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Abstract -
Unmanned aerial vehicles (UAVs) are being employed in

construction at an unprecedented rate, making construction
one of the ever-growing industrial sectors. Over the last
decade, UAV technology has been widely employed in nu-
merous construction project phases, ranging from site map-
ping, progress monitoring, building inspection, damage as-
sessments, and material delivery. While extensive studies
have been conducted on the advantages of UAVs for various
construction-related processes, studies on UAV collaboration
and how to improve their overall efficiency are still scarce.
This paper proposes a new cooperative path planning algo-
rithm for multiple UAVs based on the stag hunt game and
particle swarm optimization (PSO). First, a cost function for
each UAV is defined, incorporating multiple objectives and
constraints. The UAV game framework is then developed
to formulate the multi-UAV path planning into the problem
of finding payoff-dominant equilibrium. Next, a PSO-based
algorithm is proposed to obtain the payoff-dominant equilib-
rium, representing optimal paths for the UAVs. Simulation
results indicate the effectiveness of the proposed algorithm
in generating feasible and efficient flight paths for UAV for-
mation control.

Keywords -
Unmanned aerial vehicle; Cooperative path planning;

Stag hunt game; Payoff-dominant equilibrium; Particle
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1 Introduction
The immense development of unmanned aerial vehi-

cles (UAVs) technologies has been drawing significant at-
tention in civilian sectors. In the construction domain,
researchers and enterprises tend to seek safer and more
efficient solutions for carrying out construction-related
tasks. As modern technologies have reduced the cost of
UAVswhile increasing their dependability, operating time,
and maneuverability, smart drone-powered solutions have
been introduced as a platform to assist construction activ-
ities. They are well-established in numerous construction
project stages such as construction site monitoring and

3D mapping [1], building and damage inspection [2], and
package delivery logistics [3], demonstrating prospects for
wide usage of drones.

Due to the increased quantity and complexity of con-
struction jobs, such as large-site 3D mapping or multiple-
package delivery, a single dronewith restricted size and ca-
pability can sometimes not fulfill the requirements. Con-
sequently, multi-UAVs are encouraged to collaborate as
a team for the applications mentioned above in order to
optimize processing time and operating possibilities [4].

A hierarchical structure formation system includes three
layers: task management, path planning, and task execu-
tion, as shown in Figure 1. The task management layer
holds and keeps track of the mission’s objectives. Based
on these objectives, this layer allocates resources and tasks
to UAVs and acts as a decision-maker. From mission re-
quirements, the path planning layer generates feasible tra-
jectories for the formation. This layer aims to plan optimal
paths for a group of UAVs moving in a known environ-
ment from the start to their target locations. This layer
comprises three blocks: real-time trajectory modification,
data acquisition, and cooperative path planning, wherein
the collaborative path planning block is the primary func-
tion of the system and determines the overall optimized
path for each quadcopter. Nonetheless, due to uncertain-
ties that may be included along the route in practical ap-
plications, the real-time trajectory modification block is
combined with the system. The formation can deal with
emergencies such as a suddenly appearing obstacle. Gen-
erated paths will then be passed down to the task execution
layer. This layer directly connects with the propulsion sys-
tem of the quadcopter and generates the control laws. To
enhance system performance, real-time data, i.e., UAVs’
position and velocity, is fed back to the path planning layer
to adjust the path, providing a closed control loop.

This paper focuses on cooperative path planning, where
the path-planner produces trajectories to fulfill the mis-
sion objectives. The mission objectives include forma-
tion shape maintenance, minimum path lengths, and threat
avoidance.
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Figure 1. Hierarchical UAV control structure.

2 Related works

Path planning for multiple UAVs has been becoming
an active research topic recently. The objectives and
approaches differ depending on the application domain.
There are currently numerous methods accessible in the
academic literature, and each technique has its ownmerits.

The artificial potential field is one of the most widely
used techniques for UAV cooperative path planning [5].
It considers the operating space as a potential field, with
attractive fields surrounding the target and repulsive fields
around obstacles. For cooperation, new fields are added,
including the internal attractive potential fields to retain the
formation configuration and the internal repulsive fields to
prevent the UAVs from colliding with each other. The
paths are then generated when the total force acts on the
UAVs at each position. This technique can produce smooth
and continuous paths. It, however, faces local minima
problems when the total force is equal to zero.

In another direction, optimal control methods have been
used for cooperative path planning by considering it as a
numerical optimization problem subject to multiple con-
straints [6]. It first finds paths for single vehicles and
then attains their cooperation by constraints. To generate
paths, optimal control signals for individual quadcopters
are computed using the mixed-integer linear programming
(MILP) and then applied to the system. Although the
MILP can solve the optimization problem with different
constraints, it involves high computational complexity.

Recently, evolutionary algorithms (EA) have been used
to solve multi-UAV cooperative path planning with the

capability to find optimal solutions in complex scenarios
[7]. They often include two layers, one for individual UAV
path planning and the other for path cooperation. Initially,
each vehicle is associated with an EA process to generate
a feasible path to fulfill its task. Those paths are then
adjusted via a global cost function to achieve the required
cooperation. This approach can generate smooth coop-
erative paths as it does not discretize the workspace. It
however may converge to sub-optimal solutions if cooper-
ative constraints and maneuver properties of UAVs are not
properly addressed.
On the other hand, as a theoretical framework for strate-

gic interactions among competing players, game theory
has gained its applications in a variety of fields such as
construction bidding [8] and environmental management
in the mining industry [9]. In the game, a player tries to
maximize his profit, which depends on not only his actions
but also others. Therefore, the best strategy relies on what
the player expects others to do. Most games in the litera-
ture can be classified into cooperative and non-cooperative
games[10]. In cooperative games (CGs), several players
share a common objective to better achieving it than those
working alone. However, a major issue with CGs is a
trade-off between the stability of the player groups and the
system efficiency [11]. In contrast, each player in nonco-
operative games (NCGs) has their own properties such as
the payoff function, procedural details of the game, inten-
tion, and possible strategies which make him more inclu-
sive than in CGs. Among NCGs, Nash Game is widely
applied to the situation that all players have to simulta-
neously make their decisions in symmetric competitions,
such as in exploring the public-private partnership invest-
ment incentives [12] or seeking strategies for clusters in a
distributed system [13]. In these games, each player only
has partial information about the choices of others.
The vast majority of Nash games revolve around the

prisoner’s dilemma (PD), therein the appearance and sta-
bility of cooperation are inhibited by its most restrictive
conditions: defecting is a dominating option as it always
offers a greater payout regardless of how the other player
performs. As a result, collaboration is risky, and there is a
tendency to defect [14]. Meanwhile, numerousmore types
of dilemmas are available, the most famous of which is the
stag hunt game [15], therein players desire to coordinate,
i.e., the preferred choice is to always do as the rival acts.
In this game, not only mutual defection but also mutual
cooperation are evolutionary stable strategies, but only the
latter one results in a pay-off dominant equilibrium [16].
From the UAVs’ cooperation perspective, where profit

from cooperation is muchmore than profit from individual
effort, the stag hunt game captures the conflict between in-
dividual UAVs, which naturally arises in cooperative path
planning, better representing the situation than the PD.
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This is especially the case when examining the influence
of group selection, inwhich social interactions aim tomax-
imize the group’s performance. Indeed, the stag hunt game
idea corresponds well with the cooperative path planning
issue and may be utilized to solve it theoretically.
This paper proposes a stag hunt game based algorithm

for UAV cooperative path planning. A cost function is
first defined including all requirements on formation, path
feasibility, safety and optimality. Unlike existing EA ap-
proaches, our method considers cooperative constraints in
every individual to maximize the overall profit. The path
planning problem then can be model as a game where
UAVs are the players. Based on the stag hunt game, the
strategy for each UAV is then formulated and enhanced
PSO is introduced to obtain the payoff-dominant equilib-
rium. As a result, optimal paths can be achieved with the
formation being maintained.
This paper is structured as follows. Section 3 formulates

the cooperative path planning problem. Section 4 presents
the proposed stag hunt based game and enhanced PSO.
Numerical simulation results are provided in Section 5.
Finally, conclusions are given in Section 6.

3 Problem formulation
3.1 Multi-vehicle path planning

Consider a team of N drones operating in a given flying
area, including numerous obstacles, as shown in Figure 2.
The position of the UAV group is determined in an earth
frame, xyz, by P = [P1

T ,P2
T , ...,PN

T ]T , where N is the
total number of drone members and Pn = (xn, yn, zn)T is
the location of the n-th vehicle.

Goal

Obstacles

xy

z

Start

Figure 2. Definition of the path planning problem.

The problem of path planning is to establish a feasi-
ble route connecting the start and target positions in a
collision-free environment while fulfilling a number of

constraints. The problem can be expressed as an opti-
mization process that is subjected to several costs. For a
single UAV planning problem, it can be formulated as

P(0)
X(k)

−−−−−−−→
s.t . Js (X(k))

P(end), (1)

where P(0) and P(end) are corresponding to the start and
the target poses, k stands for thewaypoint instant, and X(k)
denotes the path of UAV including K waypoint subjected
to the single-UAV cost Js(X(k)).
In single-vehicle path planning, to attain the most ef-

fective and efficient path, the cost Js(X(k)) should be op-
timized, fulfilling constraints on path length, threat avoid-
ance, and turning angle limit. It is defined as

Js(X(k)) = ω1

K−1∑
k=1

L(k) + ω2

K−1∑
k=1

T∑
τ=1

Dτ(k)

+ ω3

K∑
k=1

H(k) + ω4

K−2∑
k=1

θ(k)

+ ω5

K−1∑
k=1
|ϕ(k) − ϕ(k + 1)| ,

(2)

where L(k) is the path length, D(k) is the safety cost con-
cerningT threats, H(k) stands for the altitude payoff, θn(k)
and ϕn(k) correspond to the turning angle and climbing
angle, ωi , for i = {1,2, ...,5}, are the weight coefficients.
More details about the single cost function are presented
in our previous work [17].
Extending the problem into the multi-vehicle formation

path planning, it is written as

Pn(0)
Xn(k)

−−−−−−−→
s.t . J(Xn(k),X

−
n (k))

Pn(end), n = 1,2, ...,N, (3)

where Xn(k) and X−n (k) are corresponding to the path of
UAVn and a set of its neighbours’ paths. Themulti-vehicle
cost function, J(Xn(k),X−n (k)), consists of a single cost and
a formation cost, computed as

J(Xn(k),X−n ) = Js(Xn) + βJf (Xn,X−n ), (4)

where Js(Xn) is computed as (2), Jf (Xn,X−n ) is the forma-
tion cost, and β is a weighting factor. The cost function
for the formation constraint is determined as follows.

3.2 Formation cost function

To represent the structure of the formation and interac-
tion among UAVs, the graph theory is used. A graph is
defined by G= (V,E), in which V = {v1, v2, . . . , vN } and
ε = (vn, vn′) ∈ E represent the drones in the group and their
interconnections, respectively. To form a formation, there
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must exists an interconnection in E between any two ver-
tices (vn, vn′) ∈V. Consider our graph is egde-weighted,
i.e., each interconnection in the graph is weighted by µnn′ .
The graph incidencematrixD has the dimension of N×M ,
where its uv-th entry is equal to 1 or −1 if the UAVn is the
head or tail of the v-th edge, and 0 otherwise.
The formation error between UAVn and UAV′n is calcu-

lated as Pn − Pn′ − Pnn′r . Let D̂=D ⊗ I3, where operator
⊗ is the Kronecker product. From the definition of the
incidence matrix, the formation error for UAVn can be
expressed as

En =
∑
n′∈E

µnn′ ‖Pn − Pn′ − Pnn′r ‖
2

= (P − Pr )
T D̂ŴnD̂

T
(P − Pr ) = | |P − Pr | |

2
D̂Ŵn D̂

T ,

(5)

where Ŵn = Wn ⊗ I3 and Wn = diag[µnn′] is a diagonal
weight matrix of dimension M .
Let d̄n(k) be the Euclidean distance from UAVn to its

nearest neighbor at the waypoint k, rn be the radius of
UAVn, and ds be the safe distance. To avoid collision
between vehicles, the distance between a UAV and its
nearest neighbor needs to be smaller than the sum of a safe
distance, ds , and twice the UAV radius, rn. Therefore, we
introduce the so-called death penalty into the formation
error as

En(k) =

{
| |P(k) − Pr | |

2
D̂Ŵn D̂

T , if d̄n(k) > ds + 2rn
∞, if d̄n(k) ≤ ds + 2rn.

(6)

The formation cost function is then defined as below:

Jf (Xn,X−n ) =
K∑
k=1

En(k). (7)

4 Stag hunt game-based algorithm for UAV
cooperative path planning

Given the cost function J(Xn,X−n ) defined for each
UAV, the cooperative path planning becomes finding paths
Xn,n = 1,2, ...,N to simultaneously minimize J(Xn,X−n ).
Since this cost depends on not only path Xn generated for
UAVn but also its rivals’ paths X−n , finding optimal solu-
tions is a challenging problem that requires a new method.

4.1 The game of stag hunt

As an essential branch of mathematics, game theory
is the study of conflicts and interactions among rational
decision-makers [18]. The game players can pursue their
individual objectives by considering possible goals, be-
haviors, and countermeasures of other decision-makers to
achieve a win-win situation.

The stag hunt game, which originated in [19], also called
the coordination game or trust dilemma in game theory
literature, illustrates a conflict between safety and social
cooperation. In the game, two hunters independently de-
cide whether to hunt a stag or a hare without knowing the
other’s decision. One hunter can catch a hare individu-
ally with a high guarantee of success. Meanwhile, the
value of a shared stag is far greater than that of a hare,
but cooperation between hunters is required to hunt a stag
successfully. Therefore, it would be much better for each
hunter to choose a more ambitious and far more rewarding
goal instead of deciding on a total autonomy and minimal
risk strategy. The payoff matrix in Figure 3 illustrates a
generic stag hunt with two players.
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Figure 3. Payoff matrix of stag hunt game

In a game, "Nash equilibrium" is a situation where the
optimal outcome of a game has no incentive to deviate
from the initial strategy. In other words, no player can
obtain more profits if others do not change their strategies.
Formally, a stag hunt is a game with two pure Nash equi-
libria: risk dominant and payoff dominant. A Nash equi-
librium is called "risk dominant" if it has the largest basin
of attraction, implying that it is less risky. This means that
the more ambiguity players have about the other player’s
intentions, the more likely they are to pick the plan that
best suits them. Meanwhile, the payoff dominant equilib-
rium is defined as being Pareto superior to all other Nash
equilibria in the game.

Pareto optimality is a fundamental concept represent-
ing efficiency in a multi-objective optimization problem
consisting of several conflicting objectives. A set of al-
ternatives is considered a Pareto optimal solution if no
reallocation can further improve any one of the objectives
without degrading at least one other. In the stag hunt
game, when confronted with a decision among multiple
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equilibria, all players would vote on the payoff dominant
one since it provides each member with at least as much
profit as the other Nash equilibria.
From the mathematical point of view, a formal presen-

tation of the payoff-dominant equilibrium is as follows.
Consider a stag hunt game decribed as

G = (N,S,U), (8)

where N is a set of players, S = (S1,S2, ...,SN ) denotes
strategy sets, where Sn = (xn1, xn2, ..., xnΣ ),n = {1, ...,N},
represents all Σ strategies made by the n-th player, and a
U= (U(xn1 ),U(xn2 ), ...,U(xN ) stands for a set of players’s
utility. The allocation

∗

X= { ∗x1,
∗x2, ...,

∗xN }, where
∗

Xn ∈ Sn,
is defined as Pareto optimality if it dominates all other
reallocation X = {x1, x2..., xN }, i.e., both of the following
requirements are met:

∀n ∈ {1, ...,N}|U( ∗xn) ≤ U(xn), (9a)

�n′ ∈ {1, ...,N}|U( ∗xn′) < U(xn′). (9b)

4.2 The game of UAV cooperation

Each vehicle in the cooperative path planning problem
has been assigned a cost function J(Xn,X−n ) defined in (4).
These cost functions interact among vehicles. Therefore,
it is challenging to solve multiple optimal problems simul-
taneously. As can be seen, the stag hunt game concept
aligns well with the cooperative path planning problem
and thus can be used as a theoretical framework to solve
it. Motivated by those observations, this paper proposes a
stag hunt game-based approach for cooperative UAVs con-
sisting of two steps. The two-step procedure to implement
the proposed game-based scheme is as follows.
In the first step, a UAV game framework is formulated

to model interactions among the drones, including three
key elements: players, strategies, and utility. Each vehicle
in the formation is considered as a player, also called a
decision-maker. During the game, all UAV players have to
simultaneously provide a route, Xn, defined as the player’s
strategy, without knowledge of the other player’s decision.
Each player will get his own utility, corresponding to the
multi-vehicle cost J(Xn,X−n ), which is a function of strate-
gies made by himself Xn and his rivals, X−n .
Indeed, one UAV can reach its target position alone by

solving its single UAV path planning problem to obtain
the minimum single cost, Js(Xn). In a cooperative task,
however, this individual optimal solution could result in a
significant formation error, En(k), leading to a high for-
mation cost Jf (Xn,X−n ) and hence much less reward. To
successfully perform a cooperative UAV mission with a
higher profit, it would be much better for each player to
choose the more ambitious goal of achieving a far greater

reward by providing a formation preserving path in ex-
change for the other vehicle’s cooperation. Therefore, the
multi-vehicle cost, J(Xn,X−n ), combining both single cost
Js(Xn) and formation cost Jf (Xn,X−n ), should be optimized
for all players simultaneously. Accordingly, theUAVgame
aims to find a payoff-dominant equilibrium.
In the second step, an enhanced PSO-based algorithm

is introduced to solve the Pareto optimality, resulting in a
payoff-dominant equilibrium as a desired outcome of the
game. This step will be presented in the following section.

4.3 Enhanced PSO-based approach for finding
payoff-dominant equilibrium

Particle swarm optimization (PSO) is a stochastic op-
timization algorithm for optimizing a problem by itera-
tively improving a candidate solution concerning a partic-
ular quality measure. It solves a problem by generating a
population of possible solutions, known as particles, and
relocating them in the search space using a few simple for-
mulae based on the particle’s position and velocity. Each
particle’s movement is guided by its local best-known po-
sition and the global best-known pose in the search space,
updated when other particles discover better places. This
is anticipated to direct the swarm toward the best options.
Formally, consider a d-dimension search space and a

swarm consisting of Npop particles, each partilce i has a
position Xi ∈ R

d and a velocity Vi ∈ R
d . Let Qi be the

best known position of particle i and Qg be the best known
position of the entire swarm. The movement algorithm of
the swarm is defined as below:

Vi(t+1) = c0Vi(t)+c1r1[Qi(t)−Xi(t)]+c2r2[Qi(t)−Xi(t)],
(10)

Xi(t+1) = Xi(t)+Vi(t+1), (11)

where c0 is the inertia weight, c1 and c2 are corresponding
to self confidence and swarm confidence parameters, and
r1 and r2 are random values uniformly distributed in the
interval [0,1].
In the UAV path planning problem, the position of a

particle is encoded by the flight path Xn. Accordingly, the
entire swarm consists of Npop path particles, which are
updated to search for the optimal solution. To speed up the
search process, we employ in this study a variant of PSO
named spherical vector-based particle swarm optimization
(SPSO) developed in our previouswork [17]. In the SPSO,
waypoints of a flight path are represented in the spherical
coordinate system to exploit the correspondingmagnitude,
elevation, and azimuth components of the variables with
speed, turning angle, and climbing slope of the UAV.
To further develop the SPSO for cooperative path plan-

ning involving multiple UAVs, we introduce an enhanced
SPSO to find the payoff-dominant equilibrium. The
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pseudo-code for the optimization process is described in
Algorithm 1. The detail of the algorithm is as follows.

Algorithm 1 Enhanced PSO implementation
1. Initialize PSO parameters: c0, c1, c2,maxIt,nPop;
2. Set It = 0, generate random player’s strategies;
3. Obtain the initial optimal strategies

∗

Xn,
∗

X−n ;
for It = 1 : maxIt do
4. Calculate J(Xn(It),X−n (It)), for n = 1,2, ...,N;
if J(Xn(It),X−n (It)) ≤ J(

∗

Xn,
∗

X−n ), ∀n = 1,2, ...,N
then
5. Update

∗

Xn = Xn(It);
∗

X−n = X−n (It);
end if
6. Record

∗

Xn,
∗

X−n ;
7. Update Xn, X−n ;

end for
8. Obtain

∗

Xn, ∀n = 1,2, ...,N .

(i) Initialization:
Initially, parameters of the PSO including c0, c1, c2,

number of iterations maxIt, and number of particles nPop
are first initialized. At this stage, corresponding to It = 0,
random strategies of the players are also generated and
assigned as initial optimal strategies

∗

Xn,
∗

X−n .
(ii) Evaluation:
At each iteration, from It=1 to maxIt, cost values rep-

resenting the players’ profit, Ji(Xn(It),X−n (It)), are com-
puted as (4), where i denotes a particle in the n-th swarm.
(iii) Optimize the player’s strategy:
The best strategies of all players associated to the parti-

cle i at the iteration It are updated if there is more benefit
for at least one player without decreasing the other play-
ers’ profit, i.e., the condition (9) is met. Based on them,
the strategy of each player is adjusted for the subsequent
iteration according to equations (10) and (11) of the PSO.
(iv) Terminate the optimal strategies:
Check if the multi-profit optimization criteria are met

to terminate the process. At the end of this stage,
payoff-dominant equilibrium, or the best allocation,

∗

X =
{
∗

X1,
∗

X2, ...,
∗

XN }, is obtained.

5 Simulation result
This section presents simulation results of the proposed

path planning algorithm for a fleet of three drones. It aims
to generate paths for three UAVs flying in an equilateral
triangle formation. However, it should be noted that there
are no specific constraints on the configuration of forma-
tion shapes. The incidence matrix D is defined as

D =


1 1 0
−1 0 1
0 −1 −1

 . (12)

The interconnection weights are set as W1 = [1 1 0],
W2 = [1 0 1], and W3 = [0 1 1]. Noting that the weights

for interconnections are set equal among players since all
players play a similar role in the team.
In the simulation, we consider two scenarios with differ-

ent sizes of threats, illustrating different levels of complex-
ity, to validate the efficiency of the proposed algorithm.

5.1 Evaluation in scenario with big-size obstacles

Scenario 1 considers a construction land with dimen-
sions of 100m × 100m × 35m. The drones are required
to travel from the start location to the goal to perform
a site monitoring task. The start locations of UAVs are
set at: Pstart

1 = (15; 18.66; 20), Pstart
2 = (10; 10; 20),

and Pstart
3 = (20; 10; 20). The goal poses are con-

firmed at Pgoal
1 = (85; 88.66; 20), Pgoal

2 = (80; 80; 20),
and Pgoal

3 = (90; 80; 20). The formation reference is ob-
tained at the same as the target position, i.e., P1r =Pgoal

1 ,
P2r = Pgoal

2 , and P3r = Pgoal
3 . In the construction site,

there two threat areas modeled as yellow cylinders located
at (40,40) and (60,60) with a radius of 9 m. Parameters
of the PSO are set as c0 = 0.999, and c1 = c2 = 1.5. The
PSO run with 2000 particles for 1500 iterations. Aside
from the start and goal nodes, each path is established by
K=10 waypoints.
In the simulation, we consider two scenarios with differ-

ent sizes of threats, illustrating different complexity levels
to validate the efficiency of the proposed algorithm.

Figure 4. Generated paths for Sencario 1

5.2 Comparison in scenario with small-size obstacles

Scenario 2 examines the UAV team that has to fly at
a construction site to deliver multiple packages, such as
building materials. The map dimensions, UAV’s start and
goal locations in Scenario 2 are similar to those in Scenario
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1. In Scenario 2, however, two construction cranes as
obstacles are located at (40,48) and (74,43) with a radius
of 4 m. To enhance the level of complexity, two more
virtual obstacles with the same radius are added at (20,70)
and (70,60). In this simulation, the performance of the
proposed stag hunt game-based algorithm is compared
with other available techniques that treat the entire UAV
fleet as a rigid body, and path planning is achieved for a
virtual drone placed at the centre of the formation [20].
Figure 5 and Figure 6 depict the planned stag hunt game-

based path and the planned rigid formation path, respec-
tively. It can be seen that both techniques achieve collision-
free and formation-preserving routes. However, the whole
group of UAVs, using the rigid formation method, travels
around obstacles, resulting in long distances. Meanwhile,
the proposed game-based approach presents a capability to
split and merge the UAV fleet to avoid small-sized threats
and reduce the cost. This further illustrates the benefit of
the proposed algorithm.

Figure 5. Stag hunt gamed based path

Figure 7 depicts the convergence of all stag hunt game-
based profit values after 1000 iterations for all UAVs, im-
plying that the payoff-dominant equilibrium in the UAV
game is achieved. Compared to the best cost value of the
rigid formation cost, as illustrated in Figure 8, all three
UAVs achieved better utility. This further confirms that
the obtained game-based strategy dominates the rigid for-
mation strategy.

6 Conclusion
This study has introduced a novel method based on the

stag hunt game theory and enhanced particle swarm opti-
mization for cooperativeUAVs navigating a desired forma-
tion configuration. The UAV collaborative path planning

Figure 6. Rigid formation path
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Figure 7. Stag hunt gamed-based profits
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Figure 8. Rigid formation profit

problem is solved by finding the payoff dominant equi-
librium of a stag hunt-based UAV game. An optimization
framework using PSOwas integrated to find the Pareto op-
timality by minimizing all cost functions simultaneously.
Simulations have been conducted to evaluate the perfor-
mance of the proposed method. Our future work will de-
velop receding horizon game theory-based platforms for
cooperative UAVs in a dynamic construction environment.
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