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The formula for the variance of a binomial distribution is both concise and elegant. 

However, it is often taught without reference to the underlying reasoning. That being 

the case, is it important, or useful, to understand why this formula can be used to 

calculate the requisite result? In this article, I offer a demonstration of a teaching 

sequence that foregrounds the reasoning behind the formula. Implications for teaching 

are discussed, including the placement of this learning in the context of practising the 

application of other valued skills. 

Introduction 

In NSW, recent syllabus changes have introduced further statistical analysis in the mathematics that is 

taught at Extension 1 secondary school matriculation level. As a mathematics teacher in NSW, the need 

to teach statistics at this level is, for me, a fairly recent phenomenon, and so there have been many 

instances where I have found myself in the position of a learner. In this regard, textbooks and online 

resources have been invaluable for showing how to solve these problems. What has been harder to come 

by have been the reasons why these procedures work. 

It was therefore the case that, in preparing for a class on statistical analysis, I found myself faced with 

a formula that I could not explain. Here is the formula. 

For a binomial distribution with parameters 𝑛 and 𝑝, 

Var[𝑋] 	= 	𝑛𝑝(1	– 	𝑝). 

This is a beautifully elegant formula; but why does it work? 

It is notable that the Australian Curriculum presents Var[𝑋] 	= 	𝑛𝑝(1	– 	𝑝) 	for 𝑋~Bin(𝑛, 𝑝)  as a 

standalone result (ACMMM149), with little surrounding context except for its proximity to the 

description of a Bernoulli trial. The only other explicit treatment of the concept of variance is found in 

ACMMM141: 

recognise the variance and standard deviation of a discrete random variable as measures of 

spread, and evaluate them in simple cases. 



The development of sufficient conceptual understanding to be able to evaluate Var[𝑋] in simple cases 

can lead to an appreciation of a geometric representation of variance: the expected value for the squared 

deviation of a random variable from its mean. 

However, the formula for the variance of a binomial distribution indicates that the result is a linear 

multiple of 𝑝(1	– 	𝑝) (the base, or Bernoulli, case), equivalent to the sum of the variances of 𝑛 Bernoulli 

distributions. From my perspective, this was not intuitive. If the variance is the expected value for the 

squares of the distances from the mean, then it was by no means clear – at least to me – why linear 

multiples of the Bernoulli variance would give the correct variance for binomial distributions where 

𝑛	 = 	2, 𝑛	 = 	3, and so on. Why does it not, for example, make more sense to consider linear multiples 

of the standard deviation for the Bernoulli distribution, to obtain the correct standard deviations for the 

associated binomial distributions? 

This, then, is one of those instances where, if the teacher wishes to guide the students to appreciate the 

reasoning behind the result, then they are somehow expected to recognise where the gaps exist, and 

then fill in the blanks from their own prior knowledge. In this paper, I am proposing a teaching sequence 

that makes as few assumptions as possible about a teacher’s familiarity with statistics at this level. It is 

notable that some of the waypoints in the proposed sequence are not present in the Australian 

Curriculum, which does not include any mention of E[𝑋 + 𝑌] or Var[𝑋 + 𝑌]; that being the case, I 

would suggest that it is not necessarily obvious to a practising teacher that they should seek to acquire 

fluency in these formulae in order to construct the requisite result. Indeed, I would wonder if even the 

possession of these formulae would be satisfactory, if it is not accompanied by a more fundamental 

appreciation of the reasoning behind it all. 

In my own quest to discover this reasoning, I came across a large number of ways to derive the formula 

for the variance of a binomial distribution (e.g. Grimmett & Welsh, 2014). While mathematically 

rigorous, I felt that these demonstrations were difficult to translate. Pender et al. (2019, p. 786) suggest 

that the general theorems here are “too difficult to prove”; and given the nature of the proofs that I came 

across, I would tend to agree. I could not imagine a class full of secondary school students paying 

attention to any of these derivations. 

The upshot of all of this may, of course, be the considered choice to teach the rule as a standalone piece 

of knowledge. If so, this is a wasted opportunity. We have here a wonderfully concise general rule that 

saves considerable effort in calculation. Surely its existence should not be taken for granted. 

Indeed, it is arguable that the presentation of such a rule, without the underlying reasoning, is a clear 

instance of the valuing of “instrumental understanding” or “rules without reasons” (Skemp, 1976). As 

Mills (2018) notes, there is another potential instance of instrumental understanding in the Australian 

Curriculum’s teaching of statistics, where the Line of Best Fit (Ordinary Least Squares Regression) is 

in use without valuing a conceptual understanding of why it works (ACMEM142). However, the 



construction of a general rule for the variance of a binomial distribution does not require mathematics 

beyond the students’ present capabilities; it simply requires a pedagogical approach that values the 

reasoning that led to the rule. 

Definitions 

To set the scene for this derivation, we must first consider the two pieces of information that cannot 

really be derived, and rely, at least in part, on being defined. 

The first of these is the expected value, E[𝑋] = 	𝜇. In the Australian Curriculum, we have the following: 

recognise the mean or expected value of a discrete random variable as a measurement of centre 

(ACMMM140) 

Here, we may need to ensure that students understand that the word “expected” is not used in the normal, 

day-to-day sense of the word, and “expected value” could refer to a value that cannot possibly be 

observed on any one observation, as it does not even exist in the set of possible values. For example, if 

99% of the time the value is 0 (slot machine pays out $0), and 1% of the time the value is $100 

(jackpot!), then the “expected value” is not, in fact, 0.  

We shall here define a discrete random variable 𝑋, 

with exactly four possible and equally probable 

values, 𝑥! , 𝑥" , 𝑥#  and 𝑥$ . We can think of these 

values as being the lengths of sticks in a box that 

contains an infinite number of sticks, such that these 

four lengths are equally represented in the box. The 

idea, then, is to select a single stick from the box at 

random (Figure 1). 

Suppose you selected a stick; how long would you 

expect it to be? Well, it would be one of these four values. All right; so, suppose you selected a hundred 

sticks, and laid them end to end; how long would you expect the line of sticks to be? Is it reasonable to 

use this idea to think of the “expected value” for the length of one randomly chosen stick? 

Students who are familiar with experimental probability should have little difficulty with the notion 

that, after multiple selections, the expected length of a single stick will approach the theoretical mean: 

E[𝑋] =
𝑥! + 𝑥" + 𝑥# + 𝑥$

4
 

This gives rise to the first idea we need, which is that the expected value is simply the theoretical mean.  

We now consider the definition of variance as being the mean of the squared distances of the values 

from E[𝑋]. This can be a fairly daunting definition already, but perhaps less so if approached in a 

Figure 1. A box containing an infinite number of 
sticks of lengths x1, x2, x3 and x4, with the four lengths 
being equally represented. 



number of different ways, including 

diagrammatically (Figure 2). For our purposes here, 

the definition is sufficient, although it is useful to 

have the students consider the reasons behind the 

choice to use squared deviations when measuring the 

spread of a random variable. 

Simplifying Var[X] 

The NSW Advanced syllabus then offers this result: 

• use Var[𝑋] 	= 	E[(𝑋	– 	𝜇)"] 	= 	E[𝑋"]	–	𝜇" 

for a random variable 

Why is this so? I would contend that the equivalence 

of E[(𝑋	– 	𝜇)"]  and E[𝑋"]	–	𝜇"  is not obvious, and 

the directive to “use” this result is pedagogically 

problematic. 

At this juncture, it is worth having the students actually execute the expansion, to give them an intuitive 

feel for the underlying logic. It is one of those rare results that is not immediately apparent, and 

satisfyingly quick to prove to oneself. 

Var(𝑋) 	= 	
(𝑥! − E[𝑋])" 	+ 	(𝑥" − E[𝑋])" 	+ 	(𝑥# − E[𝑋])" 	+ 	(𝑥$ − E[𝑋])"

4
 

=
𝑥!" − 2𝑥!E[𝑋] + E[𝑋]" + 𝑥"" − 2𝑥"E[𝑋] + E[𝑋]" + 𝑥#" − 2𝑥#E[𝑋] + E[𝑋]" + 𝑥$$ − 2𝑥$E[𝑋] + E[𝑋]"

4
 

=	
𝑥!" + 𝑥"" + 𝑥#" + 𝑥$"

4
	− 	2E[𝑋]

(𝑥! + 𝑥" + 𝑥# + 𝑥$)
4

	+	
4E[𝑋]"

4
 

= 	E[𝑋"] 	− 	2E[𝑋] ∙ E[𝑋] 	+ E[𝑋]" 

= 	E[𝑋"] 	− E[𝑋]". 

Figure 2. The variance is the mean of the areas of the 
squares. 



Textbooks (e.g. Quinn et al., 2013) include far more sophisticated demonstrations to derive this result 

(Figure 3). 

The difficulty with a more sophisticated approach is, perhaps, the inherent assumption that students will 

have developed an understanding of a number of different theorems. In any case, there is nothing quite 

like the “ah-ha” moment when students recognise that E[𝑋] arises from the factorisation. 

So far, we have established that Var[𝑋] = 	E[𝑋"]	– E[𝑋]". Now, let us suppose that, rather than drawing 

a single stick from our box, there are two separate boxes; and our result is the total length, after drawing 

a stick from each box. 

  

Theorem 1 

1. E[𝑑] 	= 	𝑑 for any constant 𝑑. 

2. E[𝑐𝑋	 + 	𝑑] 	= 	𝑐E[𝑋] 	+ 	𝑑 for 𝑋 a random variable 

and constants 𝑐, 𝑑 ∈ ℝ 

Theorem 2 

Suppose 𝑋 is a random variable and 𝑔 is any function. 

The random variable 𝑔(𝑋) has mean given by: 

Discrete case:       E[𝑔(𝑋)] = 	Σ𝑔(𝑥%)𝑝% 

Continuous case: E[𝑔(𝑋)] = ∫𝑔(𝑥)𝑓(𝑥)𝑑𝑥 

Corollary to Theorem 2 

For 𝑋 a random variable, 

E[𝑐𝑔(𝑋) ± 𝑑ℎ(𝑋)] = 𝑐E[𝑔(𝑋)] ± 𝑑E[ℎ(𝑋)] 

where 𝑐, 𝑑 are constants and 𝑔(𝑥) and ℎ(𝑥) are functions. 

Proof: 

Var[𝑋] = E[(𝑋	– 	𝜇)"] 

= E[𝑋"		– 	2𝑋𝜇	 +	𝜇"]  

= E[𝑋"]	– 	E[2𝜇𝑋] 	+ 	E[𝜇"] 

{ by the Corollary to Theorem 2 }	

= E[𝑋"]– 	2𝜇E[𝑋] +	𝜇"  

{ by Theorem 1 } 

= E[𝑋"]	– 	2𝜇" 	+ 	𝜇"	

= E[𝑋"]	–		𝜇"	

= E[𝑋"]	–		E[𝑋]" 

 
Figure 3. Proof that Var[𝑋] 	= 	E[𝑋!]	− 	E[𝑋]!, as developed in Quinn et al. (2013) 



The Expected Value of (X+Y), where X and Y are independent 

We shall begin here by 

adding a second box of 

sticks that is independent of 

the first box (Figure 4). This 

time, there are just three 

different lengths. The reason 

behind this choice is to seed 

the idea that the number of 

different values does not actually matter. 

What, then, might be the expected value, when we 

consider the total length after combining two 

sticks? 

It is well within the students’ capabilities to 

recognise the inherent combinatorics problem, and 

thus list all of the possibilities (Table 1). 

Taking the mean of the values in Table 1, we have: 

E[𝑋 + 𝑌] =
3𝑥! + 3𝑥" + 3𝑥# + 3𝑥$ + 4𝑦! + 4𝑦" + 4𝑦#

12
 

𝐸 =
3𝑥! + 3𝑥" + 3𝑥# + 3𝑥$

12
+
4𝑦! + 4𝑦" + 4𝑦#

12
 

𝐸 =
𝑥! + 𝑥" + 𝑥# + 𝑥$

4
+
𝑦! + 𝑦" + 𝑦#

3
 

𝐸(𝑋 + 𝑌) = E[𝑋] + E[𝑌]. 

It is nice that this result does appear to make intuitive sense. Even so, I would suggest that it is worth 

going through the process of listing all of the combinations in an organised way - if only because the 

contents of the table will be useful for the following part of the derivation. 

Figure 4. Introducing a second independent discrete random variable Y with values 
y1, y2 and y3. 

 𝑦! 𝑦" 𝑦# 

𝑥! 𝑥! + 𝑦! 𝑥! + 𝑦" 𝑥! + 𝑦# 

𝑥" 𝑥" + 𝑦! 𝑥" + 𝑦" 𝑥" + 𝑦# 

𝑥# 𝑥# + 𝑦! 𝑥# + 𝑦" 𝑥# + 𝑦# 

𝑥$ 𝑥$ + 𝑦! 𝑥$ + 𝑦" 𝑥$ + 𝑦# 

 Table 1. The 12 possible values of X + Y. 



The Expected Value of (X+Y)2, where X and Y are independent 

Table 2 uses a 

similar idea to 

Table 1, except 

that this time we 

are listing the 

possible values of 

(𝑋	 + 	𝑌)". 

The mean of the 12 values in Table 2, or E[(𝑋	 + 	𝑌)"], is then: 

E[(𝑋 + 𝑌)"] 	= 	
3(𝑥!" + 𝑥"" + 𝑥#" + 𝑥$") + 2(𝑥! + 𝑥" + 𝑥# + 𝑥$)(𝑦! + 𝑦" + 𝑦#) + 4(𝑦!" + 𝑦"" + 𝑦#")

12
 

=	
𝑥!" + 𝑥"" + 𝑥#" + 𝑥$"

4
	+ 	2 O

𝑥! + 𝑥" + 𝑥# + 𝑥$
4 P O

𝑦! + 𝑦" + 𝑦#
3 P	+	

𝑦!" + 𝑦"" + 𝑦#"

3
 

= 	E[𝑋"] 	+ 	2E[𝑋] ∙ E[𝑌] 	+ 	E[𝑌"]. 

Again, even though it is nice that the result appears to make intuitive sense, I would argue that it is still 

useful to have the students go through the motions, to discover this result for themselves. 

  

 𝑦! 𝑦" 𝑦# 

𝑥! 𝑥!" + 2𝑥!𝑦! + 𝑦!" 𝑥!" + 2𝑥!𝑦" + 𝑦"" 𝑥!" + 2𝑥!𝑦# + 𝑦#" 

𝑥" 𝑥"" + 2𝑥"𝑦! + 𝑦!" 𝑥"" + 2𝑥"𝑦" + 𝑦"" 𝑥"" + 2𝑥"𝑦# + 𝑦#" 

𝑥# 𝑥#" + 2𝑥#𝑦! + 𝑦!" 𝑥#" + 2𝑥#𝑦" + 𝑦"" 𝑥#" + 2𝑥#𝑦# + 𝑦#" 

𝑥$ 𝑥$" + 2𝑥$𝑦! + 𝑦!" 𝑥$" + 2𝑥$𝑦" + 𝑦"" 𝑥$" + 2𝑥$𝑦# + 𝑦#" 

Table 2. The 12 possible values of (X+Y)2. 



Simplifying Var(X+Y), where X and Y are independent 

We now have: 

                         E[𝑋 + 𝑌] = E[𝑋] + E[𝑌] - (1) 

          E[(𝑋 + 𝑌)"] = E[𝑋"] + 2E[𝑋] ∙ E[𝑌] + E[𝑌"]	 - (2) 

Since we have established that Var[𝑋] = E[𝑋"]	– 	E[𝑋]", we also have 

Var[𝑋 + 𝑌] = E[(𝑋 + 𝑌)"] − E[𝑋 + 𝑌]". - (3) 

We can now substitute (1) and (2) into (3), to construct the following: 

Var[𝑋 + 𝑌] = E[𝑋"] + 2E[𝑋] ∙ E[𝑌] + E[𝑌"] − (E[𝑋] + E[𝑌])"	

= E[𝑋"] + 2E[𝑋] ∙ E[𝑌] + E[𝑌"]  − E[𝑋]" − 2E[𝑋] ∙ E[𝑌] − E[𝑌]" 	

= (E[𝑋"] − E[𝑋]") + (E[𝑌"] − E[𝑌]")	

= Var[𝑋] + Var[𝑌].	

This result is startling in its simplicity, but also surely non-obvious. To illustrate the potential for 

conceptual difficulty with this result, it is worth considering its expression in terms of standard 

deviations: 

𝜎&'(" = 𝜎&" + 𝜎(". 

We use standard deviation to communicate the amount of variation in the data, in the original units of 

measurement. It supports the expression of variation in terms of linear distances from the mean. Not 

only do we observe here that 𝜎&'( ≠ 𝜎& + 𝜎(, but we also find that the standard deviation must be 

squared in order to undergo addition operations. 

The Variance of a Binomial Distribution 

We now have the requisite tools for developing this result: 

For a binomial distribution with parameters 𝑛 and 𝑝, 

Var[𝑋] = 	𝑛𝑝(1	– 	𝑝). 

We will modify our “sticks” analogy slightly to accommodate 

the circumstance that, for a Bernoulli trial, some “sticks” will 

need to represent a length of 0. Here, we shall define a random 

event as the selection of a card that is labelled “1” or “0”, each 

representing the value that the card contributes to our result. In 

the following example, we shall use 40% as our probability of 

success (i.e. drawing a 1; Figure 5). 

Figure 5. A box containing an infinite 
number of cards, where p = 40% of the 
cards have value 1, and 1 – p = 60% 
have value 0. 



We can imagine drawing a hundred cards from this box and expecting our total result to be 40. The 

expected value for one card, E[𝑋], is the same as our probability value 𝑝, which in this case is 40%; 

and so we have P(0) 	= 	1	– 	𝑝, and P(1) = 	𝑝. 

Since the mean, or expected value, for one card is 𝑝: 

Var[𝑋] 	= 	E[(𝑋	– 	𝑝)"]	

= (1 − 𝑝)(0	– 	𝑝)" 	+ 	𝑝(1 − 𝑝)" 

= 𝑝" − 𝑝# + 𝑝 − 2𝑝" + 𝑝# 

= 𝑝(1 − 𝑝). 

Now that we have established that the variance for the case of 

drawing a single card is 𝑝(1	– 	𝑝), we can simply duplicate 

our box of cards, and say that the second box represents 

independent random variable 𝑌 (Figure 6).  

The binomial distribution with parameters 2 and 𝑝 can then be 

modelled by drawing one card from each box. Since we had 

previously established that 

Var[𝑋 + 𝑌] = Var[𝑋] + Var[𝑌] 

we have, in this case: 

Var[𝑋 + 𝑌] = 𝑝(1	– 	𝑝) + 	𝑝(1	– 	𝑝) 

= 2𝑝(1	– 	𝑝) 

and thus, for 𝑋~Bin(2, 𝑝), Var[𝑋] 	= 	2𝑝(1	– 	𝑝). 

This result can then be extrapolated to drawing one card each from 𝑛 identical independent boxes of 

cards: 

For 𝑋~Bin(𝑛, 𝑝), 

Var[𝑋] = 𝑝(1	– 	𝑝) + 𝑝(1	– 	𝑝) + ⋯	+ 	𝑝(1	– 	𝑝)		{	𝑛	times	} 

= 𝑛𝑝(1	– 	𝑝). 

Implications for Teaching 

It is clear that our chain of reasoning for the “derivation” here was not completely general. We were 

using, as our example, discrete random variables that we particularly specified - in one case with four 

equally probable values, and in another case with three. We could develop upon this for 𝑗 values in one 

case and 𝑘 values for the other, but certainly the use of an example in this way is insufficient for a 

rigorous proof. However, I would suggest that, just as we develop an understanding of arithmetic 

Figure 6. Adding a second box of cards 
for independent discrete random 
variable Y, with the same probability 
distribution. 



without algebra, so too, the use of 

examples here would be more 

pedagogically effective than if we 

were to only use pronumerals in those 

cases. 

While none of these results were 

particularly difficult to derive, the 

chain of reasoning that would lead to 

the desired outcome is not necessarily 

obvious. I can personally attest to this, 

having first attempted to consider the 

problem geometrically, and finding 

that it created further complications 

(Figure 7). It was only when I was 

satisfied that the failure was indicative 

of an insufficient strategy (Dweck and 

Leggett, 1988) that I began to try other 

methods. 

As an aside, there is also potential for 

these formulae to be experienced as 

the surprising results that they are. For 

example, prior to the teaching of the 

formula, it may be worth posing the 

question: Can you define two discrete 

random variables 𝑋  and 𝑌  such that 

Var[𝑋 + 𝑌] 	= 	Var[𝑋] 	+ 	Var[𝑌]? 

Or, after the formula is derived – under 

what circumstances might it be the 

case that Var[𝑋 + 𝑌] 	≠ 	Var[𝑋] 	+ 	Var[𝑌] ? Supposing, for example, that 𝑋  represents the daily 

maximum temperature, and 𝑌  represents the number of people visiting the beach; would the 

combinations that we averaged in order to determine	E[𝑋 + 𝑌] and E[(𝑋 + 𝑌)"] still be equally likely? 

If the students do not know the rule, then what might they do? As Movshovits-Hadar (1988) suggests, 

To reach the surprise potential of a theorem it is usually helpful to assume we do not know it; 

and so, in providing the end result as a formula, we spoil the learning experience for the students. The 

possession of these rules is far less interesting than the underlying mathematics. 

Figure 7. An attempt to understand the formula for the variance of a 
binomial distribution, by considering the conditions geometrically 



However, the aspect of this issue that really gives me pause is that it is not clear that the derivation is 

valued in our students' learning. This is unfortunate, because the act of problem solving through this 

process promotes fluency in a number of skills – combinatorics, algebraic manipulation, even (at a 

stretch) inductive thinking; in addition to developing an understanding of basic statistical analysis from 

first principles. Perhaps, by recognising the links to other areas of mathematics, we can justify the 

expenditure of class time on supporting students to carry out these derivations, even if such learning is 

not mandated by the curriculum. 

I would like to thank Matthew Holland for his assistance in reviewing an earlier draft of this paper. 
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