximation using the
parameters in this section verify that the calculation errors for the audio sound are less than
0.4 dB at the positions on the transmission side. When the PAL is driven by a circular piston
with the radius of a, the Rayleigh integral is given by Eq. (3.31).

pinc(r, ki) =
N∑

n=1

ρ0c0u0An

1 + iBnz/Ri
e

−Bn
1+iBnz/Ri

(
x2
a2

+ y2

a2

)
+i(ki+iαi)(z−zs)

, zs < z < 0 (5.20)

The ultrasound can be expanded into plane waves using the plane wave expansion method
to give

Φinc(r, ki) =
u0a

2

4πiki

N∑
n=1

An

Bn

×
¨ ∞

−∞
exp

{
−
(k2x + k2y)a2

4Bn
+ i[kxx+ kyy + ki,z(z − zs)]

}
dkxdky, zs < z < 0

(5.21)

where ki,z =
√
k2i − k2ρ. Similar to Eq. (5.13), the transmitted ultrasound can be obtained as

Φtrans(r, ki) =
u0a

2

2iki

N∑
n=1

An

Bn

∫ ∞

0
TplaneJ0(kρρ)kρ exp

[
−
k2ρa

2

4Bn
+ iki,z(z − zs)

]
dkρ, z > 0

(5.22)
where Tplane is the sound pressure transmission coefficient for a plane wave with the wavevec-
tor ki = (kx, ky, ki,z), ρ =

√
x2 + y2, and the integral on the right-hand side is numerically
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calculated by the Simpson’s 1/3 rule in this work.
The audio sound generated by transmitted ultrasound on the transmission side can be

expressed as

Φtrans(r, ka) = −
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
qtrans(rv)g(r, rv, ka)d3rv, z > 0 (5.23)

where the source density function of the virtual audio source at rv is

qtrans(rv) = − iβωa
ρ20c

4
0
ptrans(rv, k1)p∗trans(rv, k2), zv > 0 (5.24)

5.2.1.3 Insertion loss of the partition

The insertion loss (IL) of the partition for audio sound generated by the PAL is defined as the
difference of the sound pressure level (SPL) at a receiver location r on the transmission side
without and with the partition

ILa(r) = 20 log10
(∣∣∣∣ p0(r, ka)ptot(r, ka)

∣∣∣∣)(dB), z > 0 (5.25)

where log10 represents the common logarithm with the base of 10. In Eq. (5.25), p0(r, ka) is the
sound pressure at r without the partition and can be obtained by changing the upper limit of
the integral with respect to the coordinate zv in Eq. (5.10) from 0 into the positive infinity.

For comparison, the insertion loss of the partition for a plane wave with the normal incidence
(ILn), for a spherical wave from a point monopole (ILm), and for a directional incident sound
from a directional end-fire array source consisting of five point monopoles used in [80] (ILd) are
calculated with following equations.

ILn = 20 log10

(∣∣∣∣∣2ρ0ωa/ka,z − iωaM

2ρ0ωa/ka,z

∣∣∣∣∣
)
(dB) (5.26)

ILm(r) = 20 log10
(∣∣∣∣exp (−αa|r− rm|)

|r− rm|K(r, rm)

∣∣∣∣)(dB), z > 0 (5.27)

ILd(r) = 20 log10

(∣∣∣∣∣
∑5

n=1Qn|r− rn|−1exp [(−αa + ika)|r− rn|]∑5
n=1QnK(r, rn)

∣∣∣∣∣
)

(5.28)

where the location of the point monopole rm = (xm, ym, zm), and the n-th point monopole of
the end-fire array at rn = (xn, yn, zn) volume velocity Qn.

5.2.2 Simulations and discussions

In the following simulations, a circular piston with a radius of a = 0.1 m is driven with a surface
vibration velocity amplitude of 0.12 m/s so that the SPL of both ultrasound is approximately
125 dB at 1 m away on the axis when the PAL is placed in the free field. The lower ultrasound
frequency is set as f2 = 60 kHz. The ultrasound attenuation coefficient in air is 0.228 Np/m,
which is calculated according to ISO 9613-1 at 20◦C, with a relative humidity of 50% at standard
atmospheric pressure [225]. The Rayleigh distance at 60 kHz is 5.5 m and the absorption length
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is 2.17 m. Two kinds of materials are used as the thin partition in the simulations. The first one
is aluminum foil with a thickness of 50µm and a bulk density of 2.7 × 103 kg/m3. The second
one is a polyester fiber blanket with a thickness of 1 mm, a bulk density of 20 kg/m3, and a
flow resistivity of 2× 103 Pa · s/m2 (Table 1 in [251]).

In the calculation, the infinitely large integral domain of the integral in Eqs. (5.10) and
(5.23) needs to be reduced to a specific region covering the major energy of ultrasound beams,
so the integral domain is reduced to a cylindrical column centered in the axis of the PAL
with a radius of 3 m (30 times the PAL radius). The expression for the transmitted audio
sound generated by incident ultrasound is shown in Eq. (5.17), and contains a fourfold integral
which is time-consuming for calculating the off-axis field. Because K(r, rv) depends only on
the transverse distance (ρv) and longitudinal distance (|z − zv|) between the two points, it can
be pre-calculated at every transverse and longitudinal distance pairs and then substituted into
Eq. (5.17) to simplify the integral into a threefold one if the frequency and the thickness of the
partition are specified.

Figure 5.12 compares the audio sound radiated by a PAL, a point monopole and a traditional
directional source (5-channel end-fire array [80]) at fa = 1kHz with and without the aluminum
partition. The source is located at zs = −1m. Figures 5.12(a), (b), and (c) show the original
sound fields of the sources without the partition, while Figs. 5.12(d), (e), and (f) show the
total sound fields of the sources with the partition where the sound fields on the incident side
are not plotted to focus on the sound transmission. Figures 5.12(a) and (d) are for the PAL,
Figs. 5.12(b) and (e) are for the point monopole, and Figs. 5.12(c) and (f) are for the end-fire
array. It can be seen that the pattern of the sound field generated by a PAL changes significantly
behind the partition. The audio sound becomes less focused on the radiation axis, showing a
deteriorated directivity. However, the pattern of sound fields radiated by a point monopole or
an end-fire array only change slightly behind the partition. The reason is that the directional
audio sound radiated by the PAL is generated by ultrasound which are almost blocked by the
partition, while the aluminum foil is almost transparent for audio sound radiated by traditional
sound sources.

Figure 5.13 shows the IL along the radiation axis (x = 0) on the transmission side (z > 0)
with different kinds of sources. The IL for the ultrasound is about 35.7 dB, so the audio sound
generated by the transmitted ultrasound decreases by about 71.4 dB (as the magnitude of the
sound pressure of audio sound is approximately proportional to the square of the magnitude
of the one of ultrasound) and can be neglected. The IL for the traditional sources (the plane
wave, the point monopole, or the end-fire array) is about 3.2 dB while the IL of the audio sound
generated by the PAL behind the partition can be greater than 17 dB.

The audio sound generated by the PAL behind the partition consists of the transmitted
sound of the audio sound generated by incident ultrasound and the audio sound generated
by transmitted ultrasound. Since most ultrasound is blocked by the partition, audio sound
generated by the transmitted ultrasound are negligible, and the audio sound field behind the
partition is dominated by the transmitted sound of the audio sound generated by incident
ultrasound. Large IL (17 dB) for the PAL instead of the small IL (3.2 dB) for the traditional
source is observed. The effects of the partition on the transmission of the audio sound generated
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Figure 5.12: Audio SPL (dB re 20 µPa) at fa = 1kHz with a 50µm thick alu-
minum partition and a source at zs = −1m without the partition for the: (a) PAL,
(b) point monopole, (c) end-fire array, and with the partition for the: (d) PAL, (e)
point monopole, (f) end-fire array. The lower ultrasound frequency f2 = 60 kHz.

Figure 5.13: Insertion loss of sound radiated by different sources through an
aluminum partition with a thickness of 50µm.

by a PAL and traditional sources is completely different and the transmission of ultrasound
should be taken into account for a PAL.

Figure 5.14 shows the audio sound radiated by different sources behind a partition made of
polyester fiber blanket with a thickness of 1 mm for the sources at zs = −1m. For a PAL source,
audio sound behind the partition are still focused near the radiation axis which is different from
the partition made of aluminum. This is because the IL of the polyester fiber blanket is not
sufficiently large for the ultrasound and some ultrasound can transmit through the partition
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to form the directivity of audio sound. This is demonstrated in Fig. 5.15, where the IL of the
blanket at 60 kHz is only about 10 dB. Figure 5.14 also illustrates that almost all the sound
transmit through the partition for the traditional sound sources because the ILs are almost 0
as shown in Fig. 5.15. However, most of the audio sound radiated by a PAL are blocked by the
partition and the IL is approximately 15 dB.

Figure 5.14: Audio SPL (dB re 20 µPa) at fa = 1kHz with a 1 mm thick polyester
fibre blanket partition and a source at zP = −1m: (a) for a PAL; (b) for a point

monopole; (c) an end-fire array.

Figure 5.15: Insertion loss of sound radiated by different sources through a
polyester fiber blanket partition with a thickness of 1 mm.

Based on the above findings, the effects of the partition thickness on the amplitude and shape
of transmitted audio waves can be discussed. For a traditional loudspeaker, the insertion loss
of a thin partition generally increases by 6 dB when the thickness or the frequency is doubled
in the mass law frequency range, so for a wideband audio signal, both the amplitude and shape
of the transmitted signal changes; however, for a tonal signal, the audio beam shape behind
the partition changes a little as the thickness changes. For a PAL, if the transmitted audio
sound is mainly generated by the transmitted ultrasonic waves, for example, when the partition
thickness is smaller than the ultrasonic wavelength, the insertion loss of the partition increases
significantly for the ultrasonic waves as the thickness increases, so the transmitted audio waves
becomes smaller and less focused due to the reduced ultrasonic waves. If the transmitted audio
sound is mainly generated by the audio waves generated by the ultrasonic waves on the source
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side, for example, when the thickness is larger than the ultrasonic wavelength, the effects of the
partition thickness are similar to that for a traditional loudspeaker.

5.2.3 Experiments

The experiments were conducted in a semi-anechoic room with dimensions of 7.20m× 5.19m×
6.77m (height). The sketch and photographs of experimental setups are shown in Fig. 5.16.
The sound fields generated by a PAL, a traditional loudspeaker (point monopole), and a horn
loudspeaker (directional source) without and with a partition (a sheet of aluminum foil or a
cotton sheet) were measured in the experiments.

Figure 5.16: Sketch of the experimental setups; a photo of (b) a 60-channel micro-
phone array; (c) the PAL and the aluminum foil; (d) the traditional loudspeaker
(point monopole) and the aluminum foil; (e) the PAL and the cotton sheet; (f)

the horn loudspeaker (traditional directional source) and the cotton sheet.

The sound field was measured at a rectangular grid with 60×41 = 2460 points and 60×31 =
1860 points in the xOz plane for the cases without and with the partition, respectively. In all
cases, 60 microphones were located in the x direction from x = −1.45m to x = 1.5m with
a spacing of 5 cm and they were measured simultaneously with a custom made 60-channel
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microphone array shown in Fig. 5.16(b). All measurement microphones were Brüel & Kjær Type
4957 calibrated by the Brüel & Kjær 4231 calibrator and the sound pressure at microphones
was sampled with a Brüel & Kjær PULSE system (the analyzer 3053-B-120 with the front
panel UA-2107-120). The fast Fourier transform (FFT) analyzer in PULSE LabShop was used
to obtain the FFT spectrum. For the cases without the partition, the microphone array was
located at 41 different positions in the z direction from z = −1m to z = 3m with the spacing
being 10 cm. For the cases with the partition, it was located at 31 positions in the z direction
from z = 0 to z = 3m with the same spacing being 10 cm. In all the measurements, the height
of the center of loudspeakers and the microphones is 1.9 m.

The PAL, the point monopole, and the traditional directional source in the experiments were
a Holosonics Audio Spotlight AS-24i with the surface size of 60 cm × 60 cm, a Genelec 8010A
traditional voice coil loudspeaker, and a Daichi dome horn loudspeaker with a 24 cm × 8 cm
rectangular opening, respectively. The carrier frequency of the PAL is 64 kHz according to
the measurements with a Brüel & Kjær Type 4939 microphone and the audio frequency in the
experiments was set to 1 kHz. The radiating surface of the PAL was covered by a 6 mm thick
perspex panel with a hole of 10 cm radius at the center to construct a circular piston source as
shown in Fig. 5.16(c).

Further experimental results (not presented here) show that the SPLs on the radiation axis
of the PAL decrease by more than 30 dB at 1 kHz when the PAL is covered by a same size
square perspex panel, so the panel can provide sufficient IL for audio sound at 1 kHz, which
makes the PAL covered by the panel with a hole a circular piston. To avoid the spurious
sound at microphones induced by the intensive ultrasound radiated by the PAL [141], all the
microphones are covered by a piece of small and thin plastic film. The experimental results
show the insertion loss of this plastic film is more than 30 dB at 64 kHz, which is sufficient for
blocking the ultrasonic sound, and less than 0.6 dB at 1 kHz, which is negligible for the audio
sound under tests.

Two partitions were used in the experiments: a sheet of 50 µm thick aluminum foil with
a bulk density of 2.7 × 103 kg/m3 and a 250 µm thick cotton sheet with a surface density of
0.12 kg/m2. The size of the aluminum foil and the cotton sheet are 3.6 m (x direction) × 3
m (y direction) and 4 m (x direction) × 2.9 m (y direction), respectively. The center of the
loudspeaker is at the same height as that of the aluminum foil or the cotton sheet shown in
Figs. 5.16(c-f). The relative humidity and the temperature in the experiments were 68% and
25.4◦C, respectively.

Figure 5.18 shows the simulation and experimental results of audio sound fields at 1 kHz
generated by the three different sound sources which are at 1.9 m high above ground without
partitions. The experimental results of sound fields generated by the PAL with and without the
partition are generally in accordance with the predicted ones shown in Figs. 5.18(a) and (d). It
can be found the measured sound field radiated by the PAL is highly focused on the radiation
axis as expected. Some small fluctuations occur in the z axis direction in experimental results
which might be caused by reflections of the ground. The measured sound fields generated by
traditional loudspeakers shown in Figs. 5.18(b-c) and (e-f) also agree well with the simulation
ones. Figure 5.18(b) is obtained by using the analytical solution of a point monopole above a
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rigid ground, and Fig. 5.18(c) is obtained by the boundary element method (BEM) solver of
the commercial software Virtual.Lab Acoustics. The mesh size of the horn loudspeaker is set as
1.33 cm which is smaller than 1/10 wavelength at 1 kHz, and the model is shown in Fig. 5.17.

Figure 5.17: The model of the horn loudspeaker used in Virtual.Lab Acoustics.

Figure 5.18: Audio SPL (dB re 20 µPa) at 1 kHz with different sound sources at
z = −1m and x = 0 above the ground with a height of 1.9 m in the simulations:
(a) the PAL, (b) the traditional loudspeaker, and (c) the horn loudspeaker, and
in the experiments: (d) the PAL, (e) the traditional loudspeaker, and (f) the horn

loudspeaker.

Figure 5.19 shows the experimental results of audio sound at 1 kHz generated by the three
sound sources above the ground with a sheet of aluminum foil and a cotton sheet. The sound
fields between the loudspeaker (z = −1m) and the partition (z = 0) were not measured because
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they are not the focus point of this thesis, and they are also difficult to measure in practice. The
theoretical prediction results corresponding to Figs. 5.19(a) and (d) are presented in Figs. 5.20(a)
and (b), respectively, where reasonable agreements between predictions and experiments are
observed. The small error might be caused by the unevenness of the partition surface in the
experiments. It can be found in Fig. 5.19 that the effects of the thin partitions on the sound
transmission loss are small for both the traditional loudspeaker and the horn loudspeaker, but
the SPLs generated by a PAL are significantly decreased by the partitions, and audio sound
are less focused on the radiation axis behind the partition because most of the ultrasound
are blocked by the partition. The experiment results support analyses and conclusions in the
simulations.

Figure 5.19: Experimental results of the audio SPL (dB 20 re µPa) at 1 kHz
with different sound sources at z = −1m and x = 0 above the ground with a
height of 1.9 m with a sheet of aluminum foil for: (a) the PAL, (b) the traditional
loudspeaker, and (c) the horn loudspeaker, and with a cotton sheet for: (d) the

PAL, (e) the traditional loudspeaker, and (f) the horn loudspeaker.

5.3 Scattering by a rigid sphere

It is common in some applications for a human to be inside the audible region, which causes
scattering of the sound generated by a PAL [92, 165]. Both the head and torso account for the
scattering effect, but the head is the most important part because the ears are on it and only
a few sound are incident on the torso when the highly directional beams are generated by a
PAL. Besides, there are absorptions at high audio frequencies due to the skin and the hair [252].
Therefore, a rigid sphere is used here as a first order approximation of the human head in the
physical modelling. The effects of the rigid sphere on the audio sound generated by traditional
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Figure 5.20: Theoretical prediction audio SPL (dB re 20 µPa) corresponding to
Figs. 5.19(a) and (d), i.e. the sound fields at 1 kHz with the PAL at z = −1m

and x = 0 with (a) a sheet of aluminum foil and (b) a cotton sheet.

loudspeakers have been well studied to reveal the effects of the human head [47]. The effects
of a sphere on the audio sound generated by a PAL are however different because the sound
originates from the nonlinear interactions of waves.

Based on the Westervelt equation and the quasilinear approximations, an analytic expres-
sion for the sound pressure of the DFW was obtained when primary plane waves interact with
a rigid sphere [253]. This work showed that the total sound pressure of the DFW is a combina-
tion of nonlinear interactions from the incident primary waves (incident-with-incident) and the
scattered primary waves (scattered-with-scattered), as well as the incident and scattered pri-
mary waves (incident-with-scattered). The solution is inaccurate because higher order spherical
harmonics in the Green’s function are neglected and the scattered waves do not follow the plane
wave assumption. Furthermore, the accuracy of the Westervelt equation is not examined and
the prediction error is large because the local effects near the sphere and between it and the
PAL are significant. Although full spherical harmonics were considered in [99], the calculation
was limited to the far field solution. The simulation was conducted for a small sphere with the
radius of only 1.0 mm, which was insonified by two intersecting plane waves under the water.
Therefore, the results and conclusions are likely to be different for a sphere with the size of a
human head exposed to audio sound generated by a piston-like PAL in air. Besides, no detailed
experiment results to support the accuracy of these respective studies have been reported to
date.

In this section, a computationally efficient method is developed to calculate the quasilinear
solution of the audio sound generated by a PAL based on both the Kuznetsov and Westervelt
equations. The ultrasound field generated by a circular piston is obtained first by using a
spherical harmonic expansion. The audio field is then considered as the radiation from an
infinitely large virtual volume source, with the source density proportional to the product of the
ultrasonic pressure. The accuracy of the Westervelt equation is then examined and simulations
of scattering by a rigid sphere are conducted. Results are compared to those for a traditional
loudspeaker and experimental results are presented to validate these predictions.
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5.3.1 Theory

A circular PAL radiating towards a rigid sphere is shown in Fig. 5.21. Both the PAL and the
sphere are assumed to be placed in a free field and the PAL is not baffled. The radii of the PAL
and the sphere are denoted by a and r0, respectively. To achieve maximum scattering effects,
the center of the sphere is placed on the radiation axis of the loudspeaker. The distance between
their centers is denoted by d. A rectangular coordinate system (x, y, z) is established with its
origin, O, at the center of the sphere and the negative z axis pointing to the center of the PAL.
The spherical coordinates (r, θ, φ) and the cylindrical coordinates (ρ, φ, z) are established with
respect to the rectangular coordinates (x, y, z) for further calculations, where r, θ, φ, and ρ are
the radial distance, zenith angle, azimuth angle, and polar radial distance, respectively.

Figure 5.21: Sketch of a circular PAL near a sphere.

5.3.1.1 Ultrasound field

A rigorous approach to modelling the ultrasound field should include scattering from both
the non-baffled PAL and the sphere, as well as the interaction between them. It has been
demonstrated in [207] that the ultrasound generated by a non-baffled PAL can be approximated
by the one generated by a baffled PAL, because the size of the PAL is large enough when
compared to the wavelength of the ultrasound. The interaction between a PAL and a sphere
is known to generate multiple scattering, however when the separation between them is larger
than the ultrasonic wavelength and the dimensions of each component, then this scattering is
considered to be insignificant [254]. It is therefore neglected in this thesis for simplicity and to
focus on the scattering effects by the sphere.

The ultrasound pressure at a field point r = (r, θ, φ) in the presence of a rigid sphere shown
in Fig. 5.21 is solved using the Rayleigh integral,

where the variables ρs = (ρs, φs) are the polar coordinates for the area element on the PAL
surface S, rs = (ρs, φs, zs) are the cylindrical coordinates, and zs = −d. The Green’s function

(5.29)Φ(r, ki) = −2
¨

S
u(ρs, ki)G(r, rs, ki)d2ρs, r ≥ r0, i = 1, 2
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G(r, rs, ki) is the velocity potential solution at the field point r generated by a point monopole
at rs with the unit volume velocity and wavenumber ki = ωi/c0 + iαi, [46, 192]

G(r, rs, ki) =
iki
4π

∞∑
n=0

(2n+ 1)Rn(r, rs, ki)
n∑

m=−n

(n−m)!
(n+m)!

Pm
n (cos θ)Pm

n (cos θs)eim(φ−φs) (5.30)

Rn(r, rs, ki) = jn(kir<)hn(kir>)−
j′n(kir0)
h′n(kir0)

hn(kir)hn(kirs) (5.31)

By substituting Eq. (5.30) into Eq. (5.29), one obtains

Φ(r, ki) =
1
iki

∞∑
n=0

(2n+ 1)(n−m)!
(n+m)!

Pm
n (cos θ)

[ 1
2π

∫ 2π

0
eim(φ−φs)dφs

]
×
[∫ a

0
ui(ρs)Rn(r, rs, ki)Pm

n (cos θs)k2i ρsdρs
]
, r ≥ r0

(5.32)

with the following relations 
r2s = ρ2s + d2 =⇒ rsdrs = ρsdρs

cos(π− θs) =
d

rs

(5.33)

By substituting Eq. (5.33) into Eq. (5.32) and using the fact that the integral with respect to φs

is non-zero when m = 0, and the symmetry relation of the Legendre polynomials [see Eq. (4.2.8)
in [222]]

Pn(cos θs) = Pn

(
− d

rs

)
= (−1)nPn

(
d

rs

)
(5.34)

one obtains
Φ(r, ki) =

1
iki

∞∑
n=0

(−1)n(2n+ 1)Pn(cos θ)χn(r, ki), r ≥ r0 (5.35)

where the radiation component is

χn(r, ki) =
∫ √

d2+a2

d
ui(ρs)Rn(r, rs, ki)Pn

(
d

rs

)
k2i rsdrs (5.36)

Compared to the Rayleigh integral in Eq. (5.29), Eq. (5.35) is much more efficient to calculate
because the convergence of the series is faster than a double integral and the field coordinates
are also independent [52, 226] The components of the particle velocity of the ultrasound under
the spherical coordinate system is then obtained from Eq. (5.35) to give



vr(r, ki) =
∂Φ(r, ki)

∂r
= −i

∞∑
n=0

(−1)n(2n+ 1)Pn(cos θ)
dχn(r, ki)
d(kir)

vθ(r, ki) =
1
r

∂Φ(r, ki)
∂θ

= −i
∞∑
n=0

(−1)n(2n+ 1)dPn(cos θ)
dθ

χn(r, ki)
kir

vφ(r, ki) =
1

r sin θ
∂Φ(r, ki)

∂φ
= 0

(5.37)
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5.3.1.2 Audio sound field

The velocity potential of audio sound is governed by an inhomogeneous Helmholtz equation
given by Eq. (3.7) under the quasilinear approximation. It can be treated as the superposition
of sound produced by infinite number of virtual point sources at rv with the source density
function q(rv). Therefore, this equation can be solved by integrating the source density using
the Green’s function with spherical scattering,

Φ(r, ka) = −
˚

rv≥r0

q(rv)G(r, rv, ka)d3rv, r ≥ r0 (5.38)

For a circular PAL with a radius of a and a axisymmetric vibration velocity profile, the source
density is not related to the azimuthal angle, so the triple integral of audio sound Eq. (5.38)
can be simplified to give

Φ(r, ka) =
1
ik2a

∞∑
n=0

(
n+ 1

2

) n∑
m=−n

(n−m)!
(n+m)!

Pm
n (cos θ)

[ 1
2π

∫ 2π

0
eim(φ−φv)dφv

]
×
∫ π

0

∫ ∞

r0
q(rv)Rn(r, rv, ka)Pm

n (cos θv)k3ar2v sin θvdrvdθv, r ≥ r0

(5.39)

Similar to Eq. (5.32), the integral with respect to φv is non-zero when m = 0, and Eq. (5.39)
then reduces to

Φ(r, ka) =
1
ik2a

∞∑
n=0

(
n+ 1

2

)
Pn(cos θ)

×
∫ π

0

∫ ∞

r0
q(rv)Rn(r, rv, ka)Pm

n (cos θv)k3ar2v sin θvdrvdθv, r ≥ r0

(5.40)

5.3.2 Numerical simulations

Numerical simulations are conducted here using MATLAB R2020b. In the simulations, the
center frequency of the ultrasound is set as fu = 64 kHz, which is a common value used in
commercial PALs. The radii of the PAL and the sphere are both set as 0.1 m. The distance
between the PAL and the sphere, d, is set as 1.0 m. The audio sound fields generated by a
PAL without the sphere are obtained using the spherical harmonic expansion method in [50,
51]. The audio sound fields generated by a traditional loudspeaker with and without the sphere
are calculated by setting ka in Eq. (5.35) and using the method described in [52], respectively.
A uniform vibration velocity profile is assumed for all cases and an amplitude of 0.12m/s and
2 × 10−4m/s are set for the ultrasound generated by the PAL and the audio sound generated
by the traditional loudspeaker, respectively.

5.3.2.1 The accuracy of the Westervelt equation

Figure 5.22 compares the sound pressure level (SPL) for audio sound generated by a PAL using
the Westervelt and Kuznetsov equations at different zenith angles, θ, with a distance of 0.1
m or 1.0 m to the center of the sphere at 500 Hz, 1 kHz, and 2 kHz. Figure 5.22 shows that
the audio SPL calculated with the Kuznetsov equation differs from that obtained using the
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Westervelt equation, which is also observed for the case without the sphere [51, 132]. The
difference between the SPLs calculated using these two equations is large when the observation
point is close to the sphere or the PAL. For example, at the angle θ = 170◦, when the distance
between the field point and the center of the sphere is 0.1 m, the difference of SPLs is 16.5 dB,
2.6 dB, and 0.5 dB, at 500 Hz, 1 kHz, and 2 kHz, respectively. When the distance is 1.0 m,
fluctuations can be observed when the zenith angle approaches to 180◦ and they are comparable
to the ultrasonic wavelength of 5.4 mm at 64 kHz. The reason is that the ultrasonic field is
complicated, and the pressure is large near the sphere indicating that the local effects are strong,
which cannot be correctly captured by the Westervelt equation.
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Figure 5.22: Audio SPL (dB re 20 µPa) at different zenith angles with the distance
of d to the center of the sphere generated by a PAL: (a) d = 0.1m at 500 Hz, (b)
d = 1.0m at 500 Hz, (c) d = 0.1m at 1 kHz, (d) d = 1.0m at 1 kHz, (e) d = 0.1m
at 2 kHz, and (f) d = 1.0m at 2 kHz. Solid line, Kuznetsov equation; dashed line,

Westervelt equation.

The difference between the SPLs using these two equations becomes smaller as the frequency
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increases. This is because the audio SPL calculated with the Westervelt equation increases by
about 12 dB when the audio frequency is doubled, but corresponding changes in the amplitude
of the ultrasonic Lagrangian density are relatively small, so its effect on the audio SPL is small
at high audio frequencies. Therefore, it is concluded that the Kuznetsov equation should be
used in the calculation, especially for observation points near the sphere at low frequencies.
Accordingly, all the simulations that follow are obtained using the Kuznetsov equation.
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Figure 5.23: Audio SPL (dB re 20 µPa) generated by a PAL without the sphere
for (a), (c), and (e) and with the sphere for (b), (d), and (f) at 500 Hz for (a) and

(b), 1 kHz for (c) and (d), and 2 kHz for (e) and (f).
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5.3.2.2 Scattering effects by a rigid sphere

The audio sound fields generated by a PAL with and without the sphere at 500 Hz, 1 kHz,
and 2 kHz are shown in Fig. 5.23. For comparison, the sound fields generated by a traditional
loudspeaker with the same size as that of the PAL are presented in Fig. 5.24. Because the gen-
erated SPL is increased by respectively 12 dB and 6 dB for the PAL and traditional loudspeaker
when the frequency is doubled, the range of the color bar in Figs. 5.23 and 5.24 is increased by
10 dB and 5 dB as frequency is doubled for better comparison. Compared to the traditional
loudspeaker, the directivity of the audio sound generated by the PAL is seen to be more focused.
After introducing the sphere, the scattering effects become progressively more significant as the
frequency increases for both the PAL and the traditional loudspeaker. This is because the audio
sound wavelength becomes smaller compared to the sphere and so more audio sound is reflected
at higher frequencies. For the traditional loudspeaker, the effects of the sphere on the back side
(z > 0) are negligible at low frequencies because the audio wavelength is much larger than the
size of the sphere [47]. However, the SPL on the back side of a sphere generated by a PAL
decreases significantly because the audio beams are no longer highly collimated.

Figure 5.25 shows the SPL at different zenith angles, θ, with a distance of 1.0 m to the
center of the sphere generated by a PAL or a traditional loudspeaker with and without the
sphere. After introducing the sphere, the half sound pressure (−6 dB) angles for the audio
sound generated by the PAL are increased from 15.9◦, 13.1◦, and 10.8◦ to 76.4◦, 50.2◦, and
21.8◦, at 500 Hz, 1 kHz, and 2 kHz, respectively, while there is little change observed for the
traditional loudspeaker. This demonstrates that the sphere severely deteriorates the directivity
of the audio sound generated by a PAL, because the ultrasound maintaining the directivity of
the audio sound are almost completely blocked by the sphere.

It is interesting to note that the audio sound generated by the PAL are augmented at some
angles and frequencies on the front side (z < 0) after introducing the sphere, while the SPL
changes a little for the case with the traditional loudspeaker. For example, the SPL at the
zenith angle of 135◦ increases from 36.7 dB and 26.3 dB to 41.7 dB and 47.2 dB at 1 kHz and 2
kHz, respectively. Figure 5.26 compares the SPL at the zenith angle of 135◦ with and without
the sphere, for both the PAL and the traditional loudspeaker, at different frequencies. The
difference of the SPL with and without the sphere fluctuates for the traditional loudspeaker
and the fluctuation becomes larger as the frequency increases. The increment of the SPL is no
larger than 6 dB below 4 kHz for the traditional loudspeaker. However, the SPL is generally
enlarged after introducing the sphere, as the frequency increases for the audio sound generated
by the PAL. The increment of the SPL is more than 6 dB at frequencies larger than 1620 Hz.
This means that a listener outside the audible region of the PAL can still hear a significant
augmentation of the audio sound when a human head moves across the radiation direction of
the PAL. The reason is that the ultrasound are almost completely reflected from the sphere
because their wavelength is much smaller than the sphere radius. The reflected ultrasound form
another virtual array which augments the audio sound on the front side of the sphere.
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Figure 5.24: Audio SPL (dB re 20 µPa) generated by a traditional loudspeaker
without the sphere for (a), (c), and (e) and with the sphere for (b), (d), and (f)

at 500 Hz for (a) and (b), 1 kHz for (c) and (d), and 2 kHz for (e) and (f).

5.3.3 Experiments

The experiments were conducted in the hemi-anechoic room in University of Technology Sydney
with dimensions of 7.2m×5.19m×6.77m (height). The sketch and photos of the experimental
setup are shown in Figs. 5.27 and 5.28, respectively. The sound field generated by a PAL with
and without the sphere was measured in the experiments. A solid wooden sphere with a radius
of 0.1 m and density of 1.2×103 kg/m3 was used, and height of both the loudspeaker and sphere
are 1.8 m. The wooden sphere was supported by a tripod, which was covered by absorption
materials to avoid additional scattering effects from the tripod.
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Figure 5.25: Audio SPL (dB re 20 µPa) at different zenith angles with a distance
of 1.0 m to the center of the sphere generated by a PAL for (a), (c), and (e) and
a traditional loudspeaker for (b), (d), and (f) with and without the sphere at 500
Hz for (a) and (b), 1 kHz for (c) and (d), and 2 kHz for (e) and (f). Solid line,

with sphere; dashed line, without sphere.

The PAL in the experiments is a Holosonics Audio Spotlight AS-24i with a surface size of
60 cm × 60 cm. The carrier frequency of the PAL is 64 kHz. The radiating surface of the PAL
is covered by a 6 mm thick perspex panel with a hole of 10 cm radius at its center, as shown in
Fig. 5.28(a). It has been demonstrated that the sound pressure levels on the radiation axis of
the PAL decrease by more than 30 dB at 1 kHz when the PAL is covered by this perspex panel,
which indicates that the panel successfully reproduces a circular piston source with a hole at
the center.

The sound field was measured in a 2.95m × 4m rectangular plane at the same height as
the loudspeaker (x = 0, − 1.45m ≤ y ≤ 1.5m,−1m ≤ z ≤ 3m). Sixty measurement positions
were taken in the y direction from y = −1.45m to y = 1.5m with a spacing of 5 cm. The
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Figure 5.26: Audio SPL (dB re 20 µPa) at the zenith angle θ = 135◦ and the
radius of 1.0 m generated by (a) a PAL and (b) a traditional loudspeaker from

100 Hz to 4 kHz. Solid line, with sphere; dashed line, without sphere.
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Figure 5.27: Front view of the experiment setup.

SPLs were measured simultaneously using a 60-channel microphone array, see Fig. 5.28(c). The
microphone array was moved along the z axis with a step of 10 cm to obtain the sound fields
in the measurement plane. All the measurement microphones are Brüel & Kjær Type 4957
calibrated with a Brüel & Kjær 4231 calibrator and the sound pressure at microphones was
sampled with a Brüel & Kjær PULSE system (the analyzer 3053-B-120 equipped with the front
panel UA-2107-120). The fast Fourier transform (FFT) analyzer in PULSE LabShop was used
to obtain the FFT spectrum. The frequency span was set to 6.4 kHz, with 6400 lines and the
averaging type is linear with 66.67% overlap and 30 s duration. To avoid spurious sound at the
microphones induced by the intensive ultrasound radiated by the PAL [141], all microphones
were covered by a piece of small and thin plastic film. The experiment results (not presented
here) show the insertion loss of this plastic film is more than 35 dB at 64 kHz and about 0.6
dB at 1 kHz. The relative humidity and temperature were 70% and 25.4◦C, respectively.

Figure 5.29 shows the measured results of the audio sound generated by a PAL with and
without the sphere. Values close to the sphere cannot be measured and so they are left blank
in Figs. 5.29(b) and (d). The measured results are well in accordance with the simulations
shown in Fig. 5.23. Some small fluctuations occur in the z axis direction, and these is caused
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Figure 5.28: Photos of the experiment setup: (a) a PAL; (b) a solid wooden
sphere; (c) a 60-channel microphone array; (d) the measurement system.

by reflections from the ground floor. Other measurement errors may arise from the imperfect
positioning of the center of the sphere on the radiation axis of the PAL, as well as the location
error of the array microphone and scattering from the microphones and other measurement
equipment. It can be observed that the directivity of the audio sound generated by the PAL
is severely deteriorated on the back side of the sphere, which is consistent with the simulation
conclusions.

Figure 5.30(a) compares the measured audio SPL with and without the sphere for the
microphone located at x = 0.7m and z = −0.7m which is approximately at the azimuthal
angle θ = 135◦ and the radius of 1.0 m to the center of the sphere. Only the results at the
center frequencies in the 1/3 octave band from 315 Hz to 4 kHz were measured and plotted.
Figure 5.30(b) compares the SPL increment for simulation and experiment results after intro-
ducing the sphere. It can be found the measured results are generally in accordance with the
numerical ones. The large mismatches between the simulation and experimental results are
observed at high frequencies, which might because the positioning of the equipment is more
sensitive at small wavelengths and the scattering effects of the microphone array become more
prominent. It is clear the audio SPL is enlarged after introducing the sphere. Informal hear-
ing tests also showed that a listener in front of the PAL can hear the audio sound scattered
back after introducing the sphere as if they are reflected by the sphere. This is different to the
perception of the scattered audio sound generated by a traditional loudspeaker.
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Figure 5.29: Audio SPL (dB re 20 µPa) generated by a PAL: (a) without the
sphere at 1 kHz; (b) with the sphere at 1 kHz; (c) without the sphere at 2 kHz;

and (d) with the sphere at 2 kHz.
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Figure 5.30: Measured audio SPL (dB re 20 µPa) at the microphone located at
x = 0.7m and z = −0.7m generated by a PAL at the frequencies from 315 Hz to
4 kHz: (a) the SPL with and without the sphere; solid line with sphere; dashed
line, without sphere; (b) the SPL increment by simulations and experiments; solid

line, experiment; dashed line, simulation.

5.4 Summary

In Sec. 5.1, a non-paraxial PAL radiation model under the quasilinear approximation is extended
to investigate the reflection of audio sound in air generated by a PAL based on the image source
method. It is shown that the reflected audio sound generated by a PAL contains not only the

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
20

30

40

50

60

70
(a)

SP
L

(d
B)

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
−10

0

10

20

30

40
(b)

SP
L

(d
B)



114 Chapter 5. Physical Properties for Audio Sound Generated by a PAL

reflected audio sound but also the audio sound generated by the reflected ultrasound. This is
different from the reflection with traditional audio sound sources. For a PAL, if the reflecting
surface is highly absorbent for ultrasound, the directivity of reflected audio sound no longer
remains because the reflected ultrasound are small. The experimental results show a thin
cotton sheet with a thickness of 250 µm on a hard surface can absorb a large portion of the
reflected audio sound (up to about 6 dB on the reflection axis) generated by a PAL but has
little effect on that generated by a traditional loudspeaker. Future work includes exploring the
corrections in sound absorption coefficients measurements using PALs and measuring sound
absorption coefficients of materials in the ultrasonic frequency range.

In Sec. 5.2, a non-paraxial PAL model using the plane wave expansion method are used under
the quasi-linear assumption to investigate the effects of a thin partition on the propagation of
the audio sound generated by a PAL. Both simulation and experiment results demonstrate that
the transmission of audio sound generated by a PAL through a thin partition is small and less
focused on the radiation axis, which is different from that radiated by a point monopole or a
traditional directional source. The audio sound generated by a PAL are significantly blocked by
a thin partition due to the large insertion loss of the partitions for ultrasound. This conclusion
makes it possible for constructing an arbitrary shaped PAL from a square/rectangular one by
covering it with thin panels. It is also suggested that to apply PALs on mobile phones, more
electric power should be provided than expected if it is installed under the screen as the screen
can block large amounts of the audio sound generated by PALs even it is very thin. Further
research includes applying the discoveries in applications and investigating the reflection of the
audio sound generated by PALs.

In Sec. 5.3, a computationally efficient method is developed to calculate the quasilinear
solution of the scattering by a rigid sphere of audio sound generated by a PAL based on both the
Kuznetsov and Westervelt equations. The audio SPL calculated using the Westervelt equation is
found generally to be larger than that using the Kuznetsov equation because the source density
for audio sound calculated using the Westervelt equation is larger due to the assumption of
the two collinear ultrasonic beams. The error using the Westervelt equation is found to be
significant, especially at the field points near the sphere at low frequencies, where local effects
are strong and cannot be correctly captured by the Westervelt equation.

Both the simulation and experimental results demonstrate that the directivity of the audio
sound generated by a PAL severely deteriorates after introducing the sphere. This means a
listener behind another listener whose head is on the radiation direction of the PAL cannot
expect a highly collimated audio beam as it should be. The reason is that the ultrasound
forming the directivity of the audio sound are almost completely blocked by the sphere. It is
also interesting to note that the listener on the front side of a sphere, between the PAL and
the sphere, can hear some audio sound as if it is played from the sphere. The reason is that
the reflected ultrasound form another virtual array which augments the audio sound on the
front side of the sphere. However, the effects of the sphere for the listener on the front side are
negligible for traditional loudspeakers. The physical mechanism accounting for this difference
is that the size of the sphere is much larger than the ultrasound wavelength, so it significantly
affects the progradation of ultrasound waves and consequently influences the behavior of the
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demodulated audio sound. The methods and results presented in this section provide a guidance
for analyzing the scattering effects of a human head on the personal audio applications using
PALs.

It is noted that the boundary condition on the surface of the sphere is assumed to be rigid in
this work. When the boundary becomes non-rigid, the radial component of the Greens function
given by Eq. (5.31) should be modified to satisfy the specific boundary condition. The scattered
field would then be more complicated, especially for the field between the PAL and the sphere,
and this awaits further work. It may also be interesting to investigate the behavior of the audio
sound when two or more spheres exist in order to simulate multiple listeners.
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Chapter 6

ANC using PALs

In Sec. 6.1, an ANC system using a PAL is designed to cancel a broadband noise at a person’s
ear, where a custom-made low-mass membrane pick-up from a retroreflective film and a laser
Doppler vibrometer (LDV) was used to form a remote sensing apparatus to determine the
acoustic information with minimum obstructions to the person. An experiment is designed to
test the noise reduction performance of such a system. Section 6.2 explores the feasibility of
generating a quiet zone in an acoustic free field using multiple PALs.

6.1 Single channel ANC system using a PAL

6.1.1 Experimental setup

The experiments were conducted in a semi-anechoic room with dimensions of 7.20m× 5.19m×
6.77m (height). The schematic diagram and the photos of the experiment setup are shown in
Figs. 6.1 and 6.2. A broadband primary noise (1 kHz to 6 kHz) was generated by a traditional
loudspeaker (Genelec 8010A) at 6 m away from a head and torso simulator (HATS, Brüel & Kjær
Type 4128). The custom-made membrane was placed in the left synthetic ear of the HATS, and
the radius and thickness of the membrane were 10.5 mm and 0.1 mm, respectively. The LDV
(Polytec NLV-2500-5) was placed at a stand-off distance of 0.7 m away from the membrane in
the left ear. All the equipment was at the same height during the experiments. The error signal
was obtained by measuring the vibration of the membrane and was then fed into a commercial
ANC controller (Antysound TigerANC WIFI-Q), where the FxLMS algorithm is used to obtain
the control filter.

A PAL (Holosonics Audio Spotlight AS-16i with the surface size of 40 cm× 40 cm) was used
as the secondary source, and the performance of the ANC system using it was compared with
that using a traditional omnidirectional loudspeaker (Genlec 8010A). Six groups of experiments
were carried out, where the secondary source was placed in front of the error point at the
distance from 0.5 m to 3 m with an interval of 0.5 m. To investigate the effects of the secondary
source on the sound fields in the other areas, 9 evaluation microphones (Antysound Anty M1212)
were placed in front of the HATS as shown in Figs. 6.1 and 6.2. The acoustic signals at all
the microphones and the HATS were recorded with a Brüel & Kjær PULSE system with a
sampling rate of 12.8 kHz. The fast Fourier transform (FFT) analyzer in PULSE LabShop was

The work presented in this chapter have been published in [57, 58].



118 Chapter 6. ANC using PALs

HATS

Primary source

#1

#2

#3LDV

0.7 m
1.5 m

1�� m
#4 #7

1 m 1 m

#5 #8

#6 #9

7.20 m

5.19 m

Semi-anechoic
room

Secondary
source

Evaluation point

Error
point

0.5 m

1 m

0.5 m

6 m

Figure 6.1: Schematic diagram of the experiment setup.

Figure 6.2: A photo of the experiment setup in the semi-anechoic room (left); and
a photo of the LDV error sensing system (right).

used to obtain the FFT spectrum. The frequency span was set to 6.4 kHz with 6400 lines and
the averaging type is linear with 66.67% overlap and 30 s duration. The noise signal is directly
fed into the controller as the reference signal. All the signals fed into the primary loudspeakers
are correlated.

6.1.2 Results and discussions

Figure 6.3 shows the SPLs measured by the left ear simulator of the HATS with and without
ANC when the distance between the secondary source and the error point was 1 m. The overall
noise reductions from 1 kHz to 6 kHz measured by the HATS were 18.7 dB and 17.8 dB when
the traditional loudspeaker and the PAL were used as the secondary source, respectively. It is
clear that both types of loudspeakers can reduce the noise at the ear effectively. There are two
troughs near 1 kHz and 1.6 kHz on the curve of the primary noise without ANC in Fig. 6.3(b),
which might be caused by the scattering effects of the square PAL used in experiments.

To investigate the effects of the secondary source on the sound fields in the other areas, the
SPLs at two typical evaluation points #2 (closest to the secondary source) and #7 (farthest away
from the secondary source) with and without ANC are presented in Fig. 6.4, where the distance
between the secondary source and the error point was again 1 m. Both types of loudspeakers
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Figure 6.3: SPL (dB re 20 µPa) measured by the left ear simulator of the HATS
with and without ANC, where the secondary source was (a) a traditional loud-

speaker and (b) a PAL, at a distance of 1 m from the error sensing point.
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Figure 6.4: SPL (dB re 20 µPa) at point #2 when the secondary source was (a)
a traditional loudspeaker and (b) a PAL; and at point #7 when the secondary
source was (c) a traditional loudspeaker and (d) a PAL. The distance between

the secondary source and the error point was 1 m.

had little effect for the SPLs at point #7 because it was away from the secondary source as
shown in Figure 6.1. However, at point #2 which was close to the traditional loudspeaker, the
SPLs changed significantly with ANC on due to the omnidirectional secondary source, and the
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overall noise reduction from 1 kHz to 6 kHz of the ANC system was −4.9 dB indicating that the
overall sound energy at this point increased with ANC. The overall noise reduction of the ANC
system using the PAL at point #2 was only −0.2 dB due to its sharp directivity. Therefore,
using a PAL has little effect on the sound fields in the other areas for an ANC system.

Figure 6.5 shows the overall noise reductions from 1 kHz to 6 kHz measured by the left
ear simulator of the HATS and at the 9 evaluation points with ANC on when the distance
between the secondary source and the error point, which is denoted by dse, was varied from
0.5 m to 3 m. It can be seen in Figure 6.5(a) that the noise reductions using the PAL were
similar to those when using the traditional loudspeaker, and are generally between 18 dB and
20 dB. Figure 6.5(b) demonstrates that the noise reduction levels at all evaluation points were
generally increased as the distance between the traditional loudspeaker and the error point
increased. Figure 6.5(c) indicates that the sound pressures at evaluation points were almost
unchanged with the PAL except at points #2 and #5. The noise reduction levels at these two
points were negative, indicating that the sound pressure increased with ANC on. The reason is
that the two points were close to the radiation axis of the PAL as shown in Fig. 6.1, and the SPL
variation around them was large with and without ANC. The audio sound waves generated by
the PAL decay slowly by distance, so the amplitude of the generated secondary sounds changes
a little when the distance between the PAL and the error point increased. Therefore, the sound
pressure in the other areas was less affected by the ANC system when the PAL was used at far
away from the ear.
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Figure 6.5: Overall noise reductions from 1 kHz to 6 kHz (a) at the left ear of
the HATS, and at the evaluation points, where the secondary source was (b) a

traditional loudspeaker and (c) a PAL.

6.2 Multi-channel ANC system using multiple PALs

In this section, the feasibility of generating a quiet zone in the free field with multiple PALs
is investigated using simulations based on the SWE of the quasilinear solution of Westervelt
equation as described in Sec. 4.2. Both 2D and 3D configurations are investigated, where the
primary sources are assumed to be point monopoles located randomly on a two-dimensional
plane, or in three-dimensional space. For a 2D problem, the secondary sources are uniformly
distributed around the circumference of a circle on the same plane of primary sources. For
a 3D problem, the secondary sources are uniformly distributed over a spherical surface. The



6.2. Multi-channel ANC system using multiple PALs 121

relationship between the sound wavelength, the number of secondary sources, and the size of
the quiet zone generated by the PALs is explored, and the influence of PALs on the sound
field outside the quiet zone is discussed. Numerical simulations are also validated against
experimental data.

6.2.1 Theory

Figures 6.6 and 6.7 show the schematic diagram of the ANC system to be investigated. The
primary sources consist of Np point monopoles randomly located on the xOy plane, or in
three-dimensional space. They are assumed to be harmonic with frequency f . The number of
secondary sources is Ns, and they are uniformly distributed on a circle on the xOy plane, or a
sphere with a radius of Rs, as shown in Figs. 6.6 and 6.7, respectively. For all cases, the target
zone to be controlled is a two-dimensional interior region of a circle on the xOy plane with a
radius of R0 centered at the origin of the rectangular coordinate system Oxyz.

Figure 6.6: Sketch of an ANC system where the primary and secondary sources
are located on the xOy plane.

The summation of the square of the sound pressure at each error point is chosen as the cost
function for the ANC system, which yields [13, 255]

J = pH
etpet + β0QH

s Qs (6.1)

where pep and pes are the sound pressure vectors at error points radiated by primary and
secondary sources, respectively, and pet = pep + pes. In addition, β0 is a real number to con-
strain the outputs of secondary sources [255], Qs is the source strength vector of the secondary
sources, and the superscripts “T” and “H” denote the transpose and the conjugate transpose,
respectively. The optimized source strengths of the secondary sources are [13]

Qs,opt = −(ZH
esZes + β0I)−1ZH

espep (6.2)

O x

y

z

ϕp

Rs

R0

L = 2R0
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Figure 6.7: Sketch of an ANC system where the primary and secondary sources
are located in three-dimensional space.

where Zes is a matrix of the acoustic transfer functions from Ns secondary sources to Ne error
points, and I is an identity matrix of size Ns. After obtaining the optimal secondary source
strengths, the total sound pressure with control can be calculated.

In this section, both traditional omnidirectional loudspeakers and PALs are adopted as
secondary sources. The traditional loudspeakers are modeled as point monopoles, where the
sound pressure is given as

p(r) = −iρ0ωQ0
eik|r−r0|

4π|r− r0|
(6.3)

where ρ0 is the air density, ω = 2πf is the angular frequency, k = ω/c0 is the wavenumber,
Q0 is the source strength, and |r− r0| is the distance between the field point r and the source
point r0.

The audio sound pressure radiated by a PAL can be considered as a superposition of the
pressure radiated by infinite virtual sources in air with the source density function proportional
to the sound pressure of ultrasound. This can be calculated as

p(r, k) = −iρ0ωu1u∗2
˚

V
q(rv)

eik|r−rv|

4π|r− rv|
d3rv (6.4)

where u1 and u2 are the amplitude of the vibration velocity on the transducer surface for the
ultrasound f1 and f2 (f1 > f2), respectively. Furthermore, the PAL is assumed to be placed
at the origin and radiates in the positive axial direction, where the superscript “*” denotes the
complex conjugate, the integration range V represents the whole three-dimensional space, and
q(rv) is the source density function at the virtual source point rv determined by the ultrasound
pressure. The radiated audio sound pressure can be tuned by controlling the values of u1 and
u2 of the ultrasound, so that u1u∗2 is defined as the source strength of a PAL, which is equivalent
to Q0 in Eq. (6.3).

To investigate the performance of the ANC system, the sound pressure in a large square
region with dimensions of −2m ≤ x ≤ 2m, and −2m ≤ y ≤ 2m and its center at the origin
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O, is calculated for all cases. A mesh of squares in this region is generated with a separation
between grid points no larger than 1/20 of wavelength. All grid points are chosen as evaluation
points, while only the ones inside the circular target zone are chosen as the error points.

The noise reduction (NR) inside the circular target zone is defined as

NR = 10 log10

(
pH
eppep

pH
etpet

)
(dB) (6.5)

NR decreases as the radius of the circular target zone increases, so that the size of the quiet
zone L is defined as the diameter of the maximal target zone satisfying that the NR is greater
than 10 dB.

To evaluate the spillover effect of secondary sources on the surrounding areas quantitatively,
a measure called “energy gain” is defined as

G = 10 log10

(
pH
vtpvt

pH
vppvp

)
(dB) (6.6)

where pvp and pvs are the sound pressure vectors at evaluation points radiated by primary and
secondary sources, respectively, and pvt = pvp + pvs. The result G < 0 indicates the total
acoustic energy in the square region is reduced, while G > 0 shows that that the total acoustic
energy increases in the square region even though a smaller quiet zone is generated at its center.

6.2.2 Simulations

Two configurations of secondary sources are considered in this section. The two-dimensional
configuration denoted by “2D secondary source array” is shown in Fig. 6.6 where Ns secondary
sources (Ns = 8 in the figure) are evenly placed on a circle and the azimuthal angle at the
i-th source is φs,i = 2π(i − 1)/Ns, i = 1, 2, , Ns. The three-dimensional configuration denoted
by “3D secondary source array” is shown in Fig. 6.7, where Ns secondary sources (Ns = 6 in
the figure) are evenly placed on a spherical surface and the minimal distance between arbitrary
two secondary sources is denoted by dmin. The secondary source locations are obtained by
maximizing dmin, and the source coordinates for different Ns can be found in [256]. The radius
of the secondary source array is set to be Rs = 1.5m in all of the simulations that follow.

The quiet zone size, L, is obtained by using an iterative procedure. The initial lower (R1)
and upper (R2) values are set to 0 and 1.5 m, respectively. The NR inside the circular target
zone is calculated when the radius of the target zone R0 is set as (R1 +R2)/2. If NR < 10 dB,
the upper value R2 is updated as (R1 + R2)/2. If NR > 10 dB, the lower value R1 is updated
as (R1 + R2)/2. The iteration stops when (R2R1) is less than 1/20 of the wavelength and
(R1+R2) is chosen as the quiet zone size L. All simulation results presented here have followed
this procedure. Each PAL is assumed to be circular with a radius of 0.1 m and a uniform surface
velocity profile for the ultrasound. The lower ultrasound frequency is set as 64 kHz, which is
a typical carrier frequency for commercial PALs [171]. The sound attenuation coefficients at
both ultrasonic and audio sound frequencies are calculated according to ISO 9613-1 with a



124 Chapter 6. ANC using PALs

relative humidity of 60% and a temperature of 25◦C. The audio sound generated by each PAL
is calculated using the spherical expansion method proposed in Sec. 4.2.

6.2.2.1 2D secondary source array

Figure 6.8 shows the primary and total sound fields at 1 kHz under the optimal control by 8
PALs, or point monopoles, shown as black rectangles or circles, respectively, where the primary
source (not shown in the figure) is a single monopole located at an azimuthal angle of φp = 22.5◦

with a distance to the origin of 4 m. The angle of 22.5◦ is selected because it is the angle of the
bisector of the first and second secondary sources, which is the worst case for the NR performance
[13]. The quiet zone size in Figs. 6.8(b) and (c) is 0.45 m and 0.46 m, respectively. Although
the quiet zone sizes are similar, the energy gain associated with the point monopole sources
is 6.9 dB, which is much larger than the −0.1 dB obtained with the PALs. The decrement of
energy is mainly contributed from the noise reduction in the quiet zone, and it is roughly same
for both kinds of loudspeakers. The sound pressure around the traditional loudspeakers located
on the direction of the primary source is large, so that the noise amplification can be clearly
observed. However, it is not observed when using PALs because they generate unidirectional
secondary waves and these waves decay slowly along the propagation path. This is the reason
the energy gain when using PALs is much smaller than that using traditional loudspeakers.

Figure 6.8: Audio SPL (dB re 20 µPa) at 1 kHz (a) for the primary noise comes
from the direction φp = 22.5◦, (b) under the optimal control with 8 PALs, and

(c) under the optimal control with 8 point monopoles.

Figure 6.9 shows the quiet zone size and energy gain as a function of the azimuthal angle of
a primary source 4 m away from the origin at 1 kHz for various numbers of secondary sources.
The peaks and valleys in Fig. 6.9 (a) and (b) are associated with the location of the secondary
sources. It is clear that the quiet zone size increases when the primary wave angle approaches
that of the secondary source, which is due to better matching of the wave fronts from the
primary and secondary sound waves [28]. In most cases when there is one secondary source,
the difference between the size of the quiet zone for the PAL and the point monopole secondary
sources is less than 10% when the primary source angle is greater than 20◦. The minimal quiet
zone size is also 0.035 m when the primary source angle is at 180◦, and the size is about a tenth
of the wavelength.

It is shown in Fig. 6.9 that increasing secondary source number enlarges the size of the quiet
zone. For example, the minimal quiet zone size is 0.035 m, 0.2 m, 0.46 m, and 0.97 m when
the secondary source number is 1, 4, 8, and 16, respectively. The primary source azimuthal
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Figure 6.9: The quiet zone size and energy gain as a function of the primary
source azimuthal angles at 1 kHz for different numbers of secondary sources: (a)
and (b) the quiet zone size created by PALs and point monopoles, respectively; (c)
and (d) the energy gain caused by PALs and point monopoles, respectively. Red
circles, Ns = 1; blue squares, Ns = 4; green triangles, Ns = 8; purple diamonds,

Ns = 16; dashed line, λ/10.

angles with minimal quiet zone sizes are the ones with their bisector between two adjacent
secondary sources. Although the quiet zone size created by both PAL and point monopole
secondary sources are approximately the same in most cases, the energy gain caused by the
point monopoles are generally above 6 dB which is larger than the one caused by PALs which
is around 0 dB.

To understand the performance of the ANC systems under complex acoustic environments,
in the next examples 8 primary sources are placed on the same plane as the secondary source
array, where the distance between each primary source and the origin is randomly and uniformly
set between 3.5 m and 4.5 m; the azimuthal angle is randomly and uniformly set between 0
and 360◦; the source strength is randomly and uniformly set between 0.75 × 10−4m3/s and
1.25 × 10−4m3/s; and this configuration is denoted here as “2D primary sound field”. Figure
6.10 shows the results of one trial of the 2D primary sound field and the total sound field
controlled by 8 secondary sources. The quiet zone size created by both sources is 0.53 m, while
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the energy gain is −0.2 dB with the PALs, and 6.5 dB with the point monopoles.

Figure 6.10: Audio SPL (dB re 20 µPa) at 1 kHz (a) generated by 8 point
monopoles randomly located on the xOy plane, (b) under the optimal control

with 8 PALs, and (c) under the optimal control with 8 point monopoles.

Figure 6.11 shows the quiet zone size and energy gain based on 100 trials of random 2D
primary sound fields generated by 8 point monopoles randomly located on the xOy plane. The
quiet zone size decreases as the frequency increases in all cases and is about 0.75λ, 1.5λ, and
3λ under optimal control conditions with 4, 8, and 16 point monopoles, respectively, where λ

is the wavelength of the sound at the corresponding frequency. The quiet zone size generated
by point monopoles is larger than the one generated by PALs especially at the low frequencies;
however, the difference between them becomes negligible at the middle and high frequencies.
For example, the quiet zone sizes are 1.33 m and 1.21 m respectively for 8 monopoles and PALs
at 400 Hz, while both become about 0.55 m at 1 kHz. The energy gain caused by the point
monopoles is always larger than the one caused by the PALs, which is seen to increase only
slightly as the frequency increases.

Figure 6.12 shows the quiet zone size and energy gain at different numbers of secondary
sources at 1 kHz and 2 kHz. It is clear the quiet zone size increases as the number of sec-
ondary sources increases. When the secondary source number becomes large, the quiet zone
size increases slowly due to the limitations of the size of secondary source array (3 m) and the
narrow beam width of sound radiated by PALs. As shown in Fig. 6.12(a), when the secondary
source number is, respectively, less than 20 and 48 at 1 kHz and 2 kHz, the quiet zone size
is approximately proportional to the secondary source number and can be estimated by the
following formula

L = 0.19λNs (6.7)

For the ANC systems with Ns secondary sources, the arc length between adjacent secondary
sources can be obtained by dividing the circumference of the generated quiet zone to give a
length of πL/Ns. Using the L value in Eq. (6.7), the arc length is about 0.6λ which indicates
that the separation between secondary sources is about one half of the wavelength. This agrees
with the remarks in [13] and [12]. Figure 6.12(b) indicates that the energy gain can also be
reduced by introducing more secondary sources and the reduction is more significant at lower
frequencies.

In the following simulations, the primary noise comes from multiple directions in three-
dimensional space and the configuration is denoted by “3D primary sound field”, although the
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Figure 6.11: For random 2D primary sound fields under the optimal control with
the 2D secondary sources, (a), (b), and (c) the quiet zone size when the secondary
source number is 4, 8, and 16, respectively; (d), (e), and (f) the energy gain when
the secondary source number is Ns = 4, 8, and 16, respectively, where the value
and error bar are the mean value and standard deviation of 100 random trials,
and λ is the wavelength. Red circles, PAL; blue squares, monopole; dashed lines,

0.75λ, 1.5λ, and 3λ for (a), (b), and (c), respectively.
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Figure 6.12: For random 2D primary sound fields under the optimal control with
2D secondary sources at 1 kHz and 2 kHz: (a) the quiet zone size as a function of
secondary source number; (b) the energy gain as a function of secondary source
number. Red circles, PAL at 1 kHz; blue squares, monopole at 1 kHz; green

triangles, PAL at 2 kHz; purple diamonds, monopole at 2 kHz.

secondary sources are still located on the two-dimensional xOy plane. Figure 6.13 shows the
quiet zone size and energy gain based on 100 random trials of 3D primary sound fields under
the optimal control of 8 secondary sources in the xOy plane. Compared with Fig. 6.11(b), the
mean value of the quiet zone size decreases from 1.5λ to 0.75λ, while the standard deviation
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shows no significant changes. Compared with Fig. 6.11(e), the energy gain caused by the PALs
becomes positive at most frequencies, while it is still much less than the one caused by the point
monopoles.

400 630 1,000 2,000 4,000 8,000
0

0.2

0.4

0.6

0.8

1
(a)

Frequency (Hz)

Si
ze

of
th

e
qu

ie
t

zo
ne

L
(m

)

400 630 1,000 2,000 4,000 8,000
−2

0

2

4

6

8
(b)

Frequency (Hz)
En

er
gy

ga
in

G
(d

B)

Figure 6.13: For random 3D primary sound fields under the optimal control with
eight 2D secondary sources in the plane xOy, (a) the quiet zone size as a function
of frequency; (b) the energy gain as a function of frequency. Red circles, PAL;

blue squares, monopole; dashed line, 0.75λ.

Figure 6.14 shows the quiet zone size and energy gain based on 100 random trials of 3D
primary sound fields using different numbers of 2D secondary sources. When the secondary
source number Ns is small, the quiet zone size increases as Ns increases, but it changes slightly
when Ns > 10. At 1 kHz, the quiet zone size generated by using the point monopoles and PALs
approaches 0.29 m and 0.27 m, respectively, at large secondary source numbers. At 2 kHz, the
quiet zone size approaches to 0.14 m. The maximal quiet zone size is about 0.75λ no matter
how many secondary sources are used. When Ns < 8, the quiet zone size can be estimated as

L = 0.095λNs (6.8)

which is a half of that in Eq. (6.7). The reason for having a small quiet zone size is that the
primary noises coming out of the xOy plane cannot be effectively controlled due to that fact
that no secondary sources are placed in these directions. Furthermore, the energy gain caused
by both types of secondary sources decreases with an increasing number of secondary sources,
as shown in Fig. 6.14(b).

6.2.2.2 3D secondary source array

Figure 6.15 shows the quiet zone size and energy gain when random 3D primary sound fields
are optimally controlled by 8 and 20 secondary sources located in three-dimensional space at
different frequencies. Compared with Fig. 6.13(a), the quiet zone size increases from 0.75λ to λ

by using a 3D instead of 2D secondary source array, even with the same number of secondary
sources (Ns = 8). Therefore, the quiet zone size is not limited by 0.75λ, as was the case for 2D
secondary sources, but may be increased to 2.2λ when the secondary source number is 20. For
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Figure 6.14: For random 3D primary sound fields controlled by 2D secondary
sources at 1 kHz and 2 kHz: (a) the quiet zone size as a function of secondary
source number; (b) the energy gain as a function of secondary source number.
Red circles, PAL at 1 kHz; blue squares, monopole at 1 kHz; green triangles, PAL

at 2 kHz; purple diamonds, monopole at 2 kHz; dashed line, 0.095λNs.

the monopoles, although the quiet zone is enlarged, the energy gain is also increased, this time
by more than 2-4 dB as the number of secondary sources increased from 8 to 20 as shown in
Fig. 6.15(b).
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Figure 6.15: For random 3D primary sound fields under the optimal control with
the 3D secondary sources, (a) the quiet zone size as a function of frequency; (b)
the energy gain as a function of frequency. Red circles, PAL when Ns = 8; blue
squares, monopole when Ns = 8; green triangles, PAL when Ns = 20; purple

diamonds, monopole when Ns = 20; dashed line, λ; dotted line, 2.2λ.

Figure 6.16 shows the quiet zone size and energy gain when random 3D primary sound fields
are optimally controlled by the 3D secondary source array at 1 kHz and 2 kHz. The quiet zone
size is observed to be approximately proportional to the square root of the secondary source
number, and can be estimated by

L = 0.55λ
√
Ns (6.9)
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at all cases when the secondary source number Ns is less than 120. To control the 3D primary
sound field, the secondary sources are distributed evenly on a spherical surface. Suppose there
is a smaller sphere with a diameter of L centered at the origin and enclosed by the secondary
source array. The area of this sphere divided by Ns is πL2/Ns, and by using the value for L

from Eq. (6.9), the area that can be controlled by each secondary source is then 0.95λ2. In other
words, the size of the area controlled by each secondary source is about one wavelength. As for
the energy gain, the gain from using the monopoles varies significantly at different secondary
source numbers, whereas the gain from the PALs is much smaller for both the mean value and
standard deviation.
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Figure 6.16: For random 3D primary sound fields under the optimal control with
the 3D secondary sources, (a) the quiet zone size as a function of secondary source
number; (b) the energy gain as a function of secondary source number. Red circles,
PAL at 1 kHz; blue squares, monopole at 1 kHz; green triangles, PAL at 2 kHz;

purple diamonds, monopole at 2 kHz; dashed line, 0.55λ
√
Ns.

6.2.3 Experiments

The experiments were conducted in a full anechoic room at Nanjing University with dimensions
of 11.4m×7.8m×6.7m (height). The sketch and photo of the experimental setup and equipment
are shown in Figs. 6.17 and 6.18, respectively. All equipment was placed at the same height.
Four commercial PALs (Audio Spotlight AS-16i, Holosonics [171]) were used and evenly located
on a circle with a radius of 2.2 m, which is a 2D configuration with 4 secondary sources, as
discussed in Sec. 6.2.2.1. The PAL has a surface size of 0.4m× 0.4m and a carrier frequency of
64 kHz. Four laboratory made traditional loudspeakers with dimensions of 20.7 cm× 18.7 cm×
11.6 cm were used as primary sources and they were placed on a circle with a radius of 2.5 m.

An error microphone array was placed at the center with a size of 0.55m × 0.55m and
a grid separation of 0.05m. All microphones are electret microphones with a sensitivity of
about 30mV/Pa and are of the same type BAST M1212 (No. 23 Xixiaofu, Haidian, Beijing)
calibrated with a Brüel & Kjær 4231 (Skodsborgvej 307, 2850 Nærum, Denmark) calibrator.
The sound pressure at microphones was sampled with a Brüel & Kjær PULSE system (the
analyzer 3053-B-120 equipped with the front panel UA-2107-120). The fast Fourier transform
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Figure 6.17: Top view of the experiment setup in a full anechoic room.

Figure 6.18: Photo of the experiment setup in a full anechoic room.

analyzer in PULSE LabShop was used to obtain the FFT spectrum. The frequency span was
set to 6.4 kHz, with 6400 lines and the averaging type is linear with 66.67% overlap and 30 s
duration. All microphones were covered by a piece of small and thin plastic film, to avoid
spurious sound [141]. Preliminary measurements show the insertion loss of this plastic film is
more than 30 dB at 64 kHz, which is sufficient to isolate the intensive ultrasound.

A laboratory designed and made ANC controller (Antysound Tiger ANC Pro-M, 20-203
Guangzhou Rd., Nanjing, China) was used with a multicore digital signal processor (type
TMS320C6678F, Texas Instruments). All of the error microphones used in experiments were
connected into the ANC controller via a multichannel pre-amplifier. The output signals for the

· · ·
· · ·
· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·
· · ·

0.55m

0.05m

L
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secondary sources were calculated based on a multi-channel FxLMS algorithm and fed into the
PALs directly. The primary sources were played with pure tone sound, and the signal was also
fed to the controller as the reference signal. All the signals fed into the primary loudspeakers
are correlated.

The quiet zone size in the experiments was determined as follows. First, simulations were
used to estimate the quiet zone size in Fig. 6.17. Second, all microphones inside this circle were
connected to the controller as the error sensors. When the number of microphones exceeds 24,
only 24 of them were selected and then uniformly distributed with a separation of adjacent
microphones no less than one sixth of the wavelength. This tradeoff is due to the limitations of
the number of input channels available and the computational ability of the controller. Third, a
tonal primary sound field was generated, and the ANC process started. Finally, if the measured
noise reduction at these microphones was less (or larger) than 10 dB, the size was decreased
(or increased) a small amount until a quiet zone size was found where the noise reduction was
close to 10 dB.

Figure 6.19 compares the experimental measurements with predictions obtained using Eq. (6.7)
for 2 and 4 PALs as secondary sources, for 1/3 octave center frequencies from 400 Hz to 4 kHz.
It can be seen that the experimental results are generally in accordance with predictions from
500 Hz to 4 kHz. It demonstrates that PALs are able to create a quiet zone in real multi-channel
ANC systems like traditional loudspeakers. The measured quiet zone size at low frequencies is
lower than expected. For example, the measured size is 0.27 m and 0.48 m at 400 Hz with 2
and 4 PALs, respectively, which is lower than 0.32 m and 0.65 m in predictions. This might
be caused by the poor low frequency response of the PAL. The measured size above 630 Hz is
usually slightly larger than predictions with 4 PALs. This might because only 4 primary sources
were used in the experiments which is not ideal to simulate a random primary sound field. The
measured size is lower than prediction at higher frequencies when using 2 PALs. This can be
attributed to that the grid separation (5 cm in experiments) of the microphone array is not
fine enough to identify the exact quiet zone size. Finally, it is noted that the experiment was
done only for the 2D configuration due to the practical difficulties and the number of PALs
available. However, over most of the frequency range the theoretical predictions compare well
with the experimental measurements and help to validate the proposed approach to using PALs
for ANC.

6.3 Summary

Section 6.1, an ANC system using a PAL as the secondary source was studied experimentally,
with the error signal detected remotely by a LDV. The performance of the ANC system was
compared with a similar ANC system albeit using a traditional loudspeaker. The results demon-
strate that the overall noise reductions from 1 kHz to 6 kHz at the persons ear were similar
with both types of loudspeakers. The sound pressure levels in the other areas were almost
unchanged when the PAL was placed away from the ear in the ANC system, while the overall
sound pressure levels became higher with the traditional loudspeaker being used at a great
distance from the ear. The PAL and the LDV system can be compactly placed away from the
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Figure 6.19: Experimental measurements and predictions of SPL (dB re 20 µPa)
for 2 and 4 PALs as secondary sources. Red circles, experimental measurements
for 4 PALs; Blue squares, experimental measurements for 2 PALs; dashed line,

predictions 0.75λ; dash dotted line, predictions 0.38λ.

person without deteriorating the broadband noise reduction performance. Future work includes
developing an accurate prediction model considering the scattering effects of the human head
and the improving noise reduction performance of the ANC system using the PAL.

Section 6.2 investigates the generation of a large quiet zone in an acoustic free field using
multiple PALs in a multi-channel ANC system. To simulate a complex primary sound field,
multiple point monopoles are located randomly in a two-dimensional plane, or three-dimensional
space. The simulations show that the quiet zone size generated by N PALs is 0.19λN for a
wavelength λ when they are uniformly distributed around the circumference of a circle sitting on
the same plane as the primary sources; the quiet zone then becomes 0.55λ

√
Ns when the PALs

are on the surface of a sphere for three-dimensional space. The experimental measurements of
the quiet zone with 2 and 4 PALs for the two-dimensional configuration are also presented to
validate the numerical simulations.

The quiet zone size generated by PALs is found to be similar to that observed with traditional
omnidirectional loudspeakers. However, the spillover effects of using PALs as secondary sources
are much smaller than traditional loudspeakers, indicating that they can create a larger quiet
zone around the target point without affecting other areas. This is because PALs are a highly
directional loudspeakers, whereas traditional loudspeakers are omnidirectional. Therefore, PALs
provide promising secondary sources in multi-channel ANC systems, such as a virtual sound
barrier system [13]. However, it should be noted that the poor low frequency response of PALs
may limit their use in real applications at low frequencies. Moreover, all of the points inside the
target zone to be controlled are chosen here as error points, which requires many error sensors
and a high-performance digital signal processor. To reduce the number of error sensors, it is
desirable to conduct further studies on the optimal error sensing strategy when using PALs.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Parametric array loudspeakers (PALs) are known for their capability of generating highly di-
rectional audio sound waves. Owing to this feature, they are used in various kinds of audio
systems expecting directional sound sources. For example, they are used as secondary sources
in active noise control (ANC) systems to mitigate the unwanted noise in the target regions with
minimizing side effects on other areas. This thesis has investigated the feasibility of using mul-
tiple PALs in an ANC system to create a large quiet zone. Because the physical generation of
the audio sound waves from PALs differs from the traditional dynamic loudspeakers, improved
prediction models and physical properties for PALs have been explored.

In Sec. 3, the commonly used governing equations for PALs are reviewed including the
Lighthill equation, second-order nonlinear wave equation, Kuznetsov equation, Westervelt equa-
tion, and KZK equation. Existing methods utilize the three-dimensional (3D) prediction model,
which results in a five-fold integral to solve. Section 3.2 proposed the framework of a two-
dimensional (2D) prediction model. Its solution is a three-fold integral which is simpler than
the 3D model, so it brings convenience in modelling a PAL. Based on the prediction models, it
is found in Sec. 3.4 that the audio sound field on front side of a PAL can be divided into three
regions: the near field, the Westervelt far field, and the inverse-law far field. The reason for
this division is that the terms “near field” and “far field” are usually used in existing literatures
without a clear definition. This ambiguity may lead to misleading conclusions. For example,
the distance of 4 m is sometimes considered as the inverse-law far field of the PAL, so the far
field solution was used to predict the audio sound [105]. However, it is showed in Sec. 4.2 that
the inverse-law far field for a PAL is found to be more than 10 m away from a PAL with a
diameter of 0.04 m. Therefore, differences between the predictions and measurements continue
to be observed [105]. With the division proposed in this thesis, appropriate models can now be
chosen for different regions to enable faster and more accurate sound field calculation.

There is a concensus among researchers that there should be no audio sound on the back
side of a non-baffled PAL due to its sharp directivity on front side. This thesis was the first to
demonstrate by both simulations and measurements in Sec. 3.4 that there exists audio sound on
back side of a non-baffled PAL. This is caused by the diffraction of the demodulated audio waves
instead of the ultrasonic waves. Therefore, the sound level is larger at lower audio frequency
as the diffraction effects are more significant at large wavelengths. This phenomenon indicates
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that the audio sound generated by a PAL is not perfectly unidirectional. The audio sound
propagating on back side of the PAL should be taken into account in some applications. For
example, when the reference sensor in ANC systems is placed on back side of the PAL, the
reference signal might be interfered with the feedback noise from the PAL at low frequencies.
Special techniques such as the feedback neutralization [183, 257] should be adopted to eliminate
this side effect, otherwise it would impair the robustness of the system.

Accurate and computationally efficient prediction models are the fundamental requirement
for audio applications involving PALs, such as ANC systems using PALs. Therefore, two kinds
of improved prediction models based on the partial-wave expansion method are proposed in
Chap. 4. The first one is called the spherical wave expansion (SWE) solution, which simplifies
the five-fold integral of the expression for audio sound into a three-fold summation without
additional approximations and assumptions. The second one is called the cylindrical wave
expansion (CWE) solution, which gives a two-fold summation with the assumption that one
dimension of the radiation surface is large enough when compared to the wavelength. The key
step for these two methods is to express the Green’s function as the superposition of spherical
and cylindrical waves. Numerical simulations were used to validate the proposed solutions, and
demonstrate that the proposed solution is much faster than existing models (e.g., GBE method).
Numerical results also show the proposed CWE solution improves agreement with experimental
results in [105] when compared to existing models (e.g., convolution method). The framework
and results in Chap. 4 provide a more convenient and reliable tool to model a PAL in audio
applications, such as calculating the secondary paths in Chap. 6.

ANC and other audio systems are used in various kinds of acoustic environments, where the
sound waves experience the reflection, transmission, scattering, and other physical phenomena.
The theory for traditional dynamic loudspeakers has been well developed, so these physical
phenomena can be appropriately modelled and investigated when they are used as secondary
sources in ANC or other audio systems. However, the physical generation of the audio beams
from a PAL differs from the traditional loudspeakers, and their physical properties are still
unclear. Chapter 5 proposed a full-wave based model to investigate the reflection from an
infinitely large reflecting surface, the transmission through a thin partition, and the scattering by
a sphere (simulating a human head). The model has been validated by experiments conducted
in anechoic rooms. It is found a typical phenomenon is that the directivity of audio sound
generated by a PAL is severely deteriorated if sound waves are reflected from a non-rigid surface,
truncated by a thin partition, or scattered by a rigid sphere. The reason is that the directivity of
audio sound is maintained by the ultrasound, which is more sensitive to the acoustic environment
than the audio sound. This implies the sharp directivity for PALs is not guaranteed as expected
when they are used in complex acoustic environments. Therefore, the directional performance
would be deteriorated in ANC or other audio systems using PALs. The methods and results
presented in Chap. 5 provide a guidance for analyzing the effects of the reflection, transmission,
and scattering on the performance of ANC or other audio systems using PALs.

Finally, Chap. 6 investigated the applications of using PALs as secondary sources in ANC
systems. The performance of a single channel ANC system using one PAL was firstly explored in
Sec. 6.1. A laser Doppler vibrometer (LDV) was used in the system to sense the error signal at
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the error point remotely with less obstructions at the quiet zone. The experiment results showed
that such an ANC system can achieve similar overall noise reductions up to 6 kHz at the ear
as a similar one albeit using a traditional loudspeaker. This work demonstrated the feasibility
of the combining the remote sensing technique (e.g., LDV in this thesis, or remote microphone
technique [15, 258]) and the PAL to cancel a broadband noise. In Sec. 6.2, the feasibility of
using multiple PALs in a multi-channel ANC system was then investigated. Simple empirical
formulae have been proposed to estimate the size of the quiet zone generated by PALs, which
were validated by experimental results. The quiet zone size generated by PALs is found to be
similar to that observed with traditional omnidirectional loudspeakers. However, the spillover
effects of using PALs as secondary sources are much smaller than traditional loudspeakers,
indicating that they can create a larger quiet zone around the target point without affecting
other areas. This is because PALs are a highly directional loudspeakers, whereas traditional
loudspeakers are omnidirectional. Therefore, PALs provide promising alternative secondary
sources in multi-channel ANC systems, such as a virtual sound barrier system [13].

7.2 Future work

Based on the findings in this thesis, the future work is identified as follows:

• The SWE method proposed in Sec. 4.1 is much faster than existing methods, which enables
realiable and fast computations to model a PAL in ANC and other audio systems using
PALs. However, it is applicable only for a circular PAL. It is worth exploring the accurate
and computationally efficient prediction models for a PAL that has other shapes, such
as the rectangular PALs used to steer the audio beam [142], and the hexagonal PALs
fabricated to realize a length-limited PAL [205].

• Although the scattering by a rigid sphere of audio sound generated by a PAL has been
investigated in Sec. 5.3, the behavior of audio sound when two or more spheres (simulating
the human heads of multiple listeners in applications) exist is unclear, which requires
further investigation.

• Although the reflection from a surface, transmission through a thin partition, and scat-
tering by a rigid sphere of audio sound generated by a PAL have been studied in Chap. 5,
it is worth investigating the propagation of audio sound in other acoustic environments,
such as an enclosed cabin with reverberations.

• The audio sound generated by a PAL has a rate of 12 dB/octave decrease as the frequency
is halved [87]. Therefore, the low frequency response of PALs is poor which may limit
their applications. Recently, a phononic crystal was proposed to improve the directivity
of PALs [201]. It also shows more than 12 dB amplification is realized at low frequencies.
Although the metamaterial usually achieves good performance in a narrowband range for
traditional sound sources, it is not a disadvantage for PALs as a narrowband of ultrasonic
frequency corresponds to a wideband of audio frequencies. It is therefore worth exploring
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using other types of metamaterials to improve the low frequency response or manipulate
the audio sound generated by the PAL.

• In Sec. 6.2, all of the points inside the target zone to be controlled are chosen here as error
points, which requires many error sensors and a high-performance digital signal processor.
To reduce the number of error sensors, it is desirable to conduct further studies on the
optimal error sensing strategy when using PALs.

• It has been shown in Chap. 5 that the sharp directivity for PALs is not guaranteed as
expected when they are used in complex acoustic environments. Therefore, it is necessary
to investigate how to avoid this side effect or improve the directivity of the audio beam
when PALs are not used in a free field.

• All analysis in this thesis is conducted in the frequency domain. In real applications, it
requires the reproduction of a real time signal for the PAL. The main tool for predicting
and analyzing the distortion performance of a PAL in the time domain is the Berktay’s
far field solution [101]. Due to many approximations assumed in Berktay’s solution, its
prediction accuracy has been questioned [259, 260]. Therefore, it is necessary to develop
an accurate but computationally efficient model in the time domain.

• Many studies [21–24, 41–44, 46–49] have demonstrated the physical properties (e.g., re-
flection, transmission, and scattering) of secondary sources have significant effects on the
performance of ANC systems. These properties for audio sound generated by PALs have
been systematically investigated in Chap. 5. However, the effects of them on ANC systems
remain to study.
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Appendix A

Detailed Derivations of Formulae

A.1 Integral of triple Legendre polynomials

The formula for the integral of triple Legendre polynomials is given by Eq. (11) in [261]

∫ π

0
Pn1(cos θ)Pn2(cos θ)Pn3(cos θ) sin θdθ = 2

(
n1 n2 n3

0 0 0

)2

(A.1)

where
(
n1 n2 n3

0 0 0

)
is the Wigner 3j symbol that can be calculated using the formula, see

Eq. (C.23) in [262]

(
n1 n2 n3

0 0 0

)
=



0, 2n0 = odd
(−1)n0n0!

(n0 − n1)! (n0 − n2)! (n0 − n3)!

×
√

(2n0 − 2n1)! (2n0 − 2n2)! (2n0 − 2n3)!
(2n0 + 1)!

,

2n0 = even
(A.2)

and the triangular inequality should be satisfied, i.e., |n1 − n2|≤ n3 ≤ n1 + n2, where 2n0 =
n1 + n2 + n3.

The following integral is required to calculate

I(l,m, n) =
∫ 1

−1

dP2l(x)
dx

dP2m(x)
dx

P2n(x)(1− x2)dx (A.3)

According to the relations between the Legendre polynomial and the associated Legendre func-
tion, see Eq. (4.4.1) in [222]

P ν
µ (x) = (−1)ν(1− x2)ν/2 dν

dxν
Pµ(x) (A.4)

and the definite integral of triple associated Legendre function, see Eq. (11) in [261]

∫ 1

−1
P ν1
µ1 (x)P

ν2
µ2 (x)P

ν3
µ3 (x)dx =2(−1)ν3

(
µ1 µ2 µ3

0 0 0

)(
µ1 µ2 µ3

ν1 ν2 −ν3

)

×
√

(µ1 + ν1)! (µ2 + ν2)! (µ3 + ν3)!
(µ1 − ν1)! (µ2 − ν2)! (µ3 − ν3)!

(A.5)
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the integral Eq. (A.3) can be obtained as

I(l,m, n) = −2
(
2l 2m 2n
0 0 0

)(
2l 2m 2n
−1 1 0

)√
4lm(2l + 1)(2m+ 1) (A.6)

where the first Wigner 3j symbol can be calculated with Eq. (A.2), and the second one can be
rewritten by using the symmetric relations as(

2l 2m 2n
−1 1 0

)
= −

(
2n 2m 2l
0 1 −1

)
= −

(
2n 2m 2l
0 −1 1

)
(A.7)

By setting m1 = m2 = m3 = 0 in Eq. (9a) of [263], one obtains the recurrence relation

C(1)
(
2n 2m 2l
0 1 −1

)
+D(0)

(
2n 2m 2l
0 0 0

)
+ C(0)

(
2n 2m 2l
0 −1 1

)
= 0 (A.8)

where C and D are obtained by Eqs. (9b) and (9c) of [263] asC(0) = C(1) =
√
4lm(2l + 1)(2m+ 1)

D(0) = 2l(2l + 1) + 2m(2m+ 1)− 2n(2n+ 1)
(A.9)

By substituting Eq. (A.9) into Eq. (A.8), the second Wigner 3j symbol in Eq. (A.6) can be
represented by the first one. Finally, the integral Eq. (A.3) is reduced to

I(l,m, n) = 2[l(2l + 1) +m(2m+ 1)− n(2n+ 1)]
(
2l 2m 2n
0 0 0

)2

(A.10)

A.2 Normalized Bessel functions

It is found in the simulations that the calculation of the Bessel functions overflow or underflow
when the argument is much smaller than the order. Therefore, normalized Bessel and Hankel
functions are used in this thesis and defined as

Jn(z) = n!
(2
z

)n

Jn(z) (A.11)

Hn(z) =
iπ
n!

(
z

2

)n

Hn(z) (A.12)

Using these definitions, the normalized Bessel and Hankel functions have the limiting behavior
when |z| → 0 as

Jn(z) → 1, nHn(z) → 1 (A.13)

The following relation required in Sec. 4.3 is then obtained as

Jn(z1)Hn(z2) =
1
iπ

(
z1
z2

)n

Jn(z1)Hn(z2) (A.14)
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By using the recurrence relation, see Eq. (5.1.23) in [222]

B′
n(z) =

n

z
Bn(z)−Bn+1(z) (A.15)

The following products required in Eqs. (4.79) and (4.80) are obtained as

J ′
n(z1)Hn(z2) =

nzn−1
1

iπzn2
Jn(z1)Hn(z2)−

zn+1
1

2iπ(n+ 1)zn2
Jn+1(z1)Hn(z2) (A.16)

Jn(z1)H ′
n(z2) =

nzn1
iπzn+1

2
Jn(z1)Hn(z2)−

2(n+ 1)zn1
iπzn+1

2
Jn(z1)Hn+1(z2) (A.17)

The recurrence relations, see Eqs. (5.1.21) in [222], yield

Jn+1(z) =
1

4n(n+ 1)

[
Jn(z)− Jn−1(z)

]
(A.18)

Hn+1(z) =
n

n+ 1
Hn(z)−

z2

4n(n+ 1)
Hn−1(z) (A.19)

Numerical results can then be obtained using the backward and forward recurrence relations
given by Eqs. (A.18) and (A.19), respectively.

A.3 Normalized spherical Bessel functions

The series in Eqs. (5.35) and (5.40) were found to require at least 1000 terms to deliver satisfac-
tory convergence. In this thesis, 2000 terms are chosen, and it has been confirmed the error of
the calculation of the sound pressure level is less than 0.1 dB. This is because the wavelength of
the ultrasound is much smaller than the size of the PAL as well as the sphere and the separation
between them. However, spherical Bessel and Hankel functions are known to overflow and/or
underflow (exceeding the range of the floating point used in the computer) for orders much
larger than the argument [264]. To overcome this problem, normalized spherical Bessel and
Hankel functions are used in this thesis, which are related to the unnormalized ones as [264]

jn(z) =
(2n+ 1)! !

zn
jn(z) (A.20)

hn(z) =
izn+1

(2n− 1)! !
hn(z) (A.21)

where ! ! denotes a double factorial. MATLAB was used for the computations of the normalized
spherical Bessel and Hankel functions, see the algorithm in [264].

By using the relations Eq. (22) and Eq. (8.1.27) in [222], the following relations are obtained
and used in this work

jn(z1)hn(z2) =
zn1

i(2n+ 1)zn+1
2

jn(z1)hn(z2) (A.22)

j′n(z1)hn(z2) =
zn−1
1

i(2n+ 1)zn+1
2

hn(z2)
[
njn(z1)−

z21
2n+ 3

jn+1(z1)
]

(A.23)
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jn(z1)h′n(z2) =
zn1

izn+2
2

j̄n(z1)
[

n

2n+ 1
h̄n(z2)− h̄n+1(z2)

]
(A.24)

j′n(z1)
jn(z2)

= zn−1
1

zn2 j̄n(z2)

[
n̄jn(z1)−

z21
2n+ 3

j̄n+1(z1)
]

(A.25)

h′n(z1)
hn(z0)

= zn+1
2

zn+2
d h̄n(z2)

[
nh̄n(z1)− (2n+ 1)h̄n+1(z1)

]
(A.26)

It is found in the simulations that the computation of the spherical Bessel and Hankel functions
using these relations do not overflow and/or underflow when the orders are up to 104 for the
parameters used in this thesis.

A.4 Calculation of the integral ∫ J0(x)dx
In this section, we will prove that∫

J0(x)dx = xJ0(x) +
πx

2
[J1(x)H0(x)− J0(x)H1(x)] (A.27)

where Hn(·) is the Struve function of order n.
It is to show the recurrence relation for Bessel functions

d
dx

[xJ1(x)] = xJ0(x) (A.28)

and it is know the recurrence relation for Struve functions

H′
n(x) = Hn−1(x)−

n

x
Hn(z) (A.29)

By using Eqs. (A.28) and (A.29), one obtains

d
dx

[xJ1(x)H0(x)] = xJ0(x)H0(x) + xJ1(x)H−1(x) (A.30)

The following recurrence relation for Struve functions also holds

Hn−1(x)−Hn+1(x) = 2H′
n(x)−

(x/2)n
√
πΓ
(
n+ 3

2

) (A.31)

By using Eqs. (4.85) and (A.31), one obtains

d
dx

[xJ0(x)H−1(x)] = −xJ1(x)H−1(x)− xJ0(x)H0(x) +
2J0(x)

π
(A.32)

By combining Eqs. (A.30) and (A.32), we have

d
dx

(
πx

2
[J0(x)H−1(x) + J1(x)H0(x)]

)
= J0(x) (A.33)

Therefore, ∫
J0(x)dx = πx

2
[J0(x)H−1(x) + J1(x)H0(x)] (A.34)
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By setting n = 0 in the recurrence relation for Struve functions

Hn−1(x) +Hn+1(x) =
2n
x
Hn(x) +

(x/2)n
√
πΓ
(
n+ 3

2

) (A.35)

Eq. (A.34) is expressed as Eq. (A.27).
The numerical compuation of Struve functions of order 0 and 1 is required in Eq. (A.27),

and the simple approximation method can be found in [265–267].
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Appendix B

Attenuation of Pure-Tone Sound in
Air Due to the Atmospheric
Absorption

B.1 Attenuation coefficient

The sound waves propagating in air is attenuated with distance due to various kinds of irre-
versible processes that convert the acoustic energy to heat. Therefore, the pure-tone sound
attenuation coefficient is required in the calculation of the sound field generated by a PAL. The
atmospheric absorption in air contains the classical thermoviscous absorption and the molec-
ular relaxation absorption [268]. The attenuation coefficient is proportional to the square of
the frequency in a classical thermoviscous fluid. However, the relaxation phenomenon in real
media (e.g., the air) introduces weak dispersion and cause the attenuation coefficient depart
from quadratic frequency dependence at some extent [269]. A convenient closed-form solution
taking into account the both the classical thermoviscous and the relaxation effect was obtained
by fitting the experimental data and written as [225, 270–272].

α = 20
ln 10

f2
[
1.84× 10−11 pr

pa

(
T

T0

)1/2

+
(
T

T0

)−5/2
(
0.01275e−2239.1/T

fr,O + f2/fr,O
+ 0.1068e−3352.0/T

fr,N + f2/fr,N

)]
(dB/m)

(B.1)

It should be noted the unit of the attenuation coefficient calculated Eq. (B.1) is dB/m. The
coefficient of the unit of Np/m is required in the calculation of the ultrasound propagation, and
it can be obtained by multiplying Eq. (B.1) by (ln 10)/20. In Eq. (B.1), pa is the atmospheric
pressure (atm), T is the air temperature in Kelvin, pr = 101.325 kPa is the reference ambient
atmospheric pressure, T0 = 293.15K (20 ◦C) is the reference air temperature, and fr,O and fr,N

are the relaxation frequencies for oxygen and nitrogen, respectively, given by, see Eqs. (3) and
(4) in [225]

fr,O = pa
pr

(
24 + 4.04× 104h 0.02 + h

0.391 + h

)
(B.2)

fr,N = pa
pr

(
T0
T

)1/2(
9 + 280he4.17[(T0/T )1/3−1]) (B.3)
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The terms on the right-hand side of Eq. (B.1) account for the classical thermoviscous, the
relaxation effect due to the oxygen and nitrogen, respectively.

The absolute humidity h is related to relative humidity hr through the saturation vapor
pressure psat, see Eq. (B.1) in [225]

h = hr
psat
pa

(B.4)

The attenuation coefficient in nepers at 1 atm and 293.15 K (20◦C) is shown in Fig. B.1
as a function of frequency up to 100 kHz at different relative humidity. It can be found the
coefficient is negligible at low audio frequencies, and increases as the frequency increase.
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Figure B.1: Attenuation coefficient at 1 atm and 293.15 K (20◦C) are shown as a
function of frequency at different relative humidity (RH).

B.2 Absorption distance of PALs

The absorption distance of PALs is usually defined as the reciprocal of the sound attenuation
coefficient of two ultrasonic waves [142, 259]

La = 1
α1 + α2

≈ 1
2αu

(B.5)

where the approximation is valid when α1 ≈ α2. The absorption distance at 1 atm and 293.15
K (20◦C) are shown in Fig. B.2.
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Figure B.2: Absorption distance of PALs at 1 atm and 293.15 K (20◦C) are shown
as a function of frequency at different relative humidity.
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