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Abstract: Given the popularity of running-based sports and the rapid development of Micro-
electromechanical systems (MEMS), portable wireless sensors can provide in-field monitoring and
analysis of running gait parameters during exercise. This paper proposed an intelligent analysis
system from wireless micro–Inertial Measurement Unit (IMU) data to estimate contact time (CT)
and flight time (FT) during running based on gyroscope and accelerometer sensors in a single
location (ankle). Furthermore, a pre-processing system that detected the running period was intro-
duced to analyse and enhance CT and FT detection accuracy and reduce noise. Results showed
pre-processing successfully detected the designated running periods to remove noise of non-running
periods. Furthermore, accelerometer and gyroscope algorithms showed good consistency within
95% confidence interval, and average absolute error of 31.53 ms and 24.77 ms, respectively. In turn,
the combined system obtained a consistency of 84–100% agreement within tolerance values of 50 ms
and 30 ms, respectively. Interestingly, both accuracy and consistency showed a decreasing trend as
speed increased (36% at high-speed fore-foot strike). Successful CT and FT detection and output
validation with consistency checking algorithms make in-field measurement of running gait possible
using ankle-worn IMU sensors. Accordingly, accurate IMU-based gait analysis from gyroscope and
accelerometer information can inform future research on in-field gait analysis.

Keywords: gait analysis; acceleration; angular velocity; inertial measurement device

1. Introduction

During running, the detection of two essential events is required to understand the
basic step-by-step gait outcomes of running mechanics, including heel strike or initial
contact (IC) and toe-off or terminal contact (TC) [1]. Determination of these events allow
the calculation of temporal parameters such as foot contact time, flight phase duration, and
swing phase duration [2]. IC is defined as the instance when one foot is initially touching
or landing on the surface, while TC represents the termination of the pushing phase or
when the foot finishes contact with the surface [3]. These two temporal parameters are
intrinsically related and inform other key performance outcomes related to running, such
as running economy [4], speed of running performance [5] and running related injuries and
risks [6]. Hence, the potential application of in-field monitoring of these factors by wearable
microtechnology in all running-based sports is substantial and methods to determine IC
and TC are of paramount importance.

Gait research in many laboratories requires data collection tools that are difficult to use
in field-based settings or in most team-sports where training is undertaken concurrently
by large groups. For example, Wang et al. [7] reviewed the current vison-based motion
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tracking systems and found that these approaches required an optimal range of object-
to-camera distance, which is unlikely in field settings given the unpredictable movement
patterns. This was further supported by Norris et al. [8] who undertook a systematic
review of current gait analysis methods, suggesting that gait analysis using appropriately
equipped laboratories with high-speed cameras or force platforms resulted in limitations
due to the lack of appropriate simulation of outdoor or in-field running. Hence, there is a
need to develop methods with easily accessible and portable tools, allowing gait analysis
to be undertaken in field-based settings of larger groups that facilitate ecologically valid
scenarios [9]. Accordingly, the application of inertial measurement units (IMU), which
include gyroscopes and accelerometers, to the lower limbs may assist with enhancing the
quality of gait assessment in field-based contexts. Such devices can capture the resistance
in linear or angular motions [10], have low manufacturing cost, high sampling frequencies,
reduced size and weight, and are able to monitor kinematics throughout an extended
period [4]. These advantages can make IMU a desirable system to investigate running-
based parameters. In support, a recent review [11] examined the current applications
and research of wearable inertial sensor across different sports, suggesting these types of
sensors suited in-field analysis of running gait analysis.

Current approaches differ for the collection of IC and TC using IMU, especially based
on the IMU placement and use of collected data [12]. Mo and Chow [13] conducted a
review of current gait research, reporting that the major locations of placing IMU for gait
analysis were the pelvis, shank, and foot. They concluded that particular sites for IMU
placement required different data analysis methods to detect IC and TC, which could
result in diverse measurement outcomes. Considering signal detection, Clark et al. [14]
investigated tibial acceleration around the knee joint, particularly in the mediolateral plane,
by examining varus/valgus knee movement throughout running. Furthermore, Muro-De-
La-Herran et al. [15] studied gait movement using accelerometers and established that
unit positioning such as shank, limb, and back was vital in delivering accurate analysis
requiring different analysis algorithms. In terms of using gyroscopes, Bergamini et al. [16]
analysed the difference between elite and sub-elite runners using an IMU containing a
tri-axial gyroscope located at the lumbar spine region. They discovered no consistent
signal from the acceleration data and designed an algorithm based on the angular velocity
data which acquired an average error of less than 0.025 s. Ankle-based gait analysis has
also been studied, as Qiu et al. [17] designed a smart system which detected the human
body displacement using an inertial measurement unit. With a motion capture system as a
reference, the results demonstrated that ankle-based IMU sensors with a tracker system
had the potential to replace video-based gait study methods. This collection of literature
suggests most studies conducted to date use either accelerometer or gyroscope units in
isolation or focus on the different anatomical placements of the IMU. However, the accuracy
of gyroscope and accelerometer-based algorithms with IMU placement at the ankle requires
further exploration. Furthermore, despite the prospect of enhancing precision, there is an
absence of research proposing a system to detect IC and TC using both gyroscope and
accelerometer data to improve measurement precision.

Therefore, this study aimed to develop adaptive algorithms based on gyroscope and
accelerometer data for the detection of IC and TC during running. The 95% of confidence
interval was used to analyse the consistency of the system by examining whether the
difference between the output of the two algorithms exceeded the highest tolerance value.
Furthermore, to increase the estimation accuracy, we included a pre-processing algorithm
that detected the period of running to remove unwanted data such as standing still or
mounting the IMU.



Sensors 2022, 22, 4812 3 of 13

2. Materials and Methods
2.1. The Inertial Measurement System

The inertial measurement unit (IMU) (Blue Thunder, I Measure U, New Zealand,
weight: 12 g, size: 40 × 28 × 15 mm) was used in the data collection protocol. The units used
a sampling rate of 500 Hz and measured 3-dimensional acceleration and 3-dimensional
angular velocity. The IMU system had a detection range of ±16 g for the accelerometer
and ±2000°/s for the gyroscope. The collected IMU data were analysed using customised
MATLAB (version 2019a, The Mathworks Inc., Natick, MA, USA).

2.2. Participants

Two sets of data were used for the two respective parts of this study—referred to
herein as the development dataset and the validation dataset. The development dataset was
collected from 36 players from an Australian Football League team who were all healthy
and did not suffer from any symptomatic musculoskeletal injuries. During the protocol,
the participants undertook 30 m running efforts at an estimated 75%, 85%, and 95% of
maximum speed, with two trials for each speed, as part of normal training. This 30 m
running effort was immediately preceded by a run-in where each participant developed
their speed to the target. Each effort was separated with a self-determined recovery period
of passive standing. During running, all participants wore their own running shoes. The
IMU device was attached to the ankle (immediately superior to the lateral malleolus) of each
foot of the participant (represented in Figure 1) with a fixed and standardised orientation.
Overall, 432 sets of data right and left ankle unilateral IMU data, 36 sets with 3 running
speeds and 2 trials each) consisting of 53,280 steps were collected which were used for
algorithm building.

Figure 1. Example placement of the IMU device on the ankle.

For the validation dataset collection, two healthy participants (without musculoskele-
tal injury) ran at three different speeds while wearing the IMU device attached immediately
superior to the lateral malleolus on each limb as outlined above. Participants undertook
a 10 m run through at 3 self-selected speeds (slow, medium, and fast), with each speed
repeated for five trials and separated by a self-determined recovery period of passive
standing. The data collection was carried out in an enclosed laboratory setting while being
filmed at a close distance by a camera system at 30 FPS (iPad, Apple Inc., Sydney, Australia).
During running, the participants were wearing their own comfortable shoes. In this study,
only the data collected from gyroscope and the accelerometer was used. Overall, 60 trials
(two participants, right and left unilateral ankle IMU data, three different speeds and five
trials each) involving 180 steps were collected, and these data were used for consistency
and accuracy validation.
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2.3. Data Pre-Processing Development

Following IMU data collection, the raw data contained noise and data from untargeted
(non-running) periods such as mounting the IMU, walking or standing still. These sections
of the data are removed for the running stance phase detection. Hence, a pre-processing
algorithm designed to detect the running period was introduced. This algorithm first calcu-
lated the square value of the acceleration in the three directions as shown in Equation (1).
The square value first rectified the acceleration signal into positive and then sufficiently
amplified the difference between non-running period and running period. This algorithm
contained a sliding window of 0.5 s and compared the average square value of the sum of
accelerations in three directions to a threshold value within the window. If the value output
exceeded the threshold for more than 3 s, it was marked as the beginning of running, and
when the value dropped below the threshold, it was marked as the completion of running.
The calculation of the sliding average value is shown in Equation (2).

Ares = (Ax2 + Ay2 + Az2) (1)

Athreshold =
∑

n+s∗ f
n Ares

s ∗ f
(2)

where Athreshold is the output value that is compared to the threshold. f is the sample
frequency of the IMU. Ax, Ay, Az are the linear acceleration value in three directions. S is
the time frame of the sliding window.

2.4. Algorithm Design

Based on the data collected from the gyroscope and accelerometer, two different
algorithms were created for IC and TC detection using the development dataset.

2.4.1. Accelerometer-Based Algorithm

In the accelerometer-based IC and TC detection, the algorithm was built using accel-
eration data from the Z-axis (vertical). Before plotting the information, the square value
of acceleration was computed to obtain the positive magnitude and to amplify the data.
The instant of IC was detected based on the peak of foot resultant acceleration (Figure 2).
The detection of the TC was conducted in the region of interest, which was defined within
the 25% to 75% range of a full stride (IC to IC), and when the fluctuation of the z-axis
acceleration started to show an upward trend after the peak point (IC). The area of interest
commenced when the magnitude of the acceleration started to show an upward trend
which exceed 2 g and terminated when the signal finished a downward trend and dropped
below 2 g. Figure 2 demonstrates the TC point and the area of interest for the TC detection.

During running, as the speed increases, the ground contact time of the runner tends
to decrease, hence the ground contact time is often less than 50% of the total stride time
during high-speed running [18]. Therefore, to find the exact point of TC, we designed a
window to highlight the area of TC detection. This window has a length of N samples,
which is half of the total number of samples in a specific stride, and the window is located
between 25% and 75% of the stride. Equation (3) shows the calculation of N. Following
this detection, all the data within this region was normalized using Min-max normalization
and scanned until the first point that exceeded the empirical threshold of 2 g which was
conceivably due to the high inertial change due to the foot leaving the ground. That point
was marked as the TC.

Nwindow =
1
2
∗ (Peakn+1 − Peakn) (3)

The pseudo-code of the acceleration algorithm on terminal contact points detection is
shown in Algorithm 1.



Sensors 2022, 22, 4812 5 of 13

Algorithm 1 Finding TC using Acc data.
Output: TC

1: StartTime← f romPre− processing
2: EndTime← f romPre− processing
3:
4: AccZ ← AccelerationZ(From StartTime to EndTime)
5: AccY ← AccelerationY(From StartTime to EndTime)
6: AccX ← AccelerationX(From StartTime to EndTime)
7:
8: resAcc←

√
AccX2 + AccY2 + AccZ2

9: SqreDi f f Acc← ((resAcc(2)− resAcc(1)), (resAcc(3)− resAcc(2)),. . . . . . (resAcc(n)−
resAcc(n− 1)))2

10: [PeakValue, InitialContactx]← localmaximum(SqreDi f f f Acc)
11:
12: Flag← 0
13: Count1← 1
14: Count2← 1
15: Peakx ← 0
16:
17: for i← 0 to Length(SqreDi f f Acc) do
18: if Flag = 0, SqreDi f f f Acc(i) = PeakValue(Count1) then
19: Flag← 1
20: Peakx ← i
21: INCREMENT Count1
22: else
23: if Flag = 1, i = (Peakx + (InitialContactx(Count1)− Peakx)/4) then
24: for h← i to (Peakx + (InitialContactx(Count1)− Peakx)/2) do
25: NrmlsACC ← (SqreDi f f Acc(h)−Minimum(SqreDi f f Acc(h to(Peakx+

(InitialContactx(Count1) − Peakx)/2))))/(Maximum(SqreDi f f Acc(h to(Peakx +
(InitialContactx(Count1) − Peakx)/)))) − Minimum(SqreDi f f Acc(h to(Peakx +
(InitialContactx(Count1)− Peakx)/2))))

26: if NrmlsAcc ≥ EmpiricalThreasholdAcc then
27: TC = h
28: end if
29: end for
30: TC(Count2)← TC
31: INCREMENT Count2
32: Flag← 0
33: end if
34: end if
35: end for

2.4.2. Gyroscope-Based Algorithm

Separate from the accelerometer-based detection in the gyroscope-based algorithm,
detection of mid-swing (MS) is integral to determine presence and order of IC and TC. These
create unique signal characteristics whereby angular velocity data show distinctly positive
or negative peaks consisting of medium to high frequencies [19]. The instance of IC and TC
are defined at the first and the second local maximum, where MS is the local minimum that
is located after TC, the locations of IC, TC and MS are shown in Figure 3. While the scale
of such peaks are affected by several factors such as the participant’s running intensity or
speed, they tend to show similar trends among different runs and hence can be detected in
the specific area of interest or frequency domains. Based on previous work on gait analysis
by Lee and Park [20], who proposed a detection algorithm by first detecting the location of
mid-swing (MS), we replicated this technique by subsequently searching backwards for TC
and forwards for IC.
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Figure 2. Random samples of right ankle acceleration value in g AankleR of a participant during 85%
maximum speed running. Please note that the peak resultant acceleration is marked as IC, and the 2
g-threshold is the area of interest for TC detection.

Figure 3. Random samples of right ankle angular rate ωankleR of a participant during 75% maximum
running speed. Please note that MS = Mid-Swing; IC = Initial-Contact; TC = Terminal-Contact.

The proposed algorithm first detected TC to minimise the computational requirements
for backward searching. To enhance and detect the mid-swing peak, a 2nd-order Butter-
worth low-pass filter was designed with a cut-off frequency of 10 Hz. In the detection of
the possible location of TC, the proposed system initially detected the first local maximum
point and subsequently searched for the presence of a local minimum point after TC which
was the MS. Finally, the following local maximum was then recognised as the location of
IC. These possible points of gait event location were then evaluated under the set of rules
shown in Table 1.
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Table 1. The detection logic and conditions for IC, MS and TC detection.

Gait Event Conditions

TC TC must fulfil below conditions:
(a) It is the local maximum
(b) A local minimum MS is after TCpp
(c) A local maximum IC is after MS
(d) It is the local maximum between MSn and MSn−1

MS MS must fulfil below conditions:
(a) It is the local minimum
(b) MS(n, 1)˘MS(n− 1, 1) > 300 ms

IC IC must fulfil below conditions:
(a) A MS is identified before the location of IC
(b) IC(n, 1)˘TC(n, 1) > 100 ms

2.5. System Validation

This section outlines the methods used to examine the consistency and accuracy of
the two algorithms and was carried out upon the validation dataset. A previous system-
atic review [21] reported use of 95% confidence intervals to compare the results of gait
parameters in studies on patients with inflammatory arthritis. In this study, to test the
consistency of the output of gyroscope and accelerometer algorithms, the 95% confidence
interval (CI) and 2-sample t-test were used to compare and verify the range of the difference
between the two algorithms. In the case of a CI in a particular measure X, the sample
size is defined as N, where m is defined as the hypothetical average value or mean, and
sd is the standard deviation. The pre-defined confidence level is represented as 1 − α
and in this study a 95% confidence level was selected. Hence, the CI of the given sam-
ple or the range of values can be defined by m − cαs < X < m + cαs, and as α = 0.05,
then cα = 1.96. To test the consistency between the two algorithms, a right-side test was
conducted to the difference between the calculated contact time of the two algorithms
(H0 : µ ≤ µ0 | H1 : µ > µ0, µ0 = 0.03–0.05), where H0 is the null hypothesis and µ0 is the
acceptable tolerance range and µ is the mean value of the algorithm result. The average of
the absolute difference between the two algorithms x̄di f f is calculated by Equation (4). The
z-score value is then calculated using Equation (5) and the output Z value is then compared
to the Critical Value Zα/2 which is 1.654.

x̄di f f =
∑n

i=1 |CTGyro − CTAcc|
n

(4)

where x̄di f f is the average value of the absolute difference between the outputs from
the two algorithms. CTGyro and CTAcc are the calculated contact time output from the
two algorithms.

z =
x̄di f f − µ0

sd/
√

n
(5)

where z is the z-score value of the current x̄di f f , µ0 is the maximum tolerance of the x̄di f f
value, and sd is the standard deviation of the x̄di f f dataset.

The output z-score value is then compared to assess whether the system’s consis-
tency is within the confidence level of 95% where the maximum inconsistency of the two
algorithms is 0.03 s due to the frame rate per second of the video ground truth.

The accuracy of the system was validated using the video footage of the gait param-
eters. Specifically, this was undertaken by manually recording the actual instance of IC
and TC of each step and calculating the CT from the validation dataset, with ab-solute
error calculated and recorded. The outputted IC, TC ,and CT from the two system were
then compared using the 2-sample t-test, the percentage of the unrejected hypothesis tests
was recorded as the systems’ accuracy. Results are presented as absolute mean ± standard
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deviation (sd). Significance was set at α = 0.05. Using the Shapiro–Wilk test, visual analysis
of the histograms and box plots, the normal distribution of the data were confirmed.

3. Results
3.1. Data Pre-Processing

The purpose of the pre-processing algorithm was to filter out the non-running data
ranges and to output the running period start time and end time for IC and TC detection in
the later part of the algorithm. Figure 4 demonstrates a random sample of a participants’
right-foot data from the validation data set, including all three different run through efforts.
The algorithm clearly distinguished the three different running periods from the whole
data set (519 s in duration). Furthermore, the different speed 10 m efforts were clearly
demonstrated with three distinct ranges of squared resultant acceleration peak values. As
the sliding window has a length of 0.5 s and the algorithm used average values within the
window, the output value could contain minor errors of up to 0.5 s which could affect the
detection of IC and TC on a specific step. However, one step can be considered as a minor
influence on the algorithm’s accuracy given the large number of steps in the data set.

Figure 4. Random sample of a participant’s pre-processed right-foot data with three different 10 m
run through efforts (slow, medium, fast).

3.2. Algorithm Consistency

To test the consistency of the gyroscope and accelerometer algorithms, 95% right-tailed
confidence intervals with different maximum tolerance value (0.05 s, 0.04 s and 0.03 s) were
constructed on the difference between the output value of the two algorithms. Table 2
summarizes the consistency of the two algorithms at different speeds. The consistency was
computed by calculating the percentage of datasets with a lower difference than the given
tolerance (<95% confidence level) between the output of the two algorithms. As depicted
in Table 2, a 100% consistency between the two systems existed for all speeds when a
maximum difference value of 0.05 s was used. An average consistency of 94.44% was
evident for CT in all datasets when using a maximum difference of 0.04 s and for the lowest
level of tolerance (0.03 s), an average consistency of 86.67% was demonstrated. The two
algorithms showed the highest consistency at a medium speed, and the average consistency
was 94.63%. From the results, we found that the consistency of the two algorithms reduced
as the acceleration speed increased to fast. In addition, the highest consistency for each
tolerance group was evident at the medium acceleration speed.
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Table 2. The consistency of the two systems under different speeds and maximum tolerance values
of the confidence interval.

Percentage of Datasets within Maximum Tolerance Value with 95% CI (s)

Speed 0.05 0.04 0.03

CT IC TC CT IC TC CT IC TC Average
Slow 100% 98.33% 100% 95% 96.67% 93.33% 86.67% 85% 86.67% 93.52%

Medium 100% 100% 100% 96.67% 96.67% 95% 88.33% 90% 85% 94.63%
Fast 100% 96.67% 98.33% 91.67% 91.67% 90% 85% 86.67% 81.67% 91.3%

Average 100% 98.33% 99.44% 94.44% 95% 92.78% 86.67% 87.22% 84.44%

3.3. Accuracy of Detection

After the consistency of the two algorithms was assessed, the output values of the
two algorithms were then compared to the video reference to test the validity of the
systems. Table 3 shows the mean absolute errors (MAE) of the accelerometer algorithm
and gyroscope algorithms. By comparing the accuracy of the two algorithms at three
different running speeds, we found that at the medium speed, both algorithms showed
higher consistency and accuracy and the mean errors were at their lowest, 0.0273 s and
0.0214 s. Another interesting trend is that both the accuracy and consistency were at their
lowest during high-speed acceleration as the average consistency was at its lowest of 91.3%
and the average mean error of both the acceleration and angular velocity data were at their
highest of 0.0364 s and 0.029 s. When compared to other studies, the common MAE of IC
and TC detection ranged between 10 and 60 ms [2,4,22–24], while our study yielded an
MAE between 5 and 37 ms. Overall, these results show that both the accelerometer and
gyroscope have potential in developing IMU-based gait analysis algorithms for CT and
FT detection.

Table 3. The mean error of the two algorithms under different speeds.

Speed
Absolute Mean Error (ms)

Accelerator Algorithm Gyroscope Algorithm

IC TC CT IC TC CT
slow 5.8 ± 2.1 27.5 ± 11.7 30.9 ± 12.1 12.1 ± 6.7 15.1 ± 5 23.9 ± 10.3

medium 4.5 ± 2.3 23.8 ± 9.3 27.3 ± 13.4 9 ± 10.7 13.7± 7.8 21.4 ± 15.9
fast 6.7 ± 3.2 31.4 ± 14.6 36.4 ± 16.1 12.8 ± 9.3 21.4 ± 8.5 29 ± 10.4

Given the observed reduction of both consistency and accuracy of the two systems
at higher speed, we performed a preliminary examination of the ground truth video for
the algorithm performance based on foot strike type. Rear-foot strike means the heel of
the runner makes the first contact with the ground whereas fore-foot strike is when the
heads of the metatarsals of the runner contacts the ground first [25]. Table 4 summarizes
the consistency of the two algorithms under different speeds and strike types. Given the
increased presence of fore-foot strike at higher speeds, the fore-foot strike could affect the
consistency and accuracy of the system. As observed in Table 4 the two systems showed
relatively low average consistency under fore-foot strikes, whereas the systems’ consistency
remained high under rear-foot strikes regardless of the speed.
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Table 4. The consistency of the two systems under different speed and maximum tolerance value of
the confidence interval.

Fore-Foot
Strike

Rear-Foot
Strike

Speed Appearance Average
Consistency

CT
MAE (ms)

Appearance Average
Consistency

CT
MAE (ms)

Slow 0% N.A N.A 100% 100% 27.4 ± 11.5
Medium 8.75% 42.15% 25.5 ± 13.8 91.25% 96.25% 24.3 ± 15.7

Fast 86.25% 35.75% 33.3 ± 14.5 13.75% 91.25% 29 ± 11.4

4. Discussion

This study aimed to develop and validate adaptive algorithms based on gyroscope and
accelerometer data for the detection of IC and TC during running from IMU’s mounted on
the ankle. The proposed algorithm successfully detected the running period and removed
the noise with the pre-processing system. Furthermore, results showed high accuracy
and consistency during in-field running with slow to fast running speeds. Therefore, the
algorithm we proposed can successfully identify the key gait events of IC and TC in many
running-related applications during in-field settings. Such outcomes can overcome the
limitations related to other laboratory-based gait analysis methods (motion tracking system
or camera-based systems), which are difficult to use in field-based settings. Moreover, such
a system is desirable as it provides the potential of analysis and feedback of running gait
parameters for athletes and coaches during field-based training or competition. In support,
Muro et al. [15] conducted a review of current gait analysis methods, reporting that the high
level of performance of IMU-based algorithms in terms of accuracy, accessibility, and trans-
portability made them more suitable than other gait analysis approaches during athletic
applications. With these advantages, the application of accelerometer and gyroscope-based
algorithms for IC and TC detection may present an avenue for further research for healthy
athletes [22], athletes with transtibial amputation [26] or athlete recovery [27].

The current study showed that the gyroscope-based algorithm can maintain the same
waveform shape under different or increasing running speeds as only the magnitude of the
angular rate and frequency of the foot are affected. For example, the current study showed
that the absolute mean error presented less variation when running speed increased when
compared to the acceleration-based algorithm. Furthermore, our results demonstrated that
the gyroscope algorithm had similar mean absolute error (MAE) for IC and TC (11.3 ms and
16.7 ms, respectively). Similar observations have been previously reported [23] whereby
the running gait of healthy and spinal cord injured individuals were examined. Their
results revealed a MAE of 12 ms for IC and 15 ms for TC in normal groups, whereas
the spinal cord injured groups revealed MAE of 20 ms in IC detection and 22 ms in TC
detection. Despite these advantages, gyroscope-based algorithms usually require wavelet
transformation and different filter design according to different speeds, running intensity
and IMU placement. For example, Gouwanda et al. [22] designed a 2nd order digital low
pass filter with cut-off frequency of 15 Hz to highlight the waveform peaks for IC and TC
detection. McGrath et al. [24] used a low pass filter with zero-phase fifth order Butterworth
filter with a 50.2 Hz corner frequency.Conversely, the cut-off frequency was set to 10 Hz
to obtain the best waveform information in the current study. It is noteworthy that the
performance of these algorithms can be affected with expanded sample size or different
running styles, and future work in this area is required to refine algorithm accuracy.

For the accelerometer-based algorithm, the detection of TC is critical and usually
generates more errors compared to the detection of IC (Jasiewicz et al., 2016). Conversely,
IC detection is often highly accurate and adaptive to different running speed due to the high
velocity change when the foot strikes the running surface. The current results demonstrated
this trend by yielding higher errors in TC than IC, as the MAE of TC ranged from 23.8 ms
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to 31.4 ms, while IC was 4.5 ms to 6.7 ms. In support, Jasiewicz et al. [23] studied
accelerometer-based gait study algorithms with IMU placement on the foot and suggested
that the MAE of TC (27.6 ms) was substantially higher than the MAE of IC detection
(4.2 ms). Moreover, the accuracy of the TC detection in acceleration-based analysis has not
been widely investigated. Accordingly, future research should investigate the accuracy of
TC detection and the factors which lead to the reduction in accuracy.

The combination of using both accelerometer and gyroscope-based algorithms appears
to be a sound approach to mitigate the limitations of these two respective gait analysis
methods. In this study, we investigated the consistency of the two algorithms with 95%
confidence interval and discovered that the proposed systems demonstrated good overall
consistency, despite reduced consistency (81.67%) for TC detection at higher running
speeds. A similar tendency was presented by Piriyakulkit et al. [28] where they proposed a
gait event recognition algorithm to assist patients with lumbar kyphosis using IMU. The
proposed algorithm recorded MAE’s of 31.6 ms, 32.4 ms, and 38.6 ms in TC detection
under increasing treadmill speeds. In our study, the two algorithms showed relatively low
average consistency for fore-foot strikes, whereas the systems’ consistency remained high
under rear-foot strikes regardless of the speed. Hence, we suspect that this change in the
detection accuracy is possibly due to the foot strike style (fore-foot or rear-foot) and requires
further investigation and refinement. Accordingly, this study shows the feasibility of using
the combination of both algorithms, where the advantage of each approach could be used
to further improve the detection accuracy of IC and TC. An example of this approach
could be the use of a weighted algorithm in which the accelerometer-based system has a
larger influence in IC calculation and the gyroscope-based system being more impactful
in TC detection. Accordingly, future studies should investigate the effect of different
striking styles have on the current gait algorithms alongside the accuracy of TC detection
based on the combination of accelerometer and gyroscope-based systems with increased
experimental sample sizes and variety of foot-striking characteristics, running speeds or
IMU placement locations.

5. Conclusions

In this paper, we proposed an intelligent running gait analysis system that can estimate
contact time and flight time by detecting key running instances such as IC and TC with high
accuracy and consistency. The system used two algorithms which were designed based
on the data from the gyroscope and accelerometer. We also introduced a pre-processing
algorithm to detect the running period to enhance the detection accuracy. Furthermore, the
consistency of the two algorithms was studied using a 95% confidence interval and the
accuracy of the system was investigated using a validation data set. The results showed
that the accelerometer and gyroscope combined system can obtain the desired accuracy.
Our ultimate objective is to design a highly accurate IMU-based gait analysis system which
combines the information obtained from the gyroscope and accelerometer. The system
should be compatible to both striking styles (rear-foot and fore-foot) that may affect the
systems’ consistency and accuracy in the proposed algorithms. Therefore, future research
focussing on the effect of the striking type on the current gait algorithms and different IMU
placement locations could further improve the compatibility and detection accuracy of
the system.
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