
© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Optimizing the k-NN Metric Weights Using Differential Evolution

Akram AlSukker, Rami Khushaba, and Ahmed Al-Ani
University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia

{alsukker, rkhushab, ahmed}@eng.uts.edu.au

Abstract

Traditional k-NN classifier poses many limitations

including that it does not take into account each class
distribution, importance of each feature, contribution
of each neighbor, and the number of instances for each
class. A Differential evolution (DE) optimization
technique is utilized to enhance the performance of k-
NN through optimizing the metric weights of features,
neighbors and classes. Several datasets are used to
evaluate the performance of the proposed DE based
metrics and to compare it to some k-NN variants from
the literature. Practical experiments indicate that in
most cases, incorporating DE in k-NN classification
can provide more accurate performance.

1. Introduction

The k nearest neighbor (k-NN) classifier is
considered as one of the most widely used techniques
in machine learning [1-6]. In a simple k-NN algorithm
the distances between the testing pattern and all
training patterns are calculated and then a voting
criterion is applied using the class label of nearest k
training vectors to obtain the output classes. The
number of neighbors, k, should be chosen carefully,
where based on the distribution of classes in the feature
space, a certain value of k may give good results for
one classification problem and fail for another.

 Cover & Hart [7] have shown that when k/N
approaches infinity, the optimal Bayes error rate can
be obtained, where N represents the number of patterns.
Hence, traditional k-NN classifier can provide good
results when dealing with large dataset with evenly
distributed patterns among different classes [8, 9].
Unfortunately, in most real life applications this is not
always the case. As a result, different variants of k-NN
were developed to overcome the traditional k-NN
limitations [8-10]. Most these modifications lie into

two categories: modifying the distance measure or
proposing a weighting measure; where different
weights can be assigned to the neighbors, classes,
features or a combination of all of these categories.

In this paper, four versions of k-NN variants
optimized with differential evolution (DE) optimization
technique are implemented and evaluated according to
their class-wise accuracy.

The paper is structured as follows: Section 2 gives
an overview of k-NN classification algorithms. In
Section 3, optimization of k-NN weights using
Differential Evolution is explored. Experimental results
are presented in Section 4, and a conclusion is given in
Section 5.

2. An Overview of k-NN Classification
Algorithms

A k-nearest neighbor (k-NN) classifier depends on
the closest training example to predict the unknown
class labels, where only a specific number of closest
neighbors (k) are taken into account for this purpose.
The nearest neighbors can be found by means of
distance measures, which can be as simple as the
Euclidean distance. The Euclidean distance d between
two points X(x1,…xn) and Y(y1,…yn

) is given by the
following formula:

2

1
, ()

n

i i
i

x yd x y
=

= −∑ … (1)

Other distance based measures can also be used, for
example the Minkowski distance, which is a more
general measure that can be expressed as:

1

,

n

i i
i

x yd x y λ
λ

=

= −∑ … (2)

Note that the Euclidean distance is a special case of
the Minkowski distance where λ=2, while the
Manhattan distance is obtained by assigning λ =1.

Voting can be implemented using either un-weighted
or weighted scenarios. In un-weighted voting class
labels are assigned according to the simple majority
vote, where all neighbors have the same weight. In
weighted voting the weight assigned to the neighbor i
given as (w i

1

(,) (,)
, (,) (,)

(,) (,)

1 , (,) (,)

k i
k i

ki

k i

d x x d x x
if d x x d x x

d x x d x xw

if d x x d x x

−
≠

−=

≠

 
 
 
  

) is proportional to its distance from the
test sample, which can be implemented as follows [10]:

 ..(3)

Where x1 and xk represents the nearest and farthest k
neighbors to the current pattern xi respectively. It has
been found that when dealing with limited number of
samples, k-NN may not give optimal results. Moreover
k-NN usually gives poor performance when dealing
with unbalanced data [8] (training patterns are not
evenly distributed among data). Consequently variants
of k-NN were developed to overcome its weakness.

3. Differential Evolution (DE)

Differential Evolution (DE) is a simple, parallel,
direct search, and easy to use optimization method
having good convergence and fast implementation
properties [11]. The crucial idea behind DE is a new
scheme for generating trial parameter vectors by adding
the weighted difference vector between two population
members to a third member. The following equation
shows how to combine three different, randomly
chosen vectors (X, Xa and Xb

X ′
) to create a mutant vector

:
 ()a bX X F X X′ = + + … (4)
Where F ∈ (0, 1) is a scale factor that controls the

rate at which the population evolves. In addition, DE
employs a uniform crossover, also known as discrete
recombination, in order to build trial vectors out of
parameter values that have been copied from two
different vectors. In particular, DE crosses each vector
with a mutant vector Y:

,

,

,

if (0,1)j i

j i

j i

X rand Cr
U

Y Otherwise

′ ≤
=
 
 
 

 … (5)

The crossover probability [0,1]rC ∈ is a user
defined value that controls the fraction of parameter
values that are copied from the mutant. If the newly
generated vector results in a lower objective function
value (better fitness) than the predetermined population
member, then the resulting vector replaces the vector
with which it was compared. More description about
DE can be found in [11].

Four different types of weight have been evaluated

using DE, the length of the string is based on the
selected method as follow:

- Feature weighting (DE1): each member of the

population is represented by a weight matrix of a length
f, W(w1,w2,…wf

), where f represents the total number
of available features. Calculating the new distance
measure is done as shown in eq. (6) [12].

2

1
, ()

n

i i
i

x y id w x y
=

= −∑ … (6)

- Neighbor weighting (DE2): each member of the
population is represented by a weight matrix of a length
k, W(w1,w2,…wk

- Class weighting (DE3): each member of the
population is represented by a weight matrix of a length
c, W(w

), where k represents the total number
of nearest neighbor. A weighted voting is then applied
to assign a class label to each sample.

1,w2,…wc), where c represents the total number
of classes. After finding the k nearest neighbor a
weighted distance sum WSc

 is obtained for each class c
as in eq (7). For a given test pattern, the class label
with the minimum weighted sum will be chose.

1

k

j
j

c cWS w dδ
=

= ∑ … (7)

Where dj

 represents the distance from neighbor j.
1

0
j

j

d c

d c
δ =

∈

∉





 … (8)

- Hybrid weighting (DE4): each member of the

population is represented by a weight matrix of a length
f+c, W(w1,w2,…wf+c

4. Experimental Results

), where the first f elements
represent the feature weights and the last c elements
represent the class weights. This method is
implemented by applying a feature weighting step,
which will be followed by class weighting.

Two sets of experiments were conducted. In the first

one, 2-class synthetic data was specifically designed to
generate different class ratios. Patterns were distributed
between the two classes in two different scenarios, as
shown in Fig. 1. The reason behind using the second
data is to consider the case when the patterns of one
class are concentrated in a certain region, which will
have an effect on the identification of the nearest
neighbors.

When implementing the DE based k-NN the
objective function was set to maximize the average

classification accuracy of the two classes. This is
justified by the fact that some methods might provide a
high classification performance for one of the classes
and a relatively low performance for the other. The k-
NN variants that were considered here include:
majority voting k-NN (MVKNN), weighted k-NN
(WKNN) [13], pseudo nearest neighbor (PNN) [10]
and neighbor-weighted k-NN (NWKNN) [8]. These
methods were all ran only once due to their static
output.

C1C2

X
scenario 1

Y

C1C2

Y

X
scenario 2

Fig. 1. Two class synthetic data distributed using two
scenarios.

For each scenario, data was generated 30 times and

the average class-wise accuracy and standard deviation
were calculated. The number of neighbors (k) was set
to 5, which was found to provide, on average, good
performance for all methods.

Results for running the proposed DE based k-NN in
comparison with other k-NN variants are shown in
Figs. 2, 3 and 4. For scenario 1, the performance of all
methods is comparable with DE-based k-NN achieving
slightly better results, especially DE2.

For scenario 2, the first four methods provided high
standard deviation, as shown in Figs. 3 and 4. On the
other hand, the variation is much lower for the DE-
based k-NN, except for DE4 (the hybrid case). This can
be due to the increased number of parameters that
needed to be optimized using limited number of
samples. The good performance that was achieved be
DE1, DE2 and DE3 indicate that even when using
small number of samples (200 and 150 respectively),
an improved performance can be achieved.

It is worth mentioning that for the unbalanced case
of scenario 2, the first four k-NN variants tend to give
very low classification accuracy for the under-
represented class and higher accuracy for the over-
represented class, which reduces the average class-wise
accuracy.

In the second experiment, a number of datasets from
the UCI Machine Learning Repository were considered
(as shown in Table I). The data from each set was
divided into three divisions: the first two were used for
training and validation, while the third one for testing.
The reported UCI results represent an average of ten

runs for the DE based k-NN, as the weight vector can
be different for each run.

MVKNN WKNN NWKNN PNN DE1 DE2 DE3 DE4
70

72

74

76

78

80

82

84

86

88

Ac
cu

ra
cy

 (%
)

Fig. 2. Classification accuracy of the synthetic data generated using
scenario 1 (2 classes, 2 features, 100 training points for each class).

MVKNN WKNN NWKNN PNN DE1 DE2 DE3 DE4
70

72

74

76

78

80

82

84

86

88

Ac
cu

ra
cy

 (%
)

 Fig. 3. Classification accuracy of the synthetic data generated using
scenario 2 (2 classes, 2 features, 100 training points for each class).

MVKNN WKNN NWKNN PNN DE1 DE2 DE3 DE4
60

65

70

75

80

85

Ac
cu

ra
cy

 (%
)

Fig. 4. Classification accuracy of the synthetic data generated using
scenario 2 (2 classes, 2 features, 100 training points for the first
class & 50 for the other).

TABLE I
DATASET DESCRIPTION

Name No. of Patterns No. of Attributes No. of Classes

Pima 768 8 2
Cancer 683 9 2
Wdbc 569 30 2
Ion 351 34 2
Sonar 208 60 2

Table II shows the classification results of the

different k-NN variants. The first thing that can be
noticed is that DE1 and DE4 achieved better accuracy
than other methods. This clearly indicates that
assigning appropriate weights to both features and
classes can lead to better performance. Note that with
sufficient number of training samples to optimize the

weights for both features and classes (all datasets
except sonar), DE4 achieved the highest performance
when compared to all other methods. On the other
hand, DE3 did not perform that well in all datasets,
except the ionosphere, which represents an unbalanced
dataset. We also have to mention that DE2 achieved
the worst results compared to the other three DE-based
k-NN variants. This indicates that only assigning
weights to the neighbors may not be sufficient.

5. Conclusion

This paper presented a new approach to optimizing
the weight metric of the k-NN classifier. The
differential evolution was used to optimize the weights
of features, nearest neighbors, and classes. Results
conducted on both synthetic and real-life data indicated
that improved performance can be achieved when
considering the traditional k-NN and number of its
variants. Results have in particular suggested that
optimizing the weights of both features and classes,
when have sufficient number of samples, can lead to
better performance for both balanced and imbalanced
data.

6. References

[1] T. Ananthakrishna, K. Shama, and U. C. Niranjan, "k-means

nearest neighbor classifier for voice pathology," presented at
India Annual Conference, 2004. Proceedings of the IEEE
INDICON 2004. First, 2004.

[2] V. Athitsos, J. Alon, S. Sclaroff, and G. Kollios, "BoostMap:
An Embedding Method for Efficient Nearest Neighbor
Retrieval," Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 30, pp. 89-104, 2008.

[3] E. Blanzieri and F. Melgani, "Nearest Neighbor Classification
of Remote Sensing Images With the Maximal Margin
Principle," Geoscience and Remote Sensing, IEEE
Transactions on, vol. 46, pp. 1804-1811, 2008.

[4] D. Masip and J. Vitria, "Shared Feature Extraction for Nearest
Neighbor Face Recognition," Neural Networks, IEEE
Transactions on, vol. 19, pp. 586-595, 2008.

[5] A. J. Nor'aini, P. Raveendran, and N. Selvanathan, "Human
Face Recognition using Zernike moments and Nearest
Neighbor classifier," presented at Research and Development,
2006. SCOReD 2006. 4th Student Conference on, 2006.

[6] L. Yue and T. Chew Lim, "Improved nearest neighbor based
approach to accurate document skew estimation," presented at
Document Analysis and Recognition, 2003. Proceedings.
Seventh International Conference on, 2003.

[7] T. Cover and P. Hart, "Nearest neighbor pattern
classification," Information Theory, IEEE Transactions on,
vol. 13, pp. 21-27, 1967.

[8] S. Tan, "Neighbor-weighted K-nearest neighbor for
unbalanced text corpus," Expert Systems with Applications,
vol. 28, pp. 667-671, 2005.

[9] R. Paredes and E. Vidal, "Learning weighted metrics to
minimize nearest-neighbor classification error," Pattern
Analysis and Machine Intelligence, IEEE Transactions on,
vol. 28, pp. 1100-1110, 2006.

[10] Y. Zeng, Y. Yang, and L. Zhao, "Pseudo nearest neighbor rule
for pattern classification," Expert Systems with Applications,
vol. In Press, Corrected Proof.

[11] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential
Evolution: A practical approach to global optimization:
Springer, 2005.

[12] S. Qiang, L. Lv, and H. Chen, "Optimization of K-NN by
feature weight learning," presented at Machine Learning and
Cybernetics, 2005. Proceedings of 2005 International
Conference on, 2005.

[13] S. A. Dudani," The Distance-Weighted k-Nearest-Neighbor
Rule",

IEEE Transactions on Systems, Man and Cybernetics,
Vol.6, No. 4, pp. 325–32,1976.

TABLE II
DATASET RESULTS

Name Method Overall
Acc.

Class 1
Acc.

Class 2
Acc.

Avg. class-
wise Acc.

Pima
 MVKNN 75.52 84 59.70 71.85
 WKNN 71.88 76 64.18 70.09
 NWKNN 74.48 72 79.10 75.55
 PNN 72.40 77.6 62.69 70.14
 DE1 81.51 88.67 69.58 79.92
 DE2 70.31 84.17 47.22 67.23
 DE3 69.27 60.83 83.33 71.15
 DE4 81.04 75.83 89.72 82.20
cancer

 MVKNN 97.06 96.55 98.15 97.25
 WKNN 95.88 96.55 94.44 95.63
 NWKNN 97.06 96.55 98.15 97.25
 PNN 95.88 96.55 94.44 95.63
 DE1 99.88 99.90 99.85 99.88
 DE2 96.47 100 90.91 95.79
 DE3 99.41 100 98.49 99.30
 DE4 99.93 99.94 99.96 99.95
wdbc
 MVKNN 95.07 87.93 100 93.97
 WKNN 95.78 89.66 100 94.83
 NWKNN 95.07 87.93 100 93.97
 PNN 95.07 87.93 100 93.97
 DE1 98.87 96.98 99.70 98.52
 DE2 96.48 95.35 96.97 96.27
 DE3 97.18 95.35 97.98 96.84
 DE4 98.80 96.05 100 98.28
Ion
 MVKNN 86.21 100 63.64 81.82
 WKNN 90.81 98.15 78.79 88.47
 NWKNN 88.51 98.15 72.73 85.44
 PNN 89.66 100 72.73 86.36
 DE1 92.87 100 77.04 89.97
 DE2 87.13 100 58.52 81.88
 DE3 95.40 98.33 88.89 94.22
 DE4 98.85 98.33 100 99.06
sonar
 MVKNN 82.69 66.67 93.55 80.11
 WKNN 90.39 80.95 96.77 88.86
 NWKNN 82.69 66.67 93.55 80.11
 PNN 88.46 76.19 96.77 86.48
 DE1 95.39 92.14 99.17 95.57
 DE2 73.08 67.86 79.17 73.37
 DE3 84.62 82.14 87.50 84.75
 DE4 90.19 90.36 90 90.18

	1. Introduction
	2. An Overview of k-NN Classification Algorithms
	3. Differential Evolution (DE)
	4. Experimental Results
	5. Conclusion
	6. References

