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Abstract

Recently, the chatbot has evolved into a trending topic in the area of computer
science. The rapid growth of intelligent chatbots as conversational agents with artificial
intelligence has recently attracted much research attention. This significant increase in
the use of chatbots across different domains, such as education, business, and health
care, raises a problematic issue, this being the quality of the responses provided by
the chatbot. Although most of the research studies attempted to build a chatbot that
provides an intelligent response, in some cases, a chatbot might not understand the
end-user’s request, which leads to producing inappropriate utterances that cause a
negative user experience and conversation breakdown.

While several studies focus on dialogue breakdown detection, they still face several
challenges, such as the lack and bias of human annotation for the dataset. Also, when
they detect a dialogue breakdown point, they do not provide a solution to handle the
breakdown. In the current literature, there is no model to determine the quality of
responses from a chatbot to make intelligent and proactive decisions to transfer the
conversation from the chatbot to a live agent.

To tackle these challenges, in this thesis, we developed intelligent, automated, and
data-driven approaches to address the aforementioned research issue of determining the
chatbot quality of service (CQoS) and make proactive and intelligent decisions as to
when to transfer the control of the conversation to a live agent. Various machine learning

approaches are proposed to detect CQoS, including supervised and unsupervised
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approaches. Also another key aspect is considered, which is the human thinking and
reasoning using the fuzzy logic detection model. Importantly, the use of a sentiment
score is introduced to trigger the breakdown without the need for annotated dataset.
The proposed solutions are evaluated using real-time datasets. The key finding of
our research was based on the evaluation process. We concluded that our proposed
method for modeling CQoS outperforms other similar methods. Also, based on the
evaluation process, the deep learning model was able to more accurately detect the

need for handover mechanism compared with the other models.
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