

# Improving Remote Sensing of Vehicle Emissions through Monitoring Data, Vehicle Fault Analysis and Tailpipe Temperature Setting

by Bruce Douglas Organ

Thesis submitted in fulfilment of the requirements for the degree of

### **Doctor of Philosophy**

Under the supervision of Prof John Zhou, A/Prof Guang Hong and Dr Yuhan Huang

University of Technology Sydney Faculty of Engineering and Information Technology January 2022

#### CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Bruce Douglas Organ declare that this thesis is submitted in fulfilment of the requirements for the reward of Doctor of Philosophy, in the School of Civil and Environmental Engineering / Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Production Note: Signature: Signature removed prior to publication.

Date: 12<sup>th</sup> January 2022

## Acknowledgements

This undertaking or journey to study a doctoral degree is a long one and demanding one I could not undertake without the support and encouragement of some exceptional people.

Firstly, I would like to thank my principal supervisor Professor John Zhou who without his support and direction this could not have proceeded. He invested time and gave direction supervising and helped guide my research choices. The research experience I've gained from him is greatly appreciated. I would also like to thank my co-supervisors Associate Professor Guang Hong and Dr. Yuhan Huang for their support, Guang in the early stages to help with getting started on research writing and analysis. I thank Yuhan for his positive outlook, guidance, enthusiasm and on-going support throughout my studies. His guidance and suggestions have been key in delivering each of the research stages of my work.

I also appreciate the support of Senior Environmental Protection Officer Mr. Yam Yat-Shing from the Hong Kong Environmental Protection Department (HKEPD) for providing their RS data for analysis and being the key supporter helping to arrange RS testing sessions with their equipment many times over the years of my studies. I really appreciate the support of Mr. Casey K.C. Lee also from HKEPD for his support with testing and discussing new development concepts. I wish to thank my manager when I began my studies, Mr Eddy Chan, for getting the support to undertake this and my current manager Dr. Joe K.W. LO for his support to complete my studies. Thanks to Elvin C.Y. Ng, Oscar H.H. Tang, Leo Chan, Chan Ka Chun and Chan Sui from JCEC in helping to arrange and support testing. Mr Jackson Chan from Green Environmental Emissions Consultants for providing the RS measurement systems and raw data for analysis.

I would like to acknowledge the support and belief of my friend Dr Heiko Rudolf, who, although is no longer with us, with his faith in me and this undertaking he was one of the key people to help me start this journey.

Most importantly, I would like to thank my wife Carmon Organ whose support, drive, motivation and love have gotten me through the times when I needed support the most. She's been the constant beside me who has walked this journey with me and helped me realise it. I would also like to thank my parents and children for their love and support.

## **List of Publications**

#### Journal articles derived from this PhD:

Organ B, Huang Y, Zhou JL, Surawski NC, Yam Y-S, Mok W-C, et al. A remote sensing emissions monitoring programme reduces emissions of gasoline and LPG vehicles. *Environmental Research* 2019; 177: 108614.

Organ B, Huang Y, Zhou JL, Yam Y-S, Mok W-C, Chan EFC. Simulation of engine faults and their impact on emissions and vehicle performance for a liquefied petroleum gas taxi. *Science of The Total Environment* 2020; 716: 137066.

Organ B, Huang Y, Zhou JL. Determination of exhaust plume temperature profiles for remote sensing applications. Under preparation 2022.

#### Conference proceedings from this PhD:

Organ B, Huang Y, Zhou JL, Hong G, Yam YS, Chan EFC. Emission Performance of LPG Vehicles by RS Technique in Hong Kong. *SAE*, Heidelberg, Germany, 2018, *SAE Technical Paper 2018-01-1820*.

#### Other related journal articles:

Huang Y, Organ B, Zhou JL, Surawski NC, Hong G, Chan EFC, et al. Emission measurement of diesel vehicles in Hong Kong through on-road RS: Performance review and identification of high-emitters. *Environmental Pollution* 2018; 237: 133-142.

Huang Y, Organ B, Zhou JL, Surawski NC, Hong G, Chan EFC, et al. Remote sensing of on-road vehicle emissions: Mechanism, applications and a case study from Hong Kong. *Atmospheric Environment* 2018; 182: 58-74.

Huang Y, Yam YS, Lee CKC, Organ B, Zhou JL, Surawski NC, et al. Tackling nitric oxide emissions from dominant diesel vehicle models using on-road remote sensing technology. *Environmental Pollution* 2018; 243: 1177-1185.

Huang Y, Ng ECY, Yam Y-s, Lee CKC, Surawski NC, Mok W-C, Organ B, Zhou JL, et al. Impact of potential engine malfunctions on fuel consumption and gaseous emissions of a Euro VI diesel truck. *Energy Conversion and Management* 2019; 184: 521-529.

Huang Y, Organ B, Zhou JL, Surawski NC, Yam Y-S, Chan EFC. Characterisation of diesel vehicle emissions and determination of remote sensing cutpoints for diesel high-emitters. *Environmental Pollution* 2019; 252: 31-38.

Huang Y, Surawski NC, Organ B, Zhou JL, Tang OHH, Chan EFC. Fuel consumption and emissions performance under real driving: Comparison between hybrid and conventional vehicles. *Science of The Total Environment* 2019; 659: 275-282.

Wang B, Lau Y-S, Huang Y, Organ B, Lee S-C, Ho K-F. Investigation of factors affecting the gaseous and particulate matter emissions from diesel vehicles. *Air Quality, Atmosphere & Health* 2019

Huang Y, Mok W-C, Yam Y-S, Zhou JL, Surawski NC, Organ B, et al. Evaluating inuse vehicle emissions using air quality monitoring stations and on-road remote sensing systems. *Science of The Total Environment* 2020; 740: 139868.

Huang Y, Ng ECY, Surawski NC, Yam Y-S, Mok W-C, Liu C-H, et al. Large eddy simulation of vehicle emissions dispersion: Implications for on-road remote sensing measurements. *Environmental Pollution* 2020; 259: 113974.

Huang Y, Surawski NC, Yam Y-S, Lee CKC, Zhou JL, Organ B, et al. Re-evaluating effectiveness of vehicle emission control programmes targeting high-emitters. *Nature Sustainability* 2020; 3: 904-907.

Huang Y, Yu Y, Yam Y-s, Zhou JL, Lei C, Organ B, et al. Statistical evaluation of onroad vehicle emissions measurement using a dual remote sensing technique. *Environmental Pollution* 2020; 267: 115456.

Wang B, Lau Y-S, Huang Y, Organ B, Chuang H-C, Ho SSH, et al. Chemical and toxicological characterization of particulate emissions from diesel vehicles. *Journal of Hazardous Materials* 2021; 405: 124613.

Huang Y, Lee CKC, Yam YS, Mok WC, Zhou JL, Zhuang Y, Surawski NC, Organ B, Chan EFC. Rapid detection of high-emitting vehicles by on-road remote sensing technology improves urban air quality. *Science Advances* 2022; 8: eabl7575.

#### Abstract

Air pollution is a serious public health issue around the globe that needs to be addressed. The World Health Organisation (WHO) estimates there are 7 million deaths annually resulting from air pollution, with an estimated 4.2 million of these resulting from ambient air pollution. Pollution from vehicle transport emissions is a significant component of this problem worldwide and pollution control programmes utilising ambient monitoring, annualised vehicle checks for licensing, random testing and so forth conducted by government or commercial organisations have not been able to satisfactorily control and reduce this issue. Traditional detection and testing methods alone are not sufficient to reduce vehicle emissions without the addition of non-intrusive wide spread vehicle fleet monitoring. To deliver such non-intrusive monitoring, Remote Sensing (RS) of vehicle emissions can be utilised. Since September 2014, RS has been deployed by the Hong Kong Environmental Protection Department (HKEPD) to identify Gasoline and Liquified Petroleum Gas (LPG) fuelled vehicles excessively emitting pollutants. Analysis and assessment of the effectiveness of this HKEPD RS system application by investigating the data from the enforcement programme has been undertaken. This allowed assessment of areas of uncertainty from RS measurements or the available programme knowledge to be identified for potential improvements. Furthermore, this permitted study of RS variability under controlled experimental conditions and also the determination of common engine faults generating high emissions. The knowledge and benefits from these studies are able to be utilised to develop technology and facilitate improvements into the RS programme.

To understand how effective the emissions control programme using RS was, an investigation was undertaken to assess RS data for Gasoline and LPG vehicles collected by the HKEPD from 6<sup>th</sup> January 2012 to 30<sup>th</sup> December 2016. This encompassed a large dataset of 2,144,422 records. The analysis of the data showed the highest Emissions Factors (EFs) for the first two measurement years. This was followed by significant improvements in the LPG vehicle fleet after a maintenance programme in 2013 then followed by further improvements with the influence of RS based enforcement and subsequent effective repairs of high emitting vehicles in 2015 and 2016. The analysis allowed identification of individual vehicles, makes and models of vehicles and years of manufacture where high emitters and problematic models could be assessed and targeted for follow up maintenance and verification testing. The results showed by 2016 that there

were significant EFs reductions of 40.5% HC, 45.3% CO and 29.6% NO for gasoline vehicles. Furthermore, EF reductions of 48.4% HC, 41.1% CO and 58.7% NO were achieved for LPG vehicles. This analysis highlighted the capability this unique emissions enforcement programme utilising RS to effectively reduce vehicle emissions and in turn improve air quality.

Upon implementation of RS enforcement by the HKEPD, it was apparent that there was a significant lack of knowledge in the automotive repair industry's capability to identify various emissions problems and how to implement repairs to pass the mandatory short duration chassis dynamometer emissions test. To help address this, I undertook research for the HKEPD to develop a Toyota Crown Comfort Taxi with relevant engine hardware which could simulate 15 different faults that could impact emissions. Testing of these simulated fault conditions showed they could increase emissions by up to 317%, 782% and 282% for THC, CO and NO<sub>x</sub> respectively. The knowledge developed from this was used to educate the repair industry on the largest emissions fault sources so effective repairs could be performed on high emitting vehicles to return them to an optimum performance condition.

The analysis of the RS programme data showed the technique is mainly effective for identifying gross emitters for earlier emissions standard vehicles (Pre Euro to Euro 5). To improve this situation, testing and calibration devices were built and experiments conducted to assess potential sources of measurement variability. As the experiments with the devices were refined and control improved, they identified that the temperature of exhaust gas being measured impacted the RS measurements. A measured  $\Delta T$  of 14.6°C resulted in 2.6% variation in the RS data for the same CO<sub>2</sub> concentration. As gas temperature variation across a plume could be significantly higher, the RS percentage variation would increase in proportion to the temperature. This could impact every RS measurement, further experiments were developed and confirmed the influence of exhaust gas temperature. Utilising this information, a vehicle-based experiment was designed to determine exhaust plume temperature profiles using a chassis dynamometer with gasoline and diesel test vehicles. From the experimental data, a speed temperature profile was determined. To improve RS reliability, such measurements should occur 50 cm away from the exhaust tailpipe which helps reduce temperature related variability. Applying this will help to improve RS measurement accuracy, with an aim to make RS effective for all types of vehicles regardless of fuel or their size.

# Contents

| Acknowledgements                                                 | ii  |
|------------------------------------------------------------------|-----|
| List of Publications                                             | iii |
| Abstract                                                         | v   |
| Definitions and Abbreviations                                    | xiv |
| 1. Introduction                                                  | 1   |
| 1.1 Research background and motivation                           | 1   |
| 1.2 Research methodology and objectives                          | 6   |
| 1.3 Thesis outline                                               | 7   |
| 2. Literature Review                                             | 9   |
| 2.1 Air pollution from vehicle emissions                         | 9   |
| 2.2 Vehicle emissions testing – the journey begins               | 10  |
| 2.3 Vehicle emissions laboratory testing and techniques          | 13  |
| 2.3.1 Calculation of vehicle emissions factors                   | 23  |
| 2.3.2 Real driving emissions                                     |     |
| 2.3.3 Comparison of different emissions measurement techniques   | 35  |
| 2.4 Optical spectrometry and RS                                  |     |
| 2.4.1 The development of optical spectrometry and RS             |     |
| 2.4.2 Photographic (optical) and satellite RS                    | 40  |
| 2.4.3 Near field emissions development for RS                    | 41  |
| 2.5 RS of vehicle emissions                                      | 42  |
| 2.5.1 CO optical measurement development                         | 42  |
| 2.5.2 HC optical measurement development                         | 48  |
| 2.5.3 NO optical measurement development                         | 50  |
| 2.5.4 Further RS developments, inventories and research outcomes | 52  |
| 3. Methodology                                                   | 61  |
| 3.1 Remote sensing                                               | 62  |
| 3.1.1 Data collection                                            | 62  |

|    | 3    | .1.2      | Data analysis                                               | 66  |
|----|------|-----------|-------------------------------------------------------------|-----|
|    | 3.2  | Fault     | simulation in an LPG taxi                                   | 67  |
|    | 3    | .2.1      | Simulation of malfunctions                                  | 71  |
|    | 3    | .2.2      | Intake system                                               | 72  |
|    | 3    | .1.3      | Fuel system                                                 | 73  |
|    | 3    | .1.4      | Ignition system                                             | 75  |
|    | 3    | .2.5      | Exhaust system                                              | 76  |
|    | 3.3  | Factor    | rs affecting RS sensitivity                                 | 79  |
|    | 3    | .3.1      | Calibration device for improved RS measurement              | 79  |
|    | 3    | .3.2      | Open path measurement technique for improved RS measurement | 86  |
|    | 3    | .3.3      | Determination of vehicle exhaust plume temperature profile  | 90  |
| 4. | A    | nalysis   | of RS emissions monitoring data                             | 94  |
|    | 4.1  | Introd    | luction                                                     | 94  |
|    | 4.2  | Resul     | ts and discussion                                           | 99  |
|    | 4    | .2.1      | Survey data characteristics                                 | 99  |
|    | 4.2. | 2 Overa   | ll emissions trends                                         | 101 |
|    | 4.2. | 3 Emiss   | ions trends of dominant gasoline vehicle models             | 109 |
|    | 4.3  | Concl     | usions                                                      | 114 |
| 5  | A    | nalysis   | of simulated engine faults and their impact                 | 115 |
|    | 5.1  | Introd    | luction                                                     | 115 |
|    | 5.2  | Resul     | ts and discussion                                           | 120 |
|    | 5    | .2.1      | Regulated gaseous emissions                                 | 120 |
|    | 5    | .2.2      | Fuel consumption and CO <sub>2</sub> emissions              | 126 |
|    | 5    | .2.3      | Impact on drivability                                       | 128 |
|    | 5    | .2.4      | Impact on industry training and knowledge                   | 129 |
|    | 5.3  | Concl     | usions                                                      | 131 |
| 6. | F    | actors a  | ffecting RS sensitivity                                     | 133 |
|    | 6.1  | RS inst   | rumentation calibration                                     | 134 |
|    | 6    | .1.1 Init | ial version of calibration device                           | 136 |

| 6.2 Refined RS calibration device                                             | 7  |
|-------------------------------------------------------------------------------|----|
| 6.2.1. Identification of temperature influence in open path RS measurements14 | .5 |
| 6.3 Exhaust plume temperature measurements15                                  | 2  |
| 6.3.1 Design of experimental measurements15                                   | 3  |
| 6.3.2 Vehicle testing15                                                       | 4  |
| 6.3.3 Assessment of Exhaust Plume measurements16                              | 7  |
| 6.4 Conclusions17                                                             | 2  |
| 7. Conclusions and future work17                                              | '4 |
| 7.1 Conclusions17                                                             | '4 |
| 7.2 Suggestions for future work17                                             | 7  |
| References17                                                                  | '9 |
| Appendix A – RS measurement locations19                                       | 0  |
| Appendix B – Signal emissions analyser19                                      | 94 |
| Appendix C – Exhaust emission temperature - drive cycles19                    | 95 |

# Figures

| Figure 1.1: Thesis structure and inter-connections between chapters                                            |
|----------------------------------------------------------------------------------------------------------------|
| Figure 2.1: US Emissions testing drive cycles. a) 7 Mode warm up cycle, b) 11 Mode hot cycle,                  |
| c) EPA Urban Dynamometer Driving Schedule FTP-72 and d) EPA Federal Test Procedure 75                          |
| FTP-75/EPA7517                                                                                                 |
| Figure 2.2: European emissions testing drive cycles. a) UNECE Regulation 15 - Urban Drive                      |
| Cycle, b) UNECE Regulation 83 - New European Drive Cycle and c) WLTC for Class 3b                              |
| vehicles                                                                                                       |
| Figure 2.3: Emissions testing laboratory setup                                                                 |
| Figure 2.4: Kirchhoff and Bunsen's first spectrascope (Kirchhoff and Bunsen, 1860)39                           |
| Figure 2.5: CO RS instrument detector schematic (Bishop et al., 1989)43                                        |
| Figure 2.6: CO RS system schematic (Stedman and Bishop, 1991)44                                                |
| Figure 2.7: CH <sub>2</sub> combustion characteristics for CO and CO <sub>2</sub> (Stedman and Bishop, 1991)45 |
| Figure 2.8: Concept of GMRL RS system configuration for CO measurement (Stephens and                           |
| Cadle, 1991)                                                                                                   |
| Figure 2.9: Concept of DU 2 <sup>nd</sup> generation RS configuration for CO and HC measurement                |
| (Guenther et al., 1991)                                                                                        |
| Figure 2.10: Concept of DU 3 <sup>rd</sup> generation RS configuration for CO, HC and NO measurement           |
| (Zhang et al., 1996b)                                                                                          |
| Figure 2.11: Concept of EDAR measurement configuration (Dallmann, 2018)                                        |
| Figure 3.1: The ETC-S420 RS system                                                                             |
| Figure 3.2: The locations of RS measurement sites in Hong Kong63                                               |
| Figure 3.3: Setup of a typical RS measurement site in Hong Kong, China65                                       |
| Figure 3.4: The study vehicle (a) and its HKTET speed chart (b)70                                              |
| Figure 3.5: Modified Intake system hardware for experimental testing $(a - c)$ 73                              |
| Figure 3.6: Modified Fuel system hardware for experimental testing (a – b)75                                   |
| Figure 3.7: Worn Ignition system hardware for experimental testing                                             |
| Figure 3.8: Modified Exhaust system hardware for experimental testing $(a - c)$ 78                             |
| Figure 3.9: Initial trial calibration device schematic                                                         |
| Figure 3.10: Concept for the refined calibration device for testing                                            |
| Figure 3.11: The concept of gas plunger system for calibration device                                          |
| Figure 3.12: Refined calibration device drawing model                                                          |
| Figure 3.13: Thermocouple setup for exhaust gas monitoring                                                     |
| Figure 3.14: RS testing with resistance load bank connected                                                    |
| Figure 3.15: Proposed open path RS testing schematic                                                           |

| Figure 3.16: Vehicle exhaust plume temperature test experimental layout. Minivan art                        |
|-------------------------------------------------------------------------------------------------------------|
| (SmartDraw, 2021)                                                                                           |
| Figure 3.17: EET drive cycle 7 – 15 km/h steps93                                                            |
| Figure 4.1: Emission factors of HC (a), CO (b) and NO (c) for gasoline and LPG vehicles                     |
| during 2012-2016                                                                                            |
| Figure 4.2: Emission factors for all LPG vehicle and taxi measurements106                                   |
| Figure 4.3: Gasoline emission factors by survey year and vehicle year of manufacture                        |
| Figure 4.4: Gasoline emission factors for dominant measured vehicle models during 2012-2016.                |
| The error bars represent the 95% confidence interval over the mean110                                       |
| Figure 5.1: THC emissions results for malfunctions. Error bars indicate standard deviations and             |
| the dotted black line indicates Euro 3 THC emissions limit. (For Euro 2 standard, THC                       |
| emissions are combined with NO <sub>x</sub> )121                                                            |
| Figure 5.2: CO emissions results for malfunctions. Error bars indicate standard deviations and              |
| the dashed orange line indicates Euro 2 CO emissions limit. Dotted black line indicates Euro 3              |
| CO emissions limit                                                                                          |
| Figure 5.3: THC+NO <sub>x</sub> emissions results for malfunctions. Error bars indicate standard            |
| deviations, and the dashed orange line indicates Euro 2 THC+NOx emissions standard124                       |
| Figure 5.4: NO <sub>x</sub> emissions results for malfunctions. Error bars indicate standard deviations and |
| the dotted black line indicates Euro 3 NO <sub>x</sub> emissions limit124                                   |
| Figure 5.5: Fuel economy results for malfunctions. Error bars indicate standard deviations and              |
| the black dashed line represents the baseline fuel economy127                                               |
| Figure 5.6: CO <sub>2</sub> emissions results for malfunctions128                                           |
| Figure 6.1: Refined RS calibration device – schematic (a) and test equipment setup (b)                      |
| Figure 6.2: Refined calibration device emissions measurements from EMS 5003 gas analyser (a                 |
| and b) and from RS device (c and d)139                                                                      |
| Figure 6.3: Comparison of EMS 5003 gas analyser (a and b) and RS (c and d) data with exhaust                |
| gas temperatures140                                                                                         |
| Figure 6.4: Resistor load bank test for revised calibration device143                                       |
| Figure 6.5: Equipment layout for open path experiment testing146                                            |
| Figure 6.6: Diesel open path experiment test results                                                        |
| Figure 6.7: Gasoline open path experiment test results                                                      |
| Figure 6.8: Experimental setup of vehicle and thermocouples for exhaust plume temperature                   |
| logging                                                                                                     |
| Figure 6.9: First vehicle exhaust plume temperatures at discrete measurement points from                    |
| tailpipe                                                                                                    |
| Figure 6.10: Second vehicle - exhaust plume temperatures at discrete measurement points from                |
| tailpipe158                                                                                                 |

| Figure 6.11: Second vehicle exhaust plume temperature profile                                  |
|------------------------------------------------------------------------------------------------|
| Figure 6.12: EET drive cycle 6 exhaust plume temperature profile from Nissan Lafesta testing.  |
|                                                                                                |
| Figure 6.13: Third vehicle exhaust plume temperature profile - test 1162                       |
| Figure 6.15: Fourth vehicle - sample result for revised thermocouple array spacing for exhaust |
| plume temperature test                                                                         |
| Figure 6.16: Fourth vehicle final consolidation measurements with revised thermocouple array   |
| spacing for exhaust plume temperature tests                                                    |
| Figure 6.17: Combined gasoline exhaust plume temperature profile measurements with 50 cm       |
| cut point indication                                                                           |
| Figure C1: Original drive cycle - 5 kph steps, 20 - 45 kph, 180s duration197                   |
| Figure C2: Drive cycle 1 - 15 kph steps, 15 - 90 kph, 100s duration197                         |
| Figure C3: Drive cycle 2 - 15 kph steps, 15 - 90 kph, 60s duration                             |
| Figure C4: Drive cycle 3 – 5 kph steps, 15 - 90 kph, 60s duration198                           |
| Figure C5: Drive cycle 4 – 10 kph steps, 10 - 90 kph, 60s duration199                          |
| Figure C6: Drive cycle 5 – 5 kph steps, 10 - 90 kph, 60s duration                              |
| Figure C7: Drive cycle 6 – 15 kph steps, 15 - 90 kph, 200s duration200                         |
| Figure C8: Drive cycle 7 – 15 kph steps, 15 - 90 kph, 240s duration200                         |

# Tables

| Table 2.1: Summary of WLTC test cycles                                                | 20 |
|---------------------------------------------------------------------------------------|----|
| Table 2.2: CVS Volume flow parameters                                                 | 24 |
| Table 2.3: Standardised density values of different gases.                            | 25 |
| Table 2.4: Mass emissions calculation parameters.                                     | 25 |
| Table 2.5: Corrected emissions calculations parameters                                | 26 |
| Table 2.6: Dilution factor regulation parameters.                                     | 27 |
| Table 2.7: Comparison of different emissions measurement testing techniques           | 36 |
| Table 2.8: Timeline of major RS testing developments                                  | 52 |
| Table 3.1: European emissions standards and durability requirements.                  | 64 |
| Table 3.2: Specification of the vehicle used in this study                            | 68 |
| Table 3.3: Experimental test setup and sequence                                       | 85 |
| Table 3.4: Resistance load bank setting and thermocouple locations used for testing   | 87 |
| Table 3.5: Resistance load bank setting of gasoline open path RS experiment           | 89 |
| Table 3.6: Thermocouple array configurations used for exhaust plume measurement       | 92 |
| Table 4.1: RS emissions limit cut points for identification of high emitting vehicles | 98 |
| Table 4.2: Number of valid vehicle emission measurements by RS during 2012-2016       | 99 |

| Table 4.3: Most frequently measured gasoline vehicles in the RS database100                            |
|--------------------------------------------------------------------------------------------------------|
| Table 4.4: Number of LPG vehicles and associated RS measurements101                                    |
| Table 4.5: Statistics on number of ETNs issued (1/9/2014 to 31/12/2016)101                             |
| Table 4.6: Average vehicle age (years) for main LPG and dominant gasoline models during RS             |
| survey                                                                                                 |
| Table 5.1: Summary of relative change from baseline test of emissions factors of simulated             |
| malfunctions121                                                                                        |
| Table 5.2: Summary of relative change from baseline test of CO <sub>2</sub> emissions factors and fuel |
| economy (l/100km) of simulated malfunctions126                                                         |
| Table 6.1: RS and temperature data comparison 141                                                      |
| Table 6.2: Diesel open path testing operational loading and individual test variables146               |
| Table 6.3: Diesel CO2 RS and temperature values 148                                                    |
| Table 6.4: Gasoline open path testing operational loading and individual test variables                |
| Table 6.5: Gasoline CO <sub>2</sub> RS and temperature values151                                       |
| Table 6.6: EET drive cycle description and parameters 161                                              |
| Table A1. RS measurement location data                                                                 |
| Table B1. Signal Maxsys900 emissions analyser system accuracy 194                                      |
| Table C1. EET drive cycles numerical data tables 195                                                   |

# **Definitions and Abbreviations**

## Acronyms

| AFR             | Air Fuel Ratio                                                  |
|-----------------|-----------------------------------------------------------------|
| AQO             | Air Quality Objectives                                          |
| BAR             | California Bureau of Automotive Repair                          |
| BC              | Black Carbon                                                    |
| CARB            | California Air Resources Board                                  |
| CFR             | Code of Federal Regulations (US)                                |
| CN <sub>x</sub> | China National Emission Regulation (x = UNECE regulation level) |
| СО              | Carbon monoxide                                                 |
| CLA             | Chemiluminescence Analyser                                      |
| CO <sub>2</sub> | Carbon dioxide                                                  |
| conc.           | Concentration                                                   |
| CVS             | Constant Volume Sampler                                         |
| DU              | University of Denver                                            |
| ECU             | Engine Control Unit                                             |
| EET             | Exhaust Emission Temperature                                    |
| EF              | Emission Factor                                                 |
| EGR             | Exhaust Gas Recirculation                                       |
| EMS             | Engine Management System                                        |
| ETN             | Emissions Test Notice                                           |
| FEAT            | Fuel Efficiency Automobile Test                                 |

FID Flame Ionisation Detector FSP Fine Suspended Particles GDI **Gasoline Direct Injection** GEEC Green Environmental Emission Consultant Ltd. GMRL General Motors Research Laboratories HC Hydrocarbons **HKEPD** Hong Kong Environmental Protection Department HKTET Hong Kong Transient Emissions Test HP Horsepower IDI **Indirect Injection** I/M Inspection Maintenance IM240 Inspection Maintenance 240 second chassis dynamometer emissions test IVE Institute of Vocational Education JCEC Jockey Club Emissions Centre kW Kilowatts LPG Liquified Petroleum Gas MPV Multi-Purpose Vehicle Nd:YAG Neodymium-doped yttrium aluminium garnet **NDIR** Non-Dispersive Infra-Red NEDC New European Drive Cycle NMHC Non-Methane Hydrocarbons NG Natural Gas (Methane – CH<sub>4</sub>) Nm Newton metres

- NO Nitrogen monoxide
- NO<sub>2</sub> Nitrogen dioxide
- NO<sub>x</sub> Total Oxides of Nitrogen
- O<sub>3</sub> Ozone
- OBD On Board Diagnostics
- PEMS Portable Emissions Measurement System
- PLB Public Light Bus (minibus)
- PMR Power to Mass Ratio
- PM<sub>2.5</sub> Particulate Matter of 2.5 micrometer or less
- Q<sub>P</sub> Concentration ratio of pollutant P over CO<sub>2</sub>
- rpm Revolutions per minute
- RDE Real Driving Emissions
- RS Remote Sensing
- RSP Respirable Suspended Particles
- TC Particulate Carbon
- THC Total Hydrocarbons
- TWC Three Way Catalytic converter
- UFP Ultra-Fine Particles
- UNECE United Nations Economic Commission for Europe
- USEPA United States Environmental Protection Department
- UV Ultra Violet
- VW Volkswagen

#### Symbols

| Vol <sub>CVS</sub>   | CVS Test volume of dilute gas                                   |
|----------------------|-----------------------------------------------------------------|
| Kv                   | Venturi Calibration co-efficient                                |
| Temp <sub>CVS</sub>  | CVS Test Ambient Temperature                                    |
| Press <sub>CVS</sub> | CVS Barometric Pressure                                         |
| P <sub>R</sub>       | Barometric Pressure                                             |
| V <sub>R</sub>       | Volume of dilute gas for test                                   |
| T <sub>R</sub>       | Ambient Temperature for test                                    |
| P <sub>C</sub>       | Regulation Barometric Pressure                                  |
| Vc                   | Corrected volume of dilute gas for test                         |
| T <sub>C</sub>       | Regulation Ambient Temperature                                  |
| $\mathbf{M}_i$       | Pollutant mass emission i                                       |
| Vc                   | Corrected volume of diluted exhaust gas                         |
| Qi                   | Pollutant density 'i'                                           |
| K <sub>H</sub>       | Humidity correction factor for oxides of nitrogen only          |
| Ci                   | Corrected concentration of pollutant in diluted exhaust gas (in |
|                      | ppm)                                                            |
| d                    | Test cycle distance                                             |
| $C_i$                | Corrected concentration of pollutant i in diluted exhaust gas   |
| C <sub>e</sub>       | Measured pollutant concentration i in exhaust sample            |
| $C_d$                | Pollutant concentration i in air                                |
| DF                   | Dilution Factor                                                 |
| C <sub>CO</sub>      | Gas concentration of CO in sample bag                           |
| C <sub>H2O</sub>     | Gas concentration of H <sub>2</sub> O in sample bag             |

| C <sub>H2O-DA</sub>                | Concentration of H <sub>2</sub> O in dilution air           |
|------------------------------------|-------------------------------------------------------------|
| C <sub>H2</sub>                    | Concentration of H <sub>2</sub> in sampling bag             |
| C <sub>NMHC</sub>                  | Corrected concentration of NMHC (carbon equivalent)         |
| $C_{\text{THC}}$                   | Corrected concentration of THC (carbon equivalent)          |
| C <sub>CH4</sub>                   | Corrected concentration of CH4 (carbon equivalent)          |
| Rf <sub>CH4</sub>                  | FID response factor to CH <sub>4</sub>                      |
| Н                                  | Absolute Humidity                                           |
| Ra                                 | Relative Humidity                                           |
| P <sub>d</sub>                     | Saturation Vapour Pressure at Ambient Temperature           |
| PB                                 | Barometric Pressure                                         |
| Т                                  | Test Temperature                                            |
| $\int_{t_1}^{t_2} C_{HC} \cdot dt$ | integral of recording for heated FID for test.              |
| Ce                                 | HC concentration of Ci is substituted for CHC in equations. |
| $M_p$                              | Particulate emission                                        |
| V <sub>mix</sub>                   | Corrected volume of diluted exhaust gas                     |
| Vep                                | Volume of exhaust flow through particulate filter           |
| Pe                                 | Particulate mass on filter(s)                               |
| P <sub>R</sub>                     | Barometric Pressure                                         |
| V <sub>R</sub>                     | Gas volume flow through filters                             |
| T <sub>R</sub>                     | Test Ambient Temperature                                    |
| P <sub>C</sub>                     | Regulation Barometric Pressure                              |
| V <sub>C</sub>                     | Corrected gas volume flow through filters                   |
| Tc                                 | Regulation Ambient Temperature                              |

| m <sub>corr</sub>   | Corrected PM mass for buoyancy                                  |
|---------------------|-----------------------------------------------------------------|
| m <sub>uncorr</sub> | Uncorrected PM mass for buoyancy                                |
| ρ <sub>air</sub>    | Air density                                                     |
| $\rho_{weight}$     | Calibration weight density for span balance                     |
| ρmedia              | PM sample medium density (filter)                               |
| Pabs                | Absolute pressure in balance chamber                            |
| M <sub>mix</sub>    | Molar mass of air in balance chamber (28.836 g/mol)             |
| R                   | Molar gas constant (8.314 g/mol)                                |
| T <sub>amb</sub>    | Absolute ambient temperature in balance chamber.                |
| ΔΤ                  | Temperature difference                                          |
| Ν                   | particulate number emissions                                    |
| V                   | Corrected volume of the diluted exhaust gas                     |
| K                   | calibration factor for correction of particulate number counter |
|                     | measurements.                                                   |
| $\overline{C}_s$    | Corrected concentration of particulates of diluted exhaust gas. |
| $\overline{f_r}$    | mean particulate concentration reduction factor                 |