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Abstract 

 
Traditional k-NN classifier poses many limitations 

including that it does not take into account each class 
distribution, importance of each feature, contribution 
of each neighbor, and the number of instances for each 
class. A Differential evolution (DE) optimization 
technique is utilized to enhance the performance of k-
NN through optimizing the metric weights of features, 
neighbors and classes. Several datasets are used to 
evaluate the performance of the proposed DE based 
metrics and to compare it to some k-NN variants from 
the literature. Practical experiments indicate that in 
most cases, incorporating DE in k-NN classification 
can provide more accurate performance. 
 
1. Introduction 
 

The k nearest neighbor (k-NN) classifier is 
considered as one of the most widely used techniques 
in  machine learning [1-6]. In a simple k-NN algorithm 
the distances between the testing pattern and all 
training patterns are calculated and then a voting 
criterion is applied using the class label of nearest k 
training vectors to obtain the output classes. The 
number of neighbors, k, should be chosen carefully, 
where based on the distribution of classes in the feature 
space, a certain value of k may give good results for 
one classification problem and fail for another. 

  Cover & Hart [7] have shown that when k/N 
approaches  infinity, the optimal Bayes error rate can 
be obtained, where N represents the number of patterns. 
Hence, traditional k-NN classifier can provide good 
results when dealing with large dataset with evenly 
distributed patterns among different classes [8, 9]. 
Unfortunately, in most real life applications this is not 
always the case. As a result, different variants of k-NN 
were developed to overcome the traditional k-NN 
limitations [8-10]. Most these modifications lie into 

two categories: modifying the distance measure or 
proposing a weighting measure; where different 
weights can be assigned to the neighbors, classes, 
features or a combination of all of these categories.  

In this paper, four versions of k-NN variants 
optimized with differential evolution (DE) optimization 
technique are implemented and evaluated according to 
their class-wise accuracy.  

The paper is structured as follows: Section 2 gives 
an overview of k-NN classification algorithms. In 
Section 3, optimization of k-NN weights using 
Differential Evolution is explored. Experimental results 
are presented in Section 4, and a conclusion is given in 
Section 5. 

 
2. An Overview of k-NN Classification 
Algorithms 
 

A k-nearest neighbor (k-NN) classifier depends on 
the closest training example to predict the unknown 
class labels, where only a specific number of closest 
neighbors (k) are taken into account for this purpose. 
The nearest neighbors can be found by means of 
distance measures, which can be as simple as the 
Euclidean distance. The Euclidean distance d between 
two points X(x1,…xn) and Y(y1,…yn
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Other distance based measures can also be used, for 
example the Minkowski distance, which is a more 
general measure that can be expressed as: 
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Note that the Euclidean distance is a special case of 
the Minkowski distance where λ=2, while the 
Manhattan distance is obtained by assigning λ =1. 



Voting can be implemented using either un-weighted 
or weighted scenarios. In un-weighted voting class 
labels are assigned according to the simple majority 
vote, where all neighbors have the same weight. In 
weighted voting the weight assigned to the neighbor i 
given as (w i
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) is proportional to its distance from the 
test sample, which can be implemented as follows [10]: 

 ..(3)                                    

Where x1 and xk represents the nearest and farthest k 
neighbors to the current pattern xi respectively. It has 
been found that when dealing with limited number of 
samples, k-NN may not give optimal results. Moreover 
k-NN usually gives poor performance when dealing 
with unbalanced data [8] (training patterns are not 
evenly distributed among data). Consequently variants 
of k-NN were developed to overcome its weakness. 
 
3. Differential Evolution (DE) 
 

Differential Evolution (DE) is a simple, parallel, 
direct search, and easy to use optimization method 
having good convergence and fast implementation 
properties [11]. The crucial idea behind DE is a new 
scheme for generating trial parameter vectors by adding 
the weighted difference vector between two population 
members to a third member. The following equation 
shows how to combine three different, randomly 
chosen vectors (X, Xa and Xb

X ′
) to create a mutant vector 

: 
                   ( )a bX X F X X′ = + +                 … (4) 
Where F ∈  (0, 1) is a scale factor that controls the 

rate at which the population evolves. In addition, DE 
employs a uniform crossover, also known as discrete 
recombination, in order to build trial vectors out of 
parameter values that have been copied from two 
different vectors. In particular, DE crosses each vector 
with a mutant vector Y: 
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The crossover probability [0,1]rC ∈  is a user 
defined value that controls the fraction of parameter 
values that are copied from the mutant. If the newly 
generated vector results in a lower objective function 
value (better fitness) than the predetermined population 
member, then the resulting vector replaces the vector 
with which it was compared. More description about 
DE can be found in [11]. 

Four different types of weight have been evaluated 

using DE, the length of the string is based on the 
selected method as follow: 

 
- Feature weighting (DE1): each member of the 

population is represented by a weight matrix of a length 
f, W(w1,w2,…wf

        

), where f represents the total number 
of available features. Calculating the new distance 
measure is done as shown in eq. (6) [12]. 
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- Neighbor weighting (DE2): each member of the 
population is represented by a weight matrix of a length 
k, W(w1,w2,…wk

- Class weighting (DE3): each member of the 
population is represented by a weight matrix of a length 
c, W(w

), where k represents the total number 
of nearest neighbor. A weighted voting is then applied 
to assign a class label to each sample. 

1,w2,…wc), where c represents the total number 
of classes. After finding the k nearest neighbor a 
weighted distance sum WSc

                       

 is obtained for each class c 
as in eq (7). For a given test pattern, the class label 
with the minimum weighted sum will be chose. 
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- Hybrid weighting (DE4): each member of the 

population is represented by a weight matrix of a length 
f+c, W(w1,w2,…wf+c

4. Experimental Results 

), where the first f elements 
represent the feature weights and the last c elements 
represent the class weights. This method is 
implemented by applying a feature weighting step, 
which will be followed by class weighting. 

 
Two sets of experiments were conducted. In the first 

one, 2-class synthetic data was specifically designed to 
generate different class ratios. Patterns were distributed 
between the two classes in two different scenarios, as 
shown in Fig. 1. The reason behind using the second 
data is to consider the case when the patterns of one 
class are concentrated in a certain region, which will 
have an effect on the identification of the nearest 
neighbors. 

When implementing the DE based k-NN the 
objective function was set to maximize the average 



classification accuracy of the two classes. This is 
justified by the fact that some methods might provide a 
high classification performance for one of the classes 
and a relatively low performance for the other. The k-
NN variants that were considered here include: 
majority voting k-NN (MVKNN), weighted k-NN 
(WKNN) [13], pseudo nearest neighbor (PNN) [10] 
and neighbor-weighted k-NN (NWKNN) [8]. These 
methods were all ran only once due to their static 
output. 
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Fig. 1. Two class synthetic data distributed using two 
scenarios. 

 
For each scenario, data was generated 30 times and 

the average class-wise accuracy and standard deviation 
were calculated. The number of neighbors (k) was set 
to 5, which was found to provide, on average, good 
performance for all methods. 

Results for running the proposed DE based k-NN in 
comparison with other k-NN variants are shown in 
Figs. 2, 3 and 4. For scenario 1, the performance of all 
methods is comparable with DE-based k-NN achieving 
slightly better results, especially DE2. 

For scenario 2, the first four methods provided high 
standard deviation, as shown in Figs. 3 and 4. On the 
other hand, the variation is much lower for the DE-
based k-NN, except for DE4 (the hybrid case). This can 
be due to the increased number of parameters that 
needed to be optimized using limited number of 
samples. The good performance that was achieved be 
DE1, DE2 and DE3 indicate that even when using 
small number of samples (200 and 150 respectively), 
an improved performance can be achieved. 

It is worth mentioning that for the unbalanced case 
of scenario 2, the first four k-NN variants tend to give 
very low classification accuracy for the under-
represented class and higher accuracy for the over-
represented class, which reduces the average class-wise 
accuracy. 

In the second experiment, a number of datasets from 
the UCI Machine Learning Repository were considered 
(as shown in Table I). The data from each set was 
divided into three divisions: the first two were used for 
training and validation, while the third one for testing. 
The reported UCI results represent an average of ten 

runs for the DE based k-NN, as the weight vector can 
be different for each run. 
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Fig. 2. Classification accuracy of the synthetic data generated using 
scenario 1 (2 classes, 2 features, 100 training points for each class). 
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 Fig. 3. Classification accuracy of the synthetic data generated using 
scenario 2 (2 classes, 2 features, 100 training points for each class). 
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Fig. 4. Classification accuracy of the synthetic data generated using 
scenario 2 (2 classes, 2 features, 100 training points for the first 
class & 50 for the other). 

TABLE I 
DATASET DESCRIPTION 

Name No. of Patterns No. of Attributes No. of Classes 

Pima 768 8 2 
Cancer 683 9 2 
Wdbc 569 30 2 
Ion 351 34 2 
Sonar 208 60 2 

 

 
Table II shows the classification results of the 

different k-NN variants. The first thing that can be 
noticed is that DE1 and DE4 achieved better accuracy 
than other methods. This clearly indicates that 
assigning appropriate weights to both features and 
classes can lead to better performance. Note that with 
sufficient number of training samples to optimize the 



weights for both features and classes (all datasets 
except sonar), DE4 achieved the highest performance 
when compared to all other methods. On the other 
hand, DE3 did not perform that well in all datasets, 
except the ionosphere, which represents an unbalanced 
dataset. We also have to mention that DE2 achieved 
the worst results compared to the other three DE-based 
k-NN variants. This indicates that only assigning 
weights to the neighbors may not be sufficient. 
 
5. Conclusion 
 

This paper presented a new approach to optimizing 
the weight metric of the k-NN classifier. The 
differential evolution was used to optimize the weights 
of features, nearest neighbors, and classes. Results 
conducted on both synthetic and real-life data indicated 
that improved performance can be achieved when 
considering the traditional k-NN and number of its 
variants. Results have in particular suggested that 
optimizing the weights of both features and classes, 
when have sufficient number of samples, can lead to 
better performance for both balanced and imbalanced 
data. 
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TABLE II 
DATASET RESULTS  

Name Method Overall 
Acc. 

Class 1 
Acc. 

Class 2 
Acc. 

Avg. class-
wise Acc. 

Pima      
 MVKNN 75.52 84 59.70 71.85 
 WKNN 71.88 76 64.18 70.09 
 NWKNN 74.48 72 79.10 75.55 
 PNN 72.40 77.6 62.69 70.14 
 DE1 81.51 88.67 69.58 79.92 
 DE2 70.31 84.17 47.22 67.23 
 DE3 69.27 60.83 83.33 71.15 
 DE4 81.04 75.83 89.72 82.20 
cancer      

 MVKNN 97.06 96.55 98.15 97.25 
 WKNN 95.88 96.55 94.44 95.63 
 NWKNN 97.06 96.55 98.15 97.25 
 PNN 95.88 96.55 94.44 95.63 
 DE1 99.88 99.90 99.85 99.88 
 DE2 96.47 100 90.91 95.79 
 DE3 99.41 100 98.49 99.30 
 DE4 99.93 99.94 99.96 99.95 
wdbc      
 MVKNN 95.07 87.93 100 93.97 
 WKNN 95.78 89.66 100 94.83 
 NWKNN 95.07 87.93 100 93.97 
 PNN 95.07 87.93 100 93.97 
 DE1 98.87 96.98 99.70 98.52 
 DE2 96.48 95.35 96.97 96.27 
 DE3 97.18 95.35 97.98 96.84 
 DE4 98.80 96.05 100 98.28 
Ion      
 MVKNN 86.21 100 63.64 81.82 
 WKNN 90.81 98.15 78.79 88.47 
 NWKNN 88.51 98.15 72.73 85.44 
 PNN 89.66 100 72.73 86.36 
 DE1 92.87 100 77.04 89.97 
 DE2 87.13 100 58.52 81.88 
 DE3 95.40 98.33 88.89 94.22 
 DE4 98.85 98.33 100 99.06 
sonar      
 MVKNN 82.69 66.67 93.55 80.11 
 WKNN 90.39 80.95 96.77 88.86 
 NWKNN 82.69 66.67 93.55 80.11 
 PNN 88.46 76.19 96.77 86.48 
 DE1 95.39 92.14 99.17 95.57 
 DE2 73.08 67.86 79.17 73.37 
 DE3 84.62 82.14 87.50 84.75 
 DE4 90.19 90.36 90 90.18 
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