
Valley Polarization Enhancement Induced by a 

Single Chiral Nanoparticle 

 

Sejeong Kim,1,†,* Yae Chan Lim,2,† Ryeong Myeong Kim,2 Johannes E. Fröch,1 Thinh N. Tran,1 Ki 

Tae Nam2,* and Igor Aharonovich1,3 

1School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo 2007, 

New South Wales, Australia 

2Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, 

Republic of Korea 

3ARC Centre of Excellence for Transformative Meta-Optical Systems, Faculty of Science, University 

of Technology Sydney, New South Wales, Ultimo, 2007, Australia 

†These authors contributed equally. 

*Sejeong.Kim-1@uts.edu.au , nkitae@snu.ac.kr 

 

Abstract: Valley polarization is amongst the most critical attributes of atomically thin 

materials. However, achieving a high contrast from monolayer transition metal 

dichalcogenides (TMDs) has so far been challenging. In this work, a giant valley 

polarization contrast up to 45% from a monolayer WS2 has been achieved at room 

temperature by using a single chiral plasmonic nanoparticle. The increased contrast is 

attributed to the selective enhancement of both the excitation and the emission rate having 

one particular handedness of the circular polarization. The experimental results were 

corroborated by the optical simulation using finite-difference time-domain (FDTD) method. 

Additionally, the single chiral nanoparticle enabled the observation of valley-polarized 

luminescence with a linear excitation. Our results provide a promising pathway to enhance 

valley contrast from monolayer TMDs and utilize them for nanophotonic devices. 
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Transition metal dichalcogenides (TMDs) have become vital enablers to explore unique 

nanophotonic and optoelectronic phenomena.1-3 A key example is a valleytronics, which 

harnesses the valley degree of freedom in semiconductors.4-7 The broken inversion 

symmetry of TMDs enables to selectively excite and optically readout the valley degree of 

freedom using circularly polarized light.8, 9 It is crucial to increase the contrast of valley-

dependent photoluminescence (PL) to build practical valleytronics devices for quantum 

information processing.10-13 Yet, obtaining a clear valley contrast at room temperature (RT) 

is challenging, due to its severe contrast reduction by phonon-assisted scattering processes. 

Consequently, the majority of the valley polarization experiments are limited to cryogenic 

temperature.  

To circumvent this problem, various strategies have emerged so far including 

deploying multilayer configurations.10, 14 In such configuration, the main obstacle that 

reduces the valley contrast at room temperature, i.e. phonon-assisted hole scattering 

through Γ valley, is significantly suppressed and the valley polarization contrast up to 77% 

is demonstrated using 4-layered WS2.
14 However, such schemes suffer from an extremely 

low luminescence due to indirect bandgap transition from multilayer TMDs, therefore, 

achieving a large valley contrast with monolayer TMDs is a crucial milestone. The 

utilization of chiral nanostructured surfaces is suggested as promising candidates, which 

include plasmonic and dielectric chiral metasurface arrays as well as gold moiré chiral 

patterns.12, 15-17 These chiral nanostructures could efficiently enhance the valley contrast up 

to 43% at room temperature with monolayer,18 yet the attempts so far required cumbersome 

and sophisticated nanofabrication protocols to make nanostructured arrays.  

Bottom-up fabrication approaches provide powerful routes to address complex 

nanofabrication issues. Chemically synthesized chiral gold nanoparticles are recently 

achieved by the simple solution-based synthesis method creating a uniform and large 

amounts of chiral nanostructures.19, 20 Among diverse chemically-synthesized chiral gold 

nanoparticles, 432 helicoid III show an exceptional chiroptical response, showing Kuhn’s 

dis-symmetry factor (g-factor, 𝑔 = 2
𝐼𝐿𝐻𝐶−𝐼𝑅𝐻𝐶

𝐼𝐿𝐻𝐶+𝐼𝑅𝐻𝐶
) of 0.2 when the chiral gold nanoparticles 

are in an ensemble. The g-factor further increases up to 0.8, which is one of the highest 



value among chiral metamaterials.21 Such strong chiroptical response opens a pathway of 

creating single-nanoparticle controlled nanophotonic systems. 

Here we realize a facile, single-step technique using the chiral gold nanoparticles to 

dramatically enhance the valley polarization, achieving a contrast of up to 45% at RT. 

Interestingly, the valley contrast is enhanced by the effect of a single nanoparticle that 

increased the degree of valley-polarization from 16% to 45%. Photonic simulation based 

on the finite-domain time-difference (FDTD) method reveals the selective enhancement of 

the excitation and the emission rates by the chiral gold nanoparticle when the light is right-

handed circularly polarized. The method presented in this work is scalable and does not 

require sophisticated nanofabrication protocols; hence, offers a promising pathway to be 

used with any 2D materials. 

 

RESULTS AND DISCUSSION 

 

Figure 1.  (a) 3D schematic showing a chiral gold nanoparticle on WS2 under left and right 

circularly polarized illumination. (b) An optical microscope (OM) image of the sample, 

consisting of a WS2 monolayer transferred onto an hBN flake. (c) A SEM image of 

chemically synthesized chiral gold nanoparticles named 432 helicoid III. (d) Experimental 

g-factor (black line) & absorption (blue line) spectra of 432 helicoid III nanoparticles. (e) 



An OM image showing the chiral gold nanoparticles (black dots) on top of the 2D stack. 

Inset is a false-color SEM image of the chiral gold nanoparticle. (f) A PL intensity 

difference map showing enhanced contrast, corresponding to the position of nanoparticles 

on the WS2 monolayer.  

 

Figure 1a shows the schematic illustration of our system, consisting of a single chiral gold 

nanoparticle positioned on top of a monolayer WS2. The chiral gold nanoparticle preferably 

absorbs the right-handed circularly polarized light and shows stronger plasmonic effects. 

The mechanically exfoliated WS2 (red dashed line) is first transferred onto hBN (black 

dashed line) for better exciton quality,22 as shown in Figure 1b. A PVA stamp is used to 

pick-up and release the 2D materials. The chiral gold nanoparticles are then drop-casted 

onto the 2D stack. These chiral gold nanoparticles (432 helicoid III, see Method section) 

are chemically synthesized using seed-mediated growth of 40 nm octahedron gold seed 

nanoparticles with amino acid and peptides as shape modifying molecules to create 

helicoidal morphology.19, 23 This water-based, bottom-up fabrication approach enables 

them to produce large and uniform quantities of 150 nm chiral gold nanoparticles with 

remarkable chiroptical properties, as shown in Figure 1c. Figure 1d shows a measured g-

factor and absorption spectra of 432 helicoid III nanoparticles. The result shows a strong 

resonance at λ=600 nm, which implies selective plasmonic resonance occurring at a 

particular wavelength with right-handed circularly polarized (RHC) incident light. A g-

factor of -0.16 (0.06) is observed at λ=600 nm (750 nm) in an ensemble, which indicates 

the nanoparticles preferably absorb R(L)HC light. For absorption and CD measurement, 

chiral gold nanoparticles were prepared in a solution state, dispersed in CTAB (1 mM). 

A magnified optical image of the final device is shown in Figure 1e, with several 

nanoparticles clearly visible on the monolayer region with blue dashed lines. Each black 

dot is a single chiral nanoparticle as shown in the inset SEM image. Next, 

photoluminescence (PL) intensity from the sample is measured with 594 nm pulsed laser 

(40 MHz, 0.2 μW) scanning through the sample. The 100ｘ objective lens with a numerical 

aperture of 0.9 is used to focus the excitation laser as well as to collect PL signals. The 

excitation laser is circularly polarized by using a combination of a linear polarizer and a 



quarter-wave plate. Figure 1f shows the PL intensity difference where bright spots (red 

arrows) correspond to the location of chiral gold nanoparticles, confirming that the single 

chiral gold nanoparticle enhances the PL from the WS2. While a single nanoparticle effect 

on circularly polarized light dichroism is clearly observed, a bright spot pointed by a green 

arrow in Figure 1f is also observed which might be induced by the wrinkles in 2D materials 

or the residual polymer on WS2 accumulated during the transfer process. We also note that 

chiral gold nanoparticles are not entirely identical,21 which caused the relatively low 

circular dichroism indicated by yellow arrows in Figures 1e, f. However, uniformity of such 

chiral gold nanoparticles can be significantly increased by adopting multi-chirality-

evolution step synthesis method.24  

 

 

Figure 2. (a) Schematics of photonic simulation set-ups for the calculation of near-field 

intensity (left) and radiative quantum efficiency (right). Calculated near-field distribution 

under the incidence of (b) LHC and (c) RHC light at 600 nm.  Maps of the radiative 

quantum efficiencies relative to a dipole emitter in free space under (d) LHC and (e) RHC 

emission at 620 nm, and (f) their difference depending on the wavelength were obtained. 

 



The chiral gold nanoparticle plays two roles to enhance the valley polarization in a 

given configuration. First, the excitation light with RHC induces collective oscillation of 

localized surface plasmons in chiral gold nanoparticles, which enhances the electric field 

intensity in the near-field. Second, the same particle also enhances the PL emission with 

RHC that carries the valley information. The large valley contrast enhancement is the 

combination of both these effects. These two effects are further analyzed by using the finite-

difference time-domain (FDTD) method (Lumerical FDTD solver), and the simulation set-

up is depicted in Figure 2a. For the near-field intensity calculation, the monitor was located 

beneath the chiral gold nanoparticle, i.e. where WS2 layer is located, under the LHC and 

RHC illumination, respectively. In the case of calculating the radiative quantum efficiency 

(RQE), two enclosed monitors are used: a total QE monitor that measures the total power 

radiated from the system consists of  a dipole source and the chiral particle, and a dipole 

QE monitor that measures the radiated power from the dipole source. 

First, the near-field intensity profiles of the chiral gold nanoparticle are shown under 

the LHC (Figure 2b) and RHC (Figure 2c) light incidence with λ=600 nm. The simulation 

results show the electric-field intensity is enhanced by 21% under RHC excitation 

compared to LHC excitation. Next, PL enhancement is analysed, which is a combination 

effect from the spontaneous rate enhancement and the radiative quantum efficiency (RQE) 

enhancement.25 Due to the large field enhancement and increased density of states near the 

chiral gold nanoparticles, WS2 experiences increased spontaneous emission rate. Besides, 

RQE of emission plays a role determining PL enhancement. To calculate the RQE, the 

radiative decay rate of the dipole, the non-radiative decay rate from photon absorption by 

the particle, and the total radiative decay rate of the system are considered. The spatial 

dependence of the RQE with respect to the position of the emitter of the system under LHC 

and RHC emission is displayed in Figure 2d, e, respectively. Moreover, Figure 2f shows 

the difference in RQE, i.e. (RQE with RHC) - (RQE with LHC), which clearly indicates 

RQE enhancement at the chiral gold nanoparticle’s resonance. This result shows the PL 

emission is also selectively enhanced depending on the handedness of the emitted light. 

 



 

Figure 3. Polarization resolved PL emission from (a) WS2 only and (b) with a chiral 

particle on WS2 when the excitation laser is RHC light. (c) Degree of polarization (P) plot 

of WS2 with (orange circles) and without (black circles) a chiral gold nanoparticle on top.  

 

To quantitatively confirm the degree of valley contrast induced by the chiral gold 

nanoparticles, we compare pristine WS2 samples to those with nanoparticles on top. All 

measurements were carried out under ambient condition at room temperature. A yellow 

laser (594 nm, pulsed 40 MHz) is used for near-resonant excitation. An objective lens with 

NA=0.9 is used to excite the sample and collect the signal, where the pump spot size of the 

excitation beam is approximately 500 nm in diameter. The RHC polarized laser excites 

predominantly the K valley, which results in a higher RHC PL intensity, as shown in Figure 

3a. The valley-polarization contrast at room temperature is typically small or negligible due 

to the spin-flip and intervalley scattering. Next, the polarization-dependent spectra were 

measured from the WS2 monolayers integrated with the chiral gold nanoparticles, as shown 

in Figure 3b. Notably, the valley polarization is dramatically enhanced by a single chiral 

gold nanoparticle showing the strong selective response of the chiral gold nanoparticle to 

circularly polarized light. The degree of polarization, which is defined as 𝑃 =



𝑃𝐿 𝐼𝑛𝑡(𝑅𝐻𝐶) − 𝑃𝐿 𝐼𝑛𝑡 (𝐿𝐻𝐶)

𝑃𝐿 𝐼𝑛𝑡(𝑅𝐻𝐶) +𝑃𝐿 𝐼𝑛𝑡 (𝐿𝐻𝐶)
, is extracted from Figures 3a, b and plotted in Figure 3c. The graph 

shows the clearly enhanced valley polarization by the single chiral gold nanoparticle where 

the maximum degree of polarization achieves 0.45.   

 

Figure 4. Polarization resolved PL emission from (a) WS2 only and (b) with a chiral particle 

on WS2 when the excitation laser is linearly polarized. (c) Degree of polarization (P) plot 

of WS2 w/ and w/o a chiral gold nanoparticle.   

 

 Furthermore, valley-polarization dependence with linear polarization excitation is 

investigated. It is expected that the PL intensity from RHC and LHC are equal as linearly 

polarized light excites both K and K′ valleys. Figure 4a shows the comparable PL intensity 

with polarization contrast of 0.06. This value is considered to be the system error which is 

a combined effect from optics used in the setup. The WS2 monolayer-chiral gold 

nanoparticle configuration further provides the ability to distinguish valley polarization 

with linearly polarized excitation light, as shown in Figure 4b. Excitation with linear light 

is advantageous for fast screening of valley devices based on 2D materials. Degree of 

polarization is plotted in Figure 4c showing the valley contrast over 0.3 with linearly 

polarized excitation.   



 On-chip devices transporting valley information at room temperature is desirable 

for nanophotonics. Our design of placing a chemically-synthesized chiral gold nanoparticle 

on 2D material immediately solves one of the challenging problems in creating chiral 

surface- 2D monolayer configuration. Transferring TMDs on top of the chiral metasurfaces 

causes strain-induced intervalley scattering,26 which degrades valley polarization. On the 

other hand, depositing metals on TMDs also found to have a detrimental effect on the 

material quality.27 Therefore, employing chemically synthesized chiral gold nanoparticles 

suggest a robust tool for studying chiral plasmonics assisted valleytronics.  

 

CONCLUSION 

To conclude, we report on record enhancement of valley polarization contrast of ~ 45% at 

room temperature from a monolayer WS2. This is achieved by positioning a single, 

purposely engineered chiral gold nanoparticle on top of the monolayer. A single chiral 

nanoparticle enhanced valley-dependent PL contrast of a monolayer WS2 from 16% to 

45%, benefited by the large chiroptical response of a chemically synthesized nanoparticle. 

The bottom-up, water-based fabrication method provides a way to place a chiral 

nanostructure without damaging the TMDs. We conducted a photonic simulation based on 

FDTD methods to confirm the asymmetric optical response of the chiral gold nanoparticle. 

Our approach is scalable and can be utilized for a plethora of 2D materials, as well as to 

realize spatially selective valley enhancement in nanophotonic devices.  

 

 

Methods 

Chemicals. Hexadecyltrimethylammonium bromide (CTAB, 99%) was purchased from 

Alfa Aesar. L-ascorbic acid (AA, 99%), L-glutathione (L-GSH, 98%) and 

tetrachloroauric(III) trihydrate (HAuCl4·3H2O, 99.9%) were purchased from Sigma-

Aldrich. All aqueous solutions were prepared using high-purity deionized water (18.2 MΩ 

cm−1). 



Synthesis of 432 helicoid III nanoparticles. 40 nm octahedron seed nanoparticles were 

synthesized referring to a previously reported article.28 Synthesized octahedron gold seed 

nanoparticles were centrifuged (6,708 g, 150 s) twice and washed with CTAB (1 mM) 

solution. After the washing process, nanoparticles were re-dispersed in CTAB (1 mM) 

solution. In a synthesis of 432 helicoid III nanoparticles, a growth solution was prepared 

by adding 0.8 ml of CTAB (100 mM) and 0.2 ml of HAuCl4 (10 mM) into 3.95 ml of 

deionized water to form an [AuBr]- complex. Au3+ was then reduced to Au+ by the rapid 

injection of 0.475 ml of AA (100 mM) solution. The growth of chiral nanoparticles was 

initiated by injecting 5 μl of L-GSH (5 mM) followed by addition of 50 μl of octahedron 

gold seed nanoparticles into the growth solution. The growth solution was left undisturbed 

in a 30 °C bath for 2 h, and the purple solution gradually became blue with large scattering. 

After 2 h growth, the solution was centrifuged twice (1,677 g, 60 s) to remove unreacted 

reagents and was re-dispersed in CTAB (1 mM) solution for further use. 

Preparation of TMDC and TMDC-432 helicoid III nanoparticle complex. WS2/hBN 

heterostructure was prepared using a dry-transfer method with a poly(vinyl alcohol) (PVA) 

stamp.29 Both WS2 and hBN flakes were mechanically exfoliated onto 

polydimethylsiloxane (PDMS) films first, then transferred onto SiO2 substrate using PVA 

as a stamp. The PVA stamp with the above heterostructure was then released onto a marked 

thermally oxide silicon substrate, and the PVA was dissolved in warm DI water for 3 hours. 

The PVA and 2D materials were heated to 60 °C during the pick-up steps and to 90 °C for 

the final release process. The helicoid nanoparticles were drop cast onto heterostructure.  

FDTD simulation analysis. The chiral gold particle model was constructed using a 3D 

computer-aided design software (Rhinoceros 5.0), and its suitability was verified in the 

previous literature.19 The near-field and the quantum efficiency calculation were conducted 

to examine the enhancement of excitation and emission by the chiral gold particle using a 

3D vectorial Maxwell equation solver based on the finite-difference time-domain (FDTD) 

method (Lumerical FDTD 8.0). 

CD characterization. Absorption and circular dichroism (CD) spectra were obtained using 

a J-815 spectropolarimeter instrument (JASCO). For absorption and CD measurement, 

chiral gold nanoparticle sample is prepared in a solution state (dispersed in CTAB (1 mM)). 



Photoluminescence measurement. All the PL measurements were conducted at room 

temperature using a 594 nm laser as an excitation laser. An avalanche photodiode (APD) 

is used for PL mapping shown in Figure 1f, and a spectrometer (300 g/mm) is used for PL 

spectra in Figure 2 and Figure 4. The circularly polarized excitation light is created using a 

quarter waveplate and a linear polarizer while the emission from WS2 is analyzed by 

additional quarter waveplate, half waveplate, and a linear polarizer.  
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