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Abstract 

Biomedical signals–based human control systems have been studied in the biomedical field 

to improve quality of life. The muscle signal—electromyography (EMG)—is one of the main 

types of biomedical signals. The muscles are controlled by the central nervous system (CNS). 

The CNS does not directly control the activation of a large number of muscles, but it still 

shapes voluntary synergy motion. This research investigated and developed pattern-

recognition approaches for EMG signals by studying the automatic body response and 

voluntary actions to support and understand how the CNS shapes voluntary synergy motion. 

The purpose of this study is extended to investigate the possible recovery improvement of 

human rehabilitation movement for stroke patients. This thesis answer core questions: How 

the automatic body response and voluntary movements can help to improve the quality of life 

for people with disability?, How can we predict rehabilitation for post-stroke patients?, and 

how to predict the possible recovery performance ahead of three months?.  

My doctoral study contributes to knowledge both theoretically and practically. The main 

research objective was to develop computational intelligence-based EMG for upper limb 

rehabilitation applications.  

After building stable procedures for signal processing, we predicted the functional motor 

recovery of severe, moderate, and mild post-stroke patients during their rehabilitation 

programs based on support vector machine regression (SVMR). The EMG signals from the 

upper limb muscles of the patients during their initial rehabilitation sessions were used to 

train the model. In this thesis we achieved good results with error < 0.5.  

We developed the non-negative matrix factorisation (NMF) method to extract the synergy 

EMG to express some features that could support the CNS in shaping the voluntary movement 

and reducing error. After building our model and extracting the synergy, we calculated the 

Variance Accounted for Threshold (VAF) to identify the minimum number of synergies that 

adequately reconstructed the characteristics of the recorded EMGs; our result was > 95% 

VAF overall.  

We developed the multilevel mixed-effects (MME) model to predict human recovery based 

on biomarker assessment sets. We also predicted future rehabilitation for post-stroke patients 

three months ahead using time series prediction based on synergy EMG. 

In summary, this pilot study’s results promise the ability to predict the future muscle 

performance of post-stroke patients based on their current motor ability as well as this 

summary aims to be easiest for the reader to know upfront everything in the coming chapters.  
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Chapter 1: Introduction 

The successful research in the rehabilitation field needs the developing of classifiers for 

the electromyography (EMG) signal for the upper limb rehabilitation application and 

devices. 

However, there are still limitations in the clinical application of using the rehabilitation 

device in a real-time environment. Understanding the upper limb rehabilitation problems 

and the requirement to use an accurate real-time classifier could be achieved by using an 

accurate real-time environment application. This chapter first establishes the motivations 

for this doctoral research and the aspiration to discover and learn new things. It then 

presents the research contributions, questions and objectives and details the organisation 

of the thesis. The last section lists publications produced during the doctoral study, and 

then provides a chapter-by-chapter summary as per the thesis 

1.1 Background 

Many countries throughout the world have sizeable populations of disabled individuals. 

According to the 2009 Survey of Disability, Ageing and Caring, 4.4 million Australians 

have a disability (Temple, Batchelor, Hwang, Stiles, & Engel, 2021). The physical and 

mental disability percentage in 2018 was 17.7%. This was down from 18.3% in 2015 and 

18.5% in 2009 (Khairul Anam & Al-Jumaily, 2021). 5.5 million people die each year as 

a result of stroke, while 80 million survive globally from stroke each year.  Many live 

with short term stroke, long term stroke or permeant stroke  (World-heart-federation). In 

2020, disabled people in Australia used the National Disability Agreement specialist 

support at the cost of $4.2 billion (Health & Welfare, 2020). 

In the United States, 18.4% of the population, or 54.4 million individuals, are disabled 

somehow; 12% are severely disabled. The situation is similar in many countries. As a 

result, numerous attempts have been made to provide a variety of facilities to meet the 

needs of disabled people in public places, as they have the same right to live in the world 

as non-disabled people. The World Health Organization (WHO) has urged its members 

to take this issue seriously and has produced a study to assess how seriously they are 

taking it (World Health, 2001). 

Disability can be psychological, mental, or physical. Physical disabilities account for the 

majority of disabilities. Physical disabilities require more medical attention than other 

forms of disability to be resolved. Stroke represents one of the major causes of physical 
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disability’s problems and can affect the upper limbs. These problems require specialist 

forms of therapy. The type of therapy is determined based on the type of disability and 

the underlying conditions of the disability. 

The WHO defines ‘rehabilitation’ as a process that aims to allow the patient with 

disability to reach their optimal sensory, acknowledgeable, physical or social connection 

level as an ordinary person (World Health, 2001). Rehabilitation includes procedures to 

provide and/or restore function limitations. The initial care given to a stroke patient at the 

beginning of their medical care plan does not include rehabilitation activities. The 

rehabilitation activity is only introduced after the patient has received a certain level of 

medical care. Rehabilitation aims to help patients return to their everyday lives and restore 

weakness that cannot be addressed medically (Akdogan & Adli, 2011; World Health, 

2001). 

The most frequent disability problem is hand disability. This can be caused by either 

muscular dystrophy and stroke or motor function problems. Muscular dystrophy is a form 

of a physical disability that can cause hand problems that this study seeks to help resolve. 

Developing the perfect technology for hand rehabilitation is a challenging task. A robotic 

hand exoskeleton that has a hand’s functionality that helps the patient to do the exercise 

to help move their hand (Khairul Anam & Al-Jumaily, 2021). However, these prosthetic 

hands need more advanced computations and advanced technology so that their wearers 

can move and ‘feel’ with their prosthetic hands in real-time. Further, they should work in 

agreement with the patients wearing them. 

The focus of this study was to provide new methodologies to help the patients who lost 

upper limb hand mobility as a result of their stroke and improve their upper limb function 

weakness by using electromyography (EMG) and a group of muscles (Synergy EMG).  

EMG is the most important and effective signal to create a smooth connection between 

human and rehabilitation devices. Thus, the robotic hand will work as a natural extension 

by capturing the message sent from the central nervous system (CNS) to the muscle and 

then using it to drive the robot after processing the required action.  

An EMG signal that records the myoelectric signal (MS) from muscle activity has been 

widely used as a record to detect users’ movements, and the user could be a healthy or 

unhealthy person (Aidan, Hubertus, Dario, & Oskar, 2014). EMG electrodes are placed 

in the human limb, either invasively (via wires or needles inserted directly into the 

muscle) or non-invasively (recording the electrodes placed on the skin surface overlying 

the investigated muscle) (F. Hug & Dorel, 2009; Merletti & Di Torino, 1999).  
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Most people do not like to plant electrodes inside their bodies, preferring to use the 

surface electrodes instead. Nevertheless, surface electrodes have several disadvantages, 

such as crosstalk from other muscles. However, it is not easy to obtain an EMG signal 

from deeper muscles, which means it is not easy to handle MS processing using EMG. 

Another problem is that the extrinsic muscles that cause flexion, extension, abduction and 

adduction are located in the middle (flexor digitorum superficialis muscle) and deep 

(flexor digitorum profundus muscle) layers of the upper limb. Therefore, surface 

electromyography (sEMG) will not provide the precise signal from the intended muscles. 

Conversely, extension is mostly located in the superficial layer (extensor digitorum). 

Another problem is caused by the skeletal muscles of a human body; one muscle is 

responsible for moving in a specific way, either individually or in combination. Of course, 

this increases the difficulty of myoelectric control for the upper limbs. In addition, 

different testing environments may change the characteristics of EMG signals. For 

example, a trial conducted on a particular day may have a different set-up to subsequent 

trials and might thus attain different results. This raises concerns about collected EMG. 

Pattern recognition–based EMG and synergy EMG can treat various upper limb 

problems. Pattern recognition in the upper limb has been studied for years. This indicates 

support for EMG-based non-pattern recognition. The sEMG based has a big challenge to 

analyse and process the movement that requires a final clarifier which respond to EMG 

signal nature and environmental change. 

Uchida classified hand movements with an accuracy of 86% using fast Fourier transform 

features (Uchida et al., 1992). His method is not used now because it takes too much time 

to process. Similarly, Tsenov used multilayer perceptron (MLP), developing a hand 

movement recognition system using time-domain (TD) features extraction and achieving 

93% accuracy when using two EMG channels as input and 98% accuracy when using 

four EMG channels (Tsenov et al., 2006). In 2011 (Cipriani et al., 2011), Cipriani used 

k-nearest neighbour (kNN) as a classifier. kNN, linear discriminant analysis (LDA) and 

support vector machine (SVM) have been used extensively in many areas like biology 

and medicine (R. N. Khushaba, Kodagoda, Takruri, & Dissanayake, 2012; Oskoei & Hu, 

2008).  

Less mobile persons need specialised care to improve muscle strength, since muscular 

dystrophy causes them to have a very limited range of motion.  
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1.2 Problem Statement 

The purpose of this study is to investigate the possible recovery improvement of human 

rehabilitation movement for stroke patients. This research aims to find out the possible 

system or tools that can facilitate objectives based on artificial intelligent system 

judgement complementary to medical experts. Also, to help these experts identify the 

affected areas more efficiently and predict upper limb recovery more accurately rather 

than waste treatment time and cost.  

This doctoral research is based on Electromyography (EMG) muscle signal analysis. 

EMG signal will be useful to provide indication for the upper limb movement problem 

for stroke patients. We used the collected EMG signal to predict the upper limb recovery 

after stroke and to provide e specialist forms of therapy. The type of therapy is determined 

based on the type of disability and the underlying conditions of the disability. 

1.3 Scope of Work 

Our project aims to help the muscles to regularly work every time and as a real function 

to help the CNS shape voluntary action. We specifically look at people who affected by 

stroke and suffered from lost upper limb mobility as a result.  It also seeks to predict 

rehabilitation performance for post-stroke patients. 

1.4 Research Gap 

The disability to hold, gasp and manipulate, inability to feel, and express emotions, that 

are partially reflected member’s situation imposed by limbs (Demofonti, Carpino, Zollo, 

& Johnson, 2021; Ingram, Butler, Brodie, Lord, & Gandevia, 2021).  Stroke is one of a 

leading cause of short term, long term or permanent disability worldwide in upper limb 

(Boehme, Toell, Lang, Knoflach, & Kiechl, 2021). Many studied highlighted the fact that 

the upper limb functional recovery is higher in the first few days post stroke and weeks 

following that (Chinnavan, Ragupathy, & Wah, 2020; J. Lee et al., 2021). Consequently, 

the best therapy result achievement is in a short time frame followed stroke. Therefore, 

medical experts have only a brief time to value the upper limb damage to the brain and 

decide on the best course choice of therapeutic to control intervention (Stinear, Lang, 

Zeiler, & Byblow, 2020). As well as, any delay in the stroke assessment process it can 

cause a delay in the treatment course and delay the importance of early rehabilitation, and 

increase in the cost (Chowdhury, Baskar, & Bhaskar, 2021).  Thus, building a system that 

can provide advice to the expert about possible rehabilitation procedure and help them 
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for short-term, and long-term rehabilitation performance index is vital to avoid long term 

or permanent disability and shorten the rehabilitation time and reduce the cost.  

1.5 Thesis Motivation 

This thesis proposes a computational intelligence-based automated body response and 

voluntary action via EMG signal in the upper limbs to predict human rehabilitation. Upper 

limb stroke affects many people, and the main objective for this thesis applying minimum 

recording EMG signals was to predict rehabilitation performance for post-stroke patients 

on a daily basis in relation to their upcoming motor activities. Another objective was to 

predict the possible recovery performance ahead of three months’ time.  

EMG pattern recognition has had several experimental achievements (Oskoei & Hu, 

2008) but is frequently overtaken by machine-learning methods in a wide range of 

occupations. Moreover, various machine-learning techniques with different inputs have 

been studied in the context of upper limb problems. Consequently, to provide a new 

methodology that can improve the quality of the life of people with disability, a new 

pattern-recognition system is needed. It is essential to develop computational tools that 

can overcome the problem and improve the reliability of the process for automated 

rehabilitation diagnosis that operates on a quantitative measure. 

Such tools can facilitate objective mathematical judgement complementary to that of 

medical experts. It can also help these experts identify the affected areas more efficiently 

and predict upper limb recovery more accurately rather than waste treatment time and 

cost.  

1.6 Thesis Contributions 

This doctoral study contributes to knowledge both theoretically and practically. The main 

research objective was to develop computational intelligence-based EMG for upper limb 

rehabilitation applications. These contributions can solve problems that occur in real-time 

applications. To achieve this objective, several methods and algorithms were examined 

and developed with actual data and systems. The thesis presents and discusses all 

theoretical and practical contributions and briefly explains the requirements for collecting 

sEMG data signals from upper limbs.  

 

 

 

 



6 

The main research contributions of the work presented in this thesis: 

• Provide a new methodology to help the CNS shape the voluntary movement that 

can help to improve the quality of the life for needed people. This thesis 

demonstrates that EMG data collected using the manipulandum Delta technology 

can be used to construct models that aim to help the CNS to shape the voluntary 

movement.  

• Develop a pattern recognition system based on EMG data that is used to classify 

the muscle synergy to help the CNS shape the voluntary action.  

• Investigated the possibility of a machine-learning algorithm using support vector 

machine regression (SVMR). 

• Identification of two robotic biomarkers for prediction of future ability.   

Generally, Biomarkers generated from a set of activities/behaviours tasks that are 

used robotic to estimate the daily activities. In this thesis the activities measures 

are based on Functional Independence Measure (FIM) and Stroke Impairment 

Assessment Set (SIAS) biomarkers. Identification of these two biomarkers can 

prospect be used as a guide-base for the targeted exercise of rehabilitation therapy. 

• Build a predictive model for the current ability to predict the future ability to 

perform usual daily activity. This thesis explains how to use the EMG data to 

predict a set of clinical scores and motor functional recovery for post-stroke 

patients during their rehabilitation program.  

• Predict recovery performance ahead of three months. This thesis objectively aims 

to predict a set of motor function in line with estimates provided by clinical scores 

at approximately three months ahead.   

• Develop a Multilevel mixed effect model for predicting recovery performance. 

1.7 Thesis Questions 

 The main research questions and objectives are as follows.  

• How the automatic body response movements and voluntary movements can help 

to improve the quality of life for people with disability?   

• How can we predict rehabilitation for post-stroke patients based on a daily basis 

in relation to their upcoming motor activities? 

• What is the possibility to predict the possible recovery performance ahead of three 

months? 
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1.8 Thesis Objectives 

The objectives of this thesis are three main objectives:  

• The first object concerns to provide a new methodology that can improve the 

quality of life of people with disability by developing a stronger understanding of 

the CNS voluntary movement effect. It also sought to develop a pattern-

recognition system and apply it to the EMG data, which can be used to classify 

the muscle synergy to help the CNS shape voluntary action. This object is 

achieved by using Dual Manipulandum robot technology to quantify a range of 

behavioural capabilities of individuals, providing a rich set of EMG data then use 

it in a computational model. This objective is discussed in Chapter 4. 

• Investigate the possibility of a machine-learning algorithm using support vector 

machine regression (SVMR) to predict motor functional recovery for post-stroke 

patients during their rehabilitation program. This is discussed in Chapter 5. 

• Predict rehabilitation for post-stroke patients by developing a multilevel mixed-

effects (MME) model, predicting recovery performance ahead of three months’ 

time based on time series prediction and then comparing the results with the 

Functional Independence Measure (FIM) and Stroke Impairment Assessment Set 

(SIAS) biomarkers. By providing a rich set of Biomarkers of sensory function and 

motor function, we use the data set in computational models to estimate present 

and future clinical score to predict the ability for participants post stroke to 

perform daily rehabilitation activities following stroke. We sought to motivate the 

patients to complete their designed rehabilitation programs and to help their 

therapists assist them by executing the proper rehabilitation program. To achieve 

this objective, data from the biomarker set were used for assessment of motor 

function and sensory function. This is discussed in Chapter 6.  

1.9 The Organisation of the Thesis 

The thesis contains eight chapters plus an appendix and references. The chapters proceed 

as follows.   

Chapter 1: Introduction. 

This chapter introduces the study background, scop of works, this thesis motivations and 

outlines this thesis contributions, questions, and objectives.   

Chapter 2: Literature Review 

This chapter reviews the literature on upper limb anatomy, stroke, and the EMG signal. 
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Chapter 3: EMG and Synergy EMG Signal for Upper Limbs 

This chapter gives background on the EMG signal for upper limbs and synergy EMG. 

Chapter 4: Shape Voluntary Movement Based on EMG Using Pattern Recognition 

and CNMF 

This chapter details how automatic body responses could be used as a reference in the 

body movement to familiarise the voluntary efforts to help the CNS system shape 

voluntary movements and develop rehabilitation performance. 

Chapter 5: Upper Limb Recovery Prediction After Stroke Rehabilitation Based on 

the Regression Method 

This chapter explains how we motivated patients to complete the designed rehabilitation 

program or changed their rehabilitation programs, with assistance from their therapists, 

depending on the predictions that we were able to make about the patients’ recovery. We 

investigated the possibility of a machine-learning algorithm using the SVM to predict the 

motor functional recovery of post-stroke patients during their rehabilitation program. 

Chapter 6: Upper Limb Recovery Prediction Based on MME EMG Synergy and 

Biomarker Value 

This chapter details our use of a robot and clinical biomarkers associated with upper limb 

function quantified in the first few days post-stroke to estimate the effectiveness of 

rehabilitation recovery. 

It also illustrates how to predict rehabilitation for post-stroke patients by developing the 

MME model using robot-based biomarkers in both the FIM and SIAS for EMG signals. 

Finally, it presents the synergy of the affected and non-affected sides of the body for post-

stroke patients that can help predict their ability to recover based on their performance of 

daily activity rehabilitations, and that represents the level of recovery and improvement 

potential for a given rehabilitation technique. 

Chapter 7: Thesis Summary, Conclusion and Future Study 

This chapter concludes the thesis and presents future research directions.  
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1.10 Definition of Terms 

• Electromyogram: is a technique that used to collect the EMG data from the 

integration of action potentials spreading through muscular fibres under an 

electrode. It recorded the bioelectrical muscle activity that generated from the 

muscle fibres (McManus et al., 2021). It can detect the wave EMG data using the 

needle EMG or surface EMG along muscle fibre (Grabow, Block, Kelekis, 

Filippiadis, & Murphy, 2020).  

• Stroke: These days, stroke is the commonly caused of human disability 

worldwide. It is damage in central nervous system function that increase the upper 

limb function problem. It cause loss of sensation, movements and difficulties 

surrounding daily living activities (Zhou et al., 2021).   

• Electromyography (EMG): is the essential biological signal in the human body 

that used in biomedical field in hand pattern recognition and rehabilitation system. 

It is used to classify, predict and study the human motor muscles (A. A. Al-

Jumaily, Matin, & Hoshyar, 2021; Bi, Feleke, & Guan, 2019). It can be detected 

from the muscle fibres using needle or surface technique. EMG signal been 

extensively used in robotic assistive for stroke and hand rehabilitation.  

• Synergy EMG: It is the recorded EMG signal of a group of muscles that worked 

together to perform the human movement as one muscle.  It is provide a high level 

to control the neural information (Xiong, Zhang, Zhao, Chu, & Zhao, 2021).  

• Manipulandum Delta 3. robot: Is a machine that integrating a hardware system 

and interface software system that appear in the manipulandum screen Infront of 

the user. The software system responds to the user’s action by moving hand a 

specific movement with an organised resistance. The resistance sometimes from 

the user or from the manipulandum, which depends on the experiment (Neibling, 

Jackson, Hayward, & Barker, 2021).   
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1.11 Publications 

Papers and presentations published during my doctoral studies are as follows: 

Journal: 

• Musa, G.M.B., Al-Jumaily, A., Alnajjar, F. and Shimoda, S., 2017. Analyze the 

human movements to help CNS to shape the synergy using CNMF and pattern 

recognition. Procedia Computer Science, 105, pp.170-176 (Bani Musa, Al-

Jumaily, Alnajjar, & Shimoda, 2017). 

• New journal paper going to be submitted. 

 

Conference: 

• M. Bani Musa, Ghada & Alnajjar, Fady & Al-Jumaily, Adel & Shimoda, Shingo. 

(2019). Upper Limb Recovery Prediction After Stroke Rehabilitation Based on 

Regression Method: Proceedings of the 4th International Conference on 

NeuroRehabilitation (ICNR2018), October 16-20, 2018, Pisa, Italy. 10.1007/978-

3-030-01845-0_76 (Bani Musa, Alnajjar, Al-Jumaily, & Shimoda, 2019).  
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Chapter 2: Literature Review  

This chapter reviews the literature on upper limb anatomy to understand the structure of 

the hand rehabilitation device and the upper limb muscles involved in rehabilitation 

movement. The chapter also introduce the stroke, different types of strokes, and the main 

stroke statistic. At the end of this chapter, we will also present basic information about 

EMG. 

2.1 The Upper Limb Anatomy 

The upper limb is the most freely moveable area in the body. The upper limb structurally 

and functionally is complex. To understand the upper limb anatomy, it is necessary to 

study the upper limb bones and muscles to determine how rehabilitation devices are 

designed. The following subsections discuss the upper limb bones, joints and muscles. 

2.1.1 The Upper Limb Bones 

The upper limb bones are found in the arm, forearm 

and hand (Etrusco et al., 2017; Forro & Lowe, 2019). 

The single upper bone arm is called the humerus and 

is located between the shoulder and the mid joint of 

the hand. The forearm bones comprise the ulna and 

radius bones; they are located between the mid joint 

of the hand and the wrist joint. The hand, which is 

located after the wrist joint, includes carpal bones, 

metacarpal bones and phalanx bones, which contain 

eight bones, five bones and 14 bones, respectively 

(Marieb & Hoehn, 2010; Nordin, 2020), as shown in 

Figure 2.1. 

2.1.2 The Upper Limb Muscles 

The upper limb muscles are divided into two main types: extrinsic muscles and intrinsic 

muscles (Dawson-Amoah & Varacallo, 2019). The extrinsic muscles are located outside 

the hand and comprise the arm and forearm muscles. The extrinsic muscles drive the 

upper limb. These muscles generate an electrical signal to generate muscle movement, 

which is called an EMG signal. The strength of the electrical current generated by the 

muscle varies depending on the muscle strength. To measure the electrical current from 

 
Figure 2.1: Upper Limb Bones (Brack & 

Amalu, 2021)   
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the biomedical signal and the muscle activities, relaxations, performance and recovery 

prediction, the filtered EMG signal has been used in prior studies (Piskorowski, 2013).  

The intrinsic muscles are located inside the hand and perform independent action. The 

coordination action from the inside upper limb muscles and the outside upper limb 

muscles are accomplished by the dextrous movement of the upper limb. The extrinsic 

muscles control the flexion and extension of muscle movement  (Heo, Gu, Lee, Rhee, & 

Kim, 2012; Schwarz, 1955).  

Figure 2.2 represent the upper limb muscles. Figure 2.2 (a) represent the side view of the 

upper limb of the body. Figure 2.2 (b) shows the back view of the upper limb muscle. 

Figure 2.2 (c) shows the front views of the upper limb. The flexor and extensor are 

classified as extrinsic muscles.  

 

 
(B) Back view of the upper limb 

 
(A) Side view of the upper limb (C) Front view of the upper limb 

 
Figure 2.2: Upper Limb Muscles ((A) Side View, (B) Back View and (C) Front View) (Dawson-Amoah & 

Varacallo, 2019; Etrusco et al., 2017) 

The clavicle and scapula link the upper limb appendicular part of the Skelton to the trunk 

through the sternoclavicular joint (Etrusco et al., 2017). The muscle that gives roundness 

to the shoulders is called the deltoid and is made from three motor fibres: the clavicular 

part, acromial part and scapular part (Etrusco et al., 2017). 
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Figure 2.3 shows the arm and forearm muscles that determine and controlling flexor and 

extensor movement (Marieb & Hoehn, 2010).   

 

 

 

 
Figure 2.3: The Arm and Forearm Muscles (Pale, Atzori, Muller, Muller, & Scano, 2020) 
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2.1.3 The Upper Limb Muscles Anatomy 

Structurally, the upper limb contains a wide range of anatomical variant. It can relate to 

any body movements. There are many different parts in the upper limb (Orellana-Donoso 

et al., 2021).  The first part is the arm region, which features the biceps brachii, brachialis 

and the triceps brachii. The second part is the forearm, which features the brachioradialis, 

anconeus, pronator teres and supinator. The biceps brachii, brachialis and brachioradialis 

are the forearm flexion muscles. The triceps brachii and anconeus are the extensors. The 

following muscles are the muscles that we collected the EMG data from in this thesis:  

Deltoid anterior: deltoid started from the spine of the scapula. It is lateral third of the 

clavicle. The deltoid muscle and the rotator cuff (RC) functionally working together as 

one unit to enable the shoulder movements.  The shoulder active motion can raises the 

arm from 0o to 180o degree (Elzanie & Varacallo, 2022; Hecker et al., 2021). 

Pectoralis major: pectoralis major muscle is located in the front of the thorax and very 

important to protect the axillary cavity. It performs several upper limb extremity 

movements. It help the shoulder to do the contraction, flexion, rotation, and adduction on 

a horizontal plane (Lulic-Kuryllo, Negro, Jiang, & Dickerson, 2022). 

Biceps brachii: The biceps brachialis muscle originates with two origins: long head from 

supraglenoid tubercle of the scapula bone and short head from the coracoid process of the 

scapula. It is very important in upper limb flexor. Any weakness of biceps causes loss of 

strength in the whole upper limb. (Enix, Scali, Sudkamp, & Keating, 2021). 

Brachialis: This muscle located in the forearm. It is superficial muscle. This muscle 

primarily helps the forearm to flexes. It is very important in supinate or pronate depends 

on the forearm rotation. It is the largest muscle in the forearm. It connect the distal end of 

the upper limb bone into the distal end of the forearm bone (Lung, Ekblad, & Bisogno, 

2021).  

Triceps brachii: The triceps brachii is the larger muscle on the back part of the upper arm. 

It is formed from three parts (related to the name: tri mean three and cep mean head): the 

long head, lateral head, and medial head. This muscle is very important to extension the 

elbow joint (Tiwana, Sinkler, & Bordoni, 2019). 



15 

Latissimus dorsi: It is flat muscle, and it forms the majority of the lower posterior thoracic 

cavity. It is very important muscle. It takes into account a muscle of contributing to 

thoracic and brachial motion. It is the most important internal rotator muscle. It is the 

most important for the extension (spin-extension), flexion(lateral flexion), and rotation of 

the shoulder (Jeno & Varacallo, 2021). 

Teres major:  this muscle is small muscle. It is the inner shoulder muscle. It is extended 

from lateral edge of the scapula.  It is very important to provide the shoulder with the,  

extension, flexion, and internal rotation (Juneja & Hubbard, 2021). 

Infraspinatus: Infraspinatus is a thick muscle. It is look like triangular in the shape. It is 

occupying from the infraspinous fossa of the scapula shoulder. Mainly, it is important in 

external and lateral rotation of the shoulder joint (Williams, Sinkler, & Obremskey, 

2018).  

Supraspinatus: Subscapularis is the large and stronger muscle. It is triangular shape. It is 

very important to help the humaerus bone to rotate internally. It is work together as one 

unit with supraspinatus, infraspinatus, and teres minor muscles to compose the rotator 

cuff apparatus (Aguirre, Mudreac, & Kiel, 2021). 
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2.2 Muscle Physiology  

A muscle contains a number of motor units (MUs), depending on its size. The MU is 

made up of a motor neuron and muscle fibres in the spinal cord (Daube, 2006). The MU 

is the smallest functional unit that is responsible for neural control of the muscle 

(Kleissen, Buurke, Harlaar, & Zilvold, 1998). It controls the muscle movements through 

upper motor neurons (Z. Chen, Fan, Li, Yuan, & Xu, 2020). It is a laborious but 

indispensable keystone of EMG diagnosis (Andrade, Nasuto, & Kyberd, 2007). The 

tissues support electrical conductivity in the muscle fibres. At the same time, this provides 

depolarisation of the fibres. The electrical signal generated from the muscle in the same 

MUs is the EMG signal (the EMG signal is discussed in more detail in this chapter). 

Motor neurons has long axons. Which work as part of a nerve cells (M. Chen, Bashford, 

& Zhou, 2022). Each axon connected to different muscle fibres on the same endplate. 

Usually, the motor neurons located in the middle of the fibre to support group of muscle 

fibres. It communicate sensory with muscles, skin tissue, and all body organs (A. Al-

Jumaily & Olivares, 2009). Figure 2.4, Figure 2.5 and Figure 2. 6 shows MU in the CNS, 

the MU structure, and the motor unit axons, respectively.  

As depicted in Figure 2.4, an electrical impulse from the muscle fibres travels down the 

axon and arrives at the end of the motor is known as an endplate, because the CNS 

activates the MU. Before impulse arrival, neurotransmitters appear that cause 

depolarisation waves to propagate along both ends of muscle fibres.  

 
Figure 2.4: The MU Control System (Atkinson, 2018) 



17 

 
Figure 2.5 represents the MU schematic and has two MUs. The number of anterior horn 

cells or the axons controlling the muscle determines the number of MUs (Daube, 2006; 

Moritani, Stegeman, & Merletti, 2004). The number of MUs in each muscle may range 

from 100 to 1,000 or more for small and large muscles, respectively (Moritani et al., 

2004). The amplitude of the EMG signal depends on the number of active MUs, their size 

and the relative position of the recording surface electrode (Farina, Merletti, & Enoka, 

2004).  

 
Figure 2.5: MU Structure (Daube, 2006) 

 

Figure 2. 6: Axon of Motor Neuron and Muscle Fibres (Heckman & Enoka, 
2004). 
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Figure 2. 6, shows the spinal cord and the axon of motor neuron and muscle fibre. The 

motor neuron and axon and nerve are extended from the middle of the spinal cord to the 

muscle. It sends motor neuron axons to the muscle fibres. Each muscle control hundreds 

of motor neurons. After the central nervous system activates the motor unit, an electrical 

impulse signal of the muscle fibres travels down on the axon and arrives to the end of the 

motor. This signal collected from the muscle via an electric needle(injection), surface 

electrode that connected to the skin surface, or wire sensors connected to the muscle tissue 

(Lee, Shin, Jang, Jeong, & Ahn, 2021).  

There is an electrical effect on an electrode and a signal observed by this electrode. This 

is called the motor unit action potential (MUAP). The MUAP is the EMG signal source. 

It contains important information such as muscle force, muscle impedance and human 

arm motion (Du, Lin, Shyu, & Chen, 2010). MUAP was developed to investigate the 

amplitude and frequency spectrum contributions of MUs. The electrode could be located 

at various depths within the muscle or at the top of the skin surface to detect the EMG 

signal (Alkan & Gunay, 2012).  

The EMG signal reading affected by the stroke. Usually, stroke divided to two damage 

zones: first zone is the core zone, which is the most severe damage cells will cause 

damage in muscle tissues with neurons die, brain damage. The second damage zone is 

surface region damage which is mildly affected the muscle tissue. Usually in the surface 

zone, the cells remain alive post stroke for several hours (Rulaningtyas et al., 2021).   

Next, we will talk more about the stroke, stroke types, stroke statistics, followed by 

addressing the EMG signal. 

2.3 Stroke 

Stroke is damage in central nervous system function that increase the human body 

function problem by intermission of blood-flowing to the brain. When the blood does not 

flow to the brain it causes shortage of oxygen then death within 60s -90 seconds. It causes 

loss of sensation, movements and difficulties surrounding daily living activities. 

Currently, stroke is the major commonly caused of human disability worldwide. Globally, 

each year more than 17 million people (different ages) are predictable to suffer from 

stroke. 80% of the stroke can cause impairment in the upper limb. 50% of the post stroke 

patients can recover the upper limb daily activities and 50% could remain the same or 

worse in upper limb function (Bernhardt & Mehrholz, 2019; Zhou et al., 2021).  
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In united states, stroke increasingly spread in non-elderly people (for ages less than 65 

years old). 150000 cases death every year as a result of stroke. The hospitalization period 

in United states it cost around $30 billion each year. (R. T. Nguyen, Khan, Valero-

Elizondo, Cainzos-Achirica, & Nasir, 2022; Tsao et al., 2022). 13000 cases death every 

year because of stroke in Canada. The hospitalization period in Canada cost exceeds $2.5 

billion each year. 60,000 stroke cases were occurred in Australia in 2011 (Aung & Al-

Jumaily, 2012).The hospitalization post stroke needs a rehabilitation process from a 

health care system as well as that increase the cost. In Chapter 6, we highlighted this 

problem and I find a solution to help physicians to do the right rehabilitation recovery to 

reduce the cost.  Many studies predicted that by 2030, for United states, Canada, European 

countries and Australia, the stroke cases will increase (Olié et al., 2022).   

The recovery from the stroke depends on the stroke effectiveness/strength on the human 

body. The stroke strength (sever, moderate or mild) to the brain can be different depends 

on the size and location of the injury.  It can affect a wide range of sensory, gripping, or 

motor functions (Antonis, 2021). The hospitalization length post stroke in Canada is 17 

days. Which is longer compared to other diseases, that depends on the stroke strength as 

well. 

There are two types of strokes that can affect the human body: Ischemic stroke and 

Hemorrhagic stroke (Hakoupian et al., 2021). Ischemic stroke is stop blood flowing to 

the part of brain due to atherosclerosis, embolism in any intravascular solid or vessel 

disease. Approximately 85-87% of all stroke are ischemic stroke (Mendelson & 

Prabhakaran, 2021).  

Hemorrhagic stroke happened as a result of break of blood vessels. It accounts for 13%-

15% of the stroke cases. This stroke damage the brain tissue by blood clots due to 

coagulopathy, loss of blood pressure control because of high blood pressure, or surgical 

hematoma  (Bahader et al., 2021; Montaño, Hanley, & Hemphill III, 2021). Which cause 

a risk of rapid rice pressure in local tissue which cause cell death.   

Many numbers of risk factors that linked to the stroke. It is divided to two main risk 

factors: non-intervention (non-modified) and intervention (modified). Non-intervention 

could be but not limited to: age, gender, or genetic. The invention risk factors which 

includes: high blood pressure, cholesterol, smoking, and diabetes, im-proper lifestyle 

(Guo et al., 2022).  

Since upper limb daily activities recovery is the most important and challenging post 

stroke, there is an essential requirement to study EMG signal extensively as it is the most 
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important signal in driving the rehabilitation and using assistive robotic for stroke. Next, 

we will highlight the EMG signal and in chapter 6 will explain experiment and 

methodology, result related to human stroke.   

2.4 EMG Signal 

Biomedical signals have been studied to develop the human movement control system 

and to improve the quality of life. They are a combination of electrical signals that occur 

in any organ of the body. EMG (or MS), electroencephalography (EEG), 

electrooculogram (EOG) and electrocardiogram (ECG) are examples of biomedical 

signals, it used to diagnosis of muscle activity, brain diseases, heart diseases, and more 

related to the body (De Luca, 1997; Shahid, Walker, Lyons, Byrne, & Nene, 2005).        

The EMG signal is one of the main types of biomedical signals. It is controlled by the 

nervous system and depends on the physiography of muscles, which help to control those 

muscles. The EMG signal has been widely studied, used and applied. It is widely used in 

electrophysiological research. EMG as a bio-signal is used to record muscle activities, 

amplitude, phase, features and more. Usually, the EMG data generated during muscles 

activities or relaxation. Mainly, the EMG used to detect and analyze the myoelectric 

activities of muscles (Khairul Anam, Rosyadi, Sujanarko, & Al-Jumaily, 2017; De Luca, 

1997). There are many types of EMG signal, including sEMG, kinesiology 

electromyography (kEMG) and neurological electromyography (nEMG). While sEMG is 

an essential tool for clinical analysis, kEMG is used to study muscle movements, and 

nEMG is used to study the neuromuscular system and more. sEMG is generated using a 

model constructed to closely resemble the physiology and morphology of skeletal muscle, 

combined with line source models of commonly used electrodes and positioned in a way 

that is consistent with clinical studies (Hamilton-Wright, Stashuk, Power, amp, & Energy 

Society General, 2005). Next, we explain the EMG background, definition and process 

in details.  

2.4.1 EMG Signal Background 

In the last few decades, the EMG signal has had a respectable volume of efforts to study 

it for different aims. In 1666, Francesco Radi was the first to begin investigating the EMG 

deeply. Once he had assembled good documentation, efforts to study the EMG signal 

increased (Kleissen et al., 1998).  

In 1792, Galvani’s publication ‘De Viribus Electricitatis in Motu Muscular 

Commentarius’ showed that muscle contractions could cause electricity (Galvani, 1792). 
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Other studies indicated that the EMG could generate electricity and that this electricity 

could initiate muscle contractions (Kleissen et al., 1998). From 1890 to the 1950s, 

researchers discovered that ‘it was possible to record electrical activities during a 

voluntary muscle contraction’ (Cram, 2005).  

Following this, researchers started to study the EMG signal more widely in an effort to 

better understand it. Some scientist researchers started to develop clinical methods, such 

as scanning different types of muscles using an EMG sensing device (Cram, 2005).   

Few years later, researchers have provided a respectable understanding of sEMG. It is 

increasingly used for recording the information from muscles, where intramuscular 

electrodes are used for deep muscles only. It provides easy access to physiological 

processes that cause the muscle to generate forces and produce movements. There are 

many applications for using EMG signals. They can be applied in human-computer 

interaction systems and used for neurological and neuromuscular problems, 

biomechanics, motor control, neuromuscular physiology, movement disorders, postural 

control and physical therapy (Md R. Ahsan, Ibrahimy, & Khalifa, 2011). Next, we define 

the EMG and explain the EMG signal in detail, including how to process it and how to 

detect its information.  

2.4.2 EMG Definition and Characteristics 

2.4.2.1 EMG Definition 

EMG is a signal for evaluating and recording muscle activation signals. It has the 

information about muscles achievements’. It is measured using an instrument called an 

electromyogram (Harivardhagini, 2021). The EMG signal is useful for both clinical 

application and the human-machine interface. It is applied in many areas of muscle 

research and patient care, such as human movement sciences, rehabilitation, ergonomics, 

sports and clinical decision-making (Hewson, Hogrel, Langeron, & Duchêne, 2003; 

Staudenmann, Roeleveld, Stegeman, & van Dieen, 2010).  

EMG is commonly used in the study of muscle activity since it provides the only non-

invasive index of the level of muscle activation (Y. Fang, Zhu, & Liu, 2013; Hewson et 

al., 2003; Lapatki, Van Dijk, Jonas, Zwarts, & Stegeman, 2004).  

EMG detects the electrical potential generated by muscle cells when these cells contract 

and rest. In our research, we collected information from the upper limb muscles by 

connecting an electrode to the surface of the following muscles: deltoid anterior, 

pectoralis major, biceps brachii, brachialis, triceps brachii, latissimus dorsi, teres major, 
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infraspinatus and supraspinatus, as shown in Figure 2.2. These muscles gave important 

information, such as muscle force, muscle impedance, and human hand and arm motion 

(Du et al., 2010). This process of placing the electrodes on the muscle surface is called 

sEMG, which is mainly used to analyse the myoelectric activity of each muscle (Onishi 

et al., 2000).  

Figure 2.6 depicts the electrode connected to the muscle’s surface to collect the 

information. 

 
Figure 2.7: EMG Signal Collecting Process (Stratton, 2015) 

 

The information extracted from the EMG (usually using two electrodes connected to the 

muscle’s surface that record the EMG data to detect activity at a single MU) is often 

considered a global measure of MU activity (Farina et al., 2004). Moreover, the extracted 

information from the EMG is different each time  (Christie, Greig Inglis, Kamen, & 

Gabriel, 2009). Next, we explain EMG characteristics.  

 



23 

2.4.2.2 EMG Signal Characteristics  

The EMG signal is random. The amplitude range can be between 0 mV to 10 mV (peak 

to peak) or 0 mV to 1.5 mV (root 

mean square [RMS]).  

Figure 2.7 shows the amplitude. It 

is defined as the time-varying 

standard deviation of the EMG (De 

Luca, 1997). The frequency range 

is between 0 and 500 Hz, and the 

noise energy range is between 50 

and 150 Hz (Clancy, Morin, & 

Merletti, 2002; Uchiyama, Lee, 

Kazama, Minagawa, & Tsurumaki, 2015).  

EMG signals make noise while travelling through different tissues. This noise is an 

electrical signal that will affect the EMG signals. It is inherent to electronics equipment 

and cannot be eliminated, but high-quality electronic components can reduce it. Other 

noises that may affect the EMG signal are motion artefacts. These could be caused by the 

electrode interface or the cable and can lead to irregularities in the data. This noise can be 

reduced by proper electronic circuitry design and setup. The ambient noise and inherent 

instability of the signal can also affect the EMG signal. 

A high-quality EMG signal can be achieved by gathering the highest amount of quality 

information from the EMG signal as possible in the signal-to-noise ratio. At the same 

time, the distortion of the EMG signal must be as minimal as possible, which can be done 

by applying the necessary filtration. The next section explains the EMG signal collection 

technique. 

2.4.3 EMG Signal Detection 

Generally, the EMG signal is an electrical signal generated by the motor neuron and 

recorded by the electrodes. It is useful because it offers insight into muscle activity and, 

therefore, into muscle force production during functional movements (Staudenmann et 

al.). The human skeletal, muscular system is mainly responsible for providing the 

required forces to perform various actions to increase the force level (Md R. Ahsan et al., 

2011; Md Rezwanul Ahsan, Ibrahimy, Khalifa, & th International Conference on, 2011; 

Subasi, 2013). 

 
Figure 2.8: The EMG Signal Time and Frequency Spectrum (De 

Luca, 1997) 
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EMG recording can be performed in two different ways: invasively (wires or needles 

inserted directly into the muscle) (Merletti & Di Torino, 1999; Rossetti, Kateb, & Cicoira, 

2021) or non-invasively (recording electrodes that are placed on the skin surface over the 

investigated muscle) (F. Hug & Dorel, 2009). The surface electrode records the electrical 

activity directly underneath the electrode placed on the skin over the muscle while the 

muscular needle records the EMG signal from the inner muscle tissue (Hewson et al., 

2003; Stratton, 2015). Hargrove (Hargrove, Englehart, & Hudgins, 2007) shows that 

collecting the EMG data from the skin surface and collecting it from the inner muscle 

tissue both take around the same time, but with wire electrodes, the volume of muscle 

from which the signal is recorded is relatively small (a few cubic millimetres) and may 

not represent the total muscle mass involved in the exercise (F. Hug & Dorel). 

Conversely, surface EMG provides information from a large mass of muscle tissue and 

thus is more directly correlated to the mechanical outcome. However, various factors can 

influence the signal and must be taken into consideration for proper interpretation (F. Hug 

& Dorel). Generally, a basic assumption for sEMG is that the recorded potentials originate 

from the muscle directly under the electrodes (van Vugt & van Dijk). The non-

physiological factor can influence the signal in the form of crosstalk and motion artefacts. 

Even if motion artefacts can be eliminated by carefully fixing all the cables and by using 

pre-amplifiers close to the electrode, avoiding crosstalk is more difficult. This thesis 

considers the sEMG signal.  

The sEMG signal represents the sum of the electrical signals made by individual MUAPs 

as detected by surface electrodes (Hewson et al., 2003; Stratton, 2015). Accordingly, 

sEMG for the non-invasive assessment of muscles (SENIAM) provides recommendations 

for the correct electrode placement over the targeted muscle (Hermens et al., 1999). 

SENIAM contributed to the development of hardware for signal detection and software 

for how to extract the information (Hermens et al., 1999; F. Hug & Dorel, 2009; Merletti 

& Farina, 2008). Figure 2.6 and Figure 2.8 show the position of the surface electrode that 

connects to the muscles to collect the data.  

While collected the data, some noises may occur, that could be caused by the electrode–

skin interface. This noise consisted of voltage and current noise. Some noise will always 

be removed from the signal using a filter, such as a high-pass filter (15–28 Hz) (De Luca, 

Donald Gilmore, Kuznetsov, & Roy, 2010). To detect a good EMG signal with less noise, 

the signal is segmented to generate possible MUAP waveforms. The threshold (TThr) 

eliminates the areas of low activity and identifies the peaks of the signal, which depends 
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on the maximum discrete value of the EMG signal and the mean absolute value (MAV)  

( 1 𝐿𝐿 ∑ |𝑋𝑋𝑖𝑖|𝐿𝐿
𝑖𝑖=1⁄  ) of the EMG signal, where Xi are the discrete values of the EMG signal 

and L the number of samples.  

The following equation was used to calculate the threshold (T): 

𝐼𝐼𝐼𝐼 𝑚𝑚𝑚𝑚𝑚𝑚{𝑋𝑋𝑖𝑖}  >  
30
𝐿𝐿
�|𝑋𝑋𝑖𝑖|,
𝐿𝐿

𝑖𝑖=1

   𝑇𝑇ℎ𝑒𝑒𝑒𝑒 𝑇𝑇 =  
5
𝐿𝐿
�|𝑋𝑋𝑖𝑖|
𝐿𝐿

𝑖𝑖=1

        , 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  𝑇𝑇 = 𝑚𝑚𝑚𝑚𝑚𝑚
{𝑋𝑋𝑖𝑖}

5
  

 
2.1 
 

The T calculated for the EMG segmentation was introduced to provide a wide range of 

amplitude variations in the recorded signal (Christodoulou & Pattichis, 1999; Katsis, 

Goletsis, Likas, Fotiadis, & Sarmas, 2006). Next, we explain EMG processing in more 

detail. 

2.4.4 EMG Processing 

In our research, we connected electrodes to the top of the upper limb muscle surface, as 

shown in Figure 2.8.   

 

Figure 2.9: Electrode Connected Points 

After connecting the electrodes to the electromyogram, we started collecting the data. To 

keep the muscle producing a good EMG signal, two techniques can control muscle power 

higher levels: 

1. The number of active MUs in one muscle can be changed.  

2. Each active MU induces MUAPs, which causes the motor unit to fire. The 

electrodes pick up MUAPs from more than one active MU. The sum of MUAPs 

on the electrode is the EMG signal, which is induced by the individual units. Any 

increase in the MU’s activity will cause a greater sum and stronger EMG signal.  

3. The firing frequency of each active MU can be changed. 

4. If the MUAPs are generated with an increasing force level per unit of time, it will 

cause a greater sum and stronger EMG signal. The EMG signal is a good indicator 

of the level of muscle activation and can help control muscle movements 

(Kleissen et al., 1998). 

In the following subsections, we discuss the EMG process in detail. 
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2.4.4.1 Motor Unit (MU) Recruitment And Firing Behaviour 

To obtain the required muscle force, the MU recruitment and firing coding rate vary 

across different muscle types. The MU recruitment and firing behaviour in the muscle has 

to be known in a model for the interference pattern; this model is known as Henneman’s 

size principle (D. F. Stegeman, Blok, Hermens, & Roeleveld, 2000). Usually, a larger 

MU value means that stronger muscle is required to do the following: 

1. understand the data and process it 

2. specify and analyse the hand movement’s speed and direction. 

For example: we connected the surface electrode to stronger upper limb muscles 

depending on the specific tasks those muscles would be attempted to carry out so that we 

could analyse the hand movement. Generally, this process is a challenge for sEMG 

analysis because it estimates the available number of MU to understand and analyse the 

rehabilitation movement (Roeleveld, Stegeman, Vingerhoets, & Oosterom, 1997; D. F. 

Stegeman et al., 2000). Every change in the MU firing frequency will affect mechanical 

output for the muscles. MU firing processes can be described as follows (D. F. Stegeman 

et al., 2000): 

1. inter-pulse interval (IPI) statistics distribution of a single MU 

2. IPI statistics distribution between different active MUs 

3. synchronisation of the firing moments of the different MUs. 

2.4.4.1.1 Single MU Inter-Pulse Interval (IPI) 

To describe the MU firing process in terms of successive IPI is to look at each MU as 

independent sample of a variable value. Person and Kudina (Person & Kudina, 1972) and 

Kranz and Baumgartner (Kranz & Baumgartner, 1974) found that the IPI histograms were 

a little skewed at a low firing rate and became identical at higher firing rates. 

2.4.4.1.2 IPI Across Different MUs  

The MU firing rate will increase with increasing force. The IPI within a single MUAP 

train varies. Usually, MUs at a higher force level present a higher initial firing rate. 

Usually, firing at a lower rate requires MUs at the same force level (D. F. Stegeman et 

al., 2000). 

2.4.4.1.3 MU Synchronisation 

The synchronisation of the firing between different MUs can be performed by generating 

the firing instants of a first train and then linking the firing instants of a consecutive train 
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to them. Some researchers have used a Gaussian distribution to model firing 

synchronicity to decrease the median frequency considerably depending on the number 

of MUs that have synchronised activity and the extent to which they are synchronised (D. 

F. Stegeman et al., 2000). 

2.4.4.2 EMG Composition  

A MU is an alpha motor neuron and controls the fibres. MUAP is the sum of the muscle 

fibre action potential (MFAP). During MUAP detection, the waveform travels along with 

a number of fibres inside the muscles of the MU, which are known as the MFAPi(t). The 

MUAP waveform shape differs because of the variation in the delay of the fibre potential 

of the surface electrode connected to the muscle fibres. The MUs generate MUAPs by 

spending time in inter-discharge intervals. A sequence of MUAP is called the motor unit 

action potential train (MUAPT). The large MU will produce large MUAPs (Stashuk, 

2001). The diameter of the fibre will determine the MFAPi(t) benefit. A larger fibre 

diameter size means a larger MFAP and more benefit. The MFAP location is relative to 

the surface electrode placement (Stashuk, 2001). Suppose MUAPj(t) is the potential 

detected when the jth MU fires. 
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗(𝑡𝑡) = �𝑀𝑀𝐼𝐼𝑀𝑀𝑀𝑀𝑖𝑖(𝑡𝑡 − 𝜏𝜏𝑖𝑖)𝑒𝑒𝑖𝑖

𝑁𝑁𝑗𝑗
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𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒: 

⎩
⎪
⎨

⎪
⎧

𝑁𝑁𝑗𝑗:𝑒𝑒𝑛𝑛𝑚𝑚𝑛𝑛𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜 𝑀𝑀𝑀𝑀 𝑜𝑜𝑓𝑓𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒
𝑗𝑗: 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑓𝑓𝑠𝑠𝑒𝑒 𝑜𝑜𝑜𝑜 𝑀𝑀𝑀𝑀

𝜏𝜏𝑖𝑖: 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑒𝑒𝑚𝑚𝑡𝑡𝑜𝑜𝑒𝑒𝑚𝑚𝑒𝑒 𝑜𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝑡𝑡 𝑜𝑜𝑜𝑜 𝑀𝑀𝐼𝐼𝑀𝑀𝑀𝑀𝑖𝑖(𝑡𝑡)
𝑓𝑓𝑡𝑡ℎ : 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑛𝑛𝑚𝑚𝑛𝑛𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜 𝑜𝑜𝑓𝑓𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑒𝑒 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒𝑜𝑜𝑚𝑚𝑛𝑛𝑒𝑒𝑛𝑛𝑛𝑛𝑒𝑒𝑚𝑚𝑒𝑒 𝑗𝑗𝑛𝑛𝑒𝑒𝑛𝑛𝑡𝑡𝑓𝑓𝑜𝑜𝑒𝑒′𝑒𝑒𝑒𝑒𝑜𝑜𝑛𝑛𝑚𝑚𝑡𝑡𝑓𝑓𝑜𝑜𝑒𝑒 𝑑𝑑𝑛𝑛𝑒𝑒𝑚𝑚𝑡𝑡𝑓𝑓𝑜𝑜𝑒𝑒 𝑣𝑣𝑒𝑒𝑒𝑒𝑜𝑜𝑛𝑛𝑓𝑓𝑡𝑡𝑣𝑣

𝑒𝑒𝑖𝑖: 𝑡𝑡ℎ𝑒𝑒 𝑛𝑛𝑓𝑓𝑒𝑒𝑚𝑚𝑒𝑒𝑣𝑣 𝑣𝑣𝑚𝑚𝑒𝑒𝑓𝑓𝑚𝑚𝑛𝑛𝑒𝑒𝑒𝑒 𝑡𝑡ℎ𝑚𝑚𝑡𝑡 𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒𝑜𝑜𝑚𝑚𝑛𝑛𝑒𝑒𝑛𝑛𝑛𝑛𝑒𝑒𝑚𝑚𝑒𝑒 𝑗𝑗𝑛𝑛𝑒𝑒𝑛𝑛𝑡𝑡𝑓𝑓𝑜𝑜𝑒𝑒 𝑜𝑜𝑛𝑛𝑒𝑒𝑛𝑛𝑡𝑡𝑓𝑓𝑜𝑜𝑒𝑒, 1 𝑓𝑓𝑜𝑜 𝑜𝑜𝑓𝑓𝑛𝑛𝑒𝑒𝑒𝑒 𝑜𝑜𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚𝑒𝑒𝑑𝑑 0 𝑓𝑓𝑜𝑜 𝑜𝑜𝑓𝑓𝑛𝑛𝑒𝑒𝑒𝑒 𝑛𝑛𝑒𝑒𝑜𝑜𝑛𝑛𝑏𝑏𝑒𝑒𝑑𝑑
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2.3 
 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒: 

⎩
⎪
⎨

⎪
⎧

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇𝑗𝑗(𝑡𝑡): 𝑓𝑓𝑒𝑒 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜 𝑗𝑗𝑡𝑡ℎ  𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗𝑗𝑗(𝑡𝑡): 𝑓𝑓𝑒𝑒 𝑡𝑡ℎ𝑒𝑒 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑡𝑡𝑒𝑒𝑑𝑑 𝑑𝑑𝑛𝑛𝑒𝑒𝑓𝑓𝑒𝑒𝑔𝑔 𝑏𝑏𝑡𝑡ℎ𝑜𝑜𝑓𝑓𝑒𝑒𝑓𝑓𝑒𝑒𝑔𝑔 𝑜𝑜𝑜𝑜 𝑗𝑗𝑡𝑡ℎ𝑀𝑀𝑀𝑀, 𝑓𝑓𝑡𝑡 𝑓𝑓𝑒𝑒 𝑛𝑛𝑒𝑒𝑓𝑓𝑢𝑢𝑛𝑛𝑒𝑒 𝑑𝑑𝑛𝑛𝑒𝑒 𝑡𝑡𝑜𝑜 𝑣𝑣𝑚𝑚𝑒𝑒𝑓𝑓𝑒𝑒𝑡𝑡𝑣𝑣 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑒𝑒ℎ𝑚𝑚𝑡𝑡𝑒𝑒

𝑀𝑀𝑗𝑗: 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑛𝑛𝑚𝑚𝑛𝑛𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜 𝑡𝑡𝑓𝑓𝑚𝑚𝑒𝑒𝑒𝑒
𝑗𝑗𝑡𝑡ℎ: 𝑡𝑡ℎ𝑒𝑒 𝑀𝑀𝑀𝑀 𝑜𝑜𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒

𝛿𝛿𝑗𝑗𝑗𝑗: 𝑡𝑡ℎ𝑒𝑒 𝑏𝑏𝑡𝑡ℎ𝑜𝑜𝑓𝑓𝑒𝑒𝑓𝑓𝑒𝑒𝑔𝑔 𝑡𝑡𝑓𝑓𝑚𝑚𝑒𝑒 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑗𝑗𝑡𝑡ℎ  𝑀𝑀𝑀𝑀

 

 

Generally, the number of fibres and the diameter of the closest few fibres within the MU 

can determine the MUAP size. The sum of all potential contributions from the muscle 

fibre activity is the EMG signal.  

𝐸𝐸𝑀𝑀𝐸𝐸(𝑡𝑡) = �𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇𝑖𝑖(𝑡𝑡) + 𝑒𝑒(𝑡𝑡)
𝑁𝑁𝑚𝑚

𝑗𝑗=1

,  

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 ∶  �
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇𝑗𝑗(𝑡𝑡) 𝑡𝑡ℎ𝑒𝑒 𝑗𝑗𝑡𝑡ℎ𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇

𝑁𝑁𝑚𝑚 𝑓𝑓𝑒𝑒 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑛𝑛𝑚𝑚𝑛𝑛𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜 𝑚𝑚𝑛𝑛𝑡𝑡𝑓𝑓𝑣𝑣𝑒𝑒 𝑀𝑀𝑀𝑀
𝑒𝑒(𝑡𝑡)𝑓𝑓𝑒𝑒 𝑡𝑡ℎ𝑒𝑒 𝑛𝑛𝑚𝑚𝑛𝑛𝑏𝑏𝑔𝑔𝑒𝑒𝑜𝑜𝑛𝑛𝑒𝑒𝑑𝑑 𝑓𝑓𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑛𝑛𝑚𝑚𝑒𝑒𝑒𝑒𝑡𝑡𝑚𝑚𝑡𝑡𝑓𝑓𝑜𝑜𝑒𝑒 𝑒𝑒𝑜𝑜𝑓𝑓𝑒𝑒𝑒𝑒
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As shown in Equation (2.4), the EMG signal is composed from all active potential fibres 

in the muscle. The EMG data differ each time because of the differences in signal 

movements (Christie et al., 2009). The distance between the muscle fibres and the surface 

electrode will cause a radio signal separation and a lower level of signal detection with a 

high level of noise. To reduce the noise and obtain high amplitude and current, good EMG 

signal detection is required.  It is important to select the right location for the surface 

electrode. Wire surface electrodes are suitable for collecting the EMG data to reduce the 

difference in information each time (Christodoulou & Pattichis, 1999; Kaplanis, Pattichis, 

Hadjileontiadis, Panas, & Proceedings of 10th Mediterranean Electrotechnical 

Conference, 2000; Onishi et al., 2000; Õunpuu, DeLuca, Bell, & Davis, 1997). 

2.4.4.3 EMG Decomposition 

EMG signal decomposition (as shown in Figure 2.9) is the process of resolving a 

composite EMG signal into its constituent MUAPs.  

 
Figure 2.10: EMG Decomposition 

The main purpose of decomposing the EMG is to assist with muscle diagnosis and nerve 

disorders and analyse the neuromuscular system, and it could be considered a 

classification problem (Katsis et al., 2006; Rasheed, Stashuk, & Kamel, 2007). 

Decomposing EMG allows MUAPs to be collected over a broad range of force levels 

given the size principle of MU recruitment (Boe, Stashuk, Brown, & Doherty, 2005). 

There are four main steps to EMG signal decomposition: 

1. signal processing 

2. MUAP detection 

3. clustering 

4. MUAP classification. 

The following subsections describe each step. 
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2.4.4.3.1 Signal Processing, MUAP Detecting and Clustering 

Good MUAP values in the filtered signal are detected using the threshold-crossing 

technique. This is the basic step in EMG decomposition and gives important information 

about the neuromuscular system through MUAP firing time. Each MUAP is represented 

using 2.56 ms of filtered data samples cantered in its peak value (Andrade, Kyberd, & 

Nasuto, 2008; H. Parsaei & Stashuk, 2013).  

In the cluster of MUAP, the average and the template shape are automatically detectable 

through the code running (Jain & Murty, 1999; Katsis, Fotiadis, Likas, & Sarmas, 2003; 

Katsis et al., 2006). The cluster obtains the essential information required for the classifier 

to detect the MUAP in a specific portion of the EMG signal. This information is important 

for detecting the MUAP in the MUAPT (H. Parsaei & Stashuk, 2013).  

SVM is the common classifier. It is proposed to estimate the validity of the extracted 

MUAPT using either the extracted MU firing pattern, MUAPT shape features or both 

(Hossein Parsaei & Stashuk, 2012). In each event, the decomposition process works 

sequentially, compared to a time-dependent library of the distinct action potential 

templates. The decomposition process will involve one of the following scenarios (Erim, 

Winsean, Power, amp, & Energy Society General, 2008): 

1. If the event is similar to any library value of the templates, it is assigned to the 

cluster of action potentials with the same template. 

2. If there is no similarity, another resolution algorithm is employed. In this case, the 

faster position is employed to determine if the current event can be assigned as a 

combination with any set of subsets of the library template.   

3. The event is assigned as a new first member of a new cluster if no sufficient match 

could be found by the previous combination.  

4. If the event does not include a certain number of APs, it is considered unstable 

and the events belonging to these clusters are marked as unassigned.  

After the event is assigned to a library template, the decomposition process algorithm 

starts to merge any two similar clusters by taking into account the firing statistic observed.  

2.4.4.3.2 Motor Unit Action Potential (MUAP) Classification 

The classification task of EMG signal decomposition is not easy. Pattern recognition in 

the classification decomposition process is difficult; the process is repeated a number of 

times in uncertainty and contains high-dimensional patterns, large numbers of classes and 

noisy inputs, but it can be solved efficiently using a combination of multiple classifiers 



30 

(Katsis et al., 2003; Katsis et al., 2006; Rasheed, Stashuk, & Kamel, 2008). The detected 

MUAPs are appointed to MUAPTs using a supervised classifier. The main purpose here 

is to specify each MUAP to the MUAPT for which the MUAP’s time of occurrence and 

shape are more consistent with the estimate for the MU firing times and MUAP shapes 

of the selected MUAPT, in order than for other MUAPTs (Erim et al., 2008; H. Parsaei 

& Stashuk, 2013).  

2.5 EMG Signal Acquiring Limitation for EMG Signal Processing 

EMG signal is an important source to record useful information from the muscles about 

the muscle’s activities. There are still limitations and difficulties in recording the suitable 

EMG signal from the muscles and sometimes there is a shortage of information that 

collected from the patients for the control of multiple functions. Sometimes the patient 

unable to produce EMG signal or have difficulty repeated the movement (Enders & Nigg, 

2016).  

The other limitation that could happened during collecting the EMG data is shifting the 

electrode locations or changing skin conditions such as the skin getting sweat that can 

cause unreliable in the information. On the other hand, the electrodes shape, dimension, 

material, and the electrode location on the skin surface could affect the EMG signal. The 

major limitation of surface EMG is the EMG decomposition. The EMG decomposition 

output is sensitive because it is related to the muscle investigated, the properties volume 

of the muscles and the muscles contraction intensity (Del Vecchio et al., 2020).  

2.6 Related Works Advantages and Limitations of EMG Signal Processing 

Various research groups used different technique to analyse the upper limb movement 

based on pattern recognition method. Different studies and works used different method 

to filter and classify the EMG data. Kim in his EMG analysis works, used the notch and 

the band pass filter to filter the data and used convolutional neural network (CNN) to 

classify and perform the figures movement directions to improve the EMG simultaneous 

(Kim, Stapornchaisit, Miyakoshi, Yoshimura, & Koike, 2020). Zia on his work, 

demonstrate the performance of myoelectric control for the upper limb using the LDA 

classification to improve the performance and to increase robustness over time   (Zia ur 

Rehman et al., 2018).  (Mendez et al., 2017), achieved accuracy of  91.67± 6.89 by 

attempting to classify different upper limb movement using LDA classification. (Wahid, 

Tafreshi, Al-Sowaidi, & Langari, 2018) achieved 94.45 ± 5.20 accuracy by classifying 

three upper limb movements and achieved 97.6 ± 1.99 accuracy. Chen (H. Chen, Zhang, 
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Li, Fang, & Liu, 2020) extracted the EMG features and then find the hand motion 

classification using the SVM classifier and he got 93.95 accuracy (Yinfeng Fang, Yang, 

Zhou, & Ju, 2022).  Other related work that extracted the features and the useful 

information from the EMG signal by analysing and recognise the law frequency in EMG 

signal, using wavelet packet transform (WPT)  (Shanmuganathan, Yesudhas, Khan, 

Khari, & Gandomi, 2020). For the feature reduction most of studies use it to evaluate the 

most informative features that evaluate the optimal features from the original feature set.   

(Too, Abdullah, Mohd Saad, Mohd Ali, & Tee, 2018) proposed competitive binary grey 

wolf optimizer (CBGWO) for feature reduction and he obtain an accuracy of 92.69. Table 

2. 1 represent the advantages and limitations for pattern recognition stages. 

Table 2. 1: The Advantages and Limitations for Different Stages of Pattern Recognition 

Methodology Advantages limitations 
Using the Band 
Pass filter (Kim et 
al., 2020) 

- Minimise the noise 
signal from the original 
signal 

- It might remove the 
original signal from the 
EMG 

Windowing  - The EMG signal can be 
windowing using two 
different procedures: 
Overlapped or non-
overlapped. 

- The overlapped 
windowing segments, 
process idle time to 
produce more classified 
output (Dehghani, 
Sarbishei, Glatard, & 
Shihab, 2019).  

 

- The limitation of 
windowing is when 
calculating the average 
of more than one 
window. The output 
average will distorted 
the important 
information in the 
EMG signal (Ullah, 
Ali, Khan, Khan, & 
Faizullah, 2020).   

Feature 
Extraction 

- It passes the signal 
through several levels 
to determine the signal 
quality. 

 
 

- It could cause loss of 
information when the 
data has high frequency 
(Shanmuganathan et al., 
2020) 

Time Domain 
features (TD) 

- It can be used in real 
time applications. 

- It is required low 
computational 
complexity.  

- It is easy 
implementation. 

- It has good calculation 
and performance in low 
noise environment. (Al-

- Working with non 
stationary signals like 
sEMG signals. 

-  
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Taee & Al-Jumaily, 
2018) 

Time frequency 
domain features 
(TFD) 

- It is more accurate.  
- It can control the 

energy in EMG signal 
in time and frequency 
domain. ex: wavelet 
transform (WT), WPT, 
short time Fourier 
transform (STFT) 

- The time frequency 
domain transformation 
needs a lot of 
computations. 

Frequency 
domain feature 
(FD) 

- It has frequently been 
used in fatigue analysis. 

- The FD features are 
exacted from Power 
spectral density (PSD). 

- It can decode higher 
capacity tags.  

- Moderate to resistant to 
interface. 

- Low in Signal 
processing complexity 
(Aliasgari, 
Forouzandeh, & 
Karmakar, 2020). 
 

Feature reduction  - Remove redundant and 
not important 
information and reduce 
the unnecessary 
complexity without 
changing the main 
features (Too et al., 
2018). 

- The feature reduction 
results are assumed to 
be large feature sets. 
The feature dimension 
was D; is the dimension 
of features. The feature 
combination is 2D. (Too 
et al., 2018) 

Classification - Classification 
commonly used to 
diagnose stages that is 
important for reading 
the features in order to 
process the input signal. 

- It used a different 
classification method 
that statistically 
important to diagnose 
the input signal.  

- The classification needs 
a good classifier that 
can train, test, process 
and diagnose the EMG 
signal. (Inam et al., 
2021) 

LDA classifier - Lower classification 
error and good 
classification 
performance (Sifaou, 
Kammoun, & Alouini, 
2018). 

- The classification 
required to classify the 
data from the training 
set. (Joshi, Prasad, 
Mewada, & Saurabh, 
2020) 

SVM classifier  - Optimised the variable 
data and does not get 
trapped in a local 
optima (Gu et al., 
2018).  

- Finding the right way to 
optimise the parameters 
efficiently and 
effectively (J. Wang & 
Shi, 2013) 
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2.7 Summary  

Generally, to record the information from any physiological processes, the 

electromyogram is used, which is the device for recording the EMG signal from the 

muscle. The EMG signal is also used in many types of research laboratories, including 

those for biomechanics, motor control, neuromuscular physiology, movement disorders, 

postural control and physical therapy. It provides information about the capabilities of the 

neuro system and muscles. Muscle activity and relaxation are controlled by the nervous 

system and depend on muscles’ anatomical and psychological properties.  

EMG as a function of time can describe muscle amplitude, frequency and phase. It is 

random, continuous and nonlinear. These properties reveal that the EMG is to be 

processed in order to get a good model for the researcher’s target. However, limitations 

still exist in terms of detecting and characterising the EMG signal because of EMG’s 

derivation of normality. Generally, we used the EMG signal to give us indications about 

muscle performance and measure that performance, to review muscle activity, and to 

monitor rehabilitation progress. In subsequent chapters, we explain how we filtered this 

signal, processed it and used the EMG data to recognise the movement. We detail the 

methodology used to develop and improve the EMG detection technique to reduce noise 

and acquire accurate EMG signals. All of this is important to analysing movement 

rehabilitation, predicting recovery and reducing treatment costs.  
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Chapter 3: EMG and Synergy EMG Signal for Upper Limbs  

This chapter presents basic information about the EMG pattern-recognition and non–

pattern recognition techniques, gives examples of the upper limb rehabilitation device 

base control source, and details the robot used to collect the data for this study. 

Furthermore, to increase our understanding of CNS mechanisms for movement and to 

give rise to exploring the potential of muscle synergies, we studied the complex 

interaction between neural circuits and biomechanics; subsequent chapters discuss this in 

detail. That followed by highlighted in details the new concept of a group of muscles, the 

synergy muscle that we used in our work to develop that of previous researchers.  

3.1 EMG Control System  

An easy way to extract information from the less activity muscle of motor control is to 

generate the electrical signal from the activated EMG (F. Hug & Dorel, 2009). In fact, 

sEMG provides information from a large mass of muscle tissue (J. Liu, Li, Li, & Zhou, 

2014). The EMG signal can be used in the control system by EMG pattern recognition, 

as illustrated in Figure 3.1, or EMG non-pattern recognition, as illustrated in Figure 3. 2. 

EMG pattern recognition can recognise and classify hand movements, but EMG non-

pattern recognition does not classify hand movements (Gopura, Bandara, Gunasekara, & 

Jayawardane, 2013), so it may use the EMG signal as a threshold control system.  
 

 
 

Figure 3.1: Pattern-Recognition Method for Classifying Hand Movements 
 

Output

Classification

Feature Reduction

Feature Extraction

Data processing, Filtering and Windowing

EMG Data
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Figure 3. 2: Non–Pattern Recognition Method 

3.1.1 Myoelectric Pattern Recognition (MPR) 

Myoelectric pattern recognition (MPR) with a large number of EMG channels is one 

approach for assessing motor control information from the recorded muscles. It is aiming 

to classify the collected data. Pattern recognition is one integral part in most machine 

learning system that created to make decision. Pattern recognition is very important 

method which help to drive the improvement of various applications in different fields, 

and it form the basis of most applications. Pattern recognition method can be used and 

applied in machine intelligent artificial applications, such as: power electronics, 

orthognathic surgery, antimicrobial resistance, statistical pattern recognition, Neural 

networks, applications of Support Vector Machine (SVM), Data clustering. The pattern 

recognition technology is applicable in different area such as: Artificial neural network, 

speech recognition algorithms, fuel smart speakers, self-driving cars, and more (Haenlein 

& Kaplan, 2019; Wu & Feng, 2018). 

There are five major steps for myoelectric pattern recognition: 

1. Collecting the data using the electromyogram device 

2. Data processing, Filtering, and windowing 

3. Feature Extraction 

4. Feature Reduction 

5. Classification 

This part of this thesis will address and clarify the myoelectric pattern recognition step 

by step. They described in detail in the following subsections. 

3.1.1.1 Collecting the Data Using the Electromyogram 

An easy way to obtain muscular information is via the electromyogram; which is an 

integration of action potentials spreading through muscular fibres under an electrode. This 

signal is called EMG voltage (VEMG). During electrical stimulation, the VEMG signal takes 

on a particular shape known as the M wave. This shape varies over the stimulation and 

Output

Non-pattern recognition

EMG Data
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can estimate muscular fatigue. In Yochum’s study (Yochum, Bakir, Lepers, & Binczak, 

2013), he introduced a system that can perform an electrically evoked stimulation and 

record EMG signals at the same time (Yochum et al., 2013). Chapter 2 discussed the 

EMG data collection process; the following chapters detail our technique and the robot 

used to collect the data. 

3.1.1.2 Data Filtering and Windowing  

After collecting the EMG signal using the electromyogram, we used the filter to minimise 

and distract as much as possible noise signal from the original signal. The filters to 

remove the noise could be the band-pass filter and low-pass filter, power noise filter, and 

notch filter. The band-pass filter allows signals between two specific frequencies to pass 

but discriminates against signals at other frequencies, which could be 20–500 Hz or 50–

500 Hz (Khairul Anam & Al-Jumaily, 2018; Kieliba et al., 2018; H. Parsaei & Stashuk, 

2013). Conversely, the low-pass filter passes signals with a frequency lower than the cut-

off frequency value and attenuates signals with frequencies higher than the cut-off 

frequency (0.5 Hz, 4 Hz, 10 Hz, 20 Hz cut-offs) (Kieliba et al., 2018; H. Parsaei & 

Stashuk, 2013), the power noise filter signal between (50 Hz and 60 Hz), and the notch 

filter of (50 Hz to 60 Hz) (Simao, Mendes, Gibaru, & Neto, 2019). 

In the other hand, the windowing procedure. Which is procedure to extract the essential 

features information from the EMG data. This features help to evaluate the performance 

of the pattern recognition system (Al Taee, Khushaba, Al-Timemy, & Al-Jumaily, 2020). 

The EMG can be windowing into two different types, as illustrated in Figure 3. 3. Firstly, 

Disjoint (non-overlapped). Which mean adjust the window size to simplify the EMG 

process. Secondly, Overlapped. Which mean adjust the window size as well as the 

window increment (Cao et al., 2020). These two procedures: overlapped segments and 

non-overlapped segments be the same value in one case, which is, when the window 

increment and the window size the same.   
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(A) Disjoint (non-overlapped).

(B) Overlapped
Figure 3. 3: Myoelectric Signal Time Windowing Procedure. (A) Disjoint (non-overlapped).                          

(B) Overlapping. (Ortiz-Catalan, Brånemark, & Håkansson, 2013)
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3.1.1.3 Feature Extraction 

Feature extraction is a very important step of the EMG data process: it aims to extract the 

best EMG information data for neuromuscular system control strategies. It is a vital step 

in successfully classifying the EMG signal (Alkan & Gunay, 2012; Andrade et al., 2007; 

Angkoon Phinyomark, Phukpattaranont, & Limsakul, 2012). Generally, EMG feature 

extraction is divided into three main groups: TD, frequency domain (FD) and time-

frequency or time–scale representation (A. Phinyomark, Nuidod, Phukpattaranont, & 

Limsakul, 2012). Chapter 4 addresses these in detail. 

3.1.1.4 Feature Reduction  

After extracted the features in the previous step, the features assumed to be very large 

feature sets. These features must be stay under control all the time without any damages 

or any changes to the features meanings. To dominate the extracted features, the feature 

reduction should be used.  Feature reduction aim to improve performance of the classifier. 

The output from the feature reduction is the input for the classification training and 

testing. Generally, Feature reduction divided to two dimensionality reductions method: 

firstly, Feature Selection (FS), such as: sequential forward selection (SFS), Sequential 

Backward Selection (SBS), Genetic algorithms, and Particle Swarm Optimisation (PSO) 

(Takruri, Mahmoud, & Al-Jumaily, 2019). Secondly, Feature Projection (FP) (Mursalin, 

Islam, Noman, & Al-Jumaily, 2019). Unsupervised methods such as: Linear discriminant 

analysis (LDA) and principal component analysis (PCA) with feature projection, can be 

used to extract features from huge data sample. Commonly, feature reduction choose the 

best sub-set elements from the original features. (Phukpattaranont, Thongpanja, Anam, 

Al-Jumaily, & Limsakul, 2018). 

 

3.1.1.5 Classification 

The classification task of the EMG signal is a difficult pattern-recognition problem—it 

abounds in uncertainty and involves high-dimensional patterns, large numbers of classes, 

and noisy inputs, but it can solve problems efficiently using a combination of multiple 

classifiers (Katsis et al., 2003; Katsis et al., 2006; Rasheed et al., 2008). The classification 

step is very important to improving the myoelectric control system performance (Chan, 

Yong-Sheng, Lam, Yuan-Ting, & Parker, 2000). Chapter 4 addresses this in detail. 
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3.1.2 Myoelectric non-Pattern Recognition 

As shown in Figure 3.2, the EMG based on non-pattern recognition could not classify any 

rehabilitation movement. Examples of non-pattern recognition EMG control systems are 

finite state machines (FSM), onset analysis, proportional control, simultaneous 

propositional control and threshold control (Khairul Anam et al., 2017; Asghari Oskoei 

& Hu, 2007). In Figure 3.3, the first diagram shows the pattern recognition–based EMG 

control system, and the second diagram shows the non-pattern recognition–based EMG 

control system. 

 

 
(A)Pattern Recognition-Based Myoelectric Control System 

 

 

 
(B) Non-Pattern Recognition-Based Myoelectric Control System 

Figure 3.4 (A): Pattern Recognition (B) Non-Pattern Recognition (Asghari Oskoei & Hu, 2007) 

As depicted in Figure 3.3, the pattern recognition–based EMG control has a classification 

process, while the non-pattern recognition–based EMG control system does not—this is 

why it cannot be used to classify rehabilitation movement. The following subsections 

briefly explain the non-pattern recognition examples of FSM, onset analysis, proportional 

control, simultaneous propositional control and threshold control (Khairul Anam et al., 

2017; Asghari Oskoei & Hu, 2007).   

3.1.2.1 Finite State Machine (FSM) 

As we see in Figure 3.3, in the non-pattern recognition-based myoelectric control system, 

FSM is used to perform rehabilitation devices. It is composed of some states. Switching 

between these states can be prompted by a timer or be based on the EMG contraction 

level (Khairul Anam et al., 2017).   

3.1.2.2 Onset Analysis 

Onset non-pattern EMG control analysis is based on ON/OFF activity detection rather 

than slow muscle activity detection. As we continue collecting the EMG data, the onset 
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system

Data 
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analysis was not affected because of an instant collecting value (Asghari Oskoei & Hu, 

2007).  

3.1.2.3 Proportional Control 

Proportion myoelectric control gives a more advanced control signal. It proportionates to 

the contraction level of the EMG control signal for the upper limb rehabilitation device. 

It estimates the specific strength parameter of the muscle control, such as angle, speed or 

force (Khairul Anam et al., 2017; Asghari Oskoei & Hu, 2007).  

3.1.2.4 Simultaneous and Propositional Control 

Simultaneous and propositional myoelectric control is a more advanced schematic than 

proportional myoelectric control. It controls the joints simultaneously and propositionally 

from the collected EMG signal. It estimates all the physical parameters that are recorded 

from the collected EMG data (Asghari Oskoei & Hu, 2007). 

3.1.2.5 Threshold Control 

Threshold myoelectric control is a control source that activates or deactivates the action 

used from the contraction of the EMG signal level as it estimates the human rehabilitation 

parameters, such as the angle of the elbow or the force while collecting the data. It is 

known as a binary myoelectric control system because it is based on an ON/OFF state 

(Khairul Anam et al., 2017). 

3.2 EMG Signal for Upper Limb Rehabilitation Device 

MPR is an advanced technique concerned with EMG detection, processing and 

classification and with applying EMG signals to control human rehabilitation devices. 

There are many examples of robotic hand technologies, such as the robotic hand with 

realistic thumb pronation (Grimm, Arroyo, & Nechyba, 2002), Robonaut hand 

(Bridgwater et al., 2012) and Harada hand (Keymeulen & Assad, 2001) , shown in Figure 

3.4, Figure 3.5 and Figure 3.6, respectively.  
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Figure 3.5: Realistic Thumb Robotic Hand (Grimm et al., 2002) 

 

  
Figure 3.6: Robonaut Robotic Hand(Bridgwater et 

al., 2012) 
Figure 3.7: Harada Robotic Hand(Keymeulen & 

Assad, 2001) 
 

In our study, we used the Delta.3 manipulandum device (Bani Musa et al., 2017) to collect 

the EMG data (see Appendix A), which has high performance and capability, as well as 

this device can help to train the body first for the motion then the body will respond with 

the same trained motion. Chapter 4 details the EMG signal for the upper limb and how 

we detected and analysed the data.  
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3.3 Synergy EMG 

3.3.1 Background and Definition  

In 1889, Hughlings Jackson recognised that the CNS control muscles in groups rather 

than separately. In 1966, Gelfand and Tsetlin studied a group of muscles as a particular 

example of structural units within a neuromotor system. In 1967, Bernstein proposed that 

the CNS uses a group of muscles to solve the motor redundancy problem. Others used 

synergies to solve this problem by decreasing the number of variables needed to 

manipulate the controller. The biomedical experts named muscle synergy to the group of 

muscles. Muscle synergy is defined as a group of muscles that are constrained to act in a 

concerted manner. It refers to groups of muscles within the neuromuscular system that 

allows the CNS to deal with muscle redundancy (F. S. Alnajjar et al., 2014; 

Krishnamoorthy, Latash, Scholz, & Zatsiorsky, 2003; Saltiel, Wyler-Duda, D'Avella, 

Tresch, & Bizzi, 2001; Y. Wang & Asaka, 2008). Activating flexible combinations in 

these muscle synergies allows the CNS to control muscles by producing a wide repertoire 

of movements. The identification of muscle synergies had strong implications for the 

organisation and structure of the nervous system. If synergy is activated at a given time, 

all muscles within that synergy are active (Li, Sheng, Liu, Zhu, & Loughlin, 2014; Ting 

& McKay, 2007). 

In 1967, Bernstein (Ting & Macpherson, 2005) assumed that each muscle belonged to 

only one synergy and identified muscle synergy as a strategy for a group of output 

variables to simplify controlling the muscles (Shaharudin & Agrawal, 2015; Ting & 

Macpherson, 2005; Tytus, Fady, Shingo, & Hidenori, 2014). But a single muscle can 

simultaneously belong to multiple synergy sets, and it is the weighted combinations of 

these synergy groups that determine global muscle activation patterns (Ajiboye & Weir, 

2009; Henry, Fung, & Horak, 1998). Recently, the biomedical expert extracted the 

synergies from the active EMG signal using the non-negative matrix factorisation (NMF) 

technique (Ting & Macpherson, 2005). The algorithm for this technique is that each 

muscle can be activated by multiple synergies simultaneously. No two muscle activation 

patterns are exactly the same, and significant partial correlations may exist across many 

muscles. Because there is no two muscles activation the same patterns,  the CNS may use 

a limited set of control signals to activate a large number of muscles (Ting & Macpherson, 

2005). When the synergy is extracted from the active EMG signal, it reflects only the 

simultaneous muscle activity without taking into account the neural coupling between 
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muscles (Ranganathan & Krishnan, 2012). If synergy is activated at a given time, all 

muscles within that synergy are active. Generally, muscle synergies are recommended as 

a solution to the degrees of freedom problem faced in motor control instead of having to 

control many thousands of MUs or dozens of single muscles (Tresch & Jarc, 2009). 

3.3.2 Synergic Concept  

Recent research suggests that the CNS controls muscles by activating flexible 

combinations of muscle groups to produce a wide range of movements. These muscles 

work together as a building block. Selecting a small number of synergies can define the 

activation pattern across multiple muscles that perform similar functions. Muscle 

synergies have significant implications for the structure of the CNS because they provide 

a strong mechanism for choosing a task level whereby MUs are translated into low-level 

muscle activation patterns  (Lencioni et al., 2021; Overduin, D'Avella, Carmena, & Bizzi, 

2014; Roh, Rymer, & Beer, 2015; Saltiel et al., 2001; Ting & McKay, 2007).  

McKay (McKay & Ting, 2008) studied the muscles and groups of muscles in a cat. He 

demonstrated that a set of five functional muscle synergies were sufficient to characterise 

both hind limb active muscles and forces during automatic postural responses while the 

cat occupied different postural configurations. McKay and Ting (Lemon & Bolam, 2007; 

McKay & Ting, 2008) used flexible combinations of a few synergy muscles that are part 

of complex muscle activation patterns to produce the wide repertoire of MU behaviour. 

They make a case for muscle synergies being the main feature determining the 

organisation of the CNS motor system. Generally, the concept of ‘muscle synergies’ has 

been proposed as a working hypothesis to explain how the CNS coordinates the frequent 

degrees of freedom of the musculoskeletal system. 

3.3.3 Mechanisms of Synergy 

Ishida (Ishida, Karatsu, & Sakaguchi, 2007) extracted and analysed muscle synergies 

from recorded surface EMG signals during grasping movements of the right forearm. The 

EMG patterns detected during movements to achieve different goal postures and 

execution times were represented by combinations of the same set of synergies (Ishida et 

al., 2007). It is important to determine how the CNS generates an appropriate command 

for a motor system that has a large number of degrees of freedom for a given MU task. 

With respect to this problem, each motor command is represented as a combination of a 

few basic patterns.  
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Some researchers have attempted to extract basic muscle synergies patterns from EMG 

muscle activity patterns and have demonstrated the combinations of several synergies 

approximating the muscle activities while reaching or grasping movements. Other 

researchers have proposed that the brain calculates the motor command at a lower 

computational cost using parametric motor representation, which includes the synergy 

model. The synergy strategy model could provide an attractive and easy strategy for 

reducing the number of output patterns that the nervous system has to specify (François 

Hug, Turpin, Dorel, & Guével, 2012; Ishida et al., 2007).  

Yun and Asaka (Y. Wang & Asaka, 2008) investigated multi-muscle synergies during 

preparation to push a load forward. They used different support conditions for these load-

pushing tasks and recorded no changes to the multi-muscle synergy composition during 

the task. They collected EMG data from 12 muscles in eight healthy humans who 

performed load-pushing tasks and released load tasks. They performed these experiments 

to assess muscles grouping with a shift of the centre of pressure (COP) of the CNS, in 

particular about the way the muscles behaved (Y. Wang & Asaka, 2008).  

Therefore, our first hypothesis in this thesis is that synergy can help analyse human 

movement. Generally, synergy muscles have been studied as building blocks that simplify 

the construction of MU behaviours (François Hug et al., 2012). Each synergy muscle is 

supposed to be controlled by a single neural command signal. It has a clinical application 

that could offer us a better understanding of the neural signal structure (François Hug et 

al., 2012). Our other hypothesis is that muscle synergy extraction is a better technique for 

evaluating and predicting post-stroke patient rehabilitation.  

3.4 Summary  

In previous studies, muscle synergy was mainly computed by averaging the data. 

However, these computations emphasised the similarities of the muscles involved in 

muscle synergy. Understanding the automatic body response is a challenging research 

topic that can provide insight into the properties of motor unit neural. This chapter 

provided information about analysing the body’s voluntary and automatic responses and 

muscle synergy. Chapter 4 discusses and develops the methods used to compute muscle 

synergy that helps the CNS shape voluntary action to provide a new methodology that 

can improve the quality of life for those with a disability. 
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Chapter 4: Shape Voluntary Movement Based on EMG Using 

Pattern Recognition and CNMF 

Human upper limb movements and movement changes are controlled by the CNS. They 

comprise exhibit different actions, such as lifting an object, moving hands down or up 

and carrying objects. The MU in all these movements and more differs depending on the 

movement type. One of my publications for this thesis (Bani Musa et al., 2017) illustrates 

how we helped the CNS shape voluntary movement by providing a new method that can 

improve the quality of the life of people. Generally, motor control strategies for redundant 

movement and the complexity of the musculoskeletal and musculature systems remain 

unclear and complex and that these strategies differ across different studies. As is well 

known, EMG-based techniques are used for assessing, analysing and recording data by 

detecting the EMG signals generated during the relaxation of muscles. Conversely, the 

Synergy EMG demonstrates how the CNS controls groups of muscles and is a more 

effective way of generating healthy and dynamic movement (Hardesty, Boots, 

Yakovenko, & Gritsenko, 2019; Shaharudin & Agrawal, 2015). Muscle synergies have 

been used to solve the redundancy problem. Synergy EMG views muscle synergies as a 

specific example of structural units, which are tasked with particular ensembles of 

elements within a neuromotor system. Two main movements can help the CNS activate 

a group of muscles: automatic body response (reflexes) and voluntary movement (Adolph 

& Robinson, 2013; F. S. Alnajjar, Berenz, & Shimoda, 2013; Burke, 2016).  

Based on previous experiment results, it has been proposed that the automatic response 

in humans is automatic movements (F. S. Alnajjar et al., 2013). Within this automatic 

action, the CNS can store the movement to create a voluntary movement, which is the 

reaction movement. That means automatic human body responses could be used as a 

reference to explain the voluntary movement. This has been validated by analysing human 

voluntary movement and the automatic motions from muscle synergy, the automatic 

response in humans formed of automatic movements (F. S. Alnajjar et al., 2013). 

Automatic and voluntary action are two main movements that can help the CNS shape 

the synergy muscle movement (Bani Musa et al., 2017). 

NMF can help the automatic synergy motion express some features that could support the 

CNS in shaping voluntary synergy motion. By developing NMF into concatenated non-

negative matrix factorisation (CNMF), human movements from muscle synergy can be 
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analysed to help the CNS shape synergy movement and improve the quality of life of 

people with disability.  

MPR has been widely used and successfully applied in biomedical research. It is used as 

an interface machine to control the different hand movements of robotic hands. Multi-

EMG channels are necessary for successful hand control pattern recognition (Z. Lu, Tong, 

Zhang, Li, & Zhou, 2019). 

As mentioned in Chapter 3, there are four major steps to classifying human movement—

as shown in Figure 3.1, to classify the human movement using the MPR method, we must 

extract the movement features after filtering the EMG data and then classifying it. This 

chapter offers a detailed explanation of the feature extraction and classification method. 

This chapter presents two different methods for analysing human movement. The first is 

shaping synergy EMG using pattern recognition, and the second is shaping synergy EMG 

using the CNMF method. We compare the results of both methods to determine if they 

can help the CNS shape synergy movements and which method is more accurate. The 

work in this chapter has been published in IRIS 2017 (Bani Musa et al., 2017).  

4.1 Method 1: Shape and Extract Synergy EMG Using Pattern Recognition 

EMG pattern recognition with large numbers of EMG channels provides an approach for 

assessing the signal information available from the recorded muscles. Using this method, 

hand movements are classified using the pattern-recognition system for EMG signals, as 

shown in Figure 4. 1. The feature data collected from the original EMG data were 

consistently used in the training and testing parts of the experiments described in this 

chapter. The raw EMG data were used with a window size of 200 ms and Butterworth 

filter frequency of 20–450 Hz to reduce the power line noise to 50 Hz. Then, the features 

were being extracted using SSC, ZC, WL, Hjorth, SKW, MAV and the MWP feature. 

The following sections describe the pattern-recognition stages for classifying the 

movement. In addition, this chapter involves different kinds of classifications. In general, 

there are many available classification algorithms based on the structure of the network, 

such as kNN, LDA, ANN and SVM. Moreover, this chapter presents the performance of 

LDA with other classification algorithms to classify the movement-based pattern-

recognition method. 

 

Figure 4. 1: Pattern-Recognition Method for Classifying Hand Movements 

EMG data Data 
processing

Feature 
extraction

LDA 
classification Output
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4.2 Method 2: Shape and Extract Synergy EMG Using CNMF 

The second method in this chapter is: shape and extract synergy using CNMF.            

CNMF is used to extract the characteristic frequency components and obtain the 

corresponding connectivity matrices across conditions and subjects (Boonstra et al., 2015; 

Shourijeh, Flaxman, & Benoit, 2016; Wojtara, Alnajjar, Shimoda, & Kimura, 2013) 

In this method, the hand movements are classified using the CNMF system for EMG 

signals.

 

Figure 4. 2: CNMF Method 

Figure 4. 2 illustrates the process for analysing synergy EMG.  

In Equation 4.1, a matrix with a dimension of m = 6 (the number of muscles) was 

extracted from the processed EMG data of each experimental trial. It was multiplied by 

the recorded time t (variables based on the task). In each trial, synergy activation 

coefficients were identified using the synergy muscle space (W), which weighted the 

muscles based on their activations and the neural command (C); n denoted the number of 

synergies; E was the residuals between the recorder M and the calculated WC (F. S. 

Alnajjar et al., 2013; Shibata Alnajjar, Wojtara, Kimura, & Shimoda, 2013). 
𝑀𝑀𝑚𝑚×𝑡𝑡 = 𝑊𝑊𝑚𝑚×𝑛𝑛𝐶𝐶𝑛𝑛×𝑡𝑡 + 𝐸𝐸𝑚𝑚×𝑡𝑡 4. 1 

VAF was measured with a threshold of > 90% using Equation 5.2. It was adopted to detect 

the minimum number of muscle synergies. In this study, the threshold was used to ensure 

that the estimated number of synergies would effectively preserve the characteristics of 

the recorded EMG data (Bani Musa et al., 2017).  

𝑉𝑉𝑀𝑀𝐼𝐼 = 1 −
‖𝐸𝐸‖𝐹𝐹2

‖𝑀𝑀‖𝐹𝐹2
 

4. 2 

 

The following subsections discuss every stage of both methods in detail and present the 

methodology, results and conclusions. 

 

The following subsections discuss every stage of both methods in detail and present the 

methodology, results and conclusions.  

 

EMG data Sampled at 
1KHz

Filter                 
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filter)
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4.3 Data Acquisition and Processing 

4.3.1 Participants 

The EMG data used in this work were recorded in the Intelligent Behavior Control Unit, 

Brain Science Institute, BSI-TOYOTA Collaboration Centre of RIKEN, Nagoya, Japan 

(F. S. Alnajjar et al., 2013). Three neurologically healthy participants, all right-handed 

and with no reported muscular impairment on the upper limb, participated in this study.  

The study protocol was discussed with and explained to the participants to familiarise 

them with the objective of the study. Three participants, weight 69.25 ± 9.1kg, height: 

175 ± 6.2 cm, age: 34.5 ± 5.1 yr) took part in the study (F. S. Alnajjar et al., 2013). The 

participants were sitting on an adjustable chair. There hand holding the side of the knob 

of the robotic Manipulandum, see Figure 4.6. A display screen placed in front of the 

participant to assist there movements through different tasks. The RIKEN ethics 

committee approved that protocols to collect the data for all participants (F. S. Alnajjar et 

al., 2013). The EMG signals came from six EMG channels located on the upper limb, as 

shown in Figure 4.3 and Figure 4.4. 

 
Figure 4. 3: Locations of EMG Electrodes (Front View, Back View and Side View, respectively) 

 

 

Figure 4. 4: Locations of EMG Electrodes (top view) 
 

 



49 

4.3.2 Acquisition Device 

The device used in our project was a Delta.3 manipulandum (Bani Musa et al., 2017) 

from Force Dimension, as shown in Figure 4.5 (see Appendix A for the manipulandum 

fact sheet). It had an adjustable stand and was 260 mm high and 40 mm in diameter. This 

device has a wide range of uses, such as a medical robot, training system, virtual 

simulation, research and more. The important value of this manipulandum device is their 

ability quantify upper limb motion accurately and objectively. As well as, this robotic 

devise has the ability to control the upper limb movements and apply mechanical loads 

that can be performed by simulate some properties for real time tasks. Furthermore, this 

manipulandum connected to a computer monitor displaying visual targets that indicating 

the limb position. That allowed the position of the upper limb movements to be viewed 

directly together with visual movement assessment. In our work, we used it as a training 

system and collected the required EMG data to ascertain whether we could prove our 

hypotheses. Participants sat on a modifiable chair next to the manipulandum, holding its 

robotic knob, with a display screen in front of them to assist their movements through the 

experiment stages, as shown in Figure 4.6 (F. S. Alnajjar et al., 2013; Bani Musa et al., 

2017). The participants controlled Delta.3 manipulandum and used it to apply different 

resistances in various tasks. They rested between each movement and repeated each 

movement several times. The knob position and force were sampled at 100Hz (F. S. 

Alnajjar et al., 2013; Bani Musa et al., 2017), and the EMG data were stored for analysis. 

 
Figure 4.5: Manipulandum Device 
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Figure 4.6: Participant Positions While Holding the Manipulandum 

 
4.3.3 Experiment Protocol 

In this work, we sought to evaluate the real-time pattern recognition control of hand 

motions in four different environments: reflex response (Rx), voluntary action (Vc), 

voluntary action in a modified environment (Vm) and adaption to the modified 

environment (Vn). We deployed two methods. First, we used the experiment EMG data 

to the pattern-recognition process with a significant change in using the features and 

classification methods. Second, we used the experiment EMG data to analyse the four 

movements, this time with the advanced NMF method.  

Generally, the study’s results support the hypothesis that automatic synergy powerfully 

shapes the formation of voluntary synergies. It also supports the notion that this effect 

may increase when a person performs an unfamiliar movement by creating a reaction 

movement (voluntary motion) (F. S. Alnajjar et al.), demonstrating how many synergies 

are used in each movement. The healthy subjects performed these combined movements 

only. All trials in a movement were combined and labelled with a class related to the 

movement. 

Voluntary synergy actions and automatic synergy actions relationship were verified 

through the experimental work. The four main movement groups that were considered to 

support and verify the hypothesis are as follows: 

A. Reflex response (Rx): In this experiment, we aimed to collect the EMG data for 

each participant. This measured the automatic responses from their 

manipulandum with zero resistance from the participants. The participants were 

seated in the adjustable chair, holding the knob of the manipulandum, and their 

arm was positioned at 90 degrees straight, as shown in Figure 4.6 and Figure 
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4.7(A) (top view). Each participant was relaxed and was not required to perform 

any reaction. In this movement, 10 random time series were applied. 

B. Voluntary action (Vc): At this point, there was no resistance produced by the 

Delta.3. Just with this movement and before starting this experiment and 

collecting the data, the participants had a trial period in which they could 

familiarise themselves with the device. When the data were being collected, each 

participant sat on the chair grasping the manipulandum knob and performed 10 

trials movements, each one second in duration —the movement was just from the 

participant, with zero resistance from the manipulandum robot, and each 

participant started the trial from the zero position as displayed on the screen, as 

shown in Figure 4.6 and Figure 4.7 (B) (top view), and start moving the 

manipulandum to the endpoint within one second as displayed in Figure 4.6. By 

the end of this task, participants were familiar with the movements. 

C. Voluntary action in a modified environment (Vm): The participant position in 

this experiment was the same as in the previous movement, but with a slight 

difference in technique. The participant sat on the chair holding the 

manipulandum knob and looking at the display screen to reach the endpoint when 

they moved the knob. The difference in this movement was the manipulandum 

resistance, which was 70% and applied randomly by Delta.3, as shown in Figure 

4.7(C) to record the participant action. In this part of the experiment, resistance 

was randomly applied from the manipulandum with a reaction from the 

participant. This unexpected manipulandum resistance helped support our 

hypothesis, which is that automatic movement can help to shape the voluntary 

movement.  

D. Adaption to the modified environment (Vn): Two identical modified 

environment sets were applied in this experiment. Each comprised 15 trials, each 

one-minute duration with two minutes’ rest to minimise the possibility of fatigue. 

The aim was to collect the EMG data in different modified environments to 

determine how the participant could familiarise themselves with the 

manipulandum resistance. The participants could also adjust the movement to the 

modified environment through training and could modify the environment 

continuously by adjusting the manipulandum by adding a planned or un-planned 

force or resistance. The manipulandum resistance direction was from the 

endpoint side, as shown in Figure 4.7(D). 
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Figure 4.7: Top View of a Layout for the Four Experiments: (A) Rx, (B) Vc, (C) Vm, (D) Vn 

 
4.3.4 The EMG Channel Number and Electrode Placement 

The performance of the system model is affected by the number of EMG channels used 

in MPR. In general, at least two single surface electrodes are often used in a simple task 

to connect to the human upper limb to make a close pre-amplifier circuit to help get a 

result. For the work described in this chapter, we used six sEMG signals. The electrodes 

were located in six upper limb shoulder muscles: pectoralis major, deltoid anterior, 

infraspinatus, teres major, latissimus dorsi and biceps brachii, as shown in Figure 4.3. 

These locations were used in such a way that the muscle movement gave an indication 

and good reading about human movement (Bani Musa et al., 2017). The sEMG electrodes 

were located in the upper limb muscles in accordance with the guidelines of the SENIAM 

European Community projects 8 and 9 (Hermens et al., 1999; D. Stegeman & Hermens, 

2007). These guidelines suggest locating the electrode halfway along with the muscle and 

not close to the muscle ends (tendons and ligaments). They recommend placing the 

electrode on the skin surface away from the edges of the hand. In this work, EMG signals 

were sampled at 1 kHz and filtered by Butterworth filter with 30 Hz, with LDA used for 

data classification (LDA is applied to the classification problem in pattern recognition). 

The EMG data, rectified using RMS and smoothed using a moving average with a 
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window of length 10 samples (Bani Musa et al., 2017). EMG data were synchronised with 

the data collected from the manipulandum using a common clock and trigger. 

4.4 Data Processing 

To support our hypothesis (that the automatic synergy powerfully shapes the formation 

of voluntary synergies), we worked on the synergic EMG signal. To work on synergy 

EMG, we processed the EMG signal and extracted the synergy EMG signal, as shown in 

Figure 4. 1, Figure 4. 2. Figure 4. 1 shows the use of pattern recognition to classify the 

movement by using new features and classifications to calculate the synergy EMG result. 

This starts with the raw EMG data, which was filtered using a Butterworth filter. The 

results were applied to extract features and also applied to a classification system as a 

form of muscle synergy data that helped classify the hand movement to obtain a better 

result. Figure 4. 2 explains the process for analysing synergy EMG. This started with raw 

EMG data and involved several steps in extracting the muscle synergy using CNMF; with 

this technique, each muscle could be activated by various synergies. Consequently, there 

are no two similar muscle activation patterns. These findings imply that the nervous 

system may use a limited set of control signals to activate a large number of muscles 

(Tresch & Jarc, 2009). When the EMG signal was used for analysis, the synergy reflected 

only synchronised muscle activity. If synergy is active at a given time, all muscles within 

that synergy are active (Ranganathan & Krishnan, 2012). Generally, muscle synergies are 

suggested as a solution to a muscle’s degree of freedom problem in motor control action 

potential instead of having to manage many thousands of MUs or dozens of muscles. 

However, using the CNMF concatenates the original EMG data of individual trials or all 

trials (Oliveira, Gizzi, Farina, & Kersting, 2014; Smale, Shourijeh, & Benoit, 2016) while 

keeping the synergy pattern fixed among those trials. By keeping the synergy adjusted 

among participants, signal variability between the trails is limited to the coefficients and 

therefore is a stronger approach (Shourijeh et al., 2016; Smale et al., 2016). After the 

CNMF was applied, The VAF threshold was found to identify the minimum number of 

synergies that adequately reconstructed the characteristics of the recorded EMGs and 

explain the variance (F. S. Alnajjar et al., 2013; Bach, Daffertshofer, & Dominici, 2021). 

 



54 

4.5 Filter 

It helps to remove some unwanted components (noise) or features from a signal—that is, 

eliminating some unwanted frequencies to reduce background noise. Since EMG is 

affected by noise, a Butterworth filter was applied in this study. 

4.6 Feature Extraction 

Feature extraction is the second crucial step after preparing the data to start processing it. 

The pattern recognition converts to a feature using the feature extraction step (T. T. 

Nguyen, Krishnakumari, Calvert, Vu, & van Lint, 2019). The process of feature 

extraction in the MPR algorithm means transferring the EMG signal’s pattern to segments 

that help find features that contain distinguished and helpful features of the EMG signal 

that help the next step of the MPR algorithm (Rami N. Khushaba, 2010).  

The feature extraction step is important to finding the highest suitable feature sets from 

the EMG signal that have low misclassification, keeping the classes separate in the noisy 

environment of the feature space (robustness), having lower calculation complexity and 

reducing error (Al Taee et al., 2020; Rami N Khushaba, Al-Ani, Al-Timemy, & Al-

Jumaily, 2016; R. N. Khushaba, Lei, & Kodagoda, 2012). As well as, feature extraction 

proposed to improve the biomedical signal interpretations (Chahid, Khushaba, Al-

Jumaily, & Laleg-Kirati, 2020).Generally, the feature extraction in MPR comprises three 

different groups (Angkoon Phinyomark et al., 2012):  

1. Time Domain (TD) 

2. Frequency Domain (FD), sometimes called spectral-domain (SD) 

3. Time-frequency domain (TFD), sometimes called time–scale domain (TSD).  

4.6.1 Time Domain (TD) 

Time Domain (TD) features have been used globally in Biomedical field, especially in 

EMG pattern recognition. The TD features are less complex when computing the features 

and perform well in the noisy environment of the feature space (robustness), which means 

that scientists use TD widely in EMG pattern-recognition processors (Al-Timemy, 

Bugmann, Escudero, & Outram, 2013; Hargrove et al., 2007; Oskoei & Hu, 2008; 

Angkoon Phinyomark et al., 2012).  
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The TD features are the most used in the field are as follows: 

1. Slope Sign Change (SSC) 

This feature counts the number of times that the EMG signal slope sign changes (Hudgins, 

Parker, & Scott, 1993).  

𝑆𝑆𝑆𝑆𝐶𝐶 = �𝑍𝑍𝑗𝑗 , 𝑍𝑍𝑗𝑗 =  

⎩
⎪
⎨

⎪
⎧

1    (𝑚𝑚𝑗𝑗 > 𝑚𝑚𝑗𝑗−1 𝑚𝑚𝑒𝑒𝑑𝑑 𝑚𝑚𝑗𝑗 > 𝑚𝑚𝑗𝑗−1)𝑜𝑜𝑒𝑒
           (𝑚𝑚𝑗𝑗 < 𝑚𝑚𝑗𝑗−1 𝑚𝑚𝑒𝑒𝑑𝑑 𝑚𝑚𝑗𝑗 < 𝑚𝑚𝑗𝑗−1) 𝑚𝑚𝑒𝑒𝑑𝑑

     |𝑚𝑚𝑗𝑗 − 𝑚𝑚𝑗𝑗−1|  ≥ 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑜𝑜𝑒𝑒𝑑𝑑 𝑜𝑜𝑒𝑒
|𝑚𝑚𝑗𝑗 − 𝑚𝑚𝑗𝑗−1|  ≥ 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑜𝑜𝑒𝑒𝑑𝑑 

0   𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                                

 
𝑁𝑁

𝑗𝑗=1
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2. Zero-Crossing (ZC) 

This represents the frequency information of the signal at the TD. It counts the number 

of times that EMG signal amplitude values cross the zero-amplitude level (Hudgins et al., 

1993). It is defined as follows: 

ZC = �𝑍𝑍𝑗𝑗  
𝑛𝑛

𝑗𝑗=0

,𝑍𝑍𝑗𝑗 = �1, 𝑚𝑚𝑗𝑗𝑚𝑚𝑗𝑗+1 < 0 𝑚𝑚𝑒𝑒𝑑𝑑 |𝑚𝑚𝑗𝑗 − 𝑚𝑚𝑗𝑗+1| ≥ 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑜𝑜𝑒𝑒𝑑𝑑
0,                              𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  
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3. Waveform Length (WL) 

This is a measure of the complexity of the EMG signal. It is defined as the increasing 

length of the EMG waveform over time and is defined as follows: 

𝑊𝑊𝐿𝐿 = �|𝑚𝑚𝑗𝑗 − 𝑚𝑚𝑗𝑗−1|
𝑁𝑁

𝑗𝑗=1
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4. Hjorth Parameters (Hjorth) 

These are the normalised slopes used in EMG. Moreover, Hjorth is used for signal 

processing as surface detection and feature extraction in three TD features (Mouzé-

Amady & Horwat, 1996): 

 

𝑀𝑀𝑛𝑛𝑡𝑡𝑓𝑓𝑣𝑣𝑓𝑓𝑡𝑡𝑣𝑣:    𝑚𝑚0 = 𝑣𝑣𝑚𝑚𝑒𝑒(𝑚𝑚(𝑡𝑡)) 4.6 

𝑀𝑀𝑜𝑜𝑛𝑛𝑓𝑓𝑒𝑒𝑓𝑓𝑡𝑡𝑣𝑣:     𝑚𝑚1 = �𝑚𝑚0 �
𝑑𝑑𝑚𝑚(𝑡𝑡)
𝑑𝑑𝑡𝑡 �

𝑚𝑚0(𝑚𝑚(𝑡𝑡))
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𝐶𝐶𝑜𝑜𝑚𝑚𝑡𝑡𝑒𝑒𝑒𝑒𝑚𝑚𝑓𝑓𝑡𝑡𝑣𝑣:     𝑚𝑚2 =
𝑚𝑚1 �

𝑑𝑑𝑚𝑚(𝑡𝑡)
𝑑𝑑𝑡𝑡 �

𝑚𝑚1(𝑚𝑚(𝑡𝑡))
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5. Sample Skewness (SKW) 

This is a measure of the asymmetry of a signal or measure of x order: 

𝑆𝑆𝑆𝑆𝑊𝑊 = 𝐸𝐸 ��
𝑚𝑚 − 𝜇𝜇
𝜎𝜎

�
𝑥𝑥
�  
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6. Mean Absolute Values (MAV) 

This is a standard and easily implemented feature of the TD. It finds the mean of the EMG 

amplitude values over the sample length of the signal (Hudgins et al., 1993) and is defined 

as follows: 

𝑀𝑀𝑀𝑀𝑉𝑉 =
1
𝑁𝑁
�|𝑚𝑚𝑗𝑗|
𝑁𝑁

𝑗𝑗=1
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The MAV slope is different and is defined as follows: 

𝑀𝑀𝑀𝑀𝑉𝑉𝑆𝑆 = 𝑀𝑀𝑀𝑀𝑉𝑉𝑗𝑗+1 − 𝑀𝑀𝑀𝑀𝑉𝑉𝑗𝑗 4.11 

7. RMS (Root Mean Square) 

The RMS is the square root measure of the average magnitude of the error. It can be 

calculated as follows: 

𝑅𝑅𝑀𝑀𝑆𝑆 =
1
𝑁𝑁
�𝑚𝑚𝑗𝑗2
𝑁𝑁

𝑗𝑗=1
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8. Autoregressive Feature (AR) 

The EMG signal could be viewed as a stationary Gaussian function using this feature. 

The EMG signal can be demonstrated as follows: 

𝑚𝑚𝑗𝑗 = �𝑀𝑀𝑅𝑅. 𝑚𝑚𝑗𝑗−𝑖𝑖

𝑚𝑚

𝑖𝑖=1

        𝑚𝑚𝑡𝑡ℎ 𝑜𝑜𝑒𝑒𝑑𝑑𝑒𝑒𝑒𝑒 𝑀𝑀𝑅𝑅 𝑚𝑚𝑜𝑜𝑑𝑑𝑒𝑒𝑒𝑒 
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4.6.2 Frequency Domain Features (FD) 

The features are mostly obtained in the FD domain from power spectral density. This 

domain is commonly used when obtaining the features from fatigue analysis. The two 

types of FD are as follows:   

1. Mean Frequency (MNF) 

As shown in Equation 4.14, the frequency average is obtained from the sum of the 

multiplication between the frequency and the power spectrum divided by the sum of the 

total power spectrum: 
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𝑀𝑀𝑁𝑁𝐼𝐼 = �𝑜𝑜𝑗𝑗𝑀𝑀𝑗𝑗

𝑁𝑁

𝑗𝑗=1

�𝑀𝑀𝑗𝑗
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�  
 

4.14 

 

2. Median Frequency (MDF) 

MDF is the FD when the power spectrum (Pk, as in Equation 4.13) is divided into two 

equal regions with the same amplitudes.  
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4.6.3 Time-Frequency Domain Features (TFD) 

The TFD can manage the EMG signal energy in the TD and FD (Englehart, Hudgins, 

Parker, & Stevenson, 1999); as a result, the TFD is described as more accurate than the 

previous two FDs. 

With the pattern-recognition method, after extracting the EMG signal’s features and as a 

result of processing the data, we extracted a huge pool of data with a large dimension that 

had to be reduced without losing the useful main features. Two different feature reduction 

methods can be used to achieve this. The first is feature selection (FS), which involves 

selecting the subset of a feature’s subset from the original features to reduce the 

dimension. The second is feature projection (FP), which reduces the dimension by 

transforming the original features spaces to new feature spaces.  

Generally, the FP reduction method is more likely to be used in EMG feature reduction 

for huge EMG data readings because it is more effective than FS. We used the FP method 

in this study. FP can classify using a supervised or unsupervised method. Next, we explain 

how feature projection can be classified (Englehart et al., 1999; Rami N. Khushaba, 

2010).  

EMG feature extraction is one of the necessary procedures for extracting useful 

information from the EMG signal. No additional signal transformation was needed in this 

work. For the work described in this chapter, we used the following TD and TFD features 

(Altin & Er, 2016; H. Huang et al., 2016; Hudgins et al., 1993; Mouzé-Amady & Horwat, 

1996; Reis, Saraiva, & Bakshi, 2008). After extracting the features from the EMG signals, 

they were ready for classification. 
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4.7 Classification System 

As shown in Figure 3.1, classification is the fourth step. It is one of the main stages of 

the pattern-recognition procedure. In the biomedical field, classification is used to reduce 

the features into certain classes. MLP and feedforward neural network (FNN) was used 

frequently in the biomedical field to classify the features, but it needed more time for 

training. In addition, kNN, LDA, artificial neural networks (ANN), SVM and extreme 

learning machine (ELM) are all types of classification methods. Next, we explain the 

LDA, SVM and ELM.  

4.7.1 Linear Discriminant Analysis (LDA) 

LDA is the preferred method in the biomedical field as it has faster processing than the 

MLP, and it is as accurate as of the FNN (de Castro, 2012). The main goal of using LDA 

is to search for the best vectors that discriminate among classes instead of searching for 

vectors that best describe the feature data (Naskar, Nandeshwar, & Das, 2018). LDA is a 

supervised classification method that contains the movement class information, and it is 

demonstrated as follows: 

𝑚𝑚∗ = 𝑚𝑚𝑒𝑒𝑔𝑔𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎𝑇𝑇𝑆𝑆𝑏𝑏𝑎𝑎
𝑎𝑎𝑇𝑇𝑆𝑆𝑤𝑤𝑎𝑎

 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 �𝑆𝑆𝑤𝑤:     𝑤𝑤𝑓𝑓𝑡𝑡ℎ𝑓𝑓𝑒𝑒 − 𝑛𝑛𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒 𝑒𝑒𝑛𝑛𝑚𝑚𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑡𝑡𝑒𝑒𝑓𝑓𝑚𝑚
𝑆𝑆𝑏𝑏: 𝑛𝑛𝑒𝑒𝑡𝑡𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑛𝑛𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒 𝑒𝑒𝑛𝑛𝑚𝑚𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑡𝑡𝑒𝑒𝑓𝑓𝑚𝑚  (de Castro, 2012)  
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The researchers are encouraged to use the LDA method when the number of classes is 

greater than the number of samples (Cai, He, & Han, 2007). The LDA algorithm is based 

on the scatter matrix, which divides into two matrices: between-class matrix and within-

class matrix. LDA seeks to maximise and minimise those respective matrices. The within-

class matrix can be demonstrated as follows: 

𝑆𝑆𝑤𝑤 = ���𝑚𝑚𝑖𝑖
𝑗𝑗 − 𝜇𝜇𝑗𝑗��𝑚𝑚𝑖𝑖

𝑗𝑗 − 𝜇𝜇𝑗𝑗�
𝑇𝑇

𝑁𝑁𝑗𝑗

𝑖𝑖=1

𝑐𝑐

𝑗𝑗=1

 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 

⎩
⎪
⎨

⎪
⎧ 𝑚𝑚𝑖𝑖

𝑗𝑗: 𝑡𝑡ℎ𝑒𝑒 𝑓𝑓𝑡𝑡ℎ𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜 𝑗𝑗
𝜇𝜇𝑗𝑗: 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑒𝑒𝑚𝑚𝑒𝑒 𝑤𝑤𝑓𝑓𝑡𝑡ℎ𝑓𝑓𝑒𝑒 − 𝑛𝑛𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒 𝑡𝑡𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒𝑡𝑡𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜 𝑗𝑗

𝑛𝑛: 𝑡𝑡ℎ𝑒𝑒 𝑛𝑛𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒′𝑒𝑒 𝑒𝑒𝑛𝑛𝑚𝑚𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒
𝑁𝑁𝑗𝑗: 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒′𝑒𝑒 𝑒𝑒𝑛𝑛𝑚𝑚𝑛𝑛𝑒𝑒𝑒𝑒 𝑓𝑓𝑒𝑒 𝑛𝑛𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒 𝑗𝑗
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The between-class matrix can be demonstrated as follows: 

𝑆𝑆𝑏𝑏 = ��𝜇𝜇𝑗𝑗 − 𝜇𝜇��𝜇𝜇𝑗𝑗 − 𝜇𝜇�𝑇𝑇
𝑐𝑐

𝑗𝑗=1
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As Equation 4.18 shows, by maximising the objective function, we reach the goal of LDA 

classification.  
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4.7.2 Support Vector Machine (SVM) 

SVM is one of the most techniques used to classify data and diagnose diseases in the 

Biomedical field. For example, it is used to diagnose skin cancer disease (Arora, Dubey, 

Jaffery, & Rocha, 2020) and for sleep apnoea classification (W.-C. Huang, Lee, Liu, 

Chiang, & Lai, 2020; Maali & Al-Jumaily, 2011). National Health and Nutrition 

Examination Survey (NHANES) created SVM to predict the classification models for 

people with diabetes and pre-diabetes as well as predict depression (Rudd, Waller, & 

Smith, 2018) as well as in other field the use the SVM for solar and renewable energy 

forecasting (Zendehboudi, Baseer, & Saidur, 2018). Khushaba notes that SVM has a 

better performance compared with classification methods, such as LDA, kNN or FNNs, 

because it uses optimised parameters to reach the maximum SVM value (R. N. Khushaba, 

Lei, et al., 2012)—this is one of the reasons SVM is used widely in classification 

applications and regression problems (G. B. Huang, Zhou, Ding, & Zhang, 2012; Rudd 

et al., 2018). SVM is a machine-learning model based on binary classification, and it is 

an arithmetical learning theory (Vapnik, 1999). The SVM training algorithm could be an 

example of linear separation and multi-kernel function (MKF).  

The MKFs in SVM are sigmoid kernel function (SKF), polynomial kernel function (PKF) 

and radial basis function, which are defined as follows: 

1. SKF:                             𝑆𝑆�𝑚𝑚𝑖𝑖 , 𝑚𝑚𝑗𝑗� = 𝑒𝑒−𝛾𝛾�𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗�
2
 4.19 

2. PKF:                            𝑆𝑆�𝑚𝑚𝑖𝑖 , 𝑚𝑚𝑗𝑗� =  �𝑚𝑚𝑖𝑖𝑚𝑚𝑗𝑗 + 1�𝑞𝑞 4.20 

3. SKF:                            𝑆𝑆�𝑚𝑚𝑖𝑖 , 𝑚𝑚𝑗𝑗� = 𝑡𝑡𝑚𝑚𝑒𝑒ℎ�𝛾𝛾𝑚𝑚𝑖𝑖𝑇𝑇𝑚𝑚𝑗𝑗 + 𝑛𝑛� 4.21 

The two main parameters in SVM classification are cost parameter C and kernel 

parameter γ, where the ranges are (2-9, 2-8, …, 29,210). SVM has two different learning 

features: 

1. In a nonlinear mapping (ⱷ(x) function), the sample trained data are mapped in the 

high-dimensional domain. 

2. The representative SVM optimise feature is applied to discuss the maximisation 

the value of the variable by targeting the low error in the feature domain.  

Like the other methods, SVM has advantages and disadvantages, but scholars have tried 

to obtain good results using SVM because it is a reliable method for nonlinear data. One 

advantage to using SVM is particularly advantageous in training because it optimises the 

unstable line of the cost purpose. It has also been used in background propagation neural 

networks as a safety method. 
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SVM has two different principles: 

1. structural risk minimisation, which is less affected in case of overfitting in some 

cases 

2.  empirical risk minimisation. 

Generally, SVM works in many movement classes (Rami N. Khushaba, 2010; R. N. 

Khushaba, Lei, et al., 2012). In the case of a multi-classification class, SVM can be used 

as many times as needed, but this will add more time to the data processing. In Chapter 

5, we use SVM as a regression method.  

4.7.3 Extreme Learning Machine (ELM) 

ELM is very similar to SVM in terms of its performance working the parameter 

dependency (G. B. Huang et al., 2012). In his ELM research (G. B. Huang et al., 2012), 

Huang states that ELM is a method that simplifies the single hidden layer feedforward 

networks (SLFNs). That to avoid the iterative tuning in the hidden layer and output layer. 

The goal of using the ELM is to achieve and minimise the output error and minimise the 

norm of the output layer, which differs from the SLFNs. As a result, researchers obtain a 

result that shows the training speed in ELM is much better than in SLFNs. Further, like 

SVM, ELM has two main parameters, parameter C and kernel parameter γ, and that a 

particular parameter affected ELM performance (G. B. Huang et al., 2012). The basic 

single feedforward network (SFN), as shown in Figure 4.1 (Mo, Zhang, Li, & Qu, 2019), 

is the original concept of the ELM. 

 
Figure 4.8: Single Feedforward Network for ELM (Mo et al., 2019) 

 
Figure 4.8 shows that if there are too many inputs and outputs (𝑚𝑚𝑖𝑖 ,𝑣𝑣𝑖𝑖), then the input 𝑚𝑚𝑖𝑖 =

[𝑚𝑚𝑖𝑖1, 𝑚𝑚𝑖𝑖2, … , 𝑚𝑚𝑖𝑖𝑗𝑗]𝑇𝑇 ∈ 𝑅𝑅𝑗𝑗 and 𝑣𝑣𝑖𝑖 = [𝑣𝑣𝑖𝑖1,𝑣𝑣𝑖𝑖2, … , 𝑣𝑣𝑖𝑖𝑚𝑚]𝑇𝑇 ∈ 𝑅𝑅𝑚𝑚, and the SFN with L hidden 

layers is shown by the following equation: 
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𝑜𝑜𝑖𝑖(𝑚𝑚) = �𝛽𝛽𝑖𝑖𝑔𝑔�𝑤𝑤𝑗𝑗 . 𝑚𝑚𝑖𝑖 + 𝑛𝑛𝑗𝑗� = 𝐸𝐸𝛽𝛽,        𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 �
 𝑓𝑓 = 1, … ,𝑁𝑁

𝑤𝑤𝑗𝑗 =  �𝑤𝑤𝑗𝑗1,𝑤𝑤𝑗𝑗2 , … ,𝑤𝑤𝑗𝑗𝑗𝑗�
𝑇𝑇

𝛽𝛽𝑖𝑖 =  [𝛽𝛽𝑖𝑖1,𝛽𝛽𝑖𝑖2, … ,𝛽𝛽𝑖𝑖𝑖𝑖]𝑇𝑇

𝑖𝑖

𝑗𝑗=1

 
 
5.22 

Where 𝑤𝑤𝑗𝑗 is the weight vector relating to the 𝑗𝑗𝑡𝑡ℎ hidden neuron for the input and the 𝛽𝛽𝑖𝑖 is 

the weight vector relating to the 𝑓𝑓𝑡𝑡ℎ hidden neuron for the output, 𝑛𝑛𝑗𝑗 is the 𝑗𝑗𝑡𝑡ℎ hidden 

neuron threshold and 𝐸𝐸 is the hidden node function.  

After the EMG signal features were extracted, they were ready for classification. There 

are many available classification algorithms. The most common are the kNN, LDA, ANN 

and SVM. In this work, we used the LDA, which is applied to classification problems in 

pattern recognition. We decided to proceed with LDA in the hope that it would provide 

better classification compared with other classification algorithms (J. Lu, Mamun, & 

Chau, 2015). 

4.8 Data Analysis 

Voluntary and automatic actions experiment stretch reflex magnitude was measured using 

the EMG data. The baseline was eliminated by processing the EMGs. CNMF was used 

to extract the muscle synergy from the recorded EMG data. Raw EMG data were applied 

to the classification method. 

4.9 Results  

Using the TD and TFD features, and LDA classifier, Figure 4.9 and Figure 4.10 showed 

that the results were achieved with 0% error and 100% accuracy.  

  
Figure 4.9: Classification Results for Four 

Movements 
Figure 4.10: Classification Results (Majority Vote) 

for Four Movements 

All participants completed the tasks based on Equation 652. Figure 4. 11, Figure 4.12 and 

Figure 4.13 show the average of the utilized number of synergies by three participants 

when they performing the tasks. Figure 4. 11, Figure 4.12, and Figure 4.14 shows the 

VAF of all possible number of muscle synergies that recorded from the EMG dataset 

which required to achieve > 90% overall VAF and > 75% VAF. 
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Figure 4. 11: VAF of all Possible Identified Synergies from the Recorded EMG Data-Set in Reflex Response 

(Rx) 

 
Figure 4.12: VAF of all Possible Identified Synergies from the Recorded EMG Data-Set in Voluntary Action 

(Vc) 

 
Figure 4.13: VAF of all Possible Identified Synergies from the Recorded EMG Data-Set in Modified 

Environment (Vn) 

As we see in Figure 4. 11, Figure 4.12 and Figure 4.13, there were two muscle synergies 

required to reconstruct a feature of the recorded EMG data. These synergies were used in 

automatic and voluntary actions and helped shape the movement. Figure 4.14 shows that 

one synergy was enough to reconstruct the EMG data and shape the movement (F. S. 

Alnajjar et al., 2013), and this was achieved > 95% VAF. 
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Figure 4.14: VAF of all Possible Identified Synergies from the Recorded EMG Data-Set in Adaptation to 

the Modified Environment (Vm) 

Comparing both methods with previous researchers results (F. S. Alnajjar et al., 2013), 

shows that the pattern-recognition method helps the CNS shape movement with 100% 

accuracy and the CNMF method with > 95% overall VAF. The VAF result was > 90, 

which is important to identify the minimum number of used synergies that adequately to 

reconstructed the characteristics of the recorded EMG to help the CNS shape the 

movements. If the body performs an unusual task in an unusual environment, the CNS 

deploys the used synergy to cope with the new task. This supports our hypothesis for 

analysing automatic movements and voluntary movements for helping the CNS system 

shape synergy movement. Thus, we have successfully determined that synergy can help 

the CNS shape voluntary movement by calculating the VAF. 

4.10 Summary  

This chapter presented background information for the research feature extractions and 

classifications used in the subsequent thesis chapters. The chapter reviewed the classifiers 

and feature extractions that helps to develop pattern recognition auto control and a 

diagnostic system for upper limb performance recovery prediction. Some of the 

conditions that affect pattern recognition development and performance were reviewed 

and reported.  

In this research, many techniques were used to analyse and control the synergy EMG 

signal. Automatic body response movements and voluntary movements can help the CNS 

shape synergy. Using the CNMF method and the pattern-recognition method with > 95% 

overall VAF and 0% error, respectively, helped the CNS shape synergy movements with 

good results. In future work, we want to improve the repeatability and reliability of 

automatic body movement and voluntary action movement for shaping muscle synergy 

analysis using a new approach. The results in this chapter are published because it is 

accepted as worth researching (Bani Musa et al., 2017).  
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Chapter 5: Upper Limb Recovery Prediction After Stroke 

Rehabilitation Based on the Regression Method   

Neurological disorders following brain stroke are classified as one of the leading causes 

of long-term motors disabilities worldwide. Such motor disabilities may not only affect 

survivors’ quality of life but also can affect their communities. Motor disabilities after 

stroke are not necessarily identical in terms of the injury location and size; it is thus 

difficult for therapists to predict the evolution of the disability, the optimal treatment and 

the recovery period (Mostafavi, Glasgow, Dukelow, Scott, & Mousavi, 2013). 

The muscle bio-signal, EMG, has been studied extensively in an effort to understand the 

development of human control systems to improve rehabilitation techniques (F. Alnajjar 

et al., 2015; Bani Musa et al., 2017; Shibata Alnajjar et al., 2013). However, predicting 

motor recovery after stroke is still an important topic to address (Stinear, Byblow, 

Ackerley, Barber, & Smith, 2017). In this pilot study, we used the recorded EMG data 

from three moderate post-stroke patients during their rehabilitation sessions to investigate 

the possibility of predicting their upcoming motor activities. Specifically, we investigated 

the possibility of a machine-learning algorithm using SVMR to predict the motor 

functional recovery of these patients during their rehabilitation program. To train the 

model, we used the recorded EMG signals from the patients’ upper limb muscles during 

their initial rehabilitation sessions. We then tested the trained model to predict the 

patients’ later muscle performance during the same sessions. The results are promising, 

and the data were, to some extent, predictable. We believe this research could help 

motivate patients to complete their designed rehabilitation programs and assist therapists 

with designing proper rehabilitation programs for individual patients. The work of this 

chapter has been published in Converging Clinical and Engineering Research on 

Neurorehabilitation III: Proceedings of the 4th International Conference on 

NeuroRehabilitation (Bani Musa et al., 2019). 

 

 

 

 

 



65 

5.1 Support Vector Machine Regression (SVMR) 

Recently, stroke have become very common. The researchers focus more on 

rehabilitation programs containing movement evaluation and training. There are many 

algorithms used for the movement evaluation and training. SVMR is a good algorithm 

for such purpose. It is a prediction algorithm based on SVM. The SVM is a good 

classification technique that classify the data to diagnose diseases (Masood, 2016).             

It separates a set of training vectors to two different classes (x1,y1), (x2,y2),…,(xm,ym). 

Different researches examined the prediction performance based on different SVM kernel 

functions (Abakar & Yu, 2014; Song, Zhou, & Han, 2018). Most popular kernels are:  

1. Linear Kernel: 𝑆𝑆(𝑚𝑚𝑖𝑖, 𝑚𝑚𝑗𝑗) = �𝑚𝑚𝑖𝑖. 𝑚𝑚𝑗𝑗 + 𝑏𝑏�
𝑑𝑑

. 

Where k is constant, when d=1 it means linear kernel. 

2. Polynomial: 𝑆𝑆(𝑚𝑚𝑖𝑖 , 𝑚𝑚𝑗𝑗) = �𝑚𝑚𝑖𝑖. 𝑚𝑚𝑗𝑗 + 𝑏𝑏�
𝑑𝑑

 

Where k is constant, d is the kernel of degree. 

3. Gaussian (Radial Basic Function (RBF)): 𝑆𝑆(𝑚𝑚𝑖𝑖, 𝑚𝑚𝑗𝑗) = exp (−�𝑚𝑚𝑖𝑖, 𝑚𝑚𝑗𝑗�/2𝛾𝛾)2 

Where 𝛾𝛾 > 0 is the parameter that control the width of the Gaussian. 𝛾𝛾 control 

the flexibility of the resulting classifier.  

The choice of the kernel is based on the data nature.  

The main and basic point of using SVMR is to schedule the original EMG data into a high 

dimension space, then find the optimal plan in high dimension space to analyse the data 

ad predict the recovery rehabilitation (Qijun & Fangteng, 2021).  The main advantage 

point to use SVMR algorithm because it has a good non-linear generalization ability and 

mapping ability (Park, Forman, & Lievens, 2021; Zhang et al., 2022). In this thesis, I used 

SVMR to predict the motor functional recovery of the patients during their rehabilitation 

program.  
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5.2 Methodology 

Three unilateral moderate post-stroke patients (age: 52+/-2, SIAS score: 3) were recruited 

for this study. Eighteen EMGs data channels were recorded from the patients’ upper limb 

muscles while they performed a driving simulation task, as shown in Figure 5. 1 (Costa, 

Itkonen, Yamasaki, Alnajjar, & Shimoda, 2017). Nine of those EMGs data channels were 

recorded from the muscles on the stroke-affected side, and the remaining nine were 

recorded from the non-affected side. Data were collected from two independent sessions 

(with 30 minutes’ rest between the two sessions) of approximately 60 movements each. 

 
 

Figure 5. 1: Participant Position While Holding the Dual Steering Wheel 
 

The initial 80% of the collected EMGs data for each session were considered the training 

dataset. The remaining 20% were considered the testing dataset. The training data were 

band-pass filtered before being processed by a regression model using SVMR. Different 

kernels were tested. We used root mean square error (RMSE), mean square error (MSE) 

and mean absolute error (MAE) to check the error between the predicted data and the 

actual data (the testing data). The kernel with the minimum error, the fine Gaussian kernel 

in this study, was used. 

5.3 Results and Discussion 

For Patient 1, the results of sessions 1 and 2 are shown in Figure 5. 2and Figure 5. 3, 

respectively. The solid brown circles represent the actual results, and the solid blue circles 

represent the predicted outputs.  
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Figure 5. 2: Patient n1 (Session 1), RMSE 3.3e–05, MSE 1.3e–09, MAE 2.3e–05 

 
 

Figure 5. 3: Patient n1 (Session 2), RMSE 2.2e–05 MSE 4.9e–10, MAE 1.1e05 
 

In Figure 5. 2 and Figure 5. 3, the first nine points of the x-axis are for the stroke-affected 

side, and the remaining nine points are for the non-affected side. The same pattern is 

displayed in Figure 5. 4 and Figure 5. 5 and in Figure 5. 6and Figure 5. 7, which display 

the data for the second and third patients, respectively. 

 
 

Figure 5. 4: Patient n2 (Session 1), RMSE 2.2e–05, MSE 4.8e–10, MAE 1.6e–05 

 
 

Figure 5. 5:  Patient n2 (Session 2), RMSE 7.3e-06, MSE 5.3e-11, MAE 5.4e-06 
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Figure 5. 6: Patient n3 (Session 1), RMSE 6.6e–06, MSE 4.3e–11, MAE 5.1e–06 

 
 

Figure 5. 7: Patient n3 (Session 2), RMSE 1.5e–06, MSE 2.4e–12, MAE 1.3e–06 
 

Table 5.  1: Comparison of The Predictive of SVM in Different Kernels 

 

 

 

 

 

 

 

 

 

 

 

From the above figures and Table 5.  1, we could observe that our trained model could 

predict, to some extent, the recorded data of the patients. In Session 1, for instance, eight 

out of nine of the stroke-affected muscle activities were well predicted for patients 1 and 

2 (two to five of the stroke-affected muscles were predicted in Session 2 for the same 

patients). However, Patient 3 had five out of nine acceptable predictions for the affected-

side muscles in both sessions. The less predictive ability could be observed in the muscles 

SVM Kernel Error 

RMSE MSE MAE 

Polynomial Kernel (Abakar & Yu, 2014) 5.369   

RBF Kernel (Abakar & Yu, 2014) .911   

RBF kernel (first patient) Session 1 3.3e–05 1.3e–09 2.3e–05 

RBF kernel (first patient) Session 2 2.2e–05  4.9e–10 1.1e05 

RBF kernel (second patient) 2.2e–05  4.8e–10 1.6e–05 

RBF kernel (second patient) Session 2 7.3e-06 5.3e-11 5.4e-06 

RBF kernel (third patient) 6.6e–06  4.3e–11 5.1e–06 

RBF kernel (third patient) Session 2 1.5e–06 2.4e–12 1.3e–06 
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of the non-affected side for all three patients. The results show that it is possible for the 

machine-learning algorithm using SVMR to predict the motor functional recovery of 

moderate post-stroke patients during their rehabilitation programs (Bani Musa et al., 

2019; Shibata Alnajjar et al., 2013).   

5.4 Summary 

This chapter presented a pilot study examining the ability to predict the future muscle 

performance of post-stroke patients based on their current motor ability. The prediction 

model used the SVMR method, trained using the actual EMGs activities of post-stroke 

patients and validated by their future muscle performance. A statistical validation and of 

this work would be made possible by increasing the dataset size, which is what we intend 

to do in future research. The results in this chapter are published because it is accepted as 

worth researching (Bani Musa et al., 2019).   
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Chapter 6: Upper Limb Recovery Prediction Based on MME 

EMG Synergy and Biomarker Value 

Stroke is damage of function of the central nervous system (CNS). It caused by fail of 

blood flow to the brain tissue. It causes of short, long term or permanent disability. It is 

one of the mortality worldwide (Phipps & Cronin, 2020; Stinear et al., 2020).  

Immediately after a stroke, the primary concern of the patient, relatives, and caregivers is 

the potential of recovery and the possibility of doing daily rehabilitation basis. In most 

cases, clinical based on visual or patient physical examination are used for stroke 

assessments. Therefore, the results from the previous mentioned stroke assessment 

methods are suffer from lake of resolution (Canosa-Carro et al., 2022).The need for 

improve the stroke assessment methods for effective stroke rehabilitation is increased.   

To address this concern and to aid in clinical management, improved patient recovery 

predictions are needed. Information based on observation of average recovery patterns 

may have little relevance to an individual patient or healthcare provider. Analytical 

studies on outcomes after stroke have tended to concentrate on predicting the outcome at 

a specific time point (e.g., three months after stroke). This type of prediction does not aid 

clinical decisions about whether or not to continue an intervention, such as a rehabilitation 

program, nor does it identify the causes of recovery failure (G. Chen, Taylor, Shin, 

Reynolds, & Cox, 2017; Pinheiro & Bates, 2000).  

The patient’s rate of recovery also has important implications for the costs of care, 

especially the length of hospital stays. 

Such probabilities for recovery may vary according to treatment regimen or patient 

characteristics. It has been emphasised (Mostafavi et al., 2013; Pilarski, Dick, & Sutton, 

2013)  that standard patterns of recovery from a stroke should be established as a guide 

to monitoring the future recovery of patients. However, there is a lack of carefully 

designed statistical models for the development of such recovery patterns. 

This chapter proposes a system that helps stroke patients achieve specific benchmarks by 

predicting their ability to recover. The proposed system also assists physiotherapists to 

decide whether or not to change the exercise regimen for patients. Such exercise aids 

recovery and independence in activities of daily living by a given time point after stroke, 

allowing the patient to recover part or all of their former health, motor capabilities and 

upper limb function as well as helping to reduce hospital stay costs. 
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Recent research has focused on rehabilitation using different types of artificial 

intelligence, as our previous work in (Rahman & Al-Jumaily, 2013) required a certain 

type of hand control (Khairul Anam & Al-Jumaily, 2012). While electromyography 

(EMG) muscle signals have been used as one of the control signals as well as 

rehabilitation performance measurement indication and developed many algorithms to 

process for biomedical application, few works related to that were published (K. Anam 

& Al-Jumaily, 2017; Rami N Khushaba, Al-Ani, & Al-Jumaily, 2009).  

Research on the prediction and accuracy of rehabilitation performance is limited and 

could be improved by an appropriate selection of EMG signal inputs (Sanchez et al., 

2004; Westwick, Pohlmeyer, Solla, Miller, & Perreault, 2006) (G. Chen, Saad, Britton, 

Pine, & Cox, 2013; D. Lu, Tripodis, Gerstenfeld, & Demissie, 2018).  

To achieve more accurate prediction results and to better predict rehabilitation 

performance recovery, we developed a multilevel mixed-effect method (MME) to create 

a more flexible and accurate framework to predict recovery.  

The purpose of this chapter is to describe the use of artificial intelligence and clinical 

biomarkers associated with upper limb function. This is quantified in the first period of 

time post-stroke, which could be days or months, depending on the willingness of the 

patient to allow data to be collected from them. With data collected from patients, it is 

possible to estimate the ability of the patients to perform daily activities and to predict 

their skills at three months post-stroke. In particular, recent developments in robot-based 

behavioural tasks provide a rich set of biomarkers on sensory and motor function, 

including the performance of both the affected and unaffected upper limbs. In this study, 

we observe possible rehabilitation recovery and compare the results with the Functional 

Independence Measure (FIM) and the Stroke Impairment Assessment Set (SIAS) scores 

prior to and following rehabilitation.  

To start the observation, we trained part of the recorded EMG signals from the upper limb 

muscles of the patients during their initial rehabilitation sessions. We target to motivate 

the patient to complete the designed rehabilitation program. The results can then be used 

by the therapist to tailor an appropriate rehabilitation program for each patient. 

This chapter covers our use of a robotic data and clinical biomarkers associated with 

upper limb function data that collected and measured for post-stroke patients to estimate 

the efficiency of rehabilitation recovery. 

It also illustrates how to predict rehabilitation recovery for post-stroke patients by 

developing the MME model using robot-based biomarkers in both the FIM biomarker 
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and SIAS biomarker for EMG signals. Finally, it presents the synergy of the affected and 

non-affected sides of the body for post-stroke patients that can help predict their ability 

to recover based on their performance of daily activity rehabilitations, and that represents 

the level of recovery and improvement potential for a given rehabilitation technique. 

6.1 Stroke Assessment 

Generally, stroke causes long-term disability, with the patient suffering from physical 

weakness or paralysis of the limbs, usually on one side of the body. The patient will also 

experience difficulty gripping or holding objects and will have reduced joint mobility, 

which makes biomarker assessment problematic (Le Sant et al., 2019). The assessment 

procedure can be time-consuming, which can increase patient recovery time and cost. 

FIM and SIAS are two types of biomarker assessments. These assessments generally 

describe the patient’s ability to recover or improve after stroke to perform daily activities 

of living.  
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6.1.1 Functional Independence Measure (FIM) 

FIM is widely accepted as a body functional assessment of the patient’s ability to perform 

daily rehabilitation tasks (Hamilton, Laughlin, Fiedler, & Granger, 1994; Ottenbacher, 

Hsu, Granger, & Fiedler, 1996). It is an instrument was developed and used to measure 

the disability for different verity of movement (Mayur, Adiga, Ananthan, & Adiga, 2021).  

FIM contains a total of 18 tasks, rated on up to 7 scales (Chehata, Shatzer, & Cristian, 

2019). Table 6. 1 summarises the FIM measurement features. These are divided into two 

categories: 13 motor items (assessing self-care, sphincter control, mobility, and 

locomotion) and five cognitive items (assessing communication, psychosocial, and 

cognitive functioning) (Cech & Martin, 2012; Gillen, 2009). 

Generally, FIM reliability and validity have a good interrater reliability score. FIM 

evaluates the recovery rehabilitation depending on the independence score from 1 to 7 to 

complete the 18 items. The maximum score for FIM is 18 × 7 = 126 (for motor items and 

cognitive items), which indicates complete independence ability. The minimum score is 

18 × 1 = 18, which means the lowest end of the task dependence (Gillen, 2009). The 

maximum score for motor and cognitive items is 13 × 7 = 91 and 5 × 7 = 35, respectively. 

The minimum score for motor and cognitive items is 13 × 1 = 13 and 5 × 1 = 5, 

respectively. 

Table 6. 1: FIM Features of Measurement 

Motor Items Cognitive Items  

Self-care Items         Communication Items 

1. Comprehension  

2. Expression  

 

Psychosocial Adjustment 

1. Social interactions 

 

Cognitive 

1. Problem-solving  

Memory 

1. Feeding  

2. Grooming  

3. Bathing 

4. Upper body dressing  

5. Lower body dressing  

6. Toileting  

7. Bladder control  

8. Bowel control 

9. Bed, chair, wheelchair  

10. Toilet 

11. Tub or shower 

12. Walking, wheelchair locomotion 

13. Stairs locomotion 

Motor Score      /91 Cognitive Score       /35 
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6.1.2 Stroke Impairment Assessment Set (SIAS) 

The SIAS is a standardised measure of stroke damage and is used clinically to evaluate 

upper limb and lower body movement ineptness (Osu et al., 2011). Generally, the range 

of SIAS scores, according to symposium recommendations, is between 1 to 5 for each 

item (M. Liu et al., 2002). The SIAS score is divided into sub-categories of motor 

function, tone, and sensory function, including a range of motion, pain, feeling, 

visualisation function, speech, and sound function, among others, as illustrated in Table 

6.2.  

The scores are rated from 0 (severe) to 3 (normal) for Muscle tone, Sensory Function, 

Range of motion, Pain, Trunk balance, Visuospatial, speech, Grip and unaffected side. 

Other categories are: Motor function: the Proximal and Distal, the score rated 0 (severe) 

to 5 (normal) for the motor function category (F. Alnajjar et al., 2020; Chino & Melvin, 

1996; Tsuji, Liu, Sonoda, Domen, & Chino, 2000). 
Table 6.2: SIAS Scores 

 

Item Upper Limb and Lower Limb Scaling 
Categories  U/E              L/E 
Motor function 

1. Proximal 
 

2. Distal 
 
Muscle tone 

1. Deep tendon reflexes DTR) 
2. Tone 

 
Sensory function 

1. Touch 
2. Position 

 
Range of motion (ROM) 
Pain 
Trunk balance 
Visuospatial 
Speech 
Grip 
Unaffected side 

 
0–5              (0–5) Hip 
                    (0–5)  knee 
0–5              (0–5) 

 
 
0–3              (0–3) 
0–3              (0–3) 

 
 
0–3              (0–3) 
0–3              (0–3) 
 
0–3              (0–3) 
0–3 
0–3 
0–3 
0–3 
0–3 
0–3              (0–3) 

The Total score for the upper limb side and the Lower side is 76 (normal function) 
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The scores in Table 6.2 are used to plot a chart on a radar chart program to indicate the 

stroke patient’s status (F. Alnajjar et al., 2020; Chino & Melvin, 1996). Figure 7.1 and         

Figure 6.2 shows two examples of a SIAS radar chart. This chart considered SIAS feature; 

it can show the patients score in different angles way. Figure 6. 1 shows the example of 

a 73-year-old male. This patient was first tested 26 days after the stroke; his SIAS 

assessment score was severe for the upper and lower limbs. After 251 days, the test was 

readministered, and the SIAS score was recorded as moderate. Thus, the patient’s status 

improved from severe to moderate, and he totally recovered on some severe strokes like 

motor simulation and the pain reduced by time. Figure 6.2 shows the SIAS radar chart for 

a 59-year-old male. This patient was first tested 52 days after the stroke and again after 

187 days. His SIAS assessment score shows some recovery in his lower and upper limbs 

(F. Alnajjar et al., 2020; Chino & Melvin, 1996).   

 

Figure 6. 1: SIAS Radar Chart for 73 years male 

 
        Figure 6. 2: SIAS Radar Chart for 59 years male 
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6.2 SIAS Radar Chart for Our Data 

By considering SIAS features as in Table 6.2 for our data, we can chart the patients score 

for the original data and the prediction data in different angles way.  

Figure 6. 3 shows the SIAS radar chart for our first patients. This patient was tested as a 

moderate stroke. We predict patient SIAS, and it shoes recovery in patient Motor L/E, 

Muscle tone, and sensory function. Figure 6. 4 shows the SIAS radar chart for the second 

patient. Patient SIAS assessment score was sever for the upper and lower limbs. We 

predicted patient SIAS, and it shows that the patient needs more time to recover. Figure 

6. 5 shows the SIAS radar chart for our third patients. Patient SIAS assessment score was 

Mild. We predicted patient SIAS, and he recovered in Motor L/E, Trunk Balance, Range 

of motion (ROM), Visuospatial, sensory function, and Motor U/E.  

 
Figure 6. 3: SIAS Chart for the Second Patient (moderate) 

 
Figure 6. 4: SIAS Chart for the Third Patient (severe) 
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Figure 6. 5: SIAS Chart for the First Patient (mild) 

 

Comparing Figure 6. 1,Figure 6. 2,Figure 6. 3,Figure 6. 4, and Figure 6. 5 we can see that 

the prediction is deferent from patient to patient depends on the stroke zone and how it 

affects the human body. 

Health care providers such as physiotherapists, nurses, or therapists score the FIM scale 

or SIAS scale based on direct input from the patient (Tsuji et al., 2000).  Generally, for 

FIM and SIAS, standard errors (SE) are taken into account (Tsuji et al., 2000).  

Numerous studies have also been conducted to predict the clinical assessment (FIM and 

SIAS) value and predict the patient’s length of stay (Sprint, Cook, Weeks, & Borisov, 

2015).  

In this study, we use either FIM or SIAS clinical assessment or both, based on biomarkers, 

to compare the biomarker value with our prediction results. In our study, we used both 

values to obtain more accurate results. If the proposed method success to obtain a result 

toward the biomarker of FIM, or SIAS results, then the proposed method successfully 

predicts future rehabilitation recovery. This study represents a development insofar as it 

uses MME to predict the patient’s rehabilitation performance as well as evaluate that 

prediction. 

The next section explains the use of MME as a prediction method, followed by a detailed 

description of the materials and methodology used in this study. 
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6.3 Multilevel Mixed-Effects (MME) Prediction  

The MME model is generally used to identify how to process various changes of non-

linear prediction. Thus, it helps to process single EMG channels. It is good prediction 

method because it estimate the value between the subject variability in motion as well as 

estimate the case observation (Sebri & Dachraoui, 2021).  In this study, we extended the 

MME to predict variability in the human body for multi-EMG channels. This method 

provides an accurate result when based on FIM/SIAS biomarkers by adding regression 

coefficient parameters (discussed in greater depth in the materials and methodology 

section). This step reduces the final prediction error in predicting the rehabilitation 

recovery for the affected side of the body by using the unaffected side as a reference. The 

MME for each EMG signal has different intercepts and slopes across time. MMEs have 

become important tools in recovery prediction. They allow the analyst to treat the effects 

of the collected data through the prediction process. EMG data vary from patient to patient 

and muscle to muscle; there are even variations within the one muscle depending on 

movement type, movement force, movement angle, and surface electrodes. Thus, such a 

data structure lends itself to analysis via mixed-effects models. The most important 

element in rehabilitation application is the modelling, and especially, the prediction of 

rehabilitation (Hall & Clutter, 2004). In this study, we describe how we improve the MME 

model to fit multiple EMG channels.  

6.4 Material and Methodology 

This section specifies how we modify and predict rehabilitation movement using the 

EMG data. It also describes how we predict movement using a multi-EMG data channel. 

6.4.1 Participants 

Three stroke patients were recruited for this experiment. The data were collected from 

each patient at different times, as shown in Table 6.3 In the table, ID refers to the three 

patients, identified as P1 (Patient 1), and so on. G/A indicates gender and age, 

respectively. A-side indicates the affected side. The first data collection for this patient 

occurred on 1 December 2016. Overall, data we collected from this patient 12 times over 

four months. For Patient 2, data were collected 14 times over six months, whereas for 

Patient 3, data were collected 9 times over four months. The age of Patient 1 was 93 years, 

Patient 2 was 72 years, and Patient 3 was 52 years. The first two patients were female,  

 and the third patient was male. 
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Table 6.3: Patient Collection Data Dates  

 2016 (Y) 2017 (Y) 

ID G/A A-side 12 1 2 3 4 5 6 
P1 F/93 R 1 7 14 16 30 6 13 20 27 6 13 27 

 
  

 
  

 
  

 
  

P2 F/71 L 
    

30 6 13 
 

27 6 13 27 3 10 17   15 22 5 12 
P3 M/52 L 

      
13 

 
27 6 13 27 3 10 17 8 

   
  

Table 6.4 shows the patients’ stroke strength based on SIAS/FIM biomarkers rated as 

severe, moderate, or mild. The table also shows the stroke date for each patient. For 

example, for Patient 1 (P1), the date on which the stroke occurred was 7 November 2016. 

Also, Table 6.4, show the SIAS biomarker and the FIM biomarker reading date and results 

before and after treatment, respectively. The table shows SIAS biomarker results before 

treatment and after treatment. These reflected the improvement in the patients’ status, 

meaning that the patients had recovered. The same data are presented for the FIM 

biomarkers also showing improvement, with the motor item (see Table 6. 1). 

Table 6.4: Patient Information 
 

Ref 
ID 

G/A Stroke  
Date 

Stroke 
type 

SIAS 
Before training 

SIAS 
After training 

FIM 
Before training 

FIM 
After training  

Date UE Date UE Date motor Date motor 

1 P1 F/93 7.11.16 moderate 1.12.16 1 2.4.17 3 1.12.16 20 2.4.17 71 

2 P2 F/71 25.12.16 severe 30.1.17  0 12.6.17  2 30.1.17  20 12.6.17  62 

3 P3 M/52 23.1.17 light 13.02.17 3 23.6.17 4 13.2.17 58 23.6.17 87 

  

6.4.2 Rehabilitation Device 

The dual steering system is used to perform symmetrical tasks at the upper limb level, as 

shown in Figure 6.6A. This robotic device can quantify many areas of brain by collecting 

the EEG signal or collecting the EMG data using set of movement tasks. The data 

provided in this task on the robot can potentially be used as diagnostic for different 

neurological deficits and disorders. Figure 6.6B illustrate the graphical interface, which 

signals to the patient to synchronise subject movement with the desired cycling 

frequency. The system allows three working modes depending on the interaction between 

the steering axes: free mode (FREE) in which the axes rotate independently, 

asynchronous mode (ASYM), and synchronous locked mode (SYM) in which both axes 

are connected, experiencing the same angle of rotation in an asymmetric or asymmetric 

direction Figure 6.6C. The system also permits the use of different rotating elements, such 

as steering wheels and cranks, as shown in Figure 6.6D and Figure 6.7. First, the patient 

makes a voluntary movement before using the dual steering system. This movement trains 

the central nervous system (CNS), indicating that there is a new movement that the body 
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will make. The CNS will assign new neurons to carry out this exercise. This movement 

was discussed in detail in one of our previous studies (Bani Musa et al., 2017). Second, 

the patient is seated in front of the dual steering system. For accessible EMG recordings, 

the data were collected with a sampling frequency of 1000 Hz by using surface electrodes 

positioned according to the surface electromyography (sEMG) guidelines (Bani Musa et 

al., 2017; Costa et al., 2017), as shown in Figure 6.7, Several independent sessions were 

conducted with rest in between to minimise potential fatigue. Some of these sessions took 

place on the same day, some took place on different days, and some were conducted after 

a few months, as we see in Table 6.3.  

6.4.3 MME Prediction and Time Series Prediction  

MME is commonly used in economy, biostatistics and sociology. It is usually used for 

single prediction items, such as the performance of the economy to predict the growth of 

a country in the coming year (G. Chen et al., 2013; Stinear et al., 2017). 

 
Figure 6.6: Experimental Environment: A) Dual Steering System, B) 

Graphical Interface to Synchronise Subject Movement With the 
Desired Cycling Frequency, C) Switcher to Select the Working 

Mode, D) Steering Elements 
 
 

 
Figure 6.7: Participant Positions While Holding Dual Steering Wheel 
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We developed and calculated the MME prediction based on the FIM/SIAS biomarker by 

combining groups of EMG data for the affected muscles to predict rehabilitation recovery. 

We took the unaffected side as a reference to determine the prediction recovery for the 

affected side. EMG data were collected from the affected and unaffected sides using the 

dual system with a sampling frequency of 1000 Hz. 

EMG data were obtained using 18 EMG channels, which recorded data from the upper 

limbs and back and chest muscles of the patients while performing the driving simulation 

tasks (Bani Musa et al., 2019; Costa et al., 2017). Nine surfaces of EMG were recorded 

from the muscles on the affected side, and nine sEMG data were recorded from the 

unaffected side according to the sEMG guidelines (Costa et al., 2017; Hermens et al., 

1999) with the following distribution: brachio radialis, protanor teres, biceps, triceps, 

anterior deltoid, posterior deltoid, pectoralis major, infra spinatus and elector spinae. 

We use the unaffected EMG signals (the healthy side) as an indication in the prediction 

procedure to determine whether the affected side prediction results are going to be similar 

or close to the unaffected side EMG signal value. If the affected prediction results values 

were close to the unaffected side EMG signal value, this indicated that the affected side 

had recovered. 

6.4.4 Methodology and Results 

As shown in Figure 6.8, the MME prediction process started with raw EMG data that 

were collected using the dual steering system. The data were then sampled at 1000 Hz 

and filtered between 20 and 450 Hz using the Butter filter. Then, the signal was smoothed 

using a moving average filter to obtain better results, as in Figure 6.9. 

 
Figure 6.8: MME Prediction for EMG Signal 

Raw EMG 
data
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Figure 6.9: EMG and Average Signal 

 

We calculated the average signal values, as in Equation 7.1: 

Y(n) =
𝑋𝑋(𝑒𝑒 − 1) + 𝑋𝑋(𝑒𝑒) + 𝑋𝑋(𝑒𝑒 + 1)

3           , �𝑋𝑋
(𝑒𝑒) = 𝑒𝑒𝑜𝑜𝑓𝑓𝑒𝑒𝑒𝑒 𝑒𝑒𝑜𝑜𝑜𝑜𝑒𝑒𝑛𝑛𝑡𝑡𝑒𝑒𝑑𝑑 𝑒𝑒𝑓𝑓𝑔𝑔𝑒𝑒𝑚𝑚𝑒𝑒
𝑌𝑌(𝑒𝑒) = 𝑀𝑀𝑣𝑣𝑒𝑒𝑒𝑒𝑚𝑚𝑔𝑔𝑒𝑒𝑑𝑑 𝑆𝑆𝑓𝑓𝑔𝑔𝑒𝑒𝑚𝑚𝑒𝑒  

 
Note: In order to validate the real meaning of (n-1) and (n+1), the average loop starts from 2: n-1 

6.1 
 
 

  
Time series prediction is a useful tool to predict future behaviour. Time series data are 

usually modelled through a random probability distribution process and used the data that 

function of time (Sapankevych & Sankar, 2009; Thissen, Van Brakel, De Weijer, 

Melssen, & Buydens, 2003). We built a new time series model to predict future 

rehabilitation based on extracted synergy. 

Figure 6.10 illustrates our time series prediction methodology model. The model starts 

with raw EMG data, but after smoothing the signal, we extracted the synergy EMG using 

concatenated non-negative matrix factorisation (CNMF) for the unaffected and affected 

sides. In particular, we used the CNMF extracting method rather than the NMF method 

to improve the efficiency of the CNMF, as in one of our previous studies (Bani Musa et 

al., 2017).   
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Figure 6.10: Time Series Prediction for Synergy EMG 

 

We calculated the final prediction error (FPE) for the MME as in Equation 6.2 and mean 

square error (MSE) as in Equation 7.3, between the filtered EMG data and the Prediction 

EMG data. This is defined in the equation below:  

𝐼𝐼𝑀𝑀𝐸𝐸 = �
1 + 𝑑𝑑

𝑁𝑁
1 − 𝑑𝑑

𝑁𝑁

� ∗ 𝑉𝑉 
 
6.2 
   
 

Where d is the regression coefficient, which describes the prediction relationship value 

between the unaffected side and the affected side. The coefficient sign (+/−) indicates the 

direction of the relationship between the unaffected and affected sides. The positive sign 

means that the muscle will recover, whereas the negative sign means that the muscle will 

not recover (S. Wang & Cui, 2020). N is the length of the data record (observation data). 

V is the loss function for the structure (Fryer, Odegard, & Sutton, 1975) 

𝑀𝑀𝑆𝑆𝐸𝐸 =
1
𝑒𝑒
� �𝜃𝜃𝑖𝑖 − 𝜃𝜃𝚤𝚤� �

2𝑛𝑛

𝑖𝑖−1
   

 
6.3  
 

Where n is the number of observation values in each EMG channel(number of the 

collected data), 𝜃𝜃 the true value for the estimate of interest, and 𝜃𝜃𝚤𝚤�  is the estimate of 

interest obtained from the ith simulation (Rombach, Jenkinson, Gray, Murray, & Rivero-

Arias, 2018). 

The simple regression model has explained the relation between y (the regression output) 

and one independent variable, x, as in Equation 6.4. We used this equation to predict the 

EMG single channel.  

𝑣𝑣 = 𝛽𝛽0 + 𝛽𝛽1𝑚𝑚 + 𝜀𝜀 6.4  
 

For the MME regression model, we developed Equation 6.4 to fit the various EMG data. 

Equation 6.5 explains the relation between y and more than one independent variables  

𝑣𝑣 = 𝛽𝛽0 + 𝛽𝛽1𝑚𝑚1 + 𝛽𝛽2𝑚𝑚2 + ⋯+ 𝛽𝛽𝑛𝑛𝑚𝑚𝑛𝑛 + 𝜀𝜀 6.5 

Where: β0, β1, β2, …, βn are the parameters, and ε is the error. 

We developed Equation 6.5 to fit our EMG data. We used a sample to estimate the 

multiple prediction equation based on the least square method. Since the calculation for 
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the parameters: β0, β1, and β2 are not known, it was necessary to use sample statistics to 

estimate these parameters. We calculated the coefficient for each EMG channel to 

calculate the recovery prediction. We used the sample statistics to develop the parameters 

in Equation 6.5. The developed parameter, as in Equation 6.6, is obtaining the multiple 

prediction equation. This allowed us to find the best line that fitted our data by adding the 

coefficient parameter to Equation 6.5. 

𝑣𝑣� = 𝑛𝑛0 + 𝑛𝑛1𝑛𝑛1 + 𝑛𝑛2𝑛𝑛2 + ⋯+ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝜀𝜀 6.6 

Where: b0, b1, …, bn are the EMG values for each observation, c is the coefficient for each 

muscle, n is the signal value, which is 9 in our study (9 EMG channel). 

Equation 6.7 is the least square equation; it calculates the least square error between the 

observed EMG data and the prediction value. 

min�(𝑣𝑣𝑛𝑛 − 𝑣𝑣�𝑛𝑛)2 
6.7 

Where: 

𝑣𝑣𝑛𝑛 : is the observed value of the y for the nth observations. 

𝑣𝑣�𝑛𝑛 : is the predicted value of y for the nth observations. 

From Equation 6.7, we obtained two values: the observed value (the unaffected side 

reference value) and the predicted value (which is the prediction recovery for the affected 

side). The best regression line that affects the data can be found by minimising the mean 

square error between the observed value (𝑣𝑣𝑛𝑛) and predicted value (𝑣𝑣�𝑛𝑛).  

By testing the significance of the individual parameters, we suppose the following: 

� 𝐻𝐻0:𝛽𝛽𝑖𝑖 = 0,           𝑡𝑡 − 𝑣𝑣𝑚𝑚𝑒𝑒𝑛𝑛𝑒𝑒 ≤  𝛼𝛼,α = 0.025.  𝑇𝑇ℎ𝑒𝑒 𝑣𝑣𝑚𝑚𝑒𝑒𝑛𝑛𝑒𝑒 𝑓𝑓𝑒𝑒 𝑒𝑒𝑣𝑣𝑔𝑔𝑒𝑒𝑓𝑓𝑜𝑜𝑓𝑓𝑛𝑛𝑚𝑚𝑒𝑒𝑡𝑡, 𝑡𝑡𝑜𝑜𝑒𝑒𝑓𝑓𝑛𝑛𝑓𝑓𝑒𝑒𝑓𝑓𝑡𝑡𝑣𝑣 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑛𝑛𝑜𝑜𝑣𝑣𝑒𝑒𝑒𝑒𝑣𝑣
𝐻𝐻𝑛𝑛:𝛽𝛽𝑛𝑛 ≠ 0,                                                                                                                  𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑓𝑓𝑒𝑒𝑒𝑒 ,𝑁𝑁𝑜𝑜 𝑒𝑒𝑒𝑒𝑛𝑛𝑜𝑜𝑣𝑣𝑒𝑒𝑒𝑒𝑣𝑣  

6.8 

In Equation 6.8, we predicted H0 if the 𝑡𝑡 − 𝑣𝑣𝑚𝑚𝑒𝑒𝑛𝑛𝑒𝑒 ≤  𝛼𝛼 or using the critical value 

approach, which is: If  𝑡𝑡 − 𝑣𝑣𝑚𝑚𝑒𝑒𝑛𝑛𝑒𝑒 ≤  𝛼𝛼 that mean βi = 0.  In turn, this means that there is 

a relationship between the affected side and unaffected side prediction values. Therefore, 

it is possible to predict the recovery of the patient.   

By calculating the p-value in each session for each EMG channel, we can predict whether 

the muscle will recover or not. Table 6.5 Present the results for each muscle to determine 

an indication parallel with the SIAS biomarker to enable recovery prediction. The table 

shows the sample values for the three patients for multiple sessions with moderate, severe, 

and mild stroke, respectively. We calculate the intercept, multiple R, R squared, and the 

standard error to find the signal prediction output.  
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Table 6.5 shows that the values for the multiple R and the R square is towards 1. This 

means that the patients recovered, but they needed more practice. When these results are 

compared with those in Table 6. 1 and Table 6.2, we find that after training, the patient 

showed a moderate recovery (which is 3 SIAS and 71 FIM), the second patient showed 

minimal recovery (which is 2 SIAS and 62 FIM) and the third patient showed the greatest 

recovery (which is 4 SIAS and 87 FIM). After calculating the previous parameters for 

each EMG for all sessions for each patient, the results are presented in Figure 6.11,  Figure 

6.12 and Figure 6.13. 

As in Equation 6.8, after calculating (α-(p_value)) for each single EMG channel, we 

placed zeros in the negative value as we see in Table 6.6 to simplify and understand the 

prediction results. 

Table 6.5: MME Prediction for the ES-EMG Channel for Unhealthy Side 

 Sessions Intercept ES (EMG_9) Multiple 
R 

R Square Standard 
Error 

 
 
 
 
 
 

P1 

1 -3.8E-11 -0.021995 0.67 0.45 2.61433E-05 
2 7.65E-11 8.61E-02 0.76 0.57 1.10175E-05 
3 -8.3E-10 -2.33E-02 0.90 0.81 3.51754E-05 
4 -2.9E-09 1.21E-03 0.85 0.73 1.82951E-05 
5 -1.1E-10 -3.02E-03 0.28 0.08 8.62527E-06 
6 1.74E-11 -1.21E-03 0.69 0.48 1.02802E-05 
7 -2.1E-11 -1.70E-02 0.74 0.55 1.9213E-05 
8 -6.2E-11 2.40E-02 0.56 0.31 1.85957E-05 
9 -4.6E-10 -1.30E-01 0.86 0.74 1.42564E-05 

10 -1.8E-10 -6.26E-01 0.92 0.85 1.51882E-05 
11 -5.8E-11 1.52E-01 0.49 0.24 1.23125E-05 
12 -2.8E-11 -1.13E+00 0.94 0.87 1.20597E-05 

 
 
 
 
 
 

P2 

1 2.78E-11 3.29E-01 0.85 0.73 1.25563E-05 
2 1.83E-10 5.97E-03 0.31 0.10 1.07049E-05 
3 -3.9E-11 8.38E-02 0.91 0.82 1.67023E-05 
4 1.94E-10 -8.17E-03 0.86 0.74 9.71386E-06 
5 7.18E-12 1.93E-01 0.34 0.11 1.02255E-05 
6 1.19E-10 2.59E-02 0.84 0.70 1.03589E-05 
7 -2.7E-10 4.77E-02 0.92 0.85 1.46256E-05 
8 4.96E-10 -9.07E-02 0.82 0.67 5.25837E-05 
9 7.75E-11 1.70E-03 0.05 0.00 9.84463E-06 

10 -3.4E-11 -2.27E-02 0.18 0.03 9.41904E-06 
11 -9.7E-12 -1.96E-04 0.35 0.12 8.95578E-06 
12 -3.1E-10 -2.44E-03 0.04 0.00 1.51845E-05 

 
 
 
 

P3 

1 8.36E-12 4.48E-04 0.89 0.79 7.6842E-06 
2 1.23E-11 5.71E-03 0.57 0.32 1.70211E-05 
3 2.12E-12 1.24E-01 0.66 0.43 1.73212E-05 
4 7.07E-11 1.15E-01 0.74 0.54 1.1864E-05 
5 1.37E-10 -6.00E-02 0.59 0.35 3.68439E-05 
6 -2.1E-11 1.65E-02 0.83 0.69 7.70275E-06 
7 -2.3E-10 2.52E-01 0.82 0.68 1.27693E-05 
8 9.51E-12 6.85E-01 0.55 0.31 1.61569E-05 
9 2.97E-10 3.26E-01 0.60 0.36 9.80951E-06 

10 4.81E-11 -1.11E-02 0.69 0.48 1.48361E-05 
11 5.08E-10 1.72E-02 0.73 0.53 1.0308E-05 
12 -1.1E-10 -4.86E-02 0.92 0.85 7.30509E-06 
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Figure 6.11: Multiple R for First Patient

Figure 6.12: Multiple R for Second Patient

Figure 6.13: Multiple R for Third Patient

. 
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Table 6.6: (α-(p_value)) for all EMG Signal  
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Figure 6.14, Figure 6.15 and Figure 6.16 indicate which muscles will help recovery during 

the single sessions for each patient.

Figure 6.14: Muscles Recovery Prediction for the First Patient

Figure 6.15: Muscles Recovery Prediction for the Second Patient

Figure 6.16: Muscles Recovery Prediction for the Third Patient

From Table 6.6 and Figure 6.14, the first patient has 12 data collection sessions. 

Table 6.6 and Figure 6.15, the second patient had 21 data collection sessions. 

Table 6.6 and Figure 6.16 third patient had 22 data collection each session. Some muscles 

had recovered, whereas others had not. Therefore, we can conclude that this patient’s 

recovery was moderate. As shown in Table 6.6 and Fig. 12, for the second patient, only 

a few muscles recovered with each session. Therefore, we can conclude that this patient 

had a severe stroke. As shown in Table 6.6 and Fig. 13, for the third patient, many muscles 
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recovered with each session. After we compare our results chart and the SIAS and FIM 

results in Table 6.6, we can see that the recovery results are very close because the high 

value in SIAS that indicates full recovery is 5, whereas the lowest value of 0 indicates no 

recovery. Our prediction method and results match the SIAS results in Table 6.6. This 

means that the MME prediction for multi-EMG channels successfully predicts stroke 

patients’ rehabilitation. 

We demonstrated how the time series prediction method could predict the rehabilitation 

recovery using the synergy EMG for stroke patients of the upper limbs for the near future 

results. 

Figure 6.17, Figure 6.18 and Figure 6.19 represent the first, second and third patients time 

series synergy prediction, respectively. 

 

Figure 6.17 First Patient Synergy Prediction 

 

Figure 6.18: Second Patient Synergy Prediction 
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Figure 6.19: Third Patient Synergy Prediction 

 

In Figure 6.17, Figure 6.18 and Figure 6.19, the first simulation shows the synergy 

prediction in the short term. The second simulation shows the time series prediction after 

three months. The first patient has recovered moderately, taking into account the 

amplitude range. The second patient has recovered with a small amplitude. This means 

that the stroke was severe, not all muscles will recover, and recovery time will be longer. 

The third patient also has an increased amplitude range, which means that his recovery is 

different from the first and second patients’. These results are compatible with the SIAS 

biomarkers to predict future rehabilitation recovery.  

6.5 Summary 

In this study, we predicted the recovery of severe, moderate, and mild stroke patients 

during their rehabilitation program. We successfully anticipated their rehabilitation 

possibility using the MME method and predicted their future recovery performance based 

on muscle synergy using time series prediction. This study modelled and developed the 

MME for the collected EMG data, demonstrating that the MME provides a significantly 

superior method to predict the rehabilitation recovery performance of stroke patients 

using multi-EMG channels. This improved prediction method can help researchers to 

identify the possibility of stroke patients’ recovery and ability to perform daily 

rehabilitation tasks. This was proved by comparing our results with the clinical FIM or 

SIAS biomarkers. This study also demonstrated predicted future rehabilitation movement 

recovery for stroke patients based on synergy data, which facilitates the efficient selection 

of essential muscles.   
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Chapter 7: Thesis Summary, Conclusion and Future Work 

This chapter summarises the thesis and its major findings. It also offers recommendations 

for future research in the same field. 

7.1 The Significant of The Research 

Stroke is the major factor causing disability in people of all age groups. The stroke 

patients required rehabilitation to recover their function movements. The main aim of this 

thesis was to introduce two computational intelligence-based human movement types—

automatic body action and voluntary action based on EMG signal in the upper limb of the 

body to predict muscle rehabilitation performance. We studied the biomedical signal to 

improve muscle strength and develop human control systems to improve quality of life 

by predicting recovery, which can help physiotherapists predict training outcomes and 

clarify the best rehabilitation training programs. This study studied upper limb 

movements and applied recorded EMG signals to predict rehabilitation performance for 

post-stroke patients in terms of their daily upper limb motor activities. The study sought 

to help improve muscle strength via specialised care by giving patients the right exercises 

and predicting their recovery performance ahead of three months. To achieve these aims, 

we studied EMG pattern recognition. As pattern recognition has made numerous 

experimental results achievements which are frequently overtaken by machine-learning 

methods, we investigated and developed EMG pattern-recognition approaches to help the 

muscles to regularly work every time and as a real function to support and understand 

how the CNS shapes voluntary motion. 

7.2 Thesis Summary and Results 

This thesis has success to add new knowledge to the field. Chapter 1 reviewed an 

introduction for this thesis including the contributions, objectives, questions, and 

publications. Chapter 2 reviewed the literature on upper limb anatomy and presented an 

overview of EMG signals. Chapter 3 provided background on EMG and synergy signals 

for the upper limbs. Chapter 4 explained how automatic body responses could be used 

as a guide to familiarise and understand voluntary movement to help the CNS system 

shape voluntary motions and improve rehabilitation performance. The first part of the 

chapter explained how to shape the movement by extracting synergy EMG based on 

pattern recognition. We extracted the features for the EMG using the following TD and 

time-frequency features: MAV, SSC, ZC, WL, Hjorth, MWP and SKW. We then used 
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the LDA classifier because it has the ability to cope with a large dataset such as the one 

we used. We obtained 0% error in the pattern-recognition classification. The second part 

of the chapter detailed how to shape the movement by extracting synergy EMG based on 

CNMF. Here, we did not use a classifier (which is new to not using classification in the 

pattern recognition methodology). We developed the NMF to CNMF to reduce the error 

and found the minimum number of synergies that adequately reconstructed the 

characteristics of the recorded EMGs—we obtained > 95% VAF overall. The results of 

this chapter were published it IRIS 2017 (Bani Musa et al., 2017).  

Chapter 5 predicted post-stroke patient rehabilitation. We investigated the possibility of 

the machine-learning algorithm using SVMR to predict functional motor recovery for 

post-stroke patients during their rehabilitation programs. In this chapter, we compared the 

actual results with the predicted output results, finding that some muscles would recover 

completely, some would slightly recover, and some needed more time than the duration 

of the planned rehabilitation program. The kernel that achieved the minimum error in 

SVMR was the fine Gaussian kernel. The results for this chapter were published on ICNR 

2019 (Bani Musa et al., 2019).  

Chapter 6 predicted rehabilitation for post-stroke patients by developing the MME and 

predicting rehabilitation performance ahead of three months based on time series 

prediction. It also presented the synergy of the affected and non-affected sides of the body 

for post-stroke patients, which can assist in predicting their ability to recover daily 

activity. This can indicate the extent of a patients’ recovery and improve the potential of 

post-stroke patients and help guide rehabilitation strategies.  We compared our results 

with the FIM and SIAS biomarkers and found that we successfully predicted 

rehabilitation recovery for a particular number of post-stroke patients. Further, we helped 

therapists assist post-stroke patients by devising a proper rehabilitation program for them.  

7.3 The Limitation of The Research 

• The data used were collected using the Delta 3 manipulandum device. 

• This data recorder for around 3 months’ time. 

• We use the data to predict performance. 

• Limitation on the number of participants. 
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7.4 Future Work 

It is advised that future research in this area seek to achieve the following: 

• improve the repeatability and reliability of automatic body movement and 

voluntary action movement by predicting the movement type 

• Develop the pattern-recognition methodology. Currently, pattern recognition is 

used to classify upper limb movement, but our future work aims to predict the 

upper limb motor movement type for post-stroke patients with considering the 

real-time. This work will help physiotherapists choose the right recovery 

exercises and thus reduce recovery time and cost. 

• Increase the performance of the pattern-recognition system using other machine-

learning techniques, such as the ELM, on the synergy signal to reduce the 

prediction error, as the ELM is fast to learn, requires less training and saves 

recovery time 

• Develop the ELM method to predict the post-stroke patient rehabilitation 

movement type 

• Develop the ELM method by optimising the main parameters to be the Swarm-

ELM regression method, which can help predict the movement type for post-

stroke patients.  

7.5 Conclusion 

This thesis adds to knowledge a particular theoretical and practical understanding of a 

particular area. The major goal of this study was to introduce a new computational 

intelligence-based EMG signal for use in upper limb rehabilitation. Its three main 

contributions helped achieve this purpose and have the potential to solve issues that arise 

in real-time applications. The first contribution was to successfully analyse the automatic 

body response and voluntary action. We successfully found that synergy can help the 

CNS shape voluntary action by calculating the VAF. We used the CNMF method and the 

pattern-recognition method with > 95% overall VAF and 0% error, respectively. The 

second contribution was to successfully predict future muscle rehabilitation for post-

stroke patients using SVMR. The third contribution was to successfully examine the 

ability to predict the future muscle performance of post-stroke patients based on their 

current motor ability. This motivated the patients to complete their designed rehabilitation 

program. This study successfully anticipated rehabilitation potential using the MME 

method based on a robot-based biomarker in both FIM and SIAS for EMG signals. This 
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saves physiotherapists significant time and advises patients which types of exercise are 

useful or not after one or two months. In addition, we successfully predicted future 

rehabilitation for post-stroke patients based on synergy data, which allows the accurate 

selection of essential muscles.   

Through these contributions, the synergy of the affected and non-affected sides of the 

body can successfully help predict the ability and the level of post-stroke patients’ 

performance recovery of their daily movement activity and improve rehabilitation 

techniques for these patients.   
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Appendix a: Manipulandum Device 
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Abstract 

The Biomedical Signals have been studied for developing human control systems to improving the quality of life. 
The EMG signal is one of the main types of biomedical signals. It is a convoluted signal. This signal (EMG signal) 
controlled by the Central nervous system (CNS). It has been a long time expected that the human central nervous system 
(CNS) uses flexible combinations of some muscles synergy (MS) to solve and control redundant movements. Synergy 
muscles activities are different in a single muscle. In the concept of Synergy muscle, the CNS does not directly control 
the activation of a large number of muscles. There are two main movements can help CNS to shape the synergy. The 
automatic body response and the voluntary actions. These activities remain not too bright. Some studies support the 
hypothesis that the automatic body responses could be used as a reference to familiarize the voluntary efforts. It has 
been validating by analyzing the human voluntary movement and the automatic mechanical motions from the muscle 
synergy. Based on the validation, there was a proposition that the automatic synergy motion may express some features 
which could support the CNS to shape the voluntary synergy motion using the nonnegative matrix factorization (NMF). 
Thus the target of the presenting work is to analyses the human movements from the muscle synergy to help CNS 
shapes the synergy movement by suggestion using the concatenated non-negative matrix factorization (CNMF) method 
and the pattern recognition method. Then compare the two results and see if that help CNS to shape the synergy 
movements and which method has more accuracy.  
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1. Introduction 

Electromyography (EMG) based techniques are used for assessing, analyzing and recording the data by 
detecting the EMG signals generated during the relaxation of muscles or powerful muscles. On the other 
hand, the Synergy EMG (SyEMG) has known that the CNS control muscles in groups, more confident than 
individually to generate healthy and dynamic movements1. Muscle synergies had been used to solve the 
redundancy problem. SyEMG has viewed Muscle synergies (MS’s) as a specific example of structural 
units, which are task particular ensembles of elements within a neuromotor system. There are two main 
movements can help CNS to deal with muscles to activate a group of muscles: The automatic body response 
(reflexives) and the Voluntary    movements2-4. The automatic body response (automatic synergy) in 
structuring the voluntary movements (voluntary synergy) still needs to resolve. Some hypothesis based on 
the experiments results found that the automatic response in human formed as automatic movements4. 
Within this automatic action, the CNS can store the movement to create a voluntary movement which is 
the reaction movements. 

This paper aims to simplify the human movements to shape the muscle synergy using CNMF, and then 
to use a typical pattern recognition method to classify the muscle synergy.  

Nomenclature 
m The muscles number 
n  Number of synergies 
t Time 
E Residuals between the recorded M and the calculated WC 
  ⃦     ⃦F Frobenius norm of a matrix 

2. Synergy EMG Using Pattern Recognition 

Pattern recognition is researching object description and classification method.  It is a collection of 
mathematical, statistical and inductive techniques. It includes many methods which help the development 
of numerous applications in different fields. CNS use many surface electromyography (sEMG) channels 
that show a vast ability to control the combined muscles (Synergy EMG). However, this control needs to 
be adapted when applied for upper limb muscles. Combining of EMG data from upper limb muscles can 
be used to classify hand movements5.  

This paper aims to evaluate real-time pattern recognition control of hand motions in four different 
environments, (Rx, Vc, Vm, Vn). This work uses two methods: using the experiment data with CNMF 
matrix and then apply same experiment’s EMG data to the pattern recognition process with a significant 
change in using the features and classification methods. 

The present work is to support the hypothesize that the automatic synergy powerfully shapes the 
formation of voluntary synergies. It also supports that this effect may increase whenever facing unfamiliar 
movement by mean of creating a reaction movement (voluntary motion)4, also demonstrate how many 
synergies used in each movement. 

3. Data Acquisition 

3.1 Participants 

The used data in this paper support the hypothesis to apply the new method. It had been recorded in 
Intelligent Behavior Control Unit, Brain Science Institute, BSI-TOYOTA Collaboration Centre of RIKEN, 
Nagoya, Japan. Three neurologically healthy participants, right-handed with no reported muscular 
impairment on the upper limb had been engaged in this study.  

The study protocol was discussed and explained to the participants to be familiar with the objective of 
the study. They were [(means ± SD), weight 69.25 ± 9.1kg, height: 175 ± 6.2cm, age: 34.5 ± 5.1yr] 
participated in the study4. The RIKEN ethics committee approved the protocols of all participants4. 
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3.2 Equipment 

Participants were holding a robotic manipulandum sitting on a fixed chair beside, as shown in Fig.1(a) 
Delta.3 manipulandum  (260mm height and 40mm diameter) has been used to collect the data4.  

Delta.3 was controlled and used to apply different resistances in various tasks. The knob position and 
force have been sampled at 100Hz4. 

4. Electromyography (EMG) Methods 

Surface EMGs recorded from six shoulders prime muscles: deltoid anterior (AD), pectoralis major (PM), 
biceps brachii (BI), latissimus dorsi (LD), teres major (TM) and infraspinatus (IS). The electrodes have 
been placed in accordance position to the sEMG’s guidelines. EMG data has been synchronized with 
manipulandum through the experiment. To Support the previous hypothesis, we suggest working on 
Synergic EMG signal. To work on Synergy EMG, we have to process the EMG signal and extract the 
Synergy EMG signal as shown in Fig. 1(b) and Fig.1 (c). Fig. 1(b) illustrates the process to analyze synergy 
EMG. It starts from raw EMG data through several steps to extract the muscle synergy using CNMF; using 
this technique, each muscle can be activated by various synergies. 

Consequently, there are no similar two muscle activation patterns. These findings imply that the nervous 
system may use a limited set of control signals to activate a large number of muscles6. When the EMG 
signal is used for analysis, the synergy reflected only synchronized muscle activity. If a synergy is active 
at a given time, all muscles within that synergy are active7. Generally, muscle synergies are suggested as a 
solution to muscle’s degree of freedom problem in motor control action potential instead of having to 
manage many thousands of motor units or dozens of muscles, However, using the CNMF concatenates the 
original EMG data of individual trials or all trials8, 9 and while keeping the synergy pattern fixed among 
those trials. By keeping the synergy adjusted among participants, signal variability between the trails is 
limited to the coefficients and therefore is a stronger      approach8, 10. After the CNMF had been applied, 
the variance accounted for (VAF) threshold was found to identify the minimum number of synergies that 
adequately reconstructed the characteristics of the recorded EMGs4.  

Fig.1 (c) shows the using of pattern recognition for classification method, to classify the movement by 
using new features and classification to get the synergy EMG result. It starts with the raw EMG data, filter 
the data using the butter filter, apply the result to extract features, and apply it to a classification system as 
a muscle synergy data, that helps to classify the hand movement to get a better result. 

 

   
Fig.1. (a) Delta.3 manipulandum devise (b)  CNMF extracting method (c) Pattern recognition  method 
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4.1 Filter 

It helps to remove some unwanted components (noise) or features from a signal. In other words, 
eliminating some unwanted frequencies to reduce background noise. Since EMG is affected by noise, a 
butter filter is applied. 

4.2 Feature Extraction 

EMG feature extraction is one of the necessary procedures to extract the useful information from the 
EMG signal. No additional signal transformation is needed. We used the following features5, 11-14: 

• Slope sign change (SSC): Counts the number of times that EMG signal slope sign changes. This presents 
the frequency information of the EMG signal. 

• Zero crossings (ZC): A representation of frequency information of the signal at time domain. It counts 
the number of times that EMG signal amplitude values cross the zero amplitude level. 

• Waveform length (WL): A measure of the complexity of the EMG signal. It is defined as increasing 
length of the EMG waveform over the time. 

• Hjorth parameters (Hjorth): Is normalized slope used in EMG. Moreover, Hjorth parameters are used for 
signal processing as surface detection and feature extraction. 

• Sample skewness (skw): Is a measure of the asymmetry of a signal or measure of X order. 
• Absolute values (MAV): A standard and easily implemented feature of the time domain. It finds the mean 

of EMG amplitude values over sample length of the signal. 
• Multiscale wavelet packet (mwpf): An alternative means of extracting time-frequency information from 

vibration signals. It is a combination of wavelets. A recursive algorithm computes the coefficients, 
making each newly computed wavelet packet coefficient sequence the root of its analysis tree. 

4.3 Classification System 

After extracting the EMG signals features, they are ready for classification. There are many available 
classification algorithms. The most common classification algorithms are the K-Nearest Neighbour 
Algorithm (KNN), Linear Discriminant Analysis (LDA), Artificial Neural Networks (ANN) and Support 
Vector Machines (SVM). In this work, Linear Discriminant Analysis (LDA) algorithm is used. The use of 
LDA for data classification is applied to classification problem in pattern recognition.  

We decided to proceed with LDA in hopes for providing better classification compared to other 
classification algorithms15. 

5. Experiments Protocol 

Voluntary and automatic actions synergies relationship have been verified through the experimental 
work4, the following are the four main movements that was considered in the experiments to support the 
hypothesis: 

5.1 Reflex response (Rx) 

This measures the automatic responses from the manipulandum with zero resistance of the participants. 
Seated participants have been grasping the knob of the manipulandum, and the arm was positioned 90 
degrees straight. 

5.2 Voluntary action 

At this point, there was no produced resistance from Delta.3. The movement was just from the participant 
with zero resistance from the manipulandum robot. By the end of this task, the movement will be familiar 
to the participants. 
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5.3 Voluntary action in a modified environment (Vm) 

The experiment position is the same as above (shown in Fig.1 (a)) with 70% resistance applied randomly 
by the manipulandum. On this part of the experiment, there is resistance from the participant. It is random 
depends on the manipulandum action.  

5.4 Adaption to the modified environment (Vn) 

Participants can adjust the movement to the modified environment through training. In two identical sets 
for fifteen trials, Participant has modified the environment continuously using the previous position. 

6. Data Analysis 

Voluntary and automatic actions experiments stretch reflex magnitude was measured using the EMG 
data. The baseline was eliminated through processing the EMGs. Concatenated non-negative matrix 
factorization (CNMF) was used to extract the Muscle synergy from the recorded EMG data. Raw EMG 
data was applied on classification method. 

6.1 CNMF Methodology  

Concatenated non-negative matrix factorization (CNMF) is used to extract the characteristic frequency 
components and obtain the corresponding connectivity matrices across conditions and subjects10, 16, 17. In 
equation 1, a matrix with a dimension of m=6 (the number of muscles) was extracted from the processed 
EMG data of each experimental trial. It is multiplied by the recorded time t (variables based on the task).  
In each trial, synergy activation coefficients were identified using the synergy muscle space (W) which 
weights the muscles based on their activations and the neural command (C)4, 18. 

tmtnnmtm ECWM ×××× +=    (1) 

VAF is measured with a threshold of >90% was adopted to detect the minimum number of muscle 
synergy. In this study, the threshold used to ensure that the estimated number of synergies would well 
preserve the characteristics of the recorded EMG data4.  

22 /1
FF

MEVAF −=    (2) 

6.2 Pattern recognition Methodology  

EMG pattern recognition with a large number of EMG channels provides an approach to assessing the 
signal information available from the recorded muscles. The feature data collected from the original EMG 
data are consistently used in the training and testing parts. The raw EMG data is used with window size of 
200 ms, and processed them to a butter filter between 20 and 450 Hz. Then, the features have been extracted 
using: Slope sign change (SSC), Zero crossings (ZC), Waveform length (WL), Hjorth parameters(hjorth), 
Sample skewness (skw), Absolute values (MAV), Multiscale wavelet packet (mwpf). After extracting the 
features from the EMG signals, they are ready for classification. The LDA classiffication method was used. 

7. Results  

All participants completed the tasks based on equation 2. Fig.2 (a), Fig.2(b), Fig. 3(a) shows the number of 
muscle synergies required to achieve >90% overall VAF and >75% VAF which are two muscles synergy 
in this case which mean two synergies required to reconstruct to a feature of the recorded EMG data, these 
synergies were utilized in the automatic and the voluntary actions in the regular environment and help to 
shape the movement. Fig. 3(b) shows that one synergy is enough to reconstruct the EMG data and shape 
the movement4 and it is achieved > 95% VAF.  
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Fig.2 (a)VAF of all possible synergies from Rx (b) VAF of all possible synergies from Vc 

 

  
Fig. 1. (a) VAF of all possible synergies from Vn (b) VAF of all possible synergies from Vm 

Using the pattern recognition method, Fig. 4 (a) and Fig. 4(b) have been achieved with 0 % error and 
100% accuracy. Comparing both methods, the pattern recognition method helps the CNS to shape the 
movement with 100% accuracy and the CNMF method with > 95% overall VAF. This supports our 
hypothesis for analyzing the automatic movements and the voluntary actions movements for helping the 
CNS system to shape the synergy movement. 

8. Conclusion  

Many techniques were used to analyze and control the synergy EMG signal with limited achievement 
results. The automatic body response movements and the voluntary actions movements can help CNS to 
shape the synergy.  Using the CNMF method and pattern recognition method with >95% overall VAF and 
0% error, respectively, helped the CNS to shape the synergy movements with good results. On our future 
work, we want to improve the repeatability and reliability for automatic body movement and voluntary 
action movement for shaping the muscle synergy analysis using a new approach. 

 

 

  
Fig. 4. (a) Classification results (Error) for four movements. 

 

 

 

 

 

(b) Classification results (Majority vote) for four movements 
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Abstract— In this paper, we investigate the possibility of a machine-learning algorithm using the Support 
Victor Machine Regression (SVMR) to predict the motor functional recovery of moderate post stroke patients 
during their rehabilitation program. To train the model, we used the recorded electromyography (EMG) signals 
from the upper limb muscles of the patients during their initial rehabilitation sessions. Then we tested the trained 
model to predict the later muscles performance of the patient during the same sessions. The results of this pilot 
study were promising; data were, to some extent, predictable. We believe such research direction could be 
essential to motivate the patient to complete the designed rehabilitation program and can assist the therapist to 
innovate proper rehabilitation menu for individual patients.  
 
Keywords—Upper Limb, Rehabilitation, Regression, SVMR.  

INTRODUCTION 

EUROLOGICAL disorders following brain stroke are classified as one of the leading cause of long-
term motors disabilities worldwide. Such motor disabilities may not only affect the survivors’ quality 

of life (QOL), but also can affect their surrounding community.  
Motors disabilities after stroke do not necessarily have to be identical in terms of the location and the 

size of the injury, thus it is difficult for the therapist to predict the evolvement of disability, the optimal 
treatment, and the recovery period [1].  

The muscle bio-signal, Electromyography (EMG), have been studied by many research teams to 
understand the development of human control systems to improve rehabilitations techniques [2][3][4]. 
Prediction of motor recovery after stroke, however, is still a hot topic to be addressed. In this pilot study, 
we used the recorded EMG data from three moderate post-stroke patients during their rehabilitation sessions 
to investigate the possibility to predict their upcoming motor activities.  

 
METHOD 

Three unilateral moderate post-stroke patients (age: 52+/-2, SIAS score: 3) were recruited for this study. 
18 EMGs data was recorded from the upper limb muscles of the patients while performing driving 
simulation task [5]. Nine EMGs data was recorded from the muscles on stroke-affected side, and remaining 
9 EMGs data was recorded from the non-affected side. Data were collected from two independent sessions 
(30 minutes were rest given between the two sessions) of approximately 60 movements each. 

The initial 80% of the collected EMGs data for each session was considered as the training data set. The 
remaining 20% were considered as the testing data set. The training data was band-pass filtered before 
being processed by a regression model using the Support Victor Machine Regression (SVMR) [6]. Four 
different kernels were tested. We used the root mean square error (RMSE), mean square error (MSE) and 
mean absolute error (MAE) to check the error between the predicted data and the actual data (the testing 
data). The kernel with the minimum error, the fine Gaussian Kernel in this study, was used. 

RESULTS AND DISCUSSION 

For patient (n=1), results of session 1 and 2 are as shown in Fig.1 and Fig.2, respectively. Where the 
brown solid circles represent the actual result and the blue solid circles represent the predicted outputs. 
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Fig. 1. Patient n1 (session 1), RMSE 3.3e-05, MSE 1.3e-09, MAE 2.3e-05. 

 

 
Fig. 2. Patient n1 (session 2), RMSE 2.2e-05 MSE 4.9e-10, MAE 1.1e05. 

 

 
Fig. 3. Patient n2 (session 1), RMSE 2.2e-05, MSE 4.8e-10, MAE 1.6e-05. 

 
 

 
Fig. 4. Patient n2 (session 2), RMSE 7.3e-06, MSE 5.3e-11, MAE 5.4e-06. 

 



106 

 
Fig. 5. Patient n3 (session 1), RMSE 6.6e-06, MSE 4.3e-11, MAE 5.1e-06. 

 

 
Fig. 6. Patient n3 (session 2), RMSE 1.5e-06, MSE 2.4e-12, MAE 1.3e-06. 

 
 
From Fig.1&2, the first 9 points of the x-axis are for the stroke-affected side, while the remaining 9 

points are for the non-affected side. As on the same pattern of Fig.1&2, Fig.3 & Fig.4/(Fig.5 & Fig.6) 
represent data of patient n=2/(n=3). 

From the above figures, we could observe that the trained model could predict, to some extent, the 
recorded data of the patients. For session 1, for instance, eight out of the nine of the stroke-affected muscles 
activities were well predicted for patients 1&2 (2 to 5 of the stroke-affected muscles were predicted for 
session-2 for the same patients). Patient 3, however, showed 5 out of 9 acceptable prediction of the affected-
side muscles in both the sessions. Less predictions ability could be seen from the muscles in the non-
affected side for all the three patients.  

From the above results, although limited participants/data, we believe that the prediction level of the 
muscles on the stroke-affected is promising and open the challenge to continue the research on this 
direction. More data, in term of the number of subjects, as well as, number of recorded muscle activity 
history of each subject is essential to conclude better this study.  

Regarding the poor ability of trained model to predict the muscle perforce of the non-affected side could 
be due to the high redundancy of healthy muscles activities compare to stroke affected muscle activities 
[7].   

CONCLUSION 

This paper presented a pilot study examines the ability to predict future muscle performance of post-
stroke patients based on their current motor ability. The prediction model utilized SVMR method, trained 
by actual EMGs activities of stroke patients, and validated by their future muscle performance. A statistical 
validation and conclusion of this work would be possible by increasing the data-set size, which what we 
are planning for future direction.  
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