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Abstract

Graph embedding approaches have been attracting increasing attention in recent years

mainly due to their universal applicability. They convert network data into a vector space in

which the graph structural information and properties are maximumly preserved. Most exist-

ing approaches, however, ignore the rich information about interactions between nodes,

i.e., edge attribute or edge type. Moreover, the learned embeddings suffer from a lack of

explainability, and cannot be used to study the effects of typed structures in edge-attributed

networks. In this paper, we introduce a framework to embed edge type information in graph-

lets and generate a Typed-Edge Graphlets Degree Vector (TyE-GDV). Additionally, we

extend two combinatorial approaches, i.e., the colored graphlets and heterogeneous graph-

lets approaches to edge-attributed networks. Through applying the proposed method to a

case study of chronic pain patients, we find that not only the network structure of a patient

could indicate his/her perceived pain grade, but also certain social ties, such as those with

friends, colleagues, and healthcare professionals, are more crucial in understanding the

impact of chronic pain. Further, we demonstrate that in a node classification task, the edge-

type encoded graphlets approaches outperform the traditional graphlet degree vector

approach by a significant margin, and that TyE-GDV could achieve a competitive perfor-

mance of the combinatorial approaches while being far more efficient in space

requirements.

1 Introduction

Abstracting entities and their interactions as nodes and links, networks are a general model for

studying complex systems [1]. Real-world complex networks contain not only topological

information but also rich information about nodes and links [2]. Many previous works pro-

pose to exploit node attributes by jointly embedding them with topological structures, and the

enhanced representation has been shown to be powerful for numerous applications, such as

node classification [3–5], link prediction [6, 7], anomaly detection [8, 9], and network visuali-

sation [10].

These approaches, however, overlook rich information about interactions between nodes.

Edge attribute or edge type information is indispensable when studying many networks. For

instance, the label of each edge in a routing network reflects the cost of traffic via that edge and
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is used to determine the best possible routing scheme; in a user-object bipartite network, an

edge is labelled with the user’s rating for the product, based on which effective recommender

systems can be built [11]; and in egocentric social networks, labels of edges illustrate different

types of social relationships and are essential in analysing individuals’ behaviours and charac-

teristics [12].

To address this issue, we propose to incorporate edge type information into graphlets and

form a Typed-Edge Graphlets Degree Vector (TyE-GDV) [13]. This is mainly inspired by the

classic graphlets approach that generates a graphlet degree vector (GDV) [14]. Each coordinate

in GDV has a clear meaning, i.e., representing a particular topological structure. Due to this

excellent explainability, graphlets have gained considerable ground in a variety of domains. It

is revealed that in molecular networks, proteins performing similar biological functions pos-

sess similar local structures depicted by GDV [15]. Graphlets are also used in computer vision

and neuroscience, in order to capture the spatial structure of superpixels [16] or to detect

structural and functional abnormalities in the brain [17]. Notably, in social science, egocentric

graphlets are used to depict the social interaction patterns of individuals [18]. In the proposed

TyE-GDV approach, we choose to add an extra dimension of edge type on top of GDV, that is

to say, counting each type of edge touched by each graphlet. Therefore, each coordinate in the

two-dimensional vector also has a clear meaning—the number of edges of a certain type in a

certain graphlet. We also propose an egocentric version of TyE-GDV that is more succinct and

space efficient when dealing with egocentric networks.

We then employ the proposed TyE-GDV and the classic graphlets degree vector [15] to

evaluate and analyse a collection of egocentric social networks of chronic pain patients. The

real-life data is gathered from two chronic pain leagues in Belgium [19]. Each patient creates

an egocentric social network with edges denoted by the type of social relationships. The

patients are divided into four groups based on their self-perceived pain grades. First, we find

that graphlet patterns are indeed helpful in assessing the pain grade—patients with higher pain

grades form more star-like structures (3-star graphlets), whereas patients with lower pain

grades have more tightly connected structures (3-cliques, 4-chordal-cycles and 4-cliques). Sec-

ond, the edge-type embedded graphlets depicted by TyE-GDV provide us with more insights

into how particular social ties could affect the perceived pain. Specifically, we find that in

patients of higher pain grades, friends and healthcare workers are the dominant social types in

the poorly connected 3-stars; and that in patients of lower pain grades, friends and colleagues

appear more often in the tightly connected graphlets such as 3-cliques and 4-cliques.

To compare with the proposed method, we further extend two recent graphlets-based

approaches, i.e., the colored graphlets approach [20] and the heterogeneous graphlets

approach [21], to edge-attributed networks and egocentric networks. We then apply

TyE-GDV and the extended colored and heterogeneous graphlets approaches to a node classi-

fication task. Besides the egocentric social networks of chronic pain patients, the dataset also

contains rich information about the patients’ demographic attributes, pain scores and other

physical/psychological well-being descriptors, which are used as baseline features in the experi-

ment. We then set up to include features captured by the proposed method and other related

approaches and aim to classify patients into different pain grade groups. The result shows that

the edge-type augmented graphlet features are more distinctive than the traditional non-typed

graphlet features provided by GDV in separating patients with different pain grades.

To summarise, the main contributions of this work are as follows:

• In order to effectively encode edge type information, we propose a novel framework to gen-

erate a Typed-Edge Graphlet Degree Vector;
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• We further modify the TyE-GDV framework so that it is better suited for egocentric

networks;

• We extend colored graphlets and heterogeneous graphlets approaches for edge-typed net-

works and egocentric networks.

• According to a case study on individuals with chronic pain, certain social ties are more cru-

cial in understanding the effects of chronic pain and may result in more successful therapeu-

tic interventions.

• We demonstrate that rich structural information enhanced by edge-type information leads

to significant improvement in a typical machine learning task.

The remainder of this paper is organised as follows. Related works are discussed in Section

2. Preliminary knowledge is provided in Section 3. The proposed typed-edge graphlets, and

the extended colored graphlets and heterogeneous graphlets are introduced in Section 4 and

Section 5, respectively. Experiments, results and analysis are presented in Section 6. Finally, we

conclude and discuss future directions in Section 7.

2 Related work

Compared to abundant approaches that take advantage of node attributes, fewer works have

focused on leveraging edge attribute information in graph analysis. A straightforward

approach is to construct an adjacency matrix containing edge attributes and then to factorise it

[22]. This approach, however, involves the expensive matrix operation like the singular value

decomposition and therefore lacks scalability. EdgeCentric focuses on the problem of anomaly

detection and proposes to aggregate attribute values of edges incident to each node and defines

an abnormality scoring function [23]. One limitation of EdgeCentric is that its topological

scope is restricted within directly connected edges. The framework GERI proposes to first con-

struct a heterogeneous graph by adding extra bridge nodes that represent node/edge attributes,

then take a random walk to sample a node’s neighbourhood, and learn its embedding [24].

However, converting attribute information into structural information will also make the attri-

bute information lose its original meaning. Based on the approach of Poincaré embeddings

[25], Chen and Quirk recently proposed an embedding method that simultaneously preserves

the hierarchical property and edge attributes [26]. This approach is apparently limited in its

exclusive focus on hierarchical relationships.

Although these approaches are shown to be effective in some downstream tasks, a common

issue about them is that their learned embeddings lack explainability—we do not know what

each element of the embedding vector means. They are, therefore, unable to reveal the deeper

and, ideally, more easily explainable relationship between a local network structure and an

edge attribute.

3 Preliminaries

In this section, we introduce the notions of graphlets and orbits, and discuss how they can be

adapted in egocentric networks.

3.1 Graphlets and orbits

Node degree, being the most basic structural feature, counts the number of edges incident to a

node. Graphlets or graphlets degree generalises the idea of node degree by counting the num-

ber of graphlets the node participates. Specifically, graphlets are a set of “small connected noni-

somorphic induced subgraphs” [14]. Small is to say the size of subgraphs is small, usually no
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more than 4 or 5 nodes. Nonisomorphic means that those subgraphs are structurally distinct,

and induced means that all the edges among the nodes in a subgraph need to be considered.

The original work covers graphlets of sizes ranging from 2 to 5 nodes, resulting in a total num-

ber of 30 different graphlets. Besides, as a node-level structural measure, the non-symmetry of

node position is also taken into account, leading to a total number of 73 different subgraph

structures, termed automorphism orbits [15]. Briefly, orbits are graphlets that distinguish the

position of a focal node (we use orbits and node-orbit graphlets interchangeably in this work).

The Graphlet Degree Vector (GDV) of a particular node is thus defined as a vector of the fre-

quencies of 73 orbits.

GDV, or sometimes normalised GDV, has been widely applied in various domains and has

become a standard structural feature when measuring the similarities and differences between

nodes [15–17]. We summarise node-orbit graphlets of 2 to 4 nodes in Fig 1(a). Taking one of

the black nodes in G7, for example, it touches orbit-0 three times (the degree of the node),

orbit-2 once (the open triad), orbit-3 twice (the triangle), and orbit-13 once. Therefore, its

graphlet degree vector has 3 at the 0th coordinate, 1s at the 2th and 13th coordinates, 2 at the 3rd

coordinate, and 0s at the remaining coordinates.

The notion of orbits was originally established at a node level, distinguishing a node posi-

tion when counting graphlets. Hočevar and Demšar later proposed to count graphlets at a link

level and introduced the notion of edge orbits [27]. Fig 1(b) gives all edge orbits containing 2

to 4 nodes. Apparently, edge orbits are different from node orbits. For example, there is only

one edge orbit in graphlet G1, but two node orbits in it. We also refer to edge orbits as edge-

orbit graphlets in this work. The concept of heterogeneous graphlets is built upon edge orbits,

and we will discuss more about it in Section 5.

3.2 Egocentric graphlets

Graphlets is initially proposed for general networks or sociocentric networks. Although socio-

centric networks appear to be more comprehensive modellings of complex systems, collecting

sociocentric data via survey is also difficult because participants need to be identifiable to the

researcher, and this lack of anonymity can result in unwillingness to participate or bias in

responses [12]. Moreover, there are situations where we care more about individuals and their

immediate environment. For example, we may want to understand why some people form

densely connected ego networks while others don’t.

Fig 1. Graphlets of 2–4 nodes with the enumeration of orbits. (a) Node orbits: there are in total 15 node orbits, different node colors indicating

nonisomorphic node positions within a given graphlet. (b) Edge orbits: there are in total 13 edge orbits, different line types denoting nonisomorphic

edge positions within a given graphlet.

https://doi.org/10.1371/journal.pone.0273609.g001
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Being a node-level measure, graphlets are naturally suitable to be applied in egocentric net-

works, with two more restrictions. First, some graphlets that do not fit the definition of an ego-

centric network need to be eliminated. For example, in graphlets of 2 to 4 nodes (Fig 1(a)), G3

(3-path) and G5 (4-cycle) are excluded because any node in them acting as an ego cannot

reach other nodes in a single hop. Second, since only one node can serve as the ego in an ego-

centric graphlet, it is unnecessary to discriminate between different orbits. Therefore, there are

in total seven egocentric graphlets of 2 to 4 nodes, which are 2-clique, 2-path, 3-clique, 3-star,

tailed-triangle, 4-chordal-cycle and 4-clique (Fig 2).

4 Typed-edge graphlet degree vector

This section describes the framework for generating the typed-edge graphlet degree vector.

The classic graphlet degree vector manages to capture the structural patterns in homogeneous

networks. However, many real-world networks also contain rich information on nodes and

edges, making them node-attributed, edge-attributed or heterogeneous networks. Information

about edge type is particularly important in social networks since it provides a detailed descrip-

tion of relationships among individuals. In the target dataset of this study, for instance, each

patient with chronic pain specifies their egocentric social network, including up to ten actors,

and each ego-to-alter edge is labelled with one of 13 different types of social ties. In order to ana-

lyse edge-attributed networks at a finer granularity and capture the rich edge-typed connectivity

patterns, we propose to embed edge type information in graphlets. The original graphlet degree

vector generates a one-dimensional vector by counting the instances of each type of graphlet.

Here, we propose to build a two-dimensional vector by adding an extra dimension of edge type

on top of GDV, that is to say, counting each type of edge contained in each type of graphlet.

We start by formally defining an edge-attributed network.

Definition 1 An edge-attributed network G is a triple hV;E; T ei, where V = {v1, v2, . . ., vn} is
the set of nodes, E = {eij}� V × V is the set of edges where eij indicates an edge between nodes vi
and vj, and T e is the set of edge types, where teij denotes the type of edge eij.

The initial step of the framework is a graph preprocessing, where the set of edge types is

mapped to integers ranging from 0 to jT ej � 1. For example, the 13 different types of social

ties in the target dataset are represented from 0 to 12. (τe 2 [0, 12]). Additionally, the set of

orbits O is converted to integers from 0 to jOj � 1. In this study, we take into account all the

node-orbit graphlets within the size of 2 to 4 nodes (Fig 1(a)). Thus, there are 15 orbits coded

from 0 to 14 (o2 [0, 14]).

Algorithm 1: Build Typed-Edge Graphlet Degree Vector.
input: preprocessed graph G ¼ hV; E; T ei, set of node-orbits O, node set
V 0.
Output: dictionary dic of vectors for all nodes 2 V 0.
1 initialise: dic = {}
2 foreach i 2 V 0 do
3 initialise a 2d-vector vec of size jOj � jT ej with zeros

Fig 2. Egocentric graphlets of 2 to 4 nodes. There are in total seven egocentric graphlets. The black node in a given graphlet is the ego node, other

nodes are alter nodes.

https://doi.org/10.1371/journal.pone.0273609.g002
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4 foreach o 2 O do
5 Le = GETEDGELIST(o);
6 UPADATE(vec, o, Le)
7 dic[i] = vec;

Algorithm 2: Update Vector.
1 Function UPDATE
input 2d-vector vec, type of node orbit o, list of edges Le.

2 foreach e 2 Le do
3 τe = GETTYPE(e);

/� o and τe are used as indices in vec. �/
4 vec[o][τe] increase by 1;

Algorithm 3: Code Snippet for Orbit-6, 9 and 10.

1 foreach i 2 V 0 do
2 initialise a 2d-vector vec of size jOj £ jTej with zeros;
3 foreach u 2 Ni do
4 foreach v; w 2 C(Nu; 2) do

*/
5

/* oi denotes the corresponding index for orbit-i
if v 2= Ni ^ w 2= Ni ^ v 2= Nw then

6 . orbit-6
7

Update(vec; o6; [eiu; euv; euw]);
if v 2= Ni ^ w 2= Ni ^ v 2 Nw then

8 . orbit-9
9

Update(vec; o9; [eiu; euv; euw; evw]);
if v 2 Ni ^ w 2= Ni ^ v 2= Nw then

10

11

Update(vec; o10; [eiu; euv; euw; eiv]);
if v 2= Ni ^ w 2 Ni ^ v 2= Nw then

12 Update(vec; o10; [eiu; euv; euw; eiw]); . orbit-10

13

Next, for any node of interest, the typed-edge graphlet degree vector (TyE-GDV), i.e., a

two-dimensional vector of size jOj � jT ej, is generated using Algorithm 1. Concretely, after

initialisation, for each node in a given node set V 0 and for each orbit in the set of node-orbit

graphlets O, the vector is updated through the UPDATE function (Algorithm 2). The calculation

of each orbit in Algorithm 1 is omitted for a more concise expression. To demonstrate the

detailed process, we give a program snippet for calculating orbit-6, orbit-9 and orbit-10 in

Algorithm 3. C(Nu, 2) denotes all possible 2-combinations of the neighbours of node u. The

use of combinations is to avoid repetitive calculation. In Algorithm 2, o and τe are readily used

as indices when updating the vector as a result of the preprocessing stage. Finally, at the end of

Algorithm 1, a dictionary of nodes as keys and their corresponding TyE-GDV as values is

returned. For example, if an orbit-9 is detected and its four edges are of type ‘0’, ‘1’, ‘2’ and ‘2’,

vector elements at coordinates (9, 0), (9, 1), (9, 2) and (9, 2) will increase by 1. Obviously, the

time complexity of generating TyE-GDV is the same as counting graphlets. Although the

introduction and implementation of the typed-edge graphlets approach is aimed at dealing

with edge attributed networks, it can be easily extended to node attributed networks by replac-

ing an edge type with a node type, or to networks containing both different node and edge

types by adding an extra dimension of a node type.

As discussed in Section 3.2, egocentric networks are sometimes of special interest, especially

when edge type information is included (as in our case study dataset of chronic pain patients).

With the restriction of being egocentric, there are fewer orbits in graphlets that need to be con-

sidered. Therefore, we propose a tailor-made version of the framework for egocentric net-

works, called TyE-EGDV (see Algorithm 4). C(Ni, 2) and C(Ni, 3) stand for all possible

2-combinations and 3-combinations of the neighbours of node i. Note that in TyE-EGDV,

there are in total 7 orbits in O, instead of 15 (see Fig 2). Therefore, the algorithm is more effi-

cient in both time and space.
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Algorithm 4: Build Typed-Edge Ego-Graphlet Degree Vector.

input : preprocessed graph G = hV;E; Tei, set of egocentric node-orbits O,
node set V 0.

output : dictionary dic of vectors for all nodes 2 V 0.
1 initialise: dic = fg;
2 foreach i 2 V 0 do
3 initialise a 2d-vector vec of size jOj £ jTej with zeros;
4 foreach u 2 Ni do
5 Update(vec; o0; eiu); . 2-clique

6 foreach u; v 2 C(Ni; 2) do
7 if v 2= Nu then
8 . 2-path
9

Update(vec; o1; [eiu; eiv]);
else

10 Update(vec; o2; [eiu; eiv; euv]); . 3-clique

11 foreach u; v; w 2 C(Ni; 3) do
12 if u 2= Nv ^ u 2= Nw ^ v 2= Nw then
13 . 3-star
14

Update(vec; o3; [eiu; eiv; eiw]);
else if v 2 Nu ^ w 2= Nu ^ w 2= Nv then

15

16

Update(vec; o4; [eiu; eiv; eiw; euv]);
else if w 2 Nu ^ v 2= Nu ^ v 2= Nw then

17 . tailed-tri
18

Update(vec; o4; [eiu;e iv;e iw;e uw]);
else if w 2 Nv ^ u 2= Nv ^ u 2= Nw then

19

20

Update(vec;o 4; [eiu;e iv;e iw;e vw]);
else if u 2 (Nv \Nw) ^ w 2= Nv then

21

22

Update(vec;o 5; [eiu;e iv;e iw;e uv;e uw]);
else if v 2 (Nu \Nw) ^ w 2= Nu then

23 . 4-chord-cyc
24

Update(vec;o 5; [eiu;e iv;e iw;e uv;e vw]);
else if w 2 (Nu \Nv) ^ v 2= Nu then

25

26

Update(vec;o 5; [eiu;e iv;e iw;e uw;e vw]);
else

27 Update(vec;o 6; [eiu;e iv;e iw;e uw;e vw;e uv]); . 4-clique

28 dic[i] = vec;

5 Typed-edge degree, colored graphlets and heterogeneous

graphlets

Since a node degree is the simplest network structural metric, a naive way of encoding edge

type information in a network structure is first to have the notion of a typed-edge degree. For-

mally, the typed-edge degree of a node i with an edge type t, i.e., dti , is defined as the number of

edges of type t that are connected to i. Then, a typed-edge degree vector (TyE-DV) can be

defined as a vector containing typed-edge degrees of all types.

Some other approaches that also aim to take a node and/or an edge type into consideration

include the colored motifs [28], colored graphlets [20] and heterogeneous graphlets [21]. Col-

ored motifs, as the name suggests, extended G-Tries algorithm that counts motifs [29] by

including the information of a node or edge type. This approach, however, is at the network

level and is therefore not suitable for a node-level analysis.

Colored graphlets approach [20] is at the node level, and proposes to distinguish different

graphlets according to all combinations of node types. The approach is said to be able to deal

with typed edges, but without theoretical explanation or experimental demonstration. The arti-

cle alleges that the total number of combinations equals 2T − 1, where T is the total number of

possible node types. This is incorrect as it fails to take the size of the graphlet into account.

When graphlet size is smaller than the number of node types, the total number of combinations

will be smaller than 2T − 1. For example, when we consider the graphlet G0, i.e., 2-clique, with
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three possible node types, there are in total six combinations, instead of seven. The combination

containing all three types cannot exist since there are only two nodes in this graphlet. Below, we

give the amended equation for calculating the number of combinations in a given graphlet g:

CðgÞ ¼
XminðKðgÞ;TÞ

n¼1

T
n

� �

; ð1Þ

where K(g) is the number of nodes of the graphlet when T refers to a node type, or the number of

edges of the graphlet when it refers to an edge type. Note that when K(g)�T, the equation becomes
PT

n¼1
T
n

� �
, which equals 2T − 1. We then develop a colored graphlets approach for edge-typed

networks, named ColoredE-GDV, which is also applied to the case study in the next section.

The recently proposed heterogeneous graphlets approach [21] also considers a node type in

graphlets. It is different from the colored graphlets approach in two ways. First, heterogeneous

graphlets are computed at a link level. It distinguishes the position of a given edge, instead of a

given node (please refer to the notion of edge-orbit graphlets in Section 3.1). The benefit of a

link-based computation is that it is more time-efficient in sparse networks than node-based

approaches. The downside, apparently, is that it is not suitable for a node-level analysis. Sec-

ond, heterogeneous graphlets propose to use combinations with repetitions of node types,

rather than just a combination, when distinguishing different graphlets. The total number of

possible heterogeneous graphlets is calculated as:

HðgÞ ¼
XT

n¼1

T
n

� �

�
KðgÞ � 1

n � 1

� �

¼
T þ KðgÞ � 1

KðgÞ

� �

: ð2Þ

Similarly, K(g) is the number of nodes of the graphlet when T refers to a node type, and the

number of edges when it refers to an edge type. Since type repetition is allowed in heteroge-

neous graphlets, the number of possible heterogeneous graphlets is larger than that of colored

graphlets.

In order to extend the idea of heterogeneous graphlets to a node-level analysis and to deal

with typed edges, we propose a node-based typed-edge heterogeneous graphlets approach,

named HeteroE-GDVN (the original link-based typed-node approach is noted as Het-

eroN-GDVL). The approach of HeteroE-GDVN is demonstrated through Algorithm 5. We see

clearly that its time complexity stays the same when counting untyped graphlets, but the space

complexity grows fast with the number of edge types.

Algorithm 5: Node-based Heterogeneous Graphlets Degree Vector (Hetero-GDVN)
input: preprocessed graph G ¼ hV; E; T ei, set of node-orbits O, node set V 0.
output: dictionary dic of vectors for all nodes 2V 0.
1 initialise: dic = {};
2 LTe ¼ ½0; 1; . . . ; jTej � 1�;
/� range of edge number of graphlets of size 2—4 nodes �/

3 for k  1 to 6 do
4 Lk = [GETCOMBWITHREP ðLTe ; kÞ�;
5 foreach i 2 V 0 do
6 for o  0 to jOj � 1 do
7 initialise veco;
8 foreach o 2 O do
9 k = GETNUMOFEDGE(o);
10 Le = GETEDGELIST(o);
11 tup = (SORT(Le));
12 veco[GETINDEX(Lk, tup)] increase by 1;
13 vec ¼ ½vec0; vec1; :::; vecjOj� 1�;
14 dic[i] = vec;
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Although the above approaches seem powerful to capture all possible combinations (or

combinations of repetitions) of different types of nodes or edges, their numbers of possible

graphlets, which are also their space complexities, grow near-exponentially with the number of

node or edge types. For example, with 9 node types, in the colored graphlets approach, there

are 255 possible colored graphlets for a graphlet of 4 nodes; and in the heterogeneous graphlets

approach, there are 495 possible graphlets. In comparison, the space complexity grows linearly

with the number of edge types in the proposed TyE-GDV approach. Moreover, out of this

large number of possible graphlets, only a tiny percentage of them actually exists in real net-

works. For example, in Cora citation network [30], only 19 heterogeneous graphlets exist out

of 210 possible ones in a 4-clique graphlet.

In order to utilise the colored graphlets and the heterogeneous graphlets approaches in ego-

centric networks, we further develop their egocentric versions, and apply them in the chronic

pain case study. With fewer node orbits to consider, egocentric colored graphlets and egocen-

tric heterogeneous graphlets are faster and more space-saving than the original ones. The

implementation of these algorithms is available at https://github.com/MingshanJia/explore-

local-structure.

To conclude this section, we summarise the time and space complexities of the four main

approaches in Table 1. Colored-GDV, HeteroE-GDVN and TyE-GDV share the same time

complexity because they are all node-based algorithms. Hetero-GDVL as the only link-based

algorithm, could be faster in sparse networks. When it comes to space complexity, the pro-

posed TyE-GDV grows linearly with the number of edge types, while the other three methods

grow near exponentially with it.

6 Experiments and analysis

In this section, we apply the proposed methods to analyse the egocentric social networks of

chronic pain patients.

6.1 Dataset

The real-world dataset is collected from chronic pain patients of the League for Rheumatoid

Arthritis, the League for Fibromyalgia and the Flemish Pain League [19]. Each patient creates

their own egocentric social networks containing up to 10 alters using the graphical tool GENSI

[31]. The types of social ties between the patient (the ego node) and his/her contacts (the alters)

are explicitly given. There are in total 13 types of social relationships, including families,

friends, colleagues, neighbours, etc. The full list of social ties and their total occurrences are

listed in Table 2). The patients were also asked to fill out a questionnaire on pain-related and

sociodemographic information. In addition to that, a daily diary consisting of items measuring

pain intensity, and physical, psychological and social well-beings, was provided to participants

for 14 consecutive days. After eliminating inconsistent and incomplete entries, the final dataset

Table 1. Time and space complexities of four approaches that deal with edge type information. S is the maximum

number of nodes in graphlets, K is the maximum number of edges in graphlets, jOej is the number of edge-orbit

graphlets.

Approach Time complexity Space complexity

Colored-GDV [20] OðjVj � kmax
S� 1Þ OðjVj � jOj � 2jT e jÞ

Hetero-GDVL [21] OðjEj � kmax
S� 2Þ OðjEj � jOej �

KCjT e jþK� 1Þ

HeteroE-GDVN OðjVj � kmax
S� 1Þ OðjVj � jOj � KCjT e jþK� 1Þ

TyE-GDV OðjVj � kmax
S� 1Þ OðjVj � jOj � jT ejÞ

https://doi.org/10.1371/journal.pone.0273609.t001
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consists of the egocentric social networks, sociodemographic and pain characteristics of 303

patients. The average age of all patients is 53.5±12 years, including 248 females and 55 males.

Some basic characteristics of the egocentric networks, such as the ego nodes’ degree distri-

bution and their edge-type distribution, are shown in Fig 3. The edge-type distribution is com-

puted by summing over all ego nodes on each type of the edges, which is also displayed in the

third column of Table 2. The degree distribution reveals that the majority of patients (62%)

have ten social connections in their social networks (Fig 3a). However, we do not anticipate

node degree to be a discriminative feature in the following analysis since ten contacts are the

upper limit in the dataset. According to the edge-type distribution (Fig 3b), the most frequent

types in these networks are T-5 “friend” and T-4 “children/grandchildren”. In contrast, edge

types T-8 “neighbour”, T-9 “colleague” and T-11 “member of organisations” are underrepre-

sented. T12 “acquaintance” and T-13 “other” are almost negligible because people would first

list their strongest contacts with the limitation of ten connections, leaving little room for those

weaker ties.

Fig 3. Degree distribution and edge-type distribution of 303 egocentric social networks.

https://doi.org/10.1371/journal.pone.0273609.g003

Table 2. 13 types of social relationships and their total number of occurrences in 303 egocentric networks.

Social Relationship Type Code Number of Occurrences

Partner T-1 222

Father/Mother T-2 209

Brother/Sister T-3 293

Children/Grandchildren T-4 493

Friend T-5 506

Family-in-law T-6 207

Other family T-7 142

Neighbour T-8 69

Colleague T-9 57

Healthcare worker T-10 233

Member of organisations T-11 74

Acquaintance T-12 15

Other T-13 17

https://doi.org/10.1371/journal.pone.0273609.t002
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Moreover, the grades of chronic pain are calculated by means of the Graded Chronic Pain

Scale (GCPS), which evaluates both pain disability and pain intensity [32]. Then, patients are

divided into five grades based on their average intensity and disability scores: grade-0 for no

pain; grade-1 for low intensity and low disability; grade-2 for high intensity and low disability;

grade-3 for moderate disability irrespective of pain intensity; and grade-4 for high disability

irrespective of pain intensity. Due to the fact that all participants have a certain degree of

chronic pain, their GCPS grades vary from grade-1 to grade-4. Specifically, there are 21

patients in grade-1, 33 patients in grade-2, 67 patients in grade-3 and 182 patients in grade-4.

In this study, we aim to investigate whether the structural feature, especially the edge type aug-

mented structural feature captured by TyE-GDV, are helpful in understanding the patients’

pain grades.

6.2 Analysing pain grades

Evidence within the fields of pain and rehabilitation science has shown that social interactions

play an important role in the perception of pain [33]. Perceived social support and pain infer-

ence are found to be associated in individuals with chronic musculoskeletal pain [34]. Lower

levels of social support and higher levels of pain intensity are observed in rheumatoid arthritis

patients at the 3- and 5-year follow-ups [35]. It has also been demonstrated recently that

reduced social isolation accounts for significant improvements in self-reported emotional and

physical functioning [36]. Typically in these studies, the social milieu of a patient is assessed by

the Social Support Satisfaction Scale (ESSS) [37] or the Patient Reported Outcome Measure-

ment Information System (PROMIS1) [38]. However, as these measurements are not based

on the real social networks of the patients, they are unable to shed light on the impact of net-

work topologies, especially certain types of interactions, on the perception of pain. To address

this issue, we choose to apply both the traditional graphlets approach and the proposed typed-

edge graphlets approach to analyse the egocentric networks of chronic pain patients.

First, in order to investigate the impact of network structure on pain grade, we calculate the

average egocentric graphlet degree vector for each GCPS grade. A radar chart shows the aver-

age values of the seven egocentric graphlets at each grade (Fig 4). We observe clearly that

patients with higher pain grades (grade-3 and grade-4) possess more star-like structures

(3-star graphlet) in their social networks, whereas patients with lower pain grades (grade-1

and grade-2) compose more clique-like or quasi-clique-like structures (3-clique, 4-clique and

4-chordal-cycle graphlets). A poorer-connected star-like structure denotes a more isolating

social setting, whereas a better-connected structure, such as the 3-clique or 4-clique, may sug-

gest stronger social support. These findings are in agreement with the aforementioned studies

[33–36] and provide further evidence that a patient’s social network may influence how much

pain they perceive. Additionally, we discover that the number of immediate connections (2-cli-

ques) is ineffective in differentiating pain grades, which may be partially caused by the limited

number of contacts in the dataset. Nevertheless, Evers et al. [35] also discovered that changes

in pain are not substantially correlated with the size of a patient’s egocentric social network. Jia

et al. revealed that the clustering coefficient and the quadrangle coefficient are useful topologi-

cal features in assessing the perception of pain [39]. These findings further underline the need

to consider more complex network topologies when examining patients’ social networks.

Furthermore, in order to analyse the association between the types of social ties and the per-

ception of pain, we employ the typed-edge graphlet degree vector and focus on two specific

graphlets, namely the weakly connected 3-star graphlet and the highly connected 4-clique

graphlet. These two graphlets are selected not only because they represent two extremes of

4-node structures but also because distinct differences between patients with lower pain grades
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and patients with higher pain grades are observed in them. We first calculate the average

counts of the 13 edge types at each pain grade for the 3-star graphlet, i.e., the 3rd row of the

Typed-Edge Ego-Graphlet Degree Vector (see Algorithm 4), and draw a parallel coordinates

plot (Fig 5(a)). We discover that in the poorly connected star-like structure, edges of type T-5

“friend” and T-10 “healthcare worker” are significantly more frequent in patients with higher

pain grades than in patients of lower pain grades. That is to say, in the social networks of

higher pain grade patients, friends and healthcare workers are in a rather isolated position—

not well connected with other contacts of the patient. Thus, it provides the potential for treat-

ments that boost a patient’s friends’ and healthcare professionals’ social involvement to

improve chronic pain management.

Fig 4. Radar chart of average GDV of different GCPS grades. Each spoke represents the average number of graphlets belonging to that type.

https://doi.org/10.1371/journal.pone.0273609.g004
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We then calculate the average counts of the 13 edge types at each pain grade for the 4-clique

graphlet, i.e., the 6th row of the Typed-Edge Ego-Graphlet Degree Vector, and the correspond-

ing parallel coordinates plot is given in Fig 5(b). We observe that, in this tightly-connected

structure, patients with lower pain grades have more edges of type T-5 “friend” than patients

with higher pain grades. In other words, friends are better involved in the social networks of

patients who perceive lower level pain grades than those who perceive higher pain grades. The

importance of friendship is revealed in both 3-star and 4-clique graphlets. As pointed out by

other studies [40, 41], people with severe chronic pain may be more liable to a deterioration of

their friend relationships and are in more need of supportive behaviours from friends. Another

noticeable difference between patients of lower pain grades and patients of higher pain grades

is found in edge T-9 “colleague”. In contrast to the lower pain grade group, where more than

one colleague appears in the clique structures (1.1 on average), colleagues hardly exist in them

among the higher pain grade group (0.24 on average). This could be a result of the negative

Fig 5. Two parallel coordinates plots revealing the association of edge type and pain grade. (a). Average TyE-GDV of four GCPS grades for 3-star

graphlet. (b). Average TyE-GDV of four GCPS grades for 4-clique graphlet.

https://doi.org/10.1371/journal.pone.0273609.g005
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consequences that severe chronic pain has on patients’ capacity for work [42]. To provide an

intuitive grasp of the edge type encoded structural differences between the social networks of

patients with different pain grades, we extract two real examples from the dataset as the net-

work prototypes of patients of pain grade-1 and patients of pain grade-4, respectively (Fig 6).

This experiment demonstrates that the extra edge type information encoded in TyE-GDV

provides us with more insights into the association between patients’ perception of pain grade

and the type of social ties in their egocentric networks. It thus has implications for improving

therapeutic interventions through boosting particular types of social interactions.

6.3 Node classification

We now apply the proposed TyE-GDV, and the extended egocentric versions of colored

graphlets (ColoredE-GDV) and heterogeneous graphlets (HeteroE-GDVN) approaches in a

typical machine learning task.

Node classification, being one of the most popular and extensively explored tasks in net-

work science [43], aims to predict the labelling of nodes based on a subset of nodes that have

ground-truth labels. Here, our goal is to predict the GCPS grade of patients with chronic pain.

In order to evaluate the effectiveness of the proposed approaches, we fit six sets of features into

a random forest classifier. The first set comprises the patients’ demographic attributes, pain-

related descriptors and their physical and psychological well-being indicators. Since it contains

no network-related information, we refer to it as the raw feature set. The second set and the

third set add the typed-edge degree vector (TyE-DV) and the traditional graphlet degree vector

(GDV), respectively, on top of the raw features. The fourth set combines the raw features with

the proposed typed edge graphlet degree vector (TyE-GDV), and finally, the fifth set and the

sixth set plus the colored graphlets degree vector (ColoredE-GDV) and the heterogeneous

graphlets degree vector (HeteroE-GDVN), respectively, to the raw feature set.

Since the dataset is not big and the distribution of the four pain grades is not balanced (see

Section 6.1), we adopt a stratified 5-fold cross-validation [44] to evaluate the classification

Fig 6. Social network prototypes of patients with GCPS grade-1 and patients with GCPS grade-4. (a). In the prototype network of patients with pain

grade-1, contacts are tightly connected to each other with the appearance of T-5 friend and T-9 colleague; (b) In the prototype network of patients with

pain grade-4, contacts are loosely connected with limited links incident to T-5 friend and T-10 healthcare workers.

https://doi.org/10.1371/journal.pone.0273609.g006
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performance with different feature sets. Plus, we repeat the above step 500 times and report the

mean metric score given the stochastic nature of decision tree-based models.

Table 3 lists the prediction results for six models. As this is a multi-class classification task,

and the distribution of the four classes is imbalanced, the macro-F1 score is selected as the

evaluation metric. A naive classifier named Stratified is also added to the table (the first row),

which simply generates predictions by adhering to the class distribution in the training set. We

see clearly that the bottom three approaches that encode type information in graphlets (raw

features plus ColoredE-GDV, raw features plus HeteroE-GDVN, and raw features plus

TyE-GDV) perform better than the set of raw features plus TyE-DV and the set of raw features

plus GDV. Recall that TyE-DV captures edge type information but with very limited structural

information, and GDV, on the other hand, captures the rich structural information but with-

out edge type information. This evidently shows that combining edge type information and

rich structural information could lead to more distinctive features in network learning tasks.

We also observe large differences in the running time of those methods. The running time

of the set of raw features plus ColoredE-GDV, and especially the set of raw features plus Het-

eroE-GDVN are many times higher than other methods. This is because our dataset has 13

types of edges and the lengths of vectors generated from these two methods grow near expo-

nentially with the number of edge types jT ej. Correspondingly, the speed of the machine learn-

ing algorithm will slow down as the feature vector becomes larger. Table 4 gives the vector

lengths of all five approaches. Note that there is no edge type information between alter nodes

in many egocentric networks, including this case study dataset. Thus, our implementations of

ColoredE-GDV and HeteroE-GDVN have excluded all the impossible combinations. Overall

speaking, the proposed TyE-GDV is able to achieve acompetitive performance while maintain-

ing a small vector length.

6.4 Limitations and future directions

Here, we describe some limitations of this work and outline how these might be overcome in

future studies.

Edge direction. Our current work is limited to undirected networks. To encode edge type

information in directed networks, a natural extension of our approach is to apply the notion of

directed graphlets [45–47]. The potential approach would be more complex due to the larger

Table 4. Comparison of vector length of different approaches.

Approach GDV TyE-DV TyE-GDV ColoredE-GDV HeteroE-GDV

Len. of vector 7 13 91 12367 38870

https://doi.org/10.1371/journal.pone.0273609.t004

Table 3. Result table of node classification, reported in the average macro-F1 score (± standard deviation), the average percentage gain over the raw feature set, and

the total running time of 500 repetitions.

Macro F1 (Mean ± Std) Gain over raw feat. (Mean) Time in sec. (Sum)

Stratified 0.248 ± 0.024 — 3

Raw feat. 0.578 ± 0.005 — 116

Raw feat. + TyE-DV 0.600 ± 0.005 3.8% 130

Raw feat. + GDV 0.597 ± 0.008 3.3% 138

Raw feat. + ColoredE-GDV 0.608 ± 0.006 5.2% 2091

Raw feat. + HeteroE-GDVN 0.638 ± 0.006 10.4% 8230

Raw feat. + TyE-GDV 0.619 ± 0.004 7.1% 252

https://doi.org/10.1371/journal.pone.0273609.t003
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number of directed node-orbit graphlets. For example, even without considering bidirectional

edges, there are in total 40 directed graphlets and 128 directed node orbits for graphlets of 2 to

4 nodes [45].

Temporal information. The proposed approach is static or time-independent. To make it

suitable for more real-world networks that have nodes and edges appearing and disappearing

over time, a potential future work would be studying how to encode edge type or node type

information in temporal graphlets [48]. With the extra dimension of time, the potential exten-

sion could be beneficial in predicting types of future links or nodes [49, 50].

Potential applications. Apart from social networks, the typed edge graphlets approach

could be convenient in studying biological networks, especially molecular graphs, where link

attributes or bond types are essential information. The proposed approach is promising to be

applied in biological network alignment, which aims to find a node mapping between molecu-

lar networks that reveals similar network regions [20, 51]. Moreover, inspired by recent works

that include subgraph counting in Graph Neural Networks [52, 53], an interesting avenue is to

incorporate the edge type enhanced structural information in GNN’s message passing scheme.

7 Conclusion

In this paper, we propose to encode edge type information in graphlets and introduce the

framework for generating the Typed-Edge Graphlets Degree Vector for both sociocentric and

egocentric networks. Moreover, we extended the colored graphlets approach and the heteroge-

neous graphlets approach to edge-typed networks and egocentric networks. Following the

application of the traditional graphlet degree vector and the proposed TyE-GDV to the chronic

pain patient dataset, we discover that 1) a patient’s social network structure could inform their

perceived pain; and 2) the extra edge type information encoded in TyE-GDV provides us with

more insights into the association between specific social relationships and patients’ percep-

tion of pain.

We also showed that the rich structural information combined with the edge type informa-

tion results in a significant improvement of a typical machine learning task that predicts

patients’ pain grades. Due to the simplicity and excellent explainability, we anticipate that the

typed edge graphlets approach would become a standard approach in studying edge-attributed

networks and be applied in various tasks.
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