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was developed incorporating multi-
ple LC systems.
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retention times of new psychoactive
substances.

� Retention times were obtained from
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HighResNPS.

� A singular model demonstrated
improved performance over individ-
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� The model can be used to predict
retention times for unique entries on
HighResNPS.
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a b s t r a c t

Database-driven suspect screening has proven to be a useful tool to detect new psychoactive substances
(NPS) outside the scope of targeted screening; however, the lack of retention times specific to a liquid
chromatography (LC) system can result in a large number of false positives. A singular stream-lined,
quantitative structure-retention relationship (QSRR)-based retention time prediction model integrating
multiple LC systems with different elution conditions is presented using retention time data (n ¼ 1281)
from the online crowd-sourced database, HighResNPS. Modelling was performed using an artificial
neural network (ANN), specifically a multi-layer perceptron (MLP), using four molecular descriptors and
one-hot encoding of categorical labels. Evaluation of test set predictions (n ¼ 193) yielded coefficient of
determination (R2) and mean absolute error (MAE) values of 0.942 and 0.583 min, respectively. The
model successfully differentiated between LC systems, predicting 54%, 81% and 97% of the test set within
±0.5, ±1 and ±2 min, respectively. Additionally, retention times for an analyte not previously observed by
the model were predicted within ±1 min for each LC system. The developed model can be used to predict
retention times for all analytes on HighResNPS for each participating laboratory's LC system to further
support suspect screening.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The last decade has seen the proliferation of new psychoactive
substances (NPS) with 730 substances monitored by the European
Monitoring Centre for Drugs and Drug Addiction (EMCDDA) as of
2018 [1] and 950 being identified by the United Nations Office of
Drugs and Crime (UNODC) Early Warning Advisory (EWA) as of
2020 [2]. Interestingly, the latest report from the UNODC EWA
highlights those new identifications, which have typically been
synthetic cannabinoid-dominated, have now been superseded by
synthetic opioids since 2018. This is a concerning shift since syn-
thetic opioids have demonstrated the greatest potential to cause
harm in users due to their potency. The combination of a dynamic
NPSmarket and the lack of certified reference materials (CRMs) has
made it challenging, if not virtually impossible, for laboratories to
develop and validate up-to-date targeted screening methods for
these analytes [3e5].

This has resulted in the development of alternative approaches
such as suspect and non-targeted screening to attempt to detect
analytes outside the scope of routine targeted methods, without
the need for CRMs [6e10]. The use of high-resolution mass spec-
trometry (HRMS) has further enabled these approaches since it has
the capacity to measure accurate masses and collect full scan mass
spectrometry (MS) and MS/MS which can be retrospectively
interrogated [11]. Suspect screening generally involves interroga-
tion of HRMS data using databases containing masses of precursor
and product ions from known or theoretical substances and can be
collected from online repositories such as mzCloud (https://www.
mzcloud.org/), Human Metabolome Database (HMDB) [12], Mass-
Bank [13] and MassBank of North America (MoNA, http://mona.
fiehnlab.ucdavis.edu/), or from scientific literature. While the
scope of these databases does not exclude NPS, other databases that
focus on NPS and NPS related compounds also exist such as the
RESPONSE project (https://www.policija.si/apps/nfl_response_
web/seznam.php) and NPS Datahub [14]. Unfortunately, these da-
tabases are not available in the required formats that can be im-
ported into HRMS vendor data analysis software.With these pitfalls
in mind, the online crowd-sourced database, HighResNPS (https://
highresnps.forensic.ku.dk/), was developed in 2016 by the current
authors which offers the convenience of having the database con-
verted into several major HRMS vendor formats allowing imple-
mentation in routine suspect screening [15]. Furthermore, the
database is kept up-to-date with the latest NPS using information
from a range of different sources, but most notably, those newly
reported compounds by the EMCDDA. The use of this database has
been reported in literature either as a reference for MS/MS data [8]
or as a suspect screening library [16e18]. A disadvantage of using
suspect screening databases is that they generally lack retention
times specific to the user's liquid chromatography (LC) system and,
therefore, have the potential to generate large numbers of false
positives using MS data alone, particularly in complex biological
matrices.

In order to circumvent this issue, in silico retention time pre-
diction using quantitative structure-retention relationship (QSRR)
models in combination with molecular descriptors have been
developed with some success using artificial neural networks
(ANN) [19e23]. However, these models are only able to provide
predicted retention times for the LC system included in the model
development. In addition, the development of these retention time
models generally requires specialist software, which may involve
expensive license agreements. Alternatively, models can be devel-
oped at no cost using programming languages such as R (https://
www.r-project.org/) or Python (https://python.org/) with various
machine learning packages; however, this approach requires
personnel with experience in machine learning and computer
2

programming which are skills often limited in routine analytical
chemistry laboratories.

To overcome this, several tools have been made freely available
to the scientific community including QSRR Automator by Naylor
et al. [24] which is designed to be a user-friendly program that can
create models for inexperienced users. For model transferability,
PredRet was developed to “project” or “map” retention times from
one LC system to another [25]. More recently, Bouwmeester et al.
[26] reported a generalized calibration approach, calibrate all LC
(CALLC), an extension of the approach that underpins PredRet, to
predict retention times for different LC systems. While these ap-
proaches offer some solution to developing models capable of
integrating multiple LC systems, they are however, limited in
certain aspects. For example, PredRet can only map retention times
of analytes to an LC system if they have been measured by at least
one LC system in the database, therefore, this approach cannot be
used to extrapolate retention times for unobserved analytes. On the
other hand, CALLC extends on this approach by using a layered
workflow which firstly develops a QSRR-based retention time
prediction model for each LC system (layer 1) then performs the
calibration using predicted retention times from each system rather
than experimental retention times (layer 2).While CALLC is a useful
approach for a single user, a retention time prediction model for
each LC setup needs to be developed, which is a time-consuming
process from a database perspective when considering a large
number of LC systems. A review published in 2020 by Witting and
B€ocker [27], indicated that retention time prediction approaches
which integrate multiple LC systems are still lacking but are of huge
importance for untargeted metabolomics.

From a machine learning theory perspective, it is possible to
simultaneously model retention times from multiple LC systems
using a singular model rather than individual models for each LC
system. This can be achieved using a fundamental machine
learning technique called “one-hot encoding” which encodes cat-
egorical labels present in a dataset into numerical or indicator
variables, this is especially important for models that can only
interpret numerical input values, such as ANNs [28]. In this context,
the categorical labels would indicate the origin of the retention
time such as a laboratory or dataset name. Therefore, the present
study aims to provide a stream-lined approach for retention time
model development that can integrate multiple LC systems with
different elution conditions through the use of one-hot encoding.
The model was developed using entries from the HighResNPS
database and aims to encourage the scientific community to
contribute and further improve the model and in turn, receive
predicted retention times specific to their LC system for all analytes
on HighResNPS.

2. Experimental section

2.1. Retention time dataset

A total of 1281 retention times corresponding to 685 analytes
were obtained from HighResNPS (Table S1 in the Supplementary
Information). These retention times were selected from the nine
main contributors, including the author's laboratory (CPH) and
laboratories A to H, where the number of entries were greater than
or equal to 50 (as of 12th June 2020). Details of LC conditions for
each laboratory are provided in Table S2. The International Union of
Pure and Applied Chemistry (IUPAC) name for each analytewas also
obtained from HighResNPS and parsed through the Open Parser for
Systematic IUPAC Nomenclature (OPSIN, https://opsin.ch.cam.ac.
uk/) [29] to generate simplified molecular-input line-entry system
(SMILES) strings. HighResNPS is currently a closed user group,
however, access to the database can be granted by contacting the
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corresponding author.

2.2. Molecular descriptors

JChem for Excel was used to generate molecular descriptors for
each SMILES string (JChem for Excel 20.11.0.644, ChemAxon,
https://www.chemaxon.com). The descriptors used in this study
were the logarithm of the distribution between octanol and water
(logD), the logarithm of the partition coefficient between octanol
and water (logP) and the number of carbon (nC) and oxygen atoms
(nO). In this study, the logP values are calculated using a Consensus
model which is developed using the ChemAxon and Klopman et al.
[30] methods in combination with the PhysProp database. The
ChemAxon method is derived from the Viswanadhan et al. [31]
method with slight modifications. The Consensus and ChemAxon
logP methods are similar to ClogP and AlogP methods, respectively
[32]. These descriptors were selected based on their relative
importance for retention time modelling outlined by Barron and
McEneff [23].

2.3. Data analysis and model development

All data analysis and machine learning were performed using
the Python programming language (Python 3.7.6) in the Scientific
Python Development Environment (Spyder 4.0.1, https://spyder-
ide.org/). Retention time modelling was performed using the Ten-
sorFlow (2.1.0, https://tensorflow.org/) [33] and Keras (1.0.8,
https://keras.io/) [34] machine learning packages. Data analysis
was performed using the scikit-learn (0.22.1, https://scikit-learn.
org/) [34], pandas (1.0.1, https://pandas.pydata.org/) [35] and
NumPy (1.18.1, https://numpy.org/) [36] packages with data visu-
alization performed using the Matplotlib (3.1.3, https://matplotlib.
org/) [37] and seaborn (0.10.0, https://seaborn.pydata.org/) [38]
packages.

2.4. Data preprocessing

To account for the different LC conditions used by each labora-
tory and, therefore, different retention times observed for the same
analyte across the dataset, the laboratory names (n ¼ 9) were one-
hot encoded as descriptors (variables) using the pan-
das.get_dummies function [39]. This takes n categories in a single
variable and converts them to n-1 indicator variables which have a
binary value (0 or 1). The same process was also applied for each
drug class (n ¼ 13) present in the dataset. The final dataset after
preprocessing contained 24 input variables (four molecular de-
scriptors, eight laboratory and 12 drug class variables). The dataset
was then randomly split into training, optimization, validation and
test sets at an approximate ratio of 55:15:15:15 (707:190:191:193).
Finally, the variable values were centered and scaled using scikit-
learn's StandardScaler [40] which subtracts the mean of the values
in a variable in the training set and then divides it by the standard
deviation of those values. The mean and standard deviation from
the training set is then used to center and scale the optimization,
validation and test sets. The final input data for the train and test
sets are provided in Table S3 and Table S4 for pre- and post-
standard scaling, respectively.

2.5. Architecture selection and evaluation of the singular model

Modelling of retention times was performed using a feedfor-
ward multilayer perceptron (MLP) with a gradient-based Adam
optimizer and rectified linear unit (ReLU) activation function.
During the model development using the training set, the mean
absolute error (MAE) for the optimization set predictions for each
3

training cycle (epoch) was evaluated. Training was limited to 500
epochs with an early-stoppingmechanism implemented to prevent
overfitting by ceasing training 50 epochs after the minimum MAE
for the optimization set was recorded.

The optimumMLP architecture, i.e. the number of hidden layers
and the number of neurons in each hidden layer was determined
using an in-house application. This application created a set of ar-
chitectures based on user-defined limits for the number of layers
and neurons in each layer. For each architecture, the model was
trained (as outlined above) and predictions were made using the
validation set. This process was performed in replicate (n ¼ 5) and
each architecture was evaluated using the averaged MAE and co-
efficient of determination (R2) values of the validation set predicted
retention times (tRP). The optimum architecture was defined as the
one that gave the lowest averaged MAE of the validation set. For
this study, a total of 110 architectures were evaluated including
both one- and two-layer MLPs and with up to 100 neurons in each
hidden layer. The external held-out test set was then used to
evaluate the performance of the model.

2.6. CALLC

The developed model was benchmarked against the freely
available and user-friendly CALLC graphical user interface (https://
github.com/RobbinBouwmeester/CALLC). CALLC is a layered
approach which firstly trains five different QSRR-based models:
Extreme Gradient Boost (XGBoost), Support Vector Regressor
(SVR), Least Absolute Shrinkage and Selection Operator (LASSO),
Adaptive Boosting (AdaBoost) and Bayesian Ridge Regression (BRR).
Predictions are then made for the test set using each of the models
and the predictions are then calibrated in the second layer using a
generalized additive model (GAM) and finally linearly combined
into a single retention time per analyte. CALLC was applied to each
laboratory using the same train and test set analytes as used in the
singular model.

3. Results and discussion

The dataset used for this study contained 1281 retention times
that corresponded to 685 analytes comprisingmostly NPS and their
metabolites with a small number of naturally derived substances
and common pharmaceuticals. The most represented classes in the
dataset were cannabinoids (n ¼ 411), cathinones (n ¼ 191), phe-
nethylamines (n ¼ 177) and opioids (n ¼ 175). It should be noted
that the class for each entry is selected by the contributor, using a
pre-defined list of classes provided on HighResNPS. Therefore, the
class designation for each entry is the one that the contributor
determines to best describe the analyte and may not be the true
class designation according to NPS classification guidelines. Entries
designated as “unknown” do not fall under any of the other classes.
Fig. S1(a) shows the distribution of drug classes for each laboratory
while Fig. S1(b) shows the distribution of drug classes for all and
unique entries.

The number of entries provided by each laboratory ranged from
51 (G) to 282 (H) with retention time windows (i.e. the difference
between the first and last eluting analyte) ranging from 2.78 (D) to
12.48 min (H). The total retention time window of the dataset was
13.27 min with the minimum and maximum retention times of
0.95 and 14.22 min corresponding to benzylpiperazine (Laboratory
B) and EG-018 (Laboratory H), respectively. Retention times were
acquired using seven different LC systems all utilizing reverse-
phase C18 columns with a variety of specifications (i.e. length, in-
ternal diameter and particle size) and maintained at different
temperatures (30e50 �C). Flow rates varied from 0.2 to 0.9 mL/min,
with laboratory D having a flow rate increase from 0.7 to 0.9 mL/
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min during the LC run. Mobile phases were generally comprised of
aqueous ammonium formate buffers or 0.1% formic acid with
acetonitrile or methanol organic phases containing formic acid
(0.01% or 0.1%). Initial mobile phase composition ranged from 0 to
13% organic phase with various gradients employed between the
seven different methods.

3.1. Architecture selection and test set evaluation of the singular
model

The evaluation of the 110 different MLP architectures indicated
that the dataset showed robust correlations between the selected
descriptors and retention times. This was supported by Pearson
correlation coefficients (i.e. Pearson's R) of 0.902 0.785, 0.779 and
0.125 for the correlations of retention time with logD, logP, nC and
nO, respectively. For all architectures, the MAE values for the
averaged tR

P of the validation set were between 0.605 and 0.699min
with R2 values between 0.900 and 0.924 (Table S5). From these
results, the architecture that yielded the lowest MAE value for the
averaged predictions (0.605 min, R2 ¼ 0.924) was a two-layer MLP
with 40 and 50 neurons in the first and second hidden layer,
respectively. Therefore, the results presented herein are based on
the averaged tR

P of the test set from the 24:40:50:1 MLP architec-
ture. Fig. 1 illustrates the correlations of the experimental retention
time (tRE) versus tRP for all predictions and each laboratory. The MAE
and the R2 values for the averaged test set tRP were 0.583 min and
0.942, respectively, with seven of the nine laboratories having R2

values > 0.850 while Laboratory C and D had R2 values of 0.696 and
0.127, respectively. It is important to note here that while these
laboratories had lower R2 values, the MAE values (0.348 and
0.375 min, respectively) were lower than the MAE values of the
other laboratories. The lower R2 values can be due to an uneven
distribution of the test set analytes across the retention time range
for the laboratory (Laboratory C). Additionally, outlier predictions
can lower the R2 values considerably when the test set contains a
small number of analytes (both Laboratory C and D have seven
analytes). This indicates that R2 alone should not be used as a
means to evaluate the predictive ability for different laboratories.

For the averaged tR
P of the test set predictions for all laboratories,

54% of analytes (n ¼ 105) were predicted within ±0.5 min of the tR
E

with 82% (n ¼ 158) and 97% (n ¼ 188) predicted within ±1
and ±2 min, respectively (Table S6). Only five analytes had tR

P

outside ±2 min of the tR
E, with maximum negative and positive

errors of �2.06 and 2.85 min, respectively. The outlier analytes
included two synthetic cannabinoids, two benzodiazepines and a
piperazine derivate with the former two classes demonstrating the
largest error distributions (Fig. S2). For the predictions of each
laboratory, the median errors ranged from �0.13 to 0.46 min with
most laboratories having >50% and >75% of the test set tRP within
±0.5 and ±1 min of the tR

E, respectively.

3.2. Singular model performance on identical analytes from
different LC systems

The ability for the singular model to accurately predict retention
times for the same analyte in different LC systems was also inves-
tigated. The synthetic cannabinoid, FUB-AMB, had the most entries
in the dataset with seven laboratories providing retention times
with a range of 7.51e11.68 min. These entries were removed from
the dataset (n ¼ 1274) and the model was retrained in replicate
(n ¼ 5) and evaluated as detailed above (MAE ¼ 0.620 min,
R2 ¼ 0.917). For each replicate, the retention times of FUB-AMB for
each laboratory were then predicted and are summarized in
Table 2. The mean errors for the averaged tR

P were within ±0.73 min
of the tR

E for all laboratories with five of the seven laboratories
4

within ±0.25 min. The tR
P across the replicates for each laboratory

were generally consistent with the minimum and maximum tR
P

ranging no more than 0.70 min. This is a significant result as it
demonstrates the power of one-hot encoding to effectively allow
the model to differentiate between LC systems and accurately
predict retention times for the same analyte. It is also important to
highlight here that these predictions were made for analytes not
previously observed by the model demonstrating the ability to
make predictions from a completely new set of molecular de-
scriptors which contrasts to the previously mentioned mapping
techniques.

3.3. Singular (combined) vs. individual model performance

To ascertain whether using a singular model improved or
worsened performance compared to a model for each laboratory,
individual models for each laboratory were trained and evaluated
as previously detailed. The training, optimization and test sets for
each laboratory consisted of the same analytes that were used to
develop and evaluate the singular model, however, in this case the
models were trained using only 16 variables (four molecular de-
scriptors and 12 drug class variables). The same architecture was
used for each laboratory as the singular model, therefore, the
validation set was not used in this case. To compare the overall
performance of the individual models with the singular model, R2

and MAE values were determined using the test set tRP from all in-
dividual models (Table S7). In general, the individual models
showed an overall poorer performance when compared to the
singular model with an R2 value of 0.896 and MAE value of 0.664
(Table 1). The number of analytes predicted within ±0.5 min was
slightly greater in the individual models, however, there were 13
analytes with errors greater than ±2 min with maximum negative
and positive errors of �3.69 and 5.38 min, respectively. More
noticeably, however, were the difference in the R2 and MAE values
between the singular and individual models for laboratories with
lower number of entries. For example, laboratories D and F showed
no correlation between tR

E and tR
P (R2 ¼ 0) while laboratories F and G

showed a 2.7 and 4.4 times increase in MAE values, respectively.
Laboratories with higher numbers of entries such as CPH, A and H
saw improved model performance based on decreases in MAE
values, likely due to the increased number of training observations,
while laboratory E showed similar performance compared to the
singular model with laboratory B having a slight improvement in
performance with the singular model. The overall improved per-
formance of the singular model is also reflected in the comparison
of error distributions shown in Fig. 2. It is important to consider;
however, that while the singular model generally improved overall
performance, this comparison was performed using an MLP ar-
chitecture that was not optimized for each laboratory. Therefore, it
may be possible for an individual model to provide improved re-
sults for those cases where performance was worse than the sin-
gular model, if an optimized architecture is determined for each
laboratory; however, this would require n optimized models for n
laboratories. Even though only nine laboratories were included in
this study, the number of NPS and the number laboratories
contributing their data to HighResNPS is constantly increasing.
Therefore, a stream-lined model which can be trained once for n
laboratories is preferred requiring less maintenance and compu-
tational time.

3.4. The use of one-hot encoding and indicator variables

This present study exploited the categorical information present
for each entry on HighResNPS by encoding it as binary indicator
variables using one-hot encoding in addition to four calculated



Fig. 1. trE versus trP plots for the train (grey circle), optimization (cross) and test (black circles) set averaged predictions (n ¼ 5) for all predictions (top left) and individual laboratories
with the respective R2 and MAE values for the test set predictions.
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Table 1
Summary of tRP performance for averaged predictions (n ¼ 5) of the test set for singular and individual models.

Laboratory Entries tR range
(min)

Train Optimization Validation Test Modela Model metrics,
n ¼ 5

Error (min), n ¼ 5 tR
P of test set analytes within
tR
E window (% of test set)

tR
P > 2 min or tRP < �2 min from tR

E (% of test set)

R2 MAE
(min)

Mean SD Negative
Max

Median Positive
Max

±0.5 min ±1 min ±2 min N

ALL 1281 0.95e14.22 707 190 191 193 S 0.942 0.583 0.10 0.77 �2.06 0.13 2.85 105 (54) 158
(82)

188
(97)

5 (3)

Ib 0.896 0.664 �0.03 1.03 �3.69 0.00 5.38 115 (60) 155
(80)

180
(93)

13 (7)

CPH 263 1.01e12.88 147 34 40 42 S 0.929 0.666 0.43 0.75 �1.27 0.46 2.85 19 (45) 33 (79) 41 (98) 1 (2)
I 0.929 0.583 0.18 0.84 �1.84 0.13 2.91 27 (64) 36 (86) 40 (95) 2 (5)

A 155 1.71e9.34 89 27 18 21 S 0.890 0.507 �0.16 0.64 �1.59 �0.05 0.90 14 (67) 19 (90) 21
(100)

I 0.840 0.478 �0.04 0.80 �1.41 �0.08 2.58 15 (71) 17 (81) 20 (95) 1 (5)
B 202 0.95e11.41 113 32 20 37 S 0.927 0.604 �0.10 0.76 �1.80 �0.08 1.67 21 (57) 28 (76) 37

(100)
I 0.892 0.673 �0.22 0.91 �2.39 �0.11 2.02 20 (54) 28 (76) 34 (92) 3 (8)

C 67 3.52e11.89 37 12 11 7 S 0.696 0.348 0.15 0.47 �0.70 0.17 0.71 4 (57) 7 (100)
I 0.725 0.384 �0.03 0.47 �0.70 0.00 0.53 5 (71) 7 (100)

D 63 8.03. 10.81 40 10 6 7 S 0.127 0.375 0.23 0.45 �0.49 0.15 0.78 5 (71) 7 (100)
I 0.000 0.490 �0.21 0.57 �0.96 �0.45 0.71 4 (57) 7 (100)

E 137 1.24e9.84 71 19 25 22 S 0.889 0.439 �0.07 0.58 �1.31 �0.07 1.55 14 (64) 20 (91) 22
(100)

I 0.882 0.453 �0.11 0.59 �1.37 �0.06 1.14 15 (68) 19 (86) 22
(100)

F 61 4.61e12.83 32 10 12 7 S 0.906 0.430 �0.18 0.52 �0.92 �0.11 0.59 4 (57) 7 (100)
I 0.000 1.872 0.03 2.69 �2.44 0.28 5.38 2 (29) 3 (43) 4 (57) 3 (43)

G 51 1.27e13.04 25 8 10 8 S 0.946 0.652 �0.35 0.92 �2.06 �0.13 0.74 5 (63) 6 (75) 7 (87) 1 (13)
I 0.666 1.784 0.43 2.43 �3.69 0.57 4.54 1 (13) 3 (38) 6 (75) 2 (25)

H 282 1.74e14.22 153 38 49 42 S 0.928 0.683 0.25 0.89 �2.00 0.24 2.53 19 (45) 31 (73) 39 (93) 3 (7)
I 0.933 0.600 �0.10 0.89 �2.88 �0.05 2.85 26 (62) 35 (83) 40 (95) 2 (5)

a S ¼ singular, I ¼ individual.
b Combined predictions from each individual model.
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Table 2
Prediction summary for FUB-AMB for each laboratory using a 24:40:50:1 MLP architecture.

Laboratory tR
E (min) tR

P per replicate (min) Mean tR
P (min) SD (min) Mean error (min)

1 2 3 4 5

CPH 11.68 10.85 11.21 10.89 10.84 11.08 10.95 0.17 �0.73
A 7.51 7.40 7.23 7.09 7.31 7.69 7.26 0.13 �0.25
B 10.22 9.96 10.33 10.02 10.17 10.17 10.12 0.17 �0.10
D 9.35 9.38 9.61 9.19 9.21 8.95 9.35 0.19 0.00
E 8.89 8.64 8.90 8.77 8.91 8.82 8.80 0.13 �0.09
F 11.66 12.19 12.43 12.73 12.08 12.51 12.36 0.29 0.70
H 10.77 10.81 10.59 10.69 10.79 10.82 10.72 0.10 �0.05

Fig. 2. Box and whisker plots for the errors of the averaged test set tRP (n ¼ 5) for the
combined (white) and individual (grey) models. Boxes represent the 25th and 75th
percentile, whiskers represent 1.5 times the interquartile range (IQR), the solid lines
within in the box and diamonds represent the median and outliers, respectively.
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molecular descriptors. However, overall modelling performance
was also evaluated using molecular descriptors only and the de-
scriptors with laboratories encoded as binary variables. Unsur-
prisingly, the performance of the model using only the calculated
descriptors was considerably poorer (R2 ¼ 0.867, MAE ¼ 0.878 min,
Table S8) compared to the performance of a model that used all
categorical data (R2 ¼ 0.942, MAE ¼ 0.583 min). This is due to
different experimental retention times for identical analytes (i.e.
identical set of descriptors), however, when the laboratories are
encoded there is a marked improvement in performance
(R2 ¼ 0.919, MAE ¼ 0.683, Table S9) albeit poorer than when the
drug classes were also encoded. The improved performance for the
model that incorporated drug classes could be possibly explained
by class-specific properties that influence retention time which are
not explained by the selected molecular descriptors. This is evi-
denced by the imperfect correlation of logD with retention time
(Pearson's R ¼ 0.902). In addition, there are a broad set of chem-
istries represented in the dataset which can range from simple
monocyclic phenethylamines to the more complex polycyclic syn-
thetic cannabinoids and benzodiazepines. The authors do
acknowledge, however, that due to the subjective selection of drug
classes for each entry by contributors, there are likely to exist en-
tries which are classified incorrectly and could affect their pre-
dictions based on the phenomena described above. It should also be
noted that there were minimal interventions made on the dataset
prior to modelling which only included ensuring that identical
analytes had the same class designations. This was to attempt to
simulate an automated process wherebymodelling and predictions
of the database are performed periodically with updated datasets
with minimal human intervention. Alternative methods for
7

objective and automated classification are currently being investi-
gated as part of the future directions of HighResNPS. These include
freely available tools such as ClassyFire [41] and the use of SMILES
arbitrary target specification (SMARTS) substructure queries [42],
therefore, removing the need for contributors to classify each entry.

The main advantages of the use of one-hot encoding over other
reported techniques include the ability for a model to be developed
using greater numbers of analytes since datasets from different LC
systems can be combined. This combination of datasets also ap-
pears to improve model performance for datasets where there is a
smaller number of analytes as previously observed. The major
advantage, however, is the model's ability to make predictions
simultaneously for each LC system included in the modelling pro-
cess. The importance of this aspect cannot be understated from a
database perspective, as it significantly reduces the time taken to
make predictions for when there are many laboratories or LC sys-
tems. The major limitation of this approach, however, is that the
model does not extract meaningful information about structural
classes or LC system parameters and only uses the labels (names) to
differentiate between the categories it has previously observed.
Therefore, the currentmodel is unable to generalize predictions to a
new LC system or drug class. This would require the LC system
parameters or structural information to be encoded into the model
input. The LC system parameters may include those that generally
influence retention time such as, but not limited to, column sta-
tionary phase, column specifications, flow rate, gradient and mo-
bile phase composition. However, there still exists the issue that
many of these parameters take in labels (as opposed to a contin-
uous values). For example, a mobile phase composed of 10 mM
ammonium acetate and acetonitrile would need to be encoded into
a set of numerical descriptors that adequately represent this
composition. With respect to structural information, the molecular
structure could be directly encoded as fingerprint vector [43].
Additionally, the use of binary variables restricts the model from
making predictions when new categories are present in the dataset.
Consequently, there exists a trade-off between model performance
and generalization capabilities when considering the use of indi-
cator variables, however in this study, increased model perfor-
mance was favored over the capacity to generalize since the NPS
chemical space is considerably narrow with the majority of ana-
logues falling under the classes that the model was trained on. Of
course, the model can be adjusted by removing the indicator var-
iables for the drug classes so that predictions can be made for
analytes outside of the NPS chemical space based on descriptor
values alone. In order to incorporate new laboratories or classes, the
model would then need to be retrained with these new categories
encoded as indicator variables, however, this issue is largely non-
trivial since the modelling process can be performed in a matter
of seconds. There is also the possibility that retraining a newmodel
with these new categories, may improve the performance for
existing categories.



Fig. 3. The MAE value comparison between the singular (solid line) and CALLC (dashed) models for the overall results (ALL) and the individual laboratories. The number of analytes
in the test set are denoted by the bar graph.
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3.5. Comparison to existing methods

It is important to distinguish the work presented here from the
existing techniques such as PredRet and CALLC. As previously
mentioned, PredRet uses the tRE of several analytes from different LC
systems to create projection models between the tR

E for those LC
systems. These projections can be used to predict retention times of
other analytes if they have been measured in another system.
Therefore, retention times cannot be predicted for analytes that do
not have an tR

E, this contrasts to the present model which can pre-
dict the retention time for any analyte (provided a logD and logP
can be calculated) specific to the LC systems the model is trained
on. As indicated previously, HighResNPS is kept up to date through
the addition of novel analytes which have been reported by
different sources. In some cases, these analytes may not have
analytical data available and only a molecular formula and struc-
ture can be provided, therefore, there exists a number of analytes
where no tR

E observed on any LC system. Considering this, PredRet is
insufficient to warrant further evaluation for the purposes of this
study. On the other hand, CALLC aims to develop a retention time
prediction model for a LC system of interest through calibration of
tR
P for a set of analytes using different LC systems. While similar to
PredRet, it differs since it firstly trains a QSRR-based retention time
model for each dataset and then performs the calibration using tR

P

rather than tR
E. Therefore, this allows for the mapping of retention

times where tR
E may not be available; however, it is important to

note that CALLC still trains individual models for each LC system
and can only make predictions for one LC system at a time. The
present model allows for a singular model to be trained onmultiple
LC systems which can simultaneously make predictions for new
observations for the LC systems involved in the training process.

The performance of the singular model was benchmarked
against the freely available CALLC (Tables Se10). Overall, the per-
formance of CALLC was superior to that of the singular model with
R2 and MAE values of 0.958 and 0.471 min, respectively, corre-
sponding to a decrease of 0.112 min (19.2%) in MAE. This increase in
performance was also observed (Fig. 3) for six of the nine labora-
tories (A, B, CPH, D, G and H) while laboratories C, E and F
demonstrated poorer performancewith laboratory C having almost
double the MAE when using CALLC (0.699 min). Whilst there was
an overall increase in performance for CALLC, this increase in per-
formance is outweighed by the requirement of having to repeat the
CALLC process for each laboratory.
8

3.6. Implications for HighResNPS and retention time prediction

The development of a singular model and the ability to simul-
taneously predict retention times for any analyte specific to the LC
systems the model is trained on has important implications for the
future directions of HighResNPS. The model can be retrained on a
periodical basis, therefore, allowing the inclusion of new LC sys-
tems and analytes. These contributors will then receive predicted
retention times for the entire HighResNPS database (n ¼ 1803 as of
12th June 2020) in the relevant LC-MS library format. The addition
of this feature will hopefully enhance the suspect screening capa-
bilities of the database and encourage more contributions from the
scientific community. This in turn will improve the overall quality
of the database, particularly through the addition of missing
product ion data and newly reported analogues.

The authors do emphasize, however, that while satisfactory
modelling can be achieved with as few as 50 analytes for a
particular LC system, there is the possibility that the model may not
generalize well for all unique HighResNPS analytes on that system.
This is considered dependent on the number of entries provided
and the diversity of drug classes to which they belong. The ideal
application of the predicted retention times should be limited to
ranking tentative identifications, with little to no emphasis put on
small retention time differences, when candidates otherwise were
equally likely. The use of predicted values in this manner, where all
candidates would be inspected and evaluated by an expert is too
time consuming for any daily application of suspect screening
applied to complex matrices, such as human whole-blood in a
forensic setting. In this setting the number of false-positive iden-
tifications will typically be overwhelming. The less ideal applica-
tion of predicted retention times is the situation with an absolute
error threshold, which will decrease the false-positive rate and
increase the false-negative rate. The threshold therefore becomes a
tool for balancing the false-positive and false-negative rates.
Regardless, any application should allow for identifications which
would have been judged likely without the predicted retention
times, i.e. with several matched expected fragments, regardless of a
predicted large retention time error, as there will be outliers, and
these should not be overlooked simply because predicted retention
times were employed.

This is the first report of a singular QSRR-based retention time
model that integrates multiple LC systems and, from a broader
perspective, has important implications for retention time
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prediction in suspect and non-targeted screening. Lastly, while the
method presented here has a strong focus on NPS, this is not to say
that the same modelling procedure can't be translated to envi-
ronmental, metabolomic and lipidomic contexts where similar
databases exist, facilitating multi-institutional collaborations be-
tween researchers with mutual analytical targets.

4. Conclusion

In the last decade there has been an increase in the use of in
silico approaches to predict retention times for suspect and non-
targeted screening; however, models integrating multiple LC sys-
tems that can predict retention times from new observations has
been lacking. Here for the first time, we present a stream-lined
approach for the development of a retention time prediction
model capable of integrating multiple LC systems using one-hot
encoding. This study emphasized the ability of the developed
model to predict retention times for all unique analytes in the
HighResNPS database specific to different LC systems with a focus
on the translation of predicted retention times to suspect screening
workflows. Finally, prediction of retention times for all unique
analytes in the HighResNPS database specific to contributors LC
systems will be made available.
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