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Quantum noise protects quantum classifiers against adversaries
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Noise in quantum information processing is often viewed as a disruptive and difficult-to-avoid feature,
especially in near-term quantum technologies. However, noise has often played beneficial roles, from enhancing
weak signals in stochastic resonance to protecting the privacy of data in differential privacy. It is then natural to
ask: Can we harness the power of quantum noise that is beneficial to quantum computing? An important current
direction for quantum computing is its application to machine learning, such as classification problems. One
outstanding problem in machine learning for classification is its sensitivity to adversarial examples. These are
small, undetectable perturbations from the original data where the perturbed data is completely misclassified in
otherwise extremely accurate classifiers. They can also be considered as worst-case perturbations by unknown
noise sources. We show that by taking advantage of depolarization noise in quantum circuits for classification, a
robustness bound against adversaries can be derived where the robustness improves with increasing noise. This
robustness property is intimately connected with an important security concept called differential privacy, which
can be extended to quantum differential privacy. For the protection of quantum data, this quantum protocol can be
used against the most general adversaries. Furthermore, we show how the robustness in the classical case can be
sensitive to the details of the classification model, but in the quantum case the details of the classification model
are absent, thus also providing a potential quantum advantage for classical data. This opens the opportunity to
explore other ways in which quantum noise can be used in our favor, as well as identifying other ways quantum
algorithms can be helpful in a way which is distinct from quantum speedups.
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I. INTRODUCTION

Noise in quantum information processing has long been
viewed as a feature to avoid and remove, notably in quan-
tum computation. However, in the noisy intermediate-scale
quantum (NISQ) era of near-term quantum computing [1],
the presence of noise is inevitable. The focus is both on re-
ducing the effects of quantum noise, for example, using error
mitigation [2,3], and for finding protocols whose integrity
can nevertheless withstand this noise. However, a parallel
approach can be taken to instead study noise under a positive
lens. In classical information processing, noise is actively
leveraged in many applications, including strengthening se-
curity and privacy using differential privacy [4], enhancing
weak signals using stochastic resonance [5], improving sig-
nal resolution after truncating data with dithering [6], and
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speeding convergence rates in neural networks [7]. Can we
look at quantum noise in this same positive light and use it to
our advantage?

One important proposed application of these quantum de-
vices is performing machine-learning tasks like classification
[8,9] and classification algorithms can be less vulnerable
against noise. One reason behind this is that classification
only has few possible outputs and machine learning can still
provide accurate classification in the classical world despite
the messiness of real-life data like images and sound record-
ings. Indeed, a recent work [10] showed how quantum binary
classifiers can be made robust against common sources of
quantum noise by choosing a right encoding of classical data
into quantum states.

However, despite being tolerant to small amounts of noise
with known sources, classification algorithms are generally
not protected against unknown worst-case noise sources, such
as adversarial attacks. In fact, classification algorithms in ma-
chine learning are often very sensitive to adversarial attacks
and this presents a key obstacle for the future development
of classical machine learning [11]. These adversaries perturb
the original data point by only a small undetectable amount,
yet the new data point, known as an adversarial example,
is completely misclassified in otherwise extremely accurate
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classifiers. This observation presents an impetus for the vi-
brant field called adversarial machine learning [12,13] and
this has recently been extended to the quantum domain in
adversarial quantum learning [14–16]. While many important
methods focus on finding more robust versions of existing
algorithms [17], including on quantum devices [14,16], this
approach is generally vulnerable to counterattacks and doesn’t
provide theoretical guarantees against all possible adversaries
[18].

We take a different approach that does not require invent-
ing new algorithms to improve robustness yet can provide a
robustness guarantee against any unknown perturbation, such
as from an adversary. We begin from our intuition that noise is
a kind of scrambling mechanism. It can scramble the effects
of disturbances made to one’s original data, for instance, by
adversaries, thus diminishing the effects adversarial attacks
can have. Therefore, we can ask whether noise, instead of
hindering the computation, can, in fact, assist in the presence
of adversarial attacks?

More specifically, noise in the classical realm has been as-
sociated with improving the privacy of algorithms, providing a
property called differential privacy [4]. Differential privacy is
the property of an algorithm whose output cannot distinguish
small changes in the initial data set, like the presence or
absence of one party’s data point, hence in this way preserv-
ing privacy of that party. This is, in fact, the very property
we want in making our algorithm robust against adversarial
examples, which are small changes to the initial data set that
induce misclassification. For instance, adding classical noise
to induce differential privacy has been used to protect classical
classifiers against adversaries in Ref. [19].

We demonstrate that by including depolarization in one’s
quantum circuit for classification, we can achieve quantum
differential privacy and, in turn, be able to provide robustness
bounds in the presence of adversaries which were not possible
before. This is the most natural mechanism to exploit noise
to protect quantum data, which appear in condensed-matter
systems, quantum communication networks, quantum simu-
lation, quantum metrology, and quantum control. In addition,
we show how the robustness bound in the classical case can
be sensitive to the details of the classification model but in the
quantum case this bound is dependent only on the number of
possible class categories and no other feature of the classifica-
tion model. We later provide an example of how this property
can be useful in a security application.

We begin by defining classification, adversarial examples,
and differential privacy. Then we demonstrate how adding
depolarization noise in quantum classifiers can induce quan-
tum differential privacy which can, in turn, provide protection
against adversarial examples.

II. BACKGROUND

We briefly review the classification problem in both the
classical and quantum domains before introducing the concept
of adversarial examples. We then define classical and quantum
differential privacy, which we later employ as a key tool
to achieve robustness of our classifier against adversarial
examples.

A. Classification task

A classification task is a mapping from a set of classical
or quantum input states to a label chosen from a finite set.
If the size of this finite set is K � 2, we have a K-multiclass
classification problem [20]. K = 2 is the special case of binary
classification, e.g., given images of only ants or cicadas, to
decide which picture belongs to which insect.

Definition 1 (K-multiclass classification). The algorithm
A : � → C is called a K-multiclass classification
algorithm if it maps the set of input states � onto the
set C = {0, ..., K − 1}. Let the state σ ∈ � and C ∈ C. If
A(σ ) = C, then C is the predicted class label assigned to σ .

In machine learning, the algorithm A does not need to be
predefined and can instead be learned through a training data
set D. This data set D = {σi, Y(σi )}M

i=1 consists of M pairs of
input states σi and their corresponding class labels represented
by the K-dimensional vector Y(σi ). Itskth entry Yk (σi ) = 1 if
the class label of σi is k and every other entry of Yk (σi ) is
zero otherwise. To learn A, we first define a parameterized
function f (θ, σi ) ∈ RK , where θ are free parameters that can
be tuned. The learning happens as θ is optimized to minimize
the empirical risk,

min
θ

1

M

M∑
i=1

L( f (θ, σi ), Y(σi)), (1)

where L refers to a predefined loss function. The goal in
learning is to minimize this empirical risk Eq. (1) for one’s
given training data set D, where the optimized parameters
are denoted θ∗. Given test state σ , we can define y(σ ) =
f (θ∗, σ )/‖ f (θ∗, σ )‖1 as the score vector among K labels,
where ‖ · ‖1 denotes the l1 norm and y(σ ) ∈ RK is the nor-
malized vector of f (θ∗, σ ). Then the kth entry of the vector
function f (θ∗, σ ) = yk (σ ) ∈ [0, 1] can be interpreted as the
probability that σ is assigned the label k. Then the learned
classification algorithm A outputs the class label C for an
input state σ using the condition

C ≡ arg max
k

yk (σ ) ≡ A(σ ), (2)

where the final class label C is decided by identifying the class
label with the highest corresponding probability.

For the quantum K-multiclass classification task with
quantum test state σ , we can employ a quantum circuit, see
Fig. 1(a), to compute y(σ ) instead of using a classical circuit.
We can identify yk (σ ) to be the probability of the final mea-
surement outcome of the quantum circuit being k,

yk (σ ) = Tr(�kE (σ ⊗ |a〉〈a|)), (3)

where �k is a positive-operator valued measure (POVM), E
is a quantum operation that contains information about the
trained parameters θ∗ [21], and |a〉〈a| is an ancilla. However,
precise values of the probabilities yk (σ ) can only be obtained
in the infinite sampling regime. This means that if only N mea-
surements are allowed at the output of the circuit, we can only
obtain an estimated value y(N )

k (σ ) of the output probabilities.

B. Adversarial examples

Adversarial examples are attacks on input examples to
classification problems that lead to misclassification. In

023153-2



QUANTUM NOISE PROTECTS QUANTUM CLASSIFIERS … PHYSICAL REVIEW RESEARCH 3, 023153 (2021)

FIG. 1. (a) A generic quantum circuit to estimate yk (σ ), which
is the probability that test state σ is assigned a class label k in
a K-multiclass classification problem. |a〉 is an ancilla state where
σ ⊗ |a〉〈a| is D-dimensional and �k is Dmeas-dimensional, where
Dmeas � K . With finite N measurements at the output, one obtains an
estimate y(N )

k (σ ) for yk (σ ). (b) Adding depolarization noise channels
Npi along the circuit, where i = 1, ..., l , the output in the N → ∞
sampling limit becomes ỹk (σ ). With finite N measurements at the
output, one obtains the estimate ỹ(N )

k (σ ). See text for details.

particular, these include worst-case attacks where the adver-
sary can craft small imperceptible perturbations σ → ρ about
a given correctly classified input σ that result in misclassi-
fication [22]. This means that while the true labels σ and ρ

are identical, if ρ is an adversarial example, A will class them
differently. We can define adversarial examples more formally
as follows [23].

Definition 2 (Adversarial example). Suppose we are given
a well-trained classification function A(·) as defined in
Eq. (2), an input example (σ,C), a distance metric h(·, ·), and
a small enough threshold value L. Then ρ is said to be an
adversarial example if the following is true:

(A(σ ) = C) ∧ (A(ρ) �= C) ∧ (h(σ, ρ) � L). (4)

If σ, ρ are classical states, suitable distance metrics are the
lp norms, so h(σ, ρ) = ||σ − ρ||p. If σ, ρ are quantum states,
we will use the trace distance h(σ, ρ) = τ (σ, ρ) = Tr(|ρ −
σ |)/2.

In the rest of this paper, we will use Greek letters to refer
to quantum states and bold Roman letters to refer to classical
states unless otherwise specified.

C. Differential privacy

Differential privacy is an important concept in computer
science that quantifies the sensitivity of the outputs of algo-
rithms to changes in their input data. The less sensitive it
is, the better the algorithm can preserve the privacy of the
input data. Here we can formulate the definition of classical
differential privacy as follows [4].

Definition 3 (Classical differential privacy). Suppose M
is a classical algorithm that takes as input entries x ∈ X of
some classical database X and outputs values belonging to the
set S . Then M is said to satisfy classical (ε, δ)-differential
privacy if, for all x ∈ X , x′ ∈ X ′, which are separated by a
small distance, e.g., Hamming distance h(x, x′) � 1 and all
measurable sets S ⊆ Range(M),

Pr(M(x) ∈ S ) � eεPr(M(x′) ∈ S ) + δ, (5)

where Pr(·) denotes the probability of (·) and ε, δ > 0. We
call (ε, δ) the privacy budget for the algorithm.

Informally, this definition says that for two input data
points separated by a small distance, a small privacy budget
means that the output of the algorithm differs very little, hence
the input information is partially kept private. The selection
of this distance h(·, ·) varies depending on the task, e.g.,
Hamming distance or lp distance [4]. A natural distance h(·, ·)
for quantum data is the trace distance, which we can employ
in a definition for quantum differential privacy [24] which we
will use throughout this paper. An alternative definition for
quantum differential privacy [25] does not require quantum
data σ and τ to be close in trace distance but rather that ρ is
obtainable by applying a quantum operation on only a single
register of σ . See also Ref. [26] for a related definition applied
to probably approximate correct learning. However, for our
purposes of working directly with quantum states σ and ρ,
the use of trace distance is the most appropriate.

Suppose M(σ,�S ) is a quantum algorithm that takes in-
put state σ , applies a quantum operation E before applying the
POVM {�k}, where the set of final measurement results k ∈
S . These set of outcomes are then observed with probability
Pr(M(σ,�S ) ∈ S ) = ∑

k∈S Tr(�kE (σ )). By analogy with
Definition 1, we can write a definition of quantum differential
privacy following Zhou and Ying [24].

Definition 4 (Quantum differential privacy). The quantum
algorithm M satisfies (ε, δ)-quantum differential privacy if
for all input quantum states σ and ρ with τ (σ, ρ) < τD, where
τD is any upper bound of τ (σ, ρ), and for all measurable sets
S ⊆ Range(M) (equivalently, for every �S ⊆ {�k}K−1

k=0 ):

Pr(M(ρ,�S ) ∈ S ) � eε Pr(M(σ,�S ) ∈ S ) + δ. (6)

For the rest of the paper, we focus on the case δ = 0, which
is referred to as ε-quantum differential privacy. To illustrate
a simple example, suppose we have a binary classification
problem where we choose the POVM {�0,�1 = 1 − �0}.
The probability σ is assigned class labels k = 0, 1 by a quan-
tum binary classifier is ỹ0(σ ) ≡ Tr(�0(E (σ ))) and ỹ1(σ ) =
1 − ỹ0(σ ), respectively. Then if M satisfies ε-quantum dif-
ferential privacy, Definition 4 requires that we must satisfy

e−ε � ỹk (ρ)

ỹk (σ )
� eε . (7)

III. IMPROVING ROBUSTNESS OF QUANTUM
CLASSIFIERS AGAINST ADVERSARIES

BY ADDING NOISE

In this section, we show how the presence of depolar-
ization noise in quantum circuits for classification improves
robustness against adversarial examples. We begin with our
definition of adversarial robustness.

Definition 5 (Adversarial robustness). Let the test state σ

have the class label A(σ ) under a classification algorithm A.
Then A is said to possess adversarial robustness of size τD

if for all σ that is perturbed σ → ρ by an unknown source
where τ (σ, ρ) � τD, the class label of ρ does not change, i.e.,
A(ρ) = A(σ ).

We must emphasize here the difference between robustness
bounds against a known noise source versus an unknown
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adversary. Protection against an unknown adversary is a ro-
bustness guarantee against a worst-case scenario, whereas
commonly appearing known noise sources are usually far
from the worst-case scenario.

Our goal is to demonstrate how a naturally occurring
known noise source can be used to protect a quantum classifier
against worst-case adversarial perturbations. This can be done
in three main steps. We first show the robustness of quantum
classifiers to this known noise source, then demonstrate how
this gives rise to quantum differential privacy for the classifier.
Finally, we prove how quantum differential privacy can be
used to derive a theoretical bound against general adversaries.

One such naturally occurring quantum noise source is
the depolarization noise channel Np, which acts on a D-
dimensional state �D like

Np(�D) = p
ID

D
+ (1 − p)�D, (8)

where ID is the D × D identity matrix and p ∈ [0, 1]. Before
the final measurement, we can represent our quantum classi-
fier as a unitary U gate acting on an input state σ ⊗ |a〉〈a|,
as represented in Fig. 1(a). We can then add Npi after each
unitary Ui where U = U1...Ul and i = 1, ..., l . Here l is the
total number of depolarization channels with noise parameters
pi > 0. This noisy circuit is depicted in Fig. 1(b). The output
of this noisy K-multiclass classification circuit given test state
σ can be written as

ỹk (σ ) ≡ Tr(�kNpl (Ul (...Np1 (U1(σ ⊗ |a〉〈a|)U †
1 )...)U †

l )),
(9)

where it can be shown [27] that for p ≡ 1 − ∏l
i=1(1 − pi ):

ỹk (σ ) = p

K
+ (1 − p)yk (σ ). (10)

This leads to the interesting observation that the noisy test
score ỹk (σ ) is independent of where depolarization chan-
nels are placed in the circuit. Furthermore, the effect of all
depolarization channels with parameters pi can be replaced
by a single depolarization channel with parameter p ≡ 1 −∏l

i=1(1 − pi ). For the rest of this paper, we will for simplicity
replace the effect of all noise parameters pi with p unless
stated otherwise. We emphasize that we don’t need to include
depolarization at every layer of our circuit. We can also turn
off depolarization at every layer except to a single layer j
by setting p = p j and pi �= j = 0. A special case is having
depolarization noise added only to the input state so j = 1.

Before achieving our goal, we first need Eq. (10) to prove
the following lemma showing that the K-multiclass classi-
fication algorithm performed by the noisy circuit is robust
against depolarization noise for any 0 � pi < 1. This is a
generalization of a recent result from LaRose and Coyle [28]
to the case of K-multiclass classification.

Lemma 1. Let yk (σ ) denote the output for the noiseless
circuit in Fig. 1(a), i.e., pi = 0 for all i. Then if the class
label C is assigned to σ by the noiseless circuit, i.e., C =
arg maxk yk (σ ), then the same label is also assigned by the
noisy circuit, which has pi > 0 for at least one i. This means
arg maxk ỹk (σ ) = C for any σ and 0 � pi < 1. Furthermore,
if arg maxk ỹk (σ ) = C, then C = arg maxk yk (σ ).

Proof of Lemma 1. For details, please see Appendix A. �

The above result demonstrates robustness of quantum clas-
sifiers against depolarization noise if one has access to the
exact probabilities ỹk (σ ). However, this is only possible in
the limit of infinite sampling. If one is only able to sample
the circuit N times, one instead obtains only the estimated
values ỹ(N )

k (σ ). Then to guarantee robustness against depo-
larization noise to high probability, we find the following
required sampling complexity N increases only with increas-
ing depolarization noise parameter p, but is not dependent on
the dimensionality of σ .

Lemma 2. Let the predicted classification label of σ using
the noiseless K-multiclass classification circuit be C. This
means we can define ξ ≡ yC (σ ) − maxk �=C yk (σ ), where ξ >

0. In the corresponding circuit with depolarization noise pa-
rameters p1, ..., pl , one samples the circuit N times for each
k to obtain the estimates ỹ(N )

k (σ ). Then σ is also labeled C
with probability at least β if the sample complexity N ∼
1/[8ξ 2(1 − p)2) ln(2/(1 − β )], where p ≡ 1 − ∏l

i=1(1 − pi ).
Proof of Lemma 2. A basic sketch of the proof is the

following. It can be shown that η ≡ ỹC (σ ) − maxk �=C ỹk (σ ) =
pξ . Thus one requires sufficient N to resolve the difference
ỹ(N )

C (σ ) − ỹ(N )
k (σ ) to within 2η. We then employ Hoeffding’s

inequality [29] to bound the sample complexity. Please see
Appendix B for details. �

Given Lemmas 1 and 2, we want to show that the accuracy
of the noisy quantum classifier also does not suffer. Suppose
all our training and test states are sampled from some un-
known distribution D. The accuracy of a classifier can be
defined as the probability P(C = T ) that the predicted label
C of a state σ sampled from D is equivalent to the true label
of the state, which we call T . Let C and C̃ denote the predicted
label by the noiseless and noisy classifier, respectively. Then
the following theorem holds:

Theorem 1. The accuracy of a noisy classifier P(C̃ = T )
and the accuracy of a noiseless classifier P(C = T ) are con-
nected by the relation P(C̃ = T ) = P(C̃ = C)(2P(C = T ) +
[1 − P(C = T )].

Proof of Theorem 1. See Appendix C for details. �
In the infinite sampling limit, Lemma 1 gives P(C̃ =

C) = 1. This means that the accuracy of the noisy classi-
fier is not degraded at all since P(C̃ = T ) = P(C = T ). In
the finite sampling limit, Lemma 2 gives P(C̃ = C) � 1 −
2 exp[−8Nξ 2(1 − p)2], so P(C̃ = T ) approaches P(C = T )
quickly as N grows.

Although we have shown that depolarization noise does not
affect the outcome of the quantum classifier significantly, we
note that results from literature on fault-tolerant computation
does put limits on the size and depth of a quantum circuit
with added depolarization noise and other noise sources, and
these limits come from an extra requirement that gates need
to be operated below an error threshold for fault tolerance. We
can leave to more detailed future investigation modifications
that can be made if fault-tolerance conditions on each gate are
considered.

We also note that our Theorem 1 is a good theoretical
starting point to investigate the question of trade-offs between
robustness and accuracy, which is a key observation in a free
lunch theorem [30]. Our result will allow one to see conditions
under which trade-offs are possible and when they are absent.
We leave a full investigation to future work.
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Now we show how adding depolarization noise also gives
rise to quantum differential privacy for our algorithm. This is
an application of a result from Zhou and Ying [24] for our
quantum classifier.

Lemma 3. Let the algorithm M correspond to the K-
multiclass classification circuit defined in Fig. 1(b) with
depolarization noise channels Npi , where i = 1, ..., l and p ≡
1 − ∏l

i=1(1 − pi ), and measurement operators {�k}K
k=1. Then

for two quantum test states σ and ρ obeying τ (σ, ρ) � τD

with 0 � τD � 1, M satisfies ε-quantum differential privacy
where

ε = ln

(
1 + Dmeas

(1 − p)τD

p

)
(11)

and Dmeas � K is the dimension of the operators {�k}K
k=1.

Proof of Lemma 3. This is equivalent to Theorem 3 from
Ref. [24] applied to our quantum classifier, but we extend to
the case where we can apply multiple depolarization channels
Npi . For details, please see Appendix D. �

Lemma 3 states that the privacy budget ε in the presence
of depolarization noise decreases with increasing p ≡ 1 −∏l

i=1(1 − pi ), hence higher depolarization noise parameters
give greater differential privacy. Furthermore, this privacy is
independent of where one inserts depolarization noise because
the product

∏l
i=1(1 − pi ) is invariant under permutation of its

factors. It is also independent of any details of the classifier
except Dmeas, which serves as an upper bound to the number
of class labels in our classifier. We will return to these points
later.

Using the results of Lemmas 1 and 3, the follow-
ing theorem demonstrates that by increasing the strength
of depolarization noise in our circuit, this also increases
our K-multiclass classifier’s robustness against adversarial
examples.

Theorem 2 (infinite sampling case). We begin with our K-
multiclass classification circuit with depolarization noise
parameters pi where i = 1, ..., l and p ≡ 1 − ∏l

i=1(1 − pi ).
Let infinite sampling of the output be allowed, so we can
find ỹk (ρ) for k = 0, ..., K − 1 for any test state ρ given.
Suppose ỹC (σ ) > e2ε maxk �=C ỹk (σ ) holds, where ε = ln(1 +
Dmeas(1 − p)τD/p), which implies that σ is assigned the class
label C, i.e., C = arg maxk ỹk (σ ) = arg maxk yk (σ ). Then ρ is
also labeled as C, i.e., C = arg maxk ỹk (ρ) = arg maxk yk (ρ)
for any ρ where τ (σ, ρ) � τD.

Proof of Theorem 2. Please refer to Appendix E for the
proof. �

This means that if a test state σ undergoes an arbi-
trary adversarial perturbation σ → ρ, the classification of
ρ will remain identical to that of σ for a larger range of
τ (σ, ρ) if p increases. Furthermore, if τD remains constant,
then the extra condition required of the input state ỹC (σ ) >

e2ε max j �=C ỹ j (σ ) also becomes easier to satisfy as p in-
creases. A similar result holds for the finite sampling case.

Theorem 3 (Finite sampling case). Suppose one samples
the output of the circuit N times for the estimation of each
ỹk (σ ). Let ỹ(N )

C (σ ) − ζ > e2ε maxk �=C (ỹ(N )
k (σ ) + ζ ) where

ε = ln[1 + Dmeas(1 − p)τD/p], which implies σ has the class
label C. Then the class label of ρ is also C, i.e., C =
arg maxk yk (ρ) = arg maxk ỹk (ρ) to probability at least 1 −

FIG. 2. Noiseless and noisy QNN circuits. (a) The basic scheme
of QNN (noiseless). The trainable unitary U (θ) (yellow region) is
composed of the product of parameterized single-qubit gates and
fixed two-qubit gates Ui(θi ) where i = 1, ..., m′′ and in the diagram
above 1 � m � n � m′ � m′′ � nl where l is the depth of the circuit
and n = log2 D. The test state is σ and the ancilla state is |a〉. (b) Our
protocol for QNN (noisy) where the depolarization channels Npi

(pink region) are added to the noiseless QNN circuit.

2 exp(−2Nζ 2) for any ρ where τ (σ, ρ) � τD. This also
implies ỹ(N )

C (ρ) + ζ > maxk �=C ỹ(N )
k (ρ) − ζ to probability at

least 1 − 2 exp(−2Nζ 2).
Proof of Theorem 3. We employ Hoeffding’s inequality

[29] to show ỹ(N )
k (σ ) − ζ � ỹk (σ ) � ỹ(N )

k (σ ) + ζ is true to
probability at least 1 − 2 exp(−2Nζ 2). This relates the finitely
sampled estimates ỹ(N )

k (σ ) to ỹk (σ ) from infinite sampling.
Then we can apply the results of Theorem 2 for infinite sam-
pling to prove our results. Please see Appendix F for details
of the proof. �

As special examples, we now explore the robustness
property of two discriminative learning models for binary
classification: quantum neural network (QNN) and quantum
kernel classifiers.

A. Quantum neural network

The QNN, proposed by Ref. [31], is a building block for
various quantum learning models [31–36]. The basic scheme
of QNN is illustrated in Fig. 2(a), which is a special case of the
circuit in Fig. 1(a). The D-dimensional quantum input state is
σ ⊗ |a〉〈a|, where σ refers to either the training or test states
and |a〉 is an ancilla. The trainable unitary U (θ) ∈ CD×D is
then applied, which consists of trainable single-qubit gates
and fixed two-qubit gates. Our protocol for QNN, as shown
in Fig. 2(b), employs the depolarization channels Npi that can
appear within the QNN circuit before final measurements with
POVM {�k}.

The typical application of QNN is for binary classification,
broadly used in Refs. [31,33,35,36], where one makes single-
qubit measurements using {�0,�1 = 1 − �0} and Dmeas =
2. We can apply Theorem 2 directly to our scenario and we
have the following corollary.

Corollary 1. Let the given input σ be given the clas-
sification label 0 and define ỹ0(σ )/ỹ1(σ ) ≡ B. In binary
classification, QNN, with depolarization channels Npi and
p ≡ 1 − ∏l

i=1(1 − pi ), is robust against any perturbations
σ → ρ with τ (σ, ρ) < τD and ε = ln(1 + 2(1 − p)τD/p), if

B > exp(2ε). (12)
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FIG. 3. Noiseless and noisy quantum kernel classifiers. (a) A
basic scheme of the quantum kernel classifier. The unitary V (x)
(green region) takes |0〉⊗n → V (x)|0〉⊗n, where n = log2 D. The
trainable unitary W (θ) (yellow region) is composed of trainable
single-qubit gates and fixed two qubits gates, which has the same
architecture as in QNNs. For example, at the end we can measure
in the basis |0〉⊗n and this circuit can be used to compute the kernel
K (θ, x) ≡ 〈0|⊗nW (θ)V (x)|0〉⊗n. (b) For our protocol, we can include
depolarization noise channels Npi (pink region) anywhere along the
quantum kernel classifier.

Since Dmeas = 2 for binary classification, we note that the
privacy budget ε is now independent of the dimension of the
problem. Therefore, even as the feature dimension of the input
σ grows, it does not affect the robustness of the classifier
against adversarial examples so long as some depolarization
noise with 0 < p < 1 has been added to the circuit. This in-
dependence is an interesting contrast to the result in Ref. [15]
which states that robustness should decrease as dimensionality
of σ grows. This contradiction is resolved by observing that,
unlike in Ref. [15], which places no constraints on distribution
from which the input states σ are selected, here we have
Eq. (12), which imposes a constraint.

In the finite sampling limit, we can employ Theorem 3
to apply to our binary classifier and we have the following
corollary.

Corollary 2. Let the input σ be given the classification la-
bel 0 and define (ỹ(N )

0 (σ ) − ζ )/(ỹ(N )
1 (σ ) + ζ ) ≡ B, where the

probabilities are estimated using N samples of the quantum
circuit. Then, if

B > exp(2ε), (13)

the binary classification performed by the QNN circuit, with
depolarization channels Npi and p ≡ 1 − ∏l

i=1(1 − pi ), is
robust to adversarial attacks σ → ρ with the probability at
least 1 − 2 exp (−2Nζ 2), where τ (ρ, σ ) � τD and ε = ln(1 +
2(1 − p)τD/p).

B. Quantum kernel classifier

The main idea of kernel methods is to map complex in-
put data x to a higher-dimensional feature space that can
then be efficiently separated [20]. The generic form of a
quantum kernel classifier [34,37,38] is shown in Fig. 3. The
output of the kernel classifier can be written as K (θ, x) ≡
〈0|⊗nW (θ)V (x)|0〉⊗n, where K (θ, x) is identified with a clas-
sical kernel with test state x and weight vector captured by the
trained θ values. Here W (θ) contains the trainable parameters
with the aim of minimizing the predefined loss function where
the optimal occurs at θ∗ and V (x)|0〉⊗n refers to the kernel
state that maps the input data into the higher-dimensional

feature space. Thus, the probability of obtaining the mea-
surement values all 0 after applying �0 ≡ (|0〉〈0|)⊗n in the
noiseless circuit is given by y0(x) = 〈0|⊗nW (θ∗)V (x)|0〉⊗n.

For a binary classification problem, the class label of x
is 0 if y0(x) > y1(x) ≡ 1 − y0(x). In this case, Dmeas = D,
thus the privacy budget becomes ε = ln(1 + D(1 − p)τD/p).
which grows with increasing dimensionality D of the input
state. Corollaries 1 and 2 then hold for the quantum kernel
classifier with this modified ε.

IV. NUMERICAL SIMULATIONS

We now conduct numerical simulations to illustrate our
protocol for a binary QNN classifier. In particular, by leverag-
ing the depolarization channel, we show how a trained QNN
binary classifier has the ability to achieve certified robustness
under bounded-norm adversarial attacks at testing time. We
perform numerical simulations first on a low-dimensional data
set [39] and then a high-dimensional data set [34]. In this
section, we introduce our training data set and the preprocess-
ing step. We then explain the attack method that is used to
evaluate the performance of our protocol. Lastly, we analyze
the performance of our proposed protocol.

A. Preprocessing and training procedure

1. Low-dimensional data set

We first choose to conduct our numerical simulations on
the Iris data set [39], which has been broadly used in clas-
sical machine learning. The Iris data set DI = {σi, c∗

i }150
i=1 ∈

R150×4 × R150 consists of three different types of Iris flowers
(setosa, versicolor, and virginica), where examples (belonging
to setosa) with label c∗

i = 0 are linearly separable with respect
to examples (belonging to versicolor) with label c∗

i = 1.
Next, we remove all examples belonging to virginica and

denote the data set that only contains label c∗
i = 0 and c∗

i = 1
as D, i.e., the cardinality of D is 100. Then we set the fourth
entry of all examples as 0. Afterward, we apply l2 normal-
ization to each example, i.e., ‖σi‖2 = 1 for any σi ∈ D. Then
we need to efficiently encode this classical data into quantum
states [40]. We can then carry out the amplitude encoding
method [41] to encode the normalized σi into a quantum state.

Given the preprocessed data set D, we randomly split it
into a training data set DTr and a test data set DTe with n ≡
|DTr| = 60, |DTe| = 40, and D = DTr ∪ DTe. In the training
procedure, we randomly sample an example (σi, c∗

i ) from DTr

and forward σi to a binary QNN classifier. For details on the
circuit, see Appendix I. We employ the squared loss function
to train this QNN, i.e.,

L = 1

n

n∑
i=1

(c∗
i − c̄i )

2, (14)

where c̄i = maxk yk (σi ) ∈ [0, 1] is the score vector of QNN
as formulated in Sec. II A and yk (σ ) denotes the ideal output
of the QNN. We use the zeroth-order gradient method [37]
to optimize trainable parameters θ of the QNN to minimize
the loss function L. We set the number of training epochs
to 50. The learning rate is set to 0.01 and the total number
of trainable parameters is 24. Figure 4 illustrates the training
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FIG. 4. Learning performance for low-dimensional data set. The
blue, red, and orange lines, respectively, show the variation of loss,
the training accuracy, and the test accuracy with respect to the num-
ber of epochs. The loss continuously decreases for longer epochs,
while the training accuracy and test accuracy increases and converges
sharply around epoch 5.

loss, training accuracy, and test accuracy. Both the training
and test accuracy converges to 100% after 15 epochs (see
Appendix I for more implementation details).

2. High-dimensional data set

Next, we also explore how quantum noise contributes to
defending adversarial attacks for a higher-dimensional data
set when the dimension is 20. The construction rule of the
data set D is based on the proposal Ref. [34]. In particular,
the data set D = {xi, yi}N−1

i=0 contains in total N = 400 exam-
ples. In each element of the set {xi, yi}, xi ∈ R20 represents
the data feature and yi denotes the corresponding label. Let
UE be a specific embedding quantum circuit UE that maps
the classical data xi to a 10-qubit quantum state, i.e., for all
i ∈ {0, ..., N − 1},

UE |0〉⊗10 = |g(xi )〉 ∈ C210
. (15)

The label of xi is labeled as yi = 1 if

〈g(xi )|V †�V |g(xi )〉 � 0.5 + �, (16)

where V ∈ SU (210) is a unitary operator (highlighted by the
dark blue box in Fig. 11 in Appendix J), � = I ⊗ σZ is the
measurement operator, and the gap � is set as 0.15. The label
of xi is assigned as yi = −1 if

〈g(xi )|V †�V |g(xi )〉 � 0.5 − �. (17)

At the data-preprocessing stage, data set D is divided into the
training data sets DTr with size NTr = 200 and the test data
set DTe with NTe = 200. Once the splitting is completed, we
employ the binary QNN classifier introduced in the main text
to learn the data set DTr. In the training procedure, we contin-
uously update trainable parameters θ in U (θ) to minimize the
squared loss L in Eq. (14). The implementation of the binary
QNN is exhibited in the left panel of Fig. 11 in Appendix J.

The performance of the binary QNN is shown in Fig. 5. The
training loss converges to 0.2 after three epochs. Meanwhile,
after five epochs, both the training and test accuracies are
above 98%. The simulation results indicate that under the
ideal setting, the employed quantum classifier can well learn
a hyperplane to correctly separate data with different labels.

FIG. 5. The learning performance for high-dimensional data set.
The blue, red, and orange lines respectively show the variation of
loss, the training accuracy, and the test accuracy with respect to the
number of epochs. The loss decreases sharply at around epoch 3 for
longer epochs, the training accuracy increases continuously and test
accuracy converges sharply around epoch 3.

B. Evaluation metrics and adversarial attack methods

To evaluate the performance of our protocol, we adopt an
adversarial attack method that is widely employed in classical
machine learning. It is known as the iterative-fast gradient
sign method (I-FGSM) with l2-bounded norm [42–44] that
aims to attack the test data set DTe to make incorrect predic-
tions when using a trained classifier. If we denote the original
input by x and the adversarial example at the tth updating step
when using the I-FGSM by x′(t ), then

x′
(0) = x,

(18)
x′

(t+1) = x′(t ) + α · sign(∇xL),

where α = L/T is the learning rate with ‖x − x′‖2 � L and L
is the loss function formulated in Eq. (14).

C. Adversarial attack at test time

1. Low-dimensional data set

Here we employ our trained classifier and the adversarial
attack method formulated above to quantify the performance
of our protocol. Recall that Corollaries 1 and 2 are the special
cases of Theorems 2 and 3 when applied to binary QNN
classifiers and work in the regime of using infinite and finite
sampling of the output probabilities, respectively. Here we
explore how our protocol protects the binary QNN classifier
against adversarial attacks under these two settings.

The infinite sampling case. At testing time, we randomly
sample an example (ρ = |x〉〈x|, ỹ) from DTe to investigate
its robustness τD with respect to different levels of depolar-
ization noise p. Without loss of generality, the original test
example has label ỹ = 0. We set three different values of
p and τD: {p(1) = 0.5, τ

(1)
D = 0.02}; {p(2) = 0.1, τ

(1)
D = 0.02}

and {p(1) = 0.5, τ
(2)
D = 0.2}. From Eq. (11), their correspond-

ing privacy budgets are ε1 = 1.04, ε2 = 1.36 and ε3 = 1.4.
Given our input ρ, the outputs of our trained classifier with
added depolarization noise are Pr(ỹ(1)(ρ) = 0) = 54.46%,
Pr(ỹ(2)(ρ) = 0) = 58.04%, and Pr(ỹ(3)(ρ) = 0) = 54.46%,
where the corresponding constants B defined in Corollary 1
is B(1) = 1.20, B(2) = 1.38, and B(3) = 1.20, respectively.

023153-7



DU, HSIEH, LIU, TAO, AND LIU PHYSICAL REVIEW RESEARCH 3, 023153 (2021)

FIG. 6. The robustness of our protocol to adversarial examples (low-dimensional data set). Left: The left panel illustrates a bounded-norm
attack on the Iris data set in the infinite sampling case. The inner and outer circle regions indicate the robustness values τ

(1)
D = 0.02 and

τ
(2)
D = 0.2, respectively. The thick purple line is a trained hyperplane of our QNN classifier. The dotted arrows indicate how an adversary

iteratively attacks the input ρ under three different settings of {p(1) = 0.5, τ
(1)
D = 0.02}, {p(2) = 0.1, τ

(1)
D = 0.02}, and {p(1) = 0.5, τ

(2)
D = 0.2},

where the aim of the adversary is to induce the classifier to output the wrong prediction. The inner plot enlarges the part of the central figure
near the test example. Right: The right panel illustrates the bounded-norm attack in the finite precision case. The circle region indicates
the robustness value τ

(1)
D = 0.02 and p(1) = 0.5. The dotted arrows indicate the path of an adversary that iteratively attacks the input under

nsamp = 50, 500, and 5000, where the adversary aims to induce the classifier to output the wrong prediction. The inner plot enlarges the part of
the central figure near the test example.

Following the condition for robustness in Eq. (12), we have
confidence that the classifier is robust to adversarial attacks
if B > e2ε . A simple comparison indicates that robustness is
guaranteed when {p = 0.5, τD = 0.02}, since B(1) > e2ε1 =
1.08 while B(2) < e2ε2 = 1.85 and B(3) < e2ε3 = 1.96.

To validate the correctness of our theoretical results, we
employ I-FGSM to attack our trained classifier, where we
identify the l2-norm bound with its corresponding τD value.
The left panel of Fig. 6 demonstrates the simulation results
and Table I shows the final test score of the attacked input.
The classifier with the first setting {p(1) = 0.5, τ

(1)
D = 0.02}

is robust to the bounded-norm adversarial attacks, where the
predicted label of x̃ is still 0. For the third setting when
{p(3) = 0.5, τ

(3)
D = 0.2}, the adversary can easily perturb the

input and lead the classifier to give the wrong prediction. In
particular, the adversary can easily perturb the input to cross
the classification boundary, as highlighted by the purple line.
For the second setting with {p(2) = 0.1, τ

(2)
D = 0.05}, the clas-

sifier correctly predicts the label, while our protocol cannot
provide any promises, since Theorem 2 and Corollary 1 pro-
vide only sufficient conditions for robustness. The above three
simulation results are then in accordance with our theoretical
results.

The finite sampling case. The only difference in the finite
sampling case is the acquisition of the output of our trained
classifier. The same test example (ρ = |x〉〈x|, ỹ) is employed.
The hyperparameters are set as {p(1) = 0.5, τ

(1)
D = 0.02} and

from Eq. (11) the privacy budget ε = 1.04 is fixed. We set
three different sampling number values nsamp to explore how
nsamp affects the robustness guarantees, where n(1)

samp = 50,
n(2)

samp = 500, and n(3)
samp = 5000. The corresponding three ap-

proximated test scores are Pr(ỹ(1) = 0) = 0.515, Pr(ỹ(2) =
0) = 0.529, and Pr(ỹ(3) = 0) = 0.552. The corresponding pa-
rameters B are B(1) = 1.06, B(2) = 1.124, and B(3) = 1.23
with respect to n(1)

samp, n(2)
samp, and n(3)

samp. Following the re-
sults of Theorem 3 and Corollary 2, with probability at least
1 − 2 exp (−2nsampζ

2), the trained classifier with added depo-
larization noise is robust to adversarial attacks if B > e2ε . By
setting ζ = 0.95, a simple inspection shows that nsamp = 5000
guarantees robustness. Analogous to the infinite sampling
case, we employ a bounded-norm adversary to confirm the
correctness of our theory result, where the simulation results
are shown in the right panel of Fig. 6.

Given the test data set DTe, we randomly select three
test examples and explore how the maximum robustness τD

changes with varied p according to Eq. (11), which we can
rewrite as

τD = (eε − 1)p

Dmeas(1 − p)
. (19)

Figure 7 illustrates how τD scales with different p for three
different test examples with Dmeas = 2. Note that the constants
ε are different for the three test examples and the test examples
satisfy the condition in Eq. (12). In the same figure, we also

TABLE I. We list the test scores of the selected test examples (in the low-dimensional data set) {ρ, ỹ} after bounded-norm adversarial
attacks in both the infinite and finite sampling cases. The parameters p = 0, τD = 0 refer to the test score under in the absence of any depolar-
ization noise in the circuit. The other parameter settings are {p(1) = 0.5, τ

(1)
D = 0.02}, {p(2) = 0.1, τ

(1)
D = 0.02}, and {p(1) = 0.5, τ

(2)
D = 0.2}.

Infinite Precision Case (nsamp = ∞) p = 0, τD = 0 p(1), τ
(1)
D p(2), τ

(1)
D p(1), τ

(2)
D

ỹ0(ρ ) 58.92% (label 0) 52.96% (label 0) 57.11% (label 0) 49.42% (label 1)
Finite Precision Case (p(1), τ

(1)
D ) – nsamp = 50 nsamp = 500 nsamp = 5000

ỹ0(ρ ) – 44.32% (label 1) 55.80% (label 0) 53.88% (label 0)
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FIG. 7. Low-dimensional data set. For three different test ex-
amples, we see how the simulated results for robustness τD and
test scores ỹ0(σ ) varies with respect to p. All three test examples
have label 0, where the test score is above the blue dotted line. The
closed-form expressions for the variation of τD and ỹ0(σ ) are shown
in Eqs. (19) and (20).

plot how the test score ỹ0(σ ) varies with p, coming from
Eq. (10) for the case of binary classification K = 2:

ỹk (σ ) = p/2 + (1 − p)yk (σ ). (20)

For more details on the implementation of the classifier and
performance analysis of our protocol, please see Appendix I.

2. High-dimensional data set

Similarly to above, given our test data set DTe, we
randomly select three test examples and explore how the
maximum robustness τD changes with varied p according to
Eq. (19). Figure 8 illustrates how τD scales with different p for
three different test examples with Dmeas = 2. For more details
of the implementation of our classifier, please see Appendix J.

V. ADVANTAGES OF PROTOCOL

Adversarial settings naturally occur when data needs to
be delegated to different parties, for instance, in a client-
server setting and in multiparty computing. When this data
is in the form of quantum states before processing using a

FIG. 8. High-dimensional data set. For three different test ex-
amples, we see how the simulated results for robustness τD and test
scores ỹ0(σ ) varies with respect to p. All three test examples have
the same label, where the test score is above the blue dotted line.

quantum classifier, our protocol currently provides the only
existing method to protect the general quantum classifier
against arbitrary adversarial examples and also includes a the-
oretically provable bound. Furthermore, it can take advantage
of certain existing quantum noise in a quantum classifier, like
depolarization noise, to provide protection against adversarial
examples thus obviating the need for error correction or error
mitigation if no other noise sources are present. Moreover,
even if the test score is diminished in the presence of depolar-
ization noise, its original value in the absence of any quantum
noise can be retrieved by simply increasing the number of
times one samples from the classifier. This sample complexity
increases with the amount of exisiting depolarization noise
and is independent of the dimension of the state itself.

Utilizing quantum noise like depolarization noise also has
certain advantages over classical methods for classical data
in improving robustness against adversarial examples. We
discuss this below.

A. Comparison to the best known classical protocol

While in the quantum case the theoretical bound on ro-
bustness is independent of the details of the classification
model and is simple to compute, this is not true in the best
known classical protocol. Before elaborating on this quantum
advantage, we briefly review the classical results.

Following the results of Ref. [19], classical ε-differential
privacy of a classification algorithm is obtained by adding
noise sampled from the Laplacian distribution N (z, κ ) to the
trained classifier. This is commonly known as the Laplace
mechanism. For numerical functions [45], the only other com-
mon method to attain differential privacy is the Gaussian
mechanism, which adds noise sampled from the Gaussian
distribution. However, this leads to classical (ε, δ)-differential
privacy where δ �= 0, so it cannot be directly compared to
our quantum scenario where δ = 0. The Laplacian distribution
used in the Laplace mechanism can be written as

N (z, κ ) =
√

2

2κ
exp

( −|z|√
2κ

)
, with κ = � f L

ε
, (21)

where κ refers to the variance of the Laplacian distribution and
L is the upper-bounded l2 norm between original input x and
attacked input x′ such that classical ε-differential privacy is
preserved. The sensitivity � f of the function f (·) applied at a
layer of the neural network classifier just before the Laplacian
noise is injected is defined as

� f = max
x,x′

|| f (x) − f (x′)||2/||x − x′||2. (22)

The classical protocol runs in the following way. In the test-
ing phase, the adversarial example x′, where ‖x − x′‖2 � L
and x is the original test example, is inserted into the trained
classifier y(·). The predicted label for x′ is obtained by invok-
ing y(x′) a total of N times. For every run of y(x′), the noise
zi, j with i = 1, ..., N is independently sampled from NL(z, κ )
and applied to the input to some layer j of the neural network
realizing the classifier. Let Nk denote the number of times that
the predicted label is k, so the probability of the predicted
label being k is given by Nk/N . Then, similarly to Theorem 3,
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we can write the following condition for robustness of the
K-class classifier under the Laplace mechanism.

Lemma 4 (modified from Ref. [19]). Let x be the input to
the K-multiclass classifier, which is endowed with classical
ε-differential privacy under the Laplace mechanism, with ε =
� f L/κ , as formulated in Eq. (21). Let C be the label of x.
Then with probability at least 1 − ζ , the classifier is robust to
any adversarial example x′ with ‖x − x′‖2 � L if

L = εκ

� f
<

κ

2� f
ln

⎛
⎝ NC

N −
√

1
2N ln

(
2

1−ζ

)
maxk �=C

Nk
N +

√
1

2N ln
(

2
1−ζ

)
⎞
⎠. (23)

This means that this best available classical theoretical
bound to L depends on � f , which, in general, is dependent on
both the details of the classification model used and the layer
of the neural network in which the Laplacian noise is injected.
However, in the quantum scenario with depolarization noise,
we see that the robustness bound is independent of both U , the
circuit realizing the quantum classifier, as well as the location
or locations of noise injection. This means that the adversarial
robustness bound is universal for all quantum classifiers.

We can see this from the fact that the final state of the
quantum circuit after applying depolarization noise in layers
1 to l depends only on the product

∏l
i=1(1 − pi ), which is

independent of U and invariant under any re-ordering of the
layers. This simplicity in the quantum case results from two
facts: that the noisy part of depolarization noise lies in inject-
ing a maximally mixed channel with a certain probability and
that unitary U operations realizing any quantum classifier are
unital (i.e., the identity operator 1 remains invariant under U ).
On the other hand, there is no known classical equivalent of
this property that also gives rise to differential privacy.

The dependence of � f on the details of the classifier in the
most general cases also leads to a difficulty in the computation
of � f and is often intractable except in the simplest cases
[19]. This means that, unlike in the quantum case, the corre-
sponding classical bound on robustness L cannot be derived
in closed form from Eq. (23) in the most general case.

However, in special simple cases like in kernel methods,
we can provide quantitative examples of this quantum ad-
vantage. As a simple illustration, we can look at the binary
classifier for the kernel perceptron, which can be written as

y(x) =
(

y0(x)
1 − y0(x)

)
, y0(x) =

M∑
i=1

w∗
i y∗

i K (x∗
i , x), (24)

where {(x∗
i , y∗

i )}M
i=1 are the M training examples and {w∗

i }M
i=1

are trained parameters of the classifier. We can consider the
polynomial kernel

K (x∗
i , x) = (x∗

i · x)n, (25)

where n is the kernel degree and n = 1 is the special case of
the linear kernel. We now have the following theorem.

Theorem 4. We have a binary classifier y(x) = (y0(x), 1 −
y0(x))T , where y0(x) = ∑M

i=1 w∗
i yiK (x∗

i , x) with the polyno-
mial kernel K (x∗

i , x) = (x∗
i · x)n. Let x denote all correctly

labeled test examples. We now implement the Laplace mech-
anism in this classifier where the sensitivity is � f ≡ ||y(x) −
y(x′)||2/||x − x′||2 and the privacy budget is ε = � f L/κ . Let

us choose ỹ0(x) > exp(2ε)ỹ1(x) and define B ≡ y0(x)/y1(x).
We can define the function g(·) for our noisy classifier where
g(B) = ỹ0(x)/ỹ1(x). Then the classifier is robust under any
adversarial example x′ where ||x − x′||2 � L and

L � 1

M

κ

2
√

2n max{|w∗
i yi|}M

i=1

ln g(B). (26)

Proof of Theorem 4. We compute an upper bound for � f
in terms of classification model parameters in y(x) and use
L = εκ/� f < κ ln g(B)/(2� f ). Please see Appendix G for
details. �

From this, we see that we can guarantee only a smaller
robustness bound for a more nonlinear kernel (i.e., higher n).
We can also use a quantum classifier below to realize the same
polynomial kernel and find a robustness bound that is now
independent of degree of nonlinearity of the kernel.

Theorem 5. We have a kernel perceptron binary classi-
fier y(σ ) = (y0(σ ), y1(σ ) = 1 − y0(σ ))T that is realized by
a quantum circuit in the absence of noise and takes the form
in Fig. 2 with Dmeas = 2. Without losing generality, we can
assume the class label of σ is 0. Now we add depolarization
noise channels Npi to the classifier where i = 1, ..., l to create
a noisy classifier ỹ(σ ). Let us choose ỹ0(σ ) > exp(2ε)ỹ1(σ )
and define B ≡ y0(σ )/y1(σ ). Then the noisy classifier is
robust under any adversarial perturbation σ → ρ such that
τ (σ, ρ) � τD, where

τD <
B − 1

4(B + 1) + 8(1 − p)/p
(27)

for p = 1 − p ∈ (0, 1/2) and

τ 2
D <

B − 1

4(B + 1)(1 − p)/p + 8(1 − p)2/p2
(28)

for p = 1 − p ∈ [1/2, 1).
Proof of Theorem 5. We use the expression for ε-quantum

differential privacy with depolarization noise that relates τD

with ε and relate ε to the fraction B. Please see Appendix H
for details. �

The trace distance τD can be turned into a corresponding
l2 norm distance L if an encoding of the classical data x into
a quantum state σx is chosen. For instance, we can choose
the most widely used amplitude encoding x → ∑D

i=1 xi|i〉
where xi is the ith element of x and we assume for sim-
plicity the normalization ||x||2 = 1. Then the trace distance
τ (σx, σx′ ) = √

1 − Tr(σxσx′ ) =
√

1 − (x · x′)2 and l2 ≡ ||x −
x′||2 = √

2 − 2(x · x′). Therefore we can write τ (σx, σx′ ) =
l2

√
1 − l2

2 /2 � l2. This means Theorem 5 still holds if we
replace τD with L and can compare results directly with
Theorem 4 with the same chosen constant B. Then we see
how the robustness bound in the classical case is dependent on
details of the kernel function like the nonlinearity n whereas
the robustness bound can be completely independent of the
kernel function.

While in Theorems 4 and 5 we have provided only suffi-
cient though not necessary conditions for robustness, this was
only for the purpose of illustrating a clearer interpretation of
robustness in terms of a model parameter like the degree of
nonlinearly n. Necessary conditions can also be found since
we already have the exact expressions for L and τD. We know
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that the former is dependent on the details of the classification
model through � f in the most general case whereas the latter
is dependent only on p, Dmeas, and ε, which can be chosen to
be constants independent of the details of the kernel or any
other classifier. This latter property of τD we have already
learned is not consistent with any known classical mechanism
for differential privacy.

Another advantage of the quantum mechanism is that de-
polarization noise can occur naturally in quantum systems,
especially for NISQ devices, whereas the Laplace mechanism
needs to be artificially injected into the classifier.

We note that while there are other classical methods of
adding noise, like drop-out, that may be more analogous to
depolarization noise, it is not clear if it can really be a differ-
ential private mechanism and it is not currently used in any
state-of-the-art protocols.

This feature in the quantum protocol where the bound
is not directly dependent on the classification model can be
advantageous in the following setting, which is independent of
other quantum advantages like quantum speedups. Suppose a
quantum company sells different quantum classifiers to differ-
ent clients but they sell them as black boxes and wish to keep
any details of their circuit hidden. The client might indirectly
infer some details by performing circuit tomography, but this
is notoriously resource intensive. It is also not always possi-
ble for classifiers since the device contains a final projective
measurement whose dimension K is less than the dimension
of the input, D so there is irretrievable information loss.

Now the client receives quantum states from other sources
and wishes to protect the classifier against adversaries. How-
ever, each client has a different threshold τD they are willing to
work with. Classically, every client must implement a separate
protocol for his/her device to guarantee robustness against
adversaries. However, model independence of adversarial ro-
bustness is an advantage because now any client can simply
add depolarization noise anywhere in their circuit by the de-
sired amount without opening their black box or spending
large resources in inferring information about their black box.
We call this a possible security advantage because we can
secure the classifier against adversaries of certain sizes with-
out having information about the classifier revealed (which
the company might also not want) or spending extra client
resources in finding the appropriate protocol.

While we cannot rigorously prove this quantum advantage
in comparison to more general classical cases and can only
currently show for our particular example, we hope this will
give a motivation to the community to examine these alterna-
tive quantum advantages in future works. We also note that,
irrespective of the comparison to the classical case, our pro-
tocol is still relevant for when the incoming data are quantum
states and cannot be replaced by a classical protocol.

It is also intriguing to investigate other types of quan-
tum noise that can similarly protect quantum classifiers
against adversaries. To show this is not limited to depolar-
ization noise, we can show that the Pauli channel acting on
σ like NPauli(σ ) = pidσ + ∑

i=x,y,z(1⊗D−1 ⊗ σi )σ (1⊗D−1 ⊗
σi ) also have the dual properties of leaving the clas-
sification robust as well as having ε-quantum differen-
tial privacy when 0 < px + py < 1/2, where the privacy

budget is ε = ln((1 − 2(px + py))τD/(px + py) + 1) (see
Appendix K for details). It remains exciting work for future
investigation to see if other natural sources of quantum noise
can be harnessed for adversarial protection without compro-
mising on the accuracy of the classification.

VI. DISCUSSION

We demonstrated how depolarization noise placed any-
where in a quantum circuit used for classification can
be exploited to protect the classification algorithm against
arbitrary worst-case attacks like adversarial examples. A the-
oretical bound for robustness can be proved without any
assumptions on the type of adversary or the classification
model and applies to both quantum and classical data. This
bound relies on a new relationship we introduced between
quantum differential privacy and adversarial robustness in the
quantum setting. In particular, depolarization noise allows
the theoretical robustness bound to be dependent only on the
number of classes in the classification model and no other
feature of the classifier. However, all known classical noise
that can give rise to differential privacy results in robustness
bounds that would generally depend on more details of the
classification model, for instance, the degree of nonlinearity
of the classification boundary.

This result raises many intriguing possibilities for explor-
ing other naturally occurring quantum noise sources that could
offer similar advantages against adversarial attacks, which
become pertinent concerns as quantum data are shared in
a future quantum internet. We see that the fruitful merging
of concepts in security and quantum machine learning po-
tentially leads to quantum advantages that are independent
of quantum speedups. This also highlights how noise in the
NISQ era for quantum computation can be used as a positive
feature and can be employed in parallel with other methods to
demonstrate quantum advantage.
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APPENDIX A: PROOF OF LEMMA 1

Here we prove that if the noiseless quantum classifier as-
signs σ to the class C, i.e., C = arg maxk yk (σ ), then the noisy
circuit with depolarization noise also assigns σ to the class C,
i.e. C = arg maxk ỹk (σ ). This is equivalent to the condition
that if yC (σ ) > maxk �=C yk (σ ), then ỹC (σ ) > maxk �=C ỹk (σ ).
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Using Eq. (8),

Np(σ ) = p

D
ID + (1 − p)σ, (A1)

we can rewrite Eq. (9) as

ỹk (σ ) ≡ Tr(�kNpl (UL(...Np1 (U1(σ ⊗ |a〉〈a|)U †
1 )...)))

= Tr

(
�k p

I

D

)
+ (1 − p)yk (σ )

= p

K
+ (1 − p)yk (σ ), (A2)

where k = 1, 2, ..., K and p ≡ 1 − ∏l
i=1(1 − pi ). The second

line can be readily derived by induction. Then if yC (σ ) >

maxk �=C yk (σ ), Eq. (A2) implies

ỹC (σ ) = p

K
+ (1 − p)yC (σ )

>
p

K
+ (1 − p) max

k �=C
yk (σ )

= max
k �=C

( p

K
+ (1 − p)yk (σ )

)
= max

k �=C
ỹk (σ ). (A3)

Conversely, if ỹC (σ ) > maxk �=C ỹk (σ ), then from Eq. (A2) it
is clear that yC (σ ) > maxk �=C yk (σ ) is true also. �

APPENDIX B: PROOF OF LEMMA 2

From Lemma 1, we know that if σ is labeled as C in the
noiseless circuit, then in the infinite sampling limit this label
is maintained in the corresponding circuit with depolarization
noise, so ỹC (σ ) > maxk �=C ỹk (σ ). However, in the finite sam-
pling limit with sample complexity N , we only have access to
the estimate ỹ(N )

k (σ ). So, we want to find the smallest N so
ỹ(N )

C (σ ) > maxk �=C ỹ(N )
k (σ ) with probability at least β.

From results in Lemma 1, we see that since ỹk (σ ) =
1 − p/K + pyk (σ ) and ξ ≡ yC (σ ) − maxk �=C yk (σ ), then η ≡
ỹC − maxk �=C ỹk (σ ) = pξ . Thus we need large enough sam-
pling to resolve the difference ỹ(N )

C (σ ) − maxk �=C ỹ(N )
k (σ ) to

at least 2η = 2pξ . It is then sufficient to find N that estimates
ỹ(N )

k (σ ) to precision 2η. To find N , we can employ Hoeffding’s
inequality in the following.

Lemma A. (Hoeffding’s inequality [29]) Let Z1, ..., ZN be
independent bounded random variables with Zi ∈ [a, b] for all
i ∈ [N], where −∞ < a � b < ∞. Then the probability

Pr

(∣∣∣∣∣ 1

N

N∑
i=1

Zi − E(Zi)

∣∣∣∣∣ � ζ

)
� 1 − 2 exp

(
− 2Nζ 2

(b − a)2

)
.

(B1)

In our case, we can use b − a = 1, ζ = 2η, (1/N )
∑N

i=1 Zi =
ỹ(N )

k (σ ) and E(Zi ) = ỹk (σ ). Thus if we require the probability
Pr(|ỹ(N )

k (σ ) − yk (σ )| < 2η) � β, it is sufficient to require 1 −
2 exp(−8N (1 − p)2ξ 2) ∼ β or, equivalently,

N ∼ 1

8(1 − p)2ξ 2
ln

(
2

1 − β

)
. (B2)

�

APPENDIX C: PROOF OF THEOREM 1

Let Cσ be the class label output of our noiseless model
for input state σ . However, this model does not necessarily
coincide with the ground truth for σ , which we present by Tσ .
Thus the model is correct for σ if Tσ = Cσ and is incorrect
for σ if Cσ �= Tσ . For both our training and our test states,
let us sample from the states σ from some (usually unknown)
distribution D. Then, by accuracy in the absence of noise, we
mean the probability that Tσ = Cσ when σ ∼ D, which can be
denoted

A ≡ Pσ∼D(Cσ = Tσ ) ≡ P(C = T ), (C1)

where we have dropped the subscripts for convenience. Now
let us include noise in our model so Cσ → C̃σ . Then the accu-
racy in the presence of noise can denoted by the probability

Ã ≡ Pσ∼D(C̃σ = Tσ ) ≡ P(C̃ = T ). (C2)

There is another type of accuracy which we can call ro-
bustness accuracy, which refers to the probability that the
model itself gives rise to the same prediction after adding
noise, irrespective of the relationship to the ground truth. This
robustness accuracy we can denote by

A∗ = Pσ∼D(C̃σ = Cσ ) ≡ P(C̃ = C). (C3)

Usually it is A and Ã that is of interest for generalization per-
formance, so by relating Ã with A, we can determine by what
amount accuracy degrades in the presence of noise. However,
we will see that this relationship will also depend on A∗ and it
is through A∗ that we can include information about the type
of noise that is added.

Let there be K classes, so each of C, C̃, T can take values
0, 1, ..., K − 1. So, now we can rewrite Ã as

Ã ≡ P(C̃ = T ) =
K−1∑
j=0

P(C̃ = T = j)

=
∑

j

P(C̃ = j|T = j)P(T = j)= 1

K

∑
j

P(C̃ = j|T = j)

= 1

K

∑
j

P(C̃ = j|C = j)P(C = T )

+ 1

K

∑
j

∑
k �= j

P(C̃ = j|C = k �= j)P(C �= T )

= 1

K

⎛
⎝A

∑
j

Pj j + (1 − A)
∑

j

∑
k �= j

Pjk

⎞
⎠, (C4)

where Pi j ≡ P(C̃ = i|C = j). We also used the generic as-
sumption in the first line that the samples we have are
unbiased in the sense that there are as many states of one class
as the other determined by the ground truth, so P(T = j) =
1/K for any j.

From normalization of probability, we can write Pkk =
1 − ∑

j �=k Pjk , which allows us to rewrite
∑

j

∑
k �= j Pjk =∑

k (
∑

j �=k Pjk ) = ∑
k (1 − Pkk ) = K − ∑

j Pj j . Now inserting
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this into Eq. (C4), we find

Ã = 1

K

(
A

∑
j

Pj j + (1 − A)

)(
K −

∑
j

Pj j

)

= 1

K
(1 − 2A)

∑
j

Pj j + (1 − A). (C5)

Now using the generic assumption in the second line that the
samples we have are unbiased also with respect to the mode,
so P(C = j) = 1/K , we see that

∑
j

Pj j =
∑

j

P(C̃ = C = j)

P(C = j)
= KP(C̃ = C) = KA∗. (C6)

Therefore, we can write the general relation for any noise type
as

Ã = A∗(2A − 1) + (1 − A). (C7)

So, now we see that the source of the decrease in accuracy Ã
due to noise itself is due only to A∗ = P(C̃ = C). The rest of
the accuracy dependence is on the accuracy in the noiseless
case A which is independent of noise.

It is through the behavior of A∗ that makes depolariza-
tion noise quite special, since in the infinite sampling limit
N → ∞, then C̃σ = Cσ for all states σ , which gives A∗ = 1.
This was the result already proved in Lemma 1 with details in
Appendix A. Therefore, if we allow N → ∞ sampling of the
quantum circuit, inserting A∗ = 1 into Eq. (C7) gives

Ã = (2A − 1) + (1 − A) = A, (C8)

so the accuracy in the absence of noise is the same as the ac-
curacy in the presence of depolarization noise! Note that this
is special to depolarization noise having the property C̃ = C
and is not true for other noises. However, there are also other
classes of noises that can help the model remain robust. Some
other robustness properties have been investigated in Ref. [24]
for other types of noises and their impact on accuracy can be
found through Eq. (C7).

However, in the finite sampling limit, A∗ �= 1 for depo-
larization noise. We already proved in Lemma 2 that A∗ >

1 − 2 exp(−2Nζ 2) where N is the number of samples we take
from the quantum circuit and ζ is the precision to which we
determine the quantity ỹ0(σ ). Therefore, we see that in the
finite sampling limit, the accuracy in the presence of noise
degrades as

Ã > [1 − 2 exp(−2Nζ 2)](2A − 1) + (1 − A), (C9)

where Ã → A exponentially quickly as N grows, so accuracy
in the presence of depolarization noise is not in fact compro-
mised very much. Thus, all effects of depolarization noise
on accuracy can be remedied by taking more measurements
(efficiently).

APPENDIX D: PROOF OF LEMMA 3

This proof follows Zhou and Ying [24], applied to the case
where the dimension of the final projector is Dmeas and we
can apply multiple depolarization channels Npi for i = 1, ..., l
where p ≡ 1 − ∏l

i=1(1 − pi ). To show ε-differential privacy,

we must show that when τ (σ, ρ) � τD, the following relation
must hold, i.e.,

e−ε � ỹk (ρ)

ỹk (σ )
� eε, (D1)

where from Eq. (9):

ỹk (ρ) = Tr(�k (Npl (Ul (...Np1 (U1(ρ)U †
1 )...U †

l )))). (D2)

By employing the definition of depolarization noise with noise
parameter p acting on an arbitrary quantum state σ , from
Eq. (8),

Np(σ ) = p

D
ID + (1 − p)σ, (D3)

we can derive

ỹk (ρ) = p(D − Dmeas)

D
Tr(�k )

+ (1−)pTr(ID−Dmeas ⊗ �kU (ρ)U †), (D4)

and similarly for ỹk (σ ). From this, we can write

ỹk (ρ)

ỹk (σ )
− 1 = (1 − p)Tr(U (ρ − σ )U †)ID−Dmeas ⊗ �k )

/(
p(D − Dmeas)

D
Tr(�k ) + F

)

� (1 − p)τDTr(ID−Dmeas ⊗ �k )
p(D−Dmeas )

D Tr(�k )

= 1 − p

p
DmeasτD, (D5)

where F ≡ (1 − p)Tr(ID−Dmeas ⊗ �kU (σ )U †) > 0. In the
first inequality, we used the relation Tr(U (ρ − σ )U †�k ) �
τDTr(�k ) and the inequality τ (U (σ )U †,U (ρ)U †) �
τ (σ, ρ) � τD [24,46].

To satisfy Eq. (D2), we upper bound this final term by eε −
1 and find the privacy budget

1 − p

p
DmeasτD � eε − 1 ⇒ ε = ln

(
1 + DmeasτD

1 − p

p

)
.

(D6)

APPENDIX E: PROOF OF THEOREM 2

Here we prove that if ỹk (σ ) > e2ε maxk �=C ỹk (σ ) where
ε = ln[1 + Dmeas(1 − p)τD/p], then ỹC (ρ) > maxk �=C ỹk (ρ)
for all ρ where τ (σ, ρ) � τD. First we employ Lemma 3,
which states that given depolarization noise with parameter p,
the algorithm implemented by the noisy circuit has ε-quantum
differential privacy. Then, from Eq. (7) following Definition 4,
we see that in our case it states

e−ε � ỹk (ρ)

ỹk (σ )
� eε, (E1)

which holds true for when ε = ln[1 + Dmeas(1 − p)τD/p]
and all ρ where τ (σ, ρ) � τD. Then if we insert ỹk (σ ) >

e2ε maxk �=C ỹk (σ ) into the above, we can write

ỹk (ρ) � e−ε ỹk (σ ) > eε max
k �=C

ỹk (σ ). (E2)
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Then, from the left-hand side inequality in Eq. (E1), we find

ỹk (ρ) � max
k �=C

ỹk (ρ). (E3)

From Lemma 1, we see that this is also equivalent to the claim
yk (ρ) � maxk �=C yk (ρ). �

APPENDIX F: PROOF OF THEOREM 3

From Hoeffding’s inequality [see Eq. (B1) in Lemma A of
Appendix B], it is clear that

ỹ(N )
k (σ ) − ζ � ỹk (σ ) � ỹ(N )

k (σ ) + ζ (F1)

to probability greater than 1 − 2 exp(−2Nζ 2). In the
statement of Theorem 3, we assume ỹ(N )

C (σ ) − ζ >

e2ε maxk �=C (ỹ(N )
k (σ ) + ζ ). Inserting the above, this implies

ỹC (σ ) � ỹ(N )
C (σ ) − ζ

> e2ε max
k �=C

(
ỹ(N )

k (σ ) + ζ
)

� e2ε max
k �=C

ỹk (σ ) (F2)

is true to probability at least 1 − 2 exp(−2Nζ 2).
From Theorem 2, we know that the above inequality
ỹC (σ ) > e2ε maxk �=C ỹk (σ ) leads to the condition
C = arg maxk ỹk (ρ) = arg maxk yk (σ ) for all ρ where
τ (σ, ρ) � τD and ε = ln(1 + Dmeas(1 − p)τD/p).

Then using Eq. (F1) again in the condition C =
arg maxk ỹk (ρ), equivalent to ỹC (ρ) > maxk �=C ỹk (ρ), we find

ỹ(N )
C (σ ) + ζ > max

k �=C
ỹ(N )

k (σ ) + ζ (F3)

to probability at least 1 − 2 exp(−2Nζ 2). �

APPENDIX G: PROOF OF THEOREM 4

We first observe that for integers n > 0 and numbers u and
v we have un − vn = (u − v)

∑n
j=0 u jvn−1− j . If we assume

|u|, |v| � G, this then implies |un − vn| � |u − v|nGn−1. Let
q(ui ) = aiun

i so∣∣∣∣∣
M∑

i=1

q(ui ) − q(vi )

∣∣∣∣∣ �
M∑

i=1

|q(ui ) − q(vi )|

�
M∑

i=1

|ai|
∣∣un

i − vn
i

∣∣ �
M∑

i=1

|ai||ui − vi|nGn−1
i , (G1)

where all |ui|, |vi| � Gi. In our case, we can define ai =
w∗

i yi, ui = x∗
i · x, vi = x∗

i · x′. Suppose we fix a normaliza-
tion ||x∗

i ||2 = 1 = ||x||2 = ||x′||2. From the Cauchy-Schwarz
inequality, |ui| = |x∗

i · x| � ||x∗
i ||2||x||2 = 1 and similarly

|vi| � 1, so it is sufficient for us to choose Gi = 1. We now
want to compute the sensitivity for the kernel perceptron
model where the sensitivity is defined in Eq. (22),

� f = max
x,x′

|| f (x) − f (x′)||2/||x − x′||2, (G2)

where in our case of the polynomial kernel f (x) = y(x) =
(y0(x), 1 − y0(x))T and y0(x) = ∑M

i=1 w∗
i y∗

i (x∗
i · x)n. Then it

is straightforward to show

� f = max
x,x′

√
2

∣∣∑M
i=1 w∗

i y∗
i (K (x∗

i , x) − K (x∗
i , x′))

∣∣
||x − x′||2 . (G3)

Using Eq. (G1) for the polynomial kernel, we obtain

� f �
M∑

i=1

|ai||ui − vi|
||x − x′||2 n =

M∑
i=1

|ai||x∗
i · (x − x′

i )|
||x − x′||2 n

�
M∑

i=1

|ai|||x∗
i ||2||x − x′

i||2
||x − x′||2 n

=
M∑

i=1

|w∗
i yi|n � M max{|w∗

i yi|}M
i=1n, (G4)

where we used the normalization ||x∗
i ||2 = 1 in the last line.

In the special case of the linear kernel (or n = 1), we have
� f � M max{|wyyi|}M

i=1.
From Eq. (21) in the text,

κ = � f L

ε
. (G5)

This means that the classifier is robust against all adversarial
examples x′, where ||x′ − x||2 � L = κε/� f . In our theo-
rem, we require the condition g(B) ≡ ỹ0(x)/ỹ1(x) > exp(2ε)
where B ≡ y0(x)/y1(x), which gives ε < (1/2) ln g(B). To-
gether with 1/� f � 1/(M max{|w∗

i yi|}M
i=1n) from Eq. (G4),

this implies ||x′ − x||2 < κ ln g(B)/(2
√

2M max{|w∗
i yi|}M

i=1n)
is a sufficient condition for robustness.

APPENDIX H: PROOF OF THEOREM 5

Following the results of Lemma 1, when the depolarization
noise layer is inserted into the trained model just before the
final measurement, the classifier y(σ ) has the ε-differential
privacy property where

e−ε ỹ0(σ ) < ỹ0(ρ) � eε ỹ0(σ ),

e−ε ỹ1(σ ) � ỹ1(ρ) � eε ỹ1(σ ). (H1)

Now, if the initial class label of σ is 0, to correctly predict the
attacked input ρ requires

ỹ0(ρ) > ỹ1(ρ) = 1 − ỹ0(ρ). (H2)

In combination with Eqs. (H1), this robustness condition is
equivalent to (1 + e2ε )ỹ(σ ) > e2ε or

ỹ0(σ )/ỹ1(σ ) > e2ε . (H3)

By including depolarization channels with corresponding de-
polarization parameters p1, ..., pl , we can write

ỹ0(σ ) = p/2 + (1 − p)y0(σ ), (H4)

where p = 1 − p. Then inserting Eq. (H4) into Eq. (H3), we
find
p

2
+ (1 − p)y0(σ ) > e2ε

( p

2
+ (1 − p)y1(σ )

)

⇔
p
2 + (1 − p)y0(σ )
p
2 + (1 − p)y1(σ )

> e2ε

⇔ 1 + (1 − p)[y0(σ ) − y1(σ )]
p
2 + (1 − p)y1(σ )

>

(
1 + 2

1 − p

p
τD

)2
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⇔ (1 − p)[y0(σ ) − y1(σ )]
p
2 + (1 − p)y1(σ )

> 4
1 − p

p
τD + 4

(1 − p)2

p2
τ 2

D,

(H5)

where we used ε = ln(1 + 2 1−p
p τD) in the second line, which

is a result from Lemma 1. We can distinguish the following
cases:

(1) If (1 − p)τD/p < 1, we replace the right side of
Eq. (H5) by its upper bound, i.e.,

(1 − p)[y0(σ ) − y1(σ )]
p
2 + (1 − p)y1(σ )

> 8
1 − p

p
τD

⇔ [y0(σ ) − y1(σ )]

4 + 8 (1−p)
p y1(σ )

> τD. (H6)

(2) If (1 − p)τD/p > 1, or equivalently p ∈ (0, 1/2), we
replace the right side of Eq. (H5) by its upper bound, i.e.,

(1 − p)[y0(σ ) − y1(σ )]
p
2 + (1 − p)y1(σ )

> 8
(1 − p)2

p2
τ 2

D

⇔ [y0(σ ) − y1(σ )]

4 (1−p)
p + 8 (1−p)2

p2 y1(σ )
> τ 2

D. (H7)

The definition B ≡ y0(σ )/y1(σ ) implies

y0(σ ) = By1(σ ) ⇔ y0(σ ) = B/(1 + B). (H8)

Inserting this into Eqs. (H6) and (H7), we have

B − 1

4(B + 1) + 8 (1−p)
p

> τD (H9)

for the first case p ∈ (0, 1/2), and

B − 1

4 (1−p)
p (B + 1) + 8 (1−p)2

p2

> τ 2
D (H10)

for the second case p ∈ [1/2, 1).

APPENDIX I: NUMERICAL SIMULATION DETAILS:
IRIS DATA SET

In this Appendix, we explain how our quantum classifier
is implemented and then use a generic metric to evaluate the
performance of our defense protocol.

1. Implementation of quantum classifier

Our quantum classifier is composed of four main in-
gredients, i.e., the unitary Uprep for state preparation, the
parameterized quantum circuits U (θ) where θ are to be op-
timized, the final projective measurements |0〉〈0| and |1〉〈1|
in the σz basis and the depolarization channel Np that is
conditionally applied at testing time. Note that it doesn’t mat-
ter where the depolarization channel is placed in the circuit
since results only depend on the product

∏l
i=1(1 − pi ), where

p ≡ 1 − ∏l
i=1(1 − pi ). Our circuit is shown in Fig. 9, com-

posed of two qubits, where each entry of the classical input
vector is separately encoded into the amplitude of the quantum
state in the computational basis. The state preparation unitary
Uprep, i.e., the computation of parameters {xi}5

i=1, follows from
Ref. [47]. This U (θ) is composed of five layers, where each

FIG. 9. Our binary QNN classifier. The upper left panel shows
the main structure of the quantum classifier and the upper right panel
illustrates one layer in the implementation of the trainable unitary
and we employ five layers in total. The lower panel is the quantum
circuit that encodes the classical input data into a quantum state.

layer consist of trainable single-qubit gates and two-qubits
gates as shown in the upper right panel of Fig. 9, highlighted
by the dashed box. The layers are then sequentially applied to
form U (θ) [21]. The mathematical representation of U (θi,1) =
RZ (θi,1)RY (θi+1,1)RZ (θi+2,1) and the total number of trainable
parameters is 25.

2. Evaluation

An evaluation metric broadly used in classical adversar-
ial learning is the conventional accuracy, which measures
the prediction accuracy of the test data set under adversar-
ial attacks with respect to different bounded norms [19,48].
The mathematical expression for the conventional accuracy
Accc is

Accc =
∑|DTe|

i=1 1c̄i=c∗
i

|DTe| , (I1)

where |DTe| is the size of the test data set, c̄i and c∗
i are

the predicted and real labels of the ith test example. Here
1c̄i=c∗

i
is the indicator function, which takes the value 1 when

c̄i = c∗
i and is 0 otherwise. Using the depolarization noise p =

0.5, 0.8, and τD = 0.015, we explore the trade-off between
adversarial robustness and the conventional accuracy for our
classifier. Let L ∈ (0, 0.7] and nsamp = 300. The number of
iterations used to generate adversarial attacks is set to 50
without early stopping. Figure 10 illustrates the simulation
results under p = 0, 0.5, 0.8. We can see how our protocol
increases the robustness against l2 norm attacks with increas-
ing p. For instance, the conventional accuracy of our baseline
(p = 0) drops to zero when L = 0.4, while the conventional
accuracy remains nonzero for both p = 0.5 and p = 0.8. In
addition, a larger depolarization noise p promises a better
robustness against large L. Specifically, when L = 0.1, the
conventional accuracy when p = 0.8 is slightly less than
when p = 0.5. However, with increased L, the conventional
accuracy when p = 0.8 outperforms the case when p = 0.5.
Also when L = 0.5, both baseline and p = 0.5 cases have the
zero conventional accuracy, while the setting p = 0.8 gives
nonzero conventional accuracy.
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FIG. 10. Conventional accuracy for different depolarization
noise p. We denote L as the maximum l2 bounded-norm used in
the adversarial attack. The conventional accuracy corresponding to
p = 0.5, 0.8 is with respect to L is in red and blue, respectively. The
label baseline refers to the conventional accuracy with when p = 0.

APPENDIX J: NUMERICAL SIMULATION DETAILS:
LBM DATA SET

Here we give details of our numerical simulation for the
data set based on Ref. [34].

The implementation of the binary QNN is exhibited in the
left panel of Fig. 11. Specifically, the encoding unitary UE is
defined as

UE = Uetg
[⊗20

i=11RY (xi )
]
Uetg

[⊗10
i=1RY (xi )

]
, (J1)

where Uetg (highlighted by the dark blue line) refers to
the entanglement layer such that CNOT gates are applied
to the adjacent qubits in sequence. The right panel presents the
trainable unitary U (θ) = ∏2

l=1 Ul (θ). Mathematically, the lth
layer satisfies Ul (θ) = Uetg[⊗10

i=1U (θli )] with θli = [α, β, γ ]
and U (θli ) = RZ (γ )RY (β )RZ (α). The hyperparameter setting
is as follows. The layer number of variational quantum circuits
is set as L = 2. The total number of trainable parameters is 60.
The number of epochs used in classical optimization is 20.
The gradient descent optimizer is employed to optimize these
parameters. The random seed is set as 1.

FIG. 11. The implementation of QNN used to learn the synthetic
data set D. The left panel shows the main architecture of QNN. The
right panel exhibits the basic component to construct the trainable
unitary Ul (θ).

APPENDIX K: THE ROBUSTNESS AND PRIVACY BUDGET
OF THE PAULI NOISE CHANNEL

An important class of examples is the single-qubit Pauli
channel (which includes the bit-flip and dephasing channels
as special cases) acting on input state σ as

NPauli(σ ) = pidσ +
∑

i=x,y,z

pi(1⊗D−1 ⊗ σi )σ (1⊗D−1 ⊗ σi ),

(K1)

where pid + px + py + pz = 1. We first show the conditions
under which a quantum classifier is robust against this noise.
For simplicity, we use binary classification, which can be
straightforwardly extended to multiclass classification. Let the
output of the classifier of the noiseless circuit be y0(σ ) =
Tr(�0σ ), where �0 = 1⊗D−1 ⊗ |0〉〈0| and y1(σ ) = Tr(�1σ ),
where �1 = 1⊗D−1 ⊗ |1〉〈1|. If the Pauli channel above is
added only to the final state (which we now denote as σ for
simplicity of notation), then the output of the noisy classifier
becomes

ỹ0(σ ) = Tr[�0NPauli(σ )] = pid Tr(�0σ ) +
∑

i=x,y,z

Tr(�̃0,iσ ),

(K2)

where �̃0,i ≡ (1⊗D−1 ⊗ σi )�0(1⊗D−1 ⊗ σi ). Then, generaliz-
ing the single-qubit result in Theorem 1 of Ref. [10] to our
multiqubit case, we still have �̃0,x = �1 = �̃0,y and �̃0,z =
�0. Inserting these into Eq. (K2), we arrive at the same result
as Theorem 1 in Ref. [10]:

ỹ0(σ ) = [1 − 2(px + py)]Tr(�0σ ) + (px + py). (K3)

Then it is straightforward to show that the conditions (i)
y0(σ ) > 1/2 implies ỹ0(σ ) > 1/2 and (ii) if y0(σ ) < 1/2 im-
plies ỹ0(σ ) < 1/2 are both true when px + py � 1/2.

Note that this robustness condition holds always for de-
phasing noise where pid = 1 − pz and px = py = 0. Bit-flip
noise is the case where pid = 1 − px and py = 0 = pz. There-
fore, robustness also holds for bit-flip noise when px � 1/2.

Now we show how the Pauli channel also gives rise to
quantum differential privacy. The proof follows very similarly
to the depolarization channel case in Appendix D. So, now for
k = 0, 1, we have

ỹk (ρ)

ỹk (σ )
− 1 = [1 − 2(px + py)]Tr[�k (ρ − σ )]

[1 − 2(px + py)]Tr(�kσ ) + px + py

� [1 − 2(px + py)]τD

px + py
� eε − 1, (K4)

where we used 0 � px + py � 1/2 and the same inequalities
as in Appendix D. Here τD is also the upper bound to the trace
distance between the input states of the circuit. Therefore, the
Pauli channel also has quantum differential privacy when 0 �
px + py � 1/2, where the privacy budget is

ε = ln ((1 − 2(px + py))τD/(px + py) + 1). (K5)

Thus, if the noise is added at the end of the circuit, all
cases of Pauli noise where 0 < px + py < 1/2 satisfies both
robustness against noise and gives rise to quantum differential
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privacy. From the above expression, we can also see that the
adversarial robustness bound is independent of any details of
the classifier.

We can also look at wider classes of examples by noting
that the above condition of robustness against noise is not
strictly necessary (although it would be desired). Robustness
against noise as defined in our paper means that the accuracy
of the model does not diminish at all as noise is added. If
we used a noise model that our classification model is not
completely robust against, we would need to compromise on
the accuracy. This would mean that a trade-off with quantum
differential privacy would need to be considered. How much
the accuracy would be compromised in the case of incomplete
robustness is captured in Theorem 1. Thus, if the accuracy

obtained after noise is added is still above one’s threshold, it
is still possible to use our technique to utilize noise to obtain
quantum differential privacy. Therefore, this gives the possi-
bility of using more general noise models that give protection
against adversaries.

Given that even the question of which noise models gives
rise to robustness or incomplete robustness for quantum clas-
sification has not been fully investigated in the literature
(which would be an independent useful work in its own right).
This means that generalization of the results in this paper re-
quires more dedicated analysis. Therefore, a more systematic
and complete characterization of what types of noises would
be beneficial for robustness against adversaries would be the
subject of future work.
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