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ABSTRACT

ARBITRARY-SHAPE SCENE TEXT DETECTION AND ITS
APPLICATION IN EDUCATIONAL RESOURCE NAVIGATION

by
Chengpei Xu

Text instances exist widely as an information carrier in natural scenes, videos
and document photos. However, localizing text instances with arbitrary shapes is a
challenging task since their style, colour, size, aspect ratio and shape vary greatly
depending on the using scenarios. The abovementioned issues hinder the retrieval
of information and the digitization of raw photos and videos. The situation worsens

when the raw photos and videos are for educational purposes.

In this thesis, we address the challenging problem of arbitrary-shape scene text
detection by proposing two deep learning-based bottom-up approaches. Then, we
create a navigation system for slide-based educational resources using the semantic

information of the detected texts as the primary cue.

In the first approach, we revitalize the GCN-based bottom-up text detection
frameworks by aggregating the visual-relational features of text with two effective
false positive/negative suppression mechanisms. First, dense overlapping text seg-
ments depicting the “characterness” and “streamline” of text are generated for fur-
ther relational reasoning and weakly supervised segment classification. Then, a
Location-Aware Transfer (LAT) module is designed to transfer text’s relational fea-
tures into visual compatible features with a Fuse Decoding (FD) module to enhance
the representation of text regions for the second step suppression. Finally, a novel
multiple-text-map-aware contour-approximation strategy is developed, instead of

the route-finding process.

In the second approach, targeting building reliable connections between text



segments and alleviating error accumulation in bottom-up modelling, we propose a
novel approach to capture the regularity of texts by embedding deep morphology
for arbitrary-shape text detection so as to regularize false text segment detection
and link missing connections. Towards this end, two deep morphological modules
are designed to regularize text segments and determine the linkage between them.
First, a Deep Morphological Opening (DMOP) module is constructed to remove
false text segment detection accumulated in the feature extraction process. Then,
a Deep Morphological Closing (DMCL) module is proposed to allow text instances
of various shapes to stretch their morphology in all directions while deriving their

connections.

Using the detected arbitrary-shape text information in educational resources as
a primary cue, we propose a slide-based video navigation tool that can extract the
hierarchical structure and semantic relationship of visual entries in videos by inte-
grating multi-channel information. A clustering approach is proposed for restoring
the hierarchical relationship between visual entities. The restored visual entities
are then associated with their corresponding audio speech text by evaluating their

semantic relationship.

Dissertation directed by Professor Xiangjian (Sean) He
Dissertation co-directed by Dr. Wenjing Jia
Faculty of Engineering and Information Technology

University of Technology Sydney
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