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Active structural acoustic control using an experimentally
identified radiation resistance matrix

Joseph Milton, Jordan Cheer,a) and Steve Daley
Institute of Sound and Vibration Research, University of Southampton, Southampton, SO17 1BJ, United Kingdom

ABSTRACT:
Active structural acoustic control (ASAC) is a widely used active noise control technique that provides control of

structurally radiated noise through actuation of the radiating structure. Typically, ASAC drives structural actuators to

minimise a real-time measurement of the radiated sound field. However, it is often not practical to position error

microphones in the radiated sound field. To overcome this limitation, a number of methods have previously been pro-

posed. One such method utilises the radiation resistance matrix to map structural response measurements to the acous-

tic response and, thus, enable an estimate of the structurally radiated sound power from structural measurements alone.

This has previously relied upon precise modelling of the radiating structure which, for practical structures, can lead to

limitations in the accuracy of the estimate. In this paper, an ASAC strategy that utilises an experimentally identified

radiation resistance matrix is presented. The robustness of both the sound power estimation and the ASAC controller

to system uncertainties is investigated, and it has been shown that the proposed ASAC strategy is able to achieve effec-

tive control of the radiated sound power. VC 2020 Author(s). All article content, except where otherwise noted, is
licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1121/10.0000858
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I. INTRODUCTION

Active structural acoustic control (ASAC) is an effective

and lightweight solution for structure-borne sound radiation

and transmission problems. Generally speaking, ASAC aims

to minimise the sound pressure measured at an array of error

sensors located in the radiated sound field by controlling

structural vibrations using a distribution of structural actua-

tors. The application of such a system, however, can be lim-

ited for a number of reasons, which include the robustness of

sensitive acoustic error sensors, the practicality of placing

acoustic error sensors, and the discrete location of the error

sensors, and therefore, at higher frequencies, the limited

global acoustic control. A number of ASAC systems have

recently been developed that aim to overcome some or all of

these limitations by focusing on reducing the radiated sound

power, which, when minimised, ensures a global reduction.

However, measuring the radiated sound power directly is not

straightforward, and thus a number of publications have pro-

posed different approaches to controlling the structurally

radiated sound power using only structural measurements.1–7

One such approach recently proposed uses the weighted

sum of spatial gradients (WSSG) to attempt to control the

structural radiation.7,8 The WSSG can be measured using a

closely spaced array of four accelerometers, and it has been

shown that this provides a uniform measure across the sur-

face of a plate. Therefore, the WSSG sensor is insensitive to

its location and does not require a priori knowledge of the

structure.7 The WSSG control method has been shown

through both simulations and experiments to provide effec-

tive control of the sound power radiated from a flat plate.7

More recently, the method has been extended to a cylindrical

structure,8 where it has been shown to provide close to opti-

mal sound power control in numerical simulations. However,

its performance during experiments conducted using a practi-

cal cylindrical structure has been shown to have some limita-

tions due to discrepancies between the structural properties

and assumed boundary conditions.8 Nevertheless, the WSSG

method does potentially provide an ASAC method that is

convenient to implement in practice, requiring only a small

number of error sensors, even if multiple WSSG sensors are

required to improve the practical robustness.

Several alternative approaches to implementing ASAC

using only structural sensors include the use of the radiation

resistance matrix,2,4 which is able to completely describe

the radiation from a structure in terms of its radiation

modes.1 In this previous work, the radiation resistance

matrix has been calculated using a variety of different meth-

ods. For example, a number of publications have focused on

using analytical or numerical modelling to estimate the radi-

ation resistance matrix.4,9,10 These model-based methods

often rely on specific assumptions about the radiating struc-

ture, and this limits their practical performance.

These practical limitations have been addressed by vari-

ous publications that propose different methods to identify the

radiation resistance matrix experimentally.6,11 Koopmann and

Fahnline, for example, developed a method to measure the

elements of the radiation resistance matrix using a bespokea)Electronic mail: J.Cheer@soton.ac.uk, ORCID: 0000-0002-0552-5506.
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measurement probe, consisting of a loudspeaker and micro-

phone, called the resistance probe.11 This method relies on the

probe generating a known volume velocity on the surface of

the structure and a collocated measurement of the pressure. To

achieve an accurate measurement at higher frequencies, the

probe must be sufficiently small so that it represents a small

area of the radiating structure. However, this conflicts with the

requirement to generate sufficiently high volume velocity at

low frequencies. These opposing requirements mean that the

method has been shown to have a low frequency limit of

around 200 Hz and, therefore, may have limited applicability

in situations where active control would be appropriate.

Alternative methods of experimentally identifying the

radiation resistance matrix have focused on the formulation

and solution of a variety of inverse problems. For example,

Berkhoff proposed a method that uses the responses mea-

sured between a number of structural forces and distribu-

tions of both structural velocity and acoustic pressure

measurements to estimate the radiation resistance matrix.6

This method has been shown to be effective experimentally.

However, since measurements of the acoustic pressure are

used to calculate the radiated sound power, the radiating

structure must be located in a free-field acoustic environ-

ment and the pressure measurements must be taken in the

far-field. This may be infeasible for many practical struc-

tures, which cannot be relocated to a free-field acoustic

environment. To overcome this problem, an alternative

inverse problem–based method has been proposed that iden-

tifies the radiation resistance matrix experimentally using

the responses measured between a distribution of structural

forces and an array of structural velocity and near-field

acoustic pressure and particle velocity measurements.12 This

method has been shown to accurately estimate both the

sound power level and resonance frequencies of the radiat-

ing modes when using at least eight forces and both struc-

tural and acoustic sensors per acoustic wavelength.

This paper investigates how the radiation resistance

matrix identified according to the experimental method pro-

posed in Ref. 12 can be utilised in an ASAC system to esti-

mate and control the radiated sound power. For completeness,

Sec. II summarises the formulation and method to experimen-

tally identify the radiation resistance matrix according to the

method proposed in Ref. 12. Section III formulates the stan-

dard active vibration control (AVC) and proposed ASAC

strategies, which include a modification of the radiation resis-

tance matrix to ensure convergence. In Sec. IV, a practical

radiation control problem is defined and, in the first instance,

an estimate of the radiated sound power is calculated using the

experimentally identified radiation resistance matrix. The

robustness of this estimate is then assessed when random

uncertainties are introduced into both the structural and acous-

tic responses of the system. The performance of the proposed

ASAC strategy is then compared to that of an equivalent AVC

strategy, using the optimal control performance calculated off-

line utilising measured responses. The robustness of each con-

trol strategy is also investigated for the case when random

uncertainties are introduced into the physical responses. In

Sec. V, the proposed ASAC strategy is validated experimen-

tally in real-time, and then Sec. VI draws conclusions based

on the presented results.

II. EXPERIMENTAL IDENTIFICATION OF THE
RADIATION RESISTANCE MATRIX

In this section, the formulation for the experimental

identification of the radiation resistance matrix is described,

as previously presented by Milton et al.12

The sound power radiated from a structure at a single

frequency can be expressed in terms of the vectors of parti-

cle velocities, v, and acoustic pressures, p, measured over a

virtual surface enclosing the structure as

W ¼ A

2

� �
Re pHv
� �

; (1)

where A is the area over which the particle velocities and acous-

tic pressures are measured, divided by the number of measure-

ment positions.13 These acoustic pressures and particle velocities

can be expressed in terms of the structural responses as

p ¼ ~Hpq; and v ¼ ~Hvq; (2)

where q is the vector of structural responses measured on

the surface of the structure, and ~Hp and ~Hv are the transfer

response matrices between the structural responses and the

acoustic pressures and particle velocities, respectively. It

should be noted that the structural responses, q, can be rep-

resented by accelerations, velocities, or displacements.

Substituting Eq. (2) into Eq. (1) for the acoustic pressures

and particle velocities, the radiated sound power can be

written in terms of the measured structural responses as

W ¼ A

2

� �
Re qH ~H

H

p
~Hvq

n o
: (3)

Expanding this in terms of its real and imaginary parts

allows a simplification that gives

W ¼ A

4

� �
qH NH þ N½ �q ¼ qHRq; (4)

where N ¼ ~H
H

p
~Hv and the experimentally identified radia-

tion resistance matrix is defined as

R ¼ A=2ð ÞRe ~H
H

p
~Hv

h i
: (5)

Although Eq. (5) defines the radiation resistance matrix,

the matrices ~Hp and ~Hv cannot be measured directly since

each of the structural responses cannot be independently

driven and are only controllable via a fully coupled transfer

response matrix.5 However, it is possible to estimate these

matrices via the solution of an inverse problem.5,12,14–16

This inverse problem can be formulated by expressing the

structural responses, q, in terms of a distribution of struc-

tural forces, f, and a transfer response matrix as
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q ¼ Hsf; (6)

where Hs is the transfer response matrix measured between

the distribution of independently driven forces and the struc-

tural responses, which can be measured directly. The rela-

tionships between the three transfer responses and the

vectors of forces, structural responses, acoustic pressures,

and particle velocities are summarised by the block diagram

shown in Fig. 1. From this block diagram, or by substituting

Eq. (6) into Eq. (2), it can be seen that the acoustic pressure

and particle velocity vectors can be expressed as

p ¼ ~HpHsf ¼ Hpf and u ¼ ~HvHsf ¼ Hvf; (7)

where Hp and Hv are the matrices of transfer responses

between the forces and the acoustic pressures and particle

velocities, respectively. The matrices ~Hp and ~Hv can then

be obtained via the solutions to the two corresponding

inverse problems, that is,

~Hp ¼ HpH
†

s and ~Hv ¼ HvH
†

s ; (8)

where the superscript “†” denotes the pseudo-inverse opera-

tor. The particular solution to the pseudo-inverse is depen-

dent on the dimensions of the structural response matrix, Hs,

and the possible solutions are explained in detail in Ref. 12.

III. ACTIVE STRUCTURAL CONTROL STRATEGIES

In this section, two active structural control strategies

are formulated. The first, AVC, aims to minimise the sum of

the squared error signals measured on the surface of a struc-

ture directly, and the second, the proposed ASAC strategy,

aims to minimise an estimate of the radiated sound power

calculated using error measurements taken on the surface of

the structure along with the experimentally identified radia-

tion resistance matrix. The AVC strategy is used as a bench-

mark when assessing the performance and robustness of the

proposed control strategy.

A. AVC

The considered AVC system aims to minimise the sum of

the squared signals measured at Ls structural error sensors.

This can be defined at a single frequency by the cost function

Js ¼ eHe; (9)

where e is the vector of Ls error signals in the steady state,

measured on the surface of the plate. The vector of error sig-

nals, e, can be expressed as the linear superposition of the

primary disturbance measured at each sensor position and

the contribution due to the controller, which gives

e ¼ dþGu; (10)

where d is the vector of Ls primary disturbances, u is the

vector of M control signals, and G is the ðLs �MÞ matrix of

transfer responses measured between the control actuators

and the error sensors. By substituting Eq. (10) into Eq. (9),

the cost function can be written as

Js ¼ uHGHGuþ dHGuþ uHGHdþ dHd: (11)

If the matrix GHG is assumed to be positive definite, which

is generally the case,17 then the control signals that mini-

mise the cost function, Js, are generated by setting the deriv-

ative of Eq. (11) with respect to the real and imaginary parts

of u to zero. The optimal vector of control signals is then

u
ðAVCÞ
opt ¼ � GHGþ bI

� ��1
GHd; (12)

where b is a regularization term that introduces a limit on

the control effort, and I is the identity matrix.

For practical applications, the disturbance signals are

not known in advance and therefore, to minimise the sum of

the squared error signals in real-time, an algorithm that is

able to iteratively adjust the input to the control actuators, u,

is needed. In this case, the method of steepest descent has

been used to manipulate the measured signals and drive the

control actuators to minimise the sum of the squared error

signals. This update algorithm is written as

uðnþ 1Þ ¼ c uðnÞ � a bGH
eðnÞ; (13)

where n represents the current iteration step of the algo-

rithm, bG is an estimate of the plant response matrix, c is the

leakage factor, and a is the convergence gain. The leakage

factor, regularization coefficient, and convergence coeffi-

cient can be related as17

b ¼ ð1� cÞ
a

: (14)

A block diagram showing the adaptive implementation of

the AVC algorithm is shown in Fig. 2.

B. ASAC

The proposed ASAC strategy utilises the experimen-

tally identified radiation resistance matrix, along with

FIG. 1. Block diagram showing how the transfer responses, Hs; Hp;
Hv; ~Hp, and ~Hv relate to the forces, f, structural responses, q, particle

velocities, v, and acoustic pressures, p (Ref. 12).
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structural error measurements, to minimise a cost function

that estimates the structurally radiated sound power. Using

the radiation resistance matrix, along with the vector of error

signals measured on the surface of the plate, the cost func-

tion in this case is given, following Eq. (4), as

JW ¼ eHRe: (15)

Whilst the radiation resistance matrix, R, can be used to

estimate the radiated sound power from an excited struc-

ture,12,13 as in Eq. (4), it is not guaranteed to be positive def-

inite. This means that the cost function defined in Eq. (15) is

not guaranteed to have a global minimum. For this reason,

further steps must be taken in order to enforce positive defi-

niteness on the radiation resistance matrix.

This problem has been approached previously for a

broadband control system5 by calculating a linear time

invariant (LTI) model of a power transfer matrix via a non-

convex optimisation procedure, followed by further optimi-

sation to ensure positive definiteness. However, for tonal

control, this method is overly complex and likely to limit

the performance and stability of the control system when

excited off-resonance due to limitations in the accuracy of

the LTI model. For the tonal radiation problem considered

here, these limitations can be overcome via direct calcula-

tion of the nearest positive semi-definite matrix approxima-

tion of the radiation resistance matrix from the frequency

response data. This approximant can then be used in place

of R in Eq. (15) so that the cost function has a single global

minimum.

The nearest positive semi-definite matrix that approxi-

mates the radiation resistance matrix can be found using one

of two methods, which use either the two-norm or Frobenius

norm method.18 In this study, the latter method has been

used as it is less computationally demanding.15 The nearest

positive semi-definite matrix is given according to the

Frobenius norm by minimising

jjR� bRjj2F; (16)

where jj…jjF is the Frobenius norm,19 and bR is the positive

semi-definite approximant of the radiation resistance matrix,

R. The solution in this case is18

bR ¼ BþH

2
; (17)

where the symmetric part of R is given by

B ¼ ðRþ RHÞ=2, and the positive Hermitian matrix, H, is

given by the polar decomposition of B, which is given as

B ¼ UH, where UTU ¼ 1 and HTH � 0. Alternatively, the

symmetric positive semi-definite radiation resistance matrix,bR, can be calculated from the eigenvalue decomposition of

B, which is given as18

B ¼ ZKZ�1; (18)

where Z is the matrix of eigenvectors and K is the diagonal

matrix of eigenvalues, ki The positive semi-definite approx-

imant of the radiation resistance matrix, R, is then

bR ¼ ZYZ�1; (19)

where Y is the diagonal matrix formed from the eigenvalues

of K according to the rule

yi ¼ ki; if ki � 0; and yi ¼ 0; if ki < 0: (20)

That is, Y contains the positive eigenvalues of bR and the

negative eigenvalues are set to zero.

Using the positive semi-definite approximant of the radia-

tion resistance matrix, the cost function defined in Eq. (15) can

be rewritten to ensure that it has a single global minimum as

JW ¼ eH bRe; (21)

where bR is the positive semi-definite approximant of the

radiation resistance matrix. By substituting Eq. (10) for the

structural error signals into Eq. (21) and expanding, the cost

function becomes

JW ¼ ðdþGuÞH bRðdþGuÞ (22)

¼ uHGH bRGuþ dH bRGuþ uHGH bRdþ dH bRd:

(23)

As for AVC, the vector of optimal control signals, u
ðASACÞ
opt ,

is obtained by setting the derivative of Eq. (23) with respect

to the real and imaginary parts of u to zero, which gives the

vector of optimal control signals in this case as

u
ðASACÞ
opt ¼ � GH bRGþ bI

� ��1
GH bRd; (24)

where the regularization term has again been introduced to

limit the control effort.

As in Sec. III A, in practice, since the disturbance sig-

nals are not generally known in advance, an iterative algo-

rithm is required to minimise the cost function. The steepest

descent update algorithm in this case is given as

uðnþ 1Þ ¼ cuðnÞ � a bGH bR eðnÞ; (25)

where it can be seen that the approximant of the radiation

resistance matrix operates as a complex weighting on the vec-

tor of error signals. A block diagram showing the adaptive

implementation of this ASAC algorithm is shown in Fig. 3.

FIG. 2. Block diagram of the feedforward AVC system described by Eq. (12).
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IV. CONTROL OF RADIATION FROM A FLAT PLATE

In this section, the experimental setup used to investi-

gate the performance of the proposed ASAC strategy is

first described. The radiation resistance matrix for this

structure is then identified, and an estimate of the sound

power is calculated. The robustness of this sound power

estimate to uncertainty in both the structural and acoustic

responses is then investigated. The performance of both

AVC and the proposed ASAC system are nextcalculated

for the optimal cases offline using the measured system

responses, and the robustness of the two control strategies

is then investigated through the addition of uncertainty

into the physical responses.

A. System description

The radiating structure considered in this paper is a flat

aluminium plate of dimensions 0.414 m by 0.314 m, coupled

to a rigid enclosure, as shown in Fig. 4. A distribution of 12

lightweight inertial actuators, arranged as shown in Fig. 4,

has been fixed to the surface of the plate. These actuators

provide both the forces required to identify the radiation

resistance matrix, as detailed in Sec. II, and the control

forces used by the control strategies formulated in Sec. III.

Each actuator was approximately collocated with an acceler-

ometer, which was used to provide the required measure of

the structural response. The pressure and particle velocity

were measured above each accelerometer position, approxi-

mately 10 cm from the surface of the plate, using a

Microflown PU probe (The Netherlands) The primary dis-

turbance was provided by a loudspeaker located inside of

the enclosure, as shown in Fig. 4.

In order to validate the accuracy of the sound power

measurements using the planar grid of 12 sensor positions, a

preliminary study was carried out in which the radiated

sound power was measured according to BS EN ISO 9614

over a hemispherical surface with 72 sensor positions fully

enclosing the experimental rig.20 This preliminary study

confirmed that the adopted sound power measurement

method was accurate over the frequency range 60–350 Hz.

Therefore, to avoid the time-consuming nature of setting up

the fine grid of sensor positions on a hemispherical surface

for each of the control scenarios, the planar sensor array was

utilised.

B. Estimation of radiated sound power

To first identify the radiation resistance matrix, each of

the actuators was driven independently with broadband

white noise, and the structural and acoustic responses were

measured. Using these responses to form the structural and

acoustic transfer response matrices, the radiation resistance

matrix was identified according to the formulation in Sec. II.

The disturbance loudspeaker enclosed in the sealed cavity

below the plate, shown in Fig. 4(b), was then used to excite

the plate acoustically with broadband white noise. The radi-

ated sound power was next calculated directly using the

measured pressure and particle velocities as in Eq. (1), using

both the radiation resistance matrix estimated with the

method formulated in Sec. II and the positive semi-definite

approximant of the radiation resistance matrix. Figure 5

shows the measured sound power and the two estimates.

FIG. 3. Block diagram of the feedforward ASAC system described by

Eq. (25).

FIG. 4. (Color online) Photographs showing the plate mounted to a rigid

enclosure which contains the primary disturbance, a volumetric loudspeaker

(b). Fixed to the surface of the plate are 12 equally spaced actuators, each

approximately collocated with an accelerometer (a).

FIG. 5. (Color online) Sound power radiated from the plate shown in Fig. 2

when acoustically excited using white noise. The solid black line shows the

directly measured sound power, and the dashed blue and dotted-dashed red

lines show the sound power estimates calculated using the radiation resis-

tance matrix and the positive semi-definite approximant of the matrix,

respectively.
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From these results it can be seen that, over the presented fre-

quency range, the sound power estimated using the radiation

resistance matrix and the positive semi-definite approximant

of the matrix are approximately equivalent and both accu-

rately estimate the directly measured sound power. The

main differences between the estimates and the directly

measured sound power occur at frequencies above 350 Hz,

where the number of sensors and forces compared to the

acoustic wavelength reaches the limit identified in Ref. 12.

1. Robustness study

It has been assumed in the sound power estimations pre-

sented in Fig. 5 and previously in Ref. 12 that there is no

uncertainty in the response measurements used to calculate

the radiation resistance matrix. In practice, it is likely that

the nominal measured responses used to identify the radia-

tion resistance matrix will be subject to some level of uncer-

tainty since the physical responses will change over time

depending on the operational conditions. This could affect

the accuracy of the sound power estimate and, consequently,

the performance of the ASAC strategy. To assess the robust-

ness of the sound power estimate, a level of random error

has been introduced into the transfer response matrices and

its effect on the sound power estimate has then been evalu-

ated. Each transfer response with uncertainties in both its

magnitude and phase can be expressed as

hlm ¼ Dnh0lm
ej/n ; (26)

where h0lm
is the nominal transfer response between actua-

tor, m, and accelerometer, l, and Dn and /n are bounded nor-

mally distributed random numbers used to introduce a level

of uncertainty into the magnitude and phase of the response,

respectively.

In the following, three different levels of random uncer-

tainty are introduced into the structural and acoustic transfer

responses, as per Eq. (26) For each level of uncertainty, this

process was repeated 100 times to enable a statistical analy-

sis of how random uncertainties influence the sound power

estimation and, subsequently, the control performance.

Table I shows the upper and lower bounds of the normally

distributed noise introduced into the magnitude and phase of

the transfer response for each level of uncertainty.

To provide an illustration of how the assumed uncertain-

ties influence the nominal responses, Fig. 6 shows the magni-

tude and phase of the nominal transfer response between

actuator eight and accelerometer five, which correspond to

the two inner positions on the plate as shown in Fig. 4 The

shaded regions around the nominal response show the upper

and lower limits of the perturbed responses based on 100 iter-

ations of the random uncertainties. Independent uncertainty

was also added to the acoustic transfer responses using the

same process and bounds as for the structural response

uncertainties.

Figure 7 shows the sound power estimated using the

radiation resistance matrix with no error, along with three

shaded regions which show the range in the error in the

sound power estimate up to the 75th percentile for the three

levels of uncertainty described in Table I. For the lowest

level of uncertainty, ð61 dB and 5�Þ, it can be seen from

these results that the sound power estimate is robust to the

uncertainties in the transfer responses up to approximately

TABLE I. The upper and lower bounds on the normally distributed noise

introduced into the magnitude and phase of the transfer response for each

level of uncertainty.

Uncertainty, n Magnitude, D ðdBÞ Phase, / ð�Þ

1 61 65

2 63 615

3 66 630

FIG. 6. (Color online) Magnitude and phase of the transfer response

between actuator eight and accelerometer five. The nominal response is

shown by the solid blue line, and the upper and lower limits of 100

responses with added uncertainty are shown by the shaded regions.

FIG. 7. (Color online) Sound power estimate calculated using the radiation

resistance matrix. The blue line shows the estimate calculated using the

transfer response matrices with no uncertainty. The shaded regions show up

to the 75th percentile range of errors introduced into the estimate when 100

normally distributed uncertainties of 3 differing levels were introduced into

the 3 transfer response matrices.
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320 Hz. At higher frequencies, the range of error in the

estimate increases as the upper frequency limit of the

sound power estimate has been exceeded at around 350 Hz.

As the level of uncertainty is increased to 3 dB and 15�, the

range of errors in the sound power estimate at lower fre-

quencies increases. However, the estimate remains accu-

rate to within 2 dB up to approximately 250 Hz. Above

250 Hz, the range of the error in the sound power estimate

increases and is in excess of 10 dB above 300 Hz.

Increasing the level of uncertainty in the transfer responses

further results in a wider range of error in the sound power

estimate, and the frequency at which the estimation errors

begin to exceed 10 dB is reduced to around 250 Hz. These

results show that the sound power estimate is more robust

to uncertainties of the assumed form in the transfer

responses at lower frequencies. At higher frequencies, as

the sound power estimate approaches the upper frequency

limit defined by the source and sensor spacing, uncertain-

ties in the transfer responses have a greater effect on the

accuracy of the sound power estimate. Larger levels of

uncertainty in the transfer responses result in larger errors

in the sound power estimate and a decrease in the upper

frequency at which the sound power estimate is reasonably

accurate.

C. Optimal tonal control

The responses described in Sec. IV B and used to iden-

tify the radiation resistance matrix have been used to simu-

late optimal control of the plate for both AVC and the

proposed ASAC strategy. The vector of optimal control sig-

nals for each strategy was calculated according to Eqs. (12)

and (24) at each frequency over the range 60–400 Hz. The

regularization term in each case was set according to Eq.

(14), with a and c set to ensure the quickest possible stable

convergence for the real-time adaptive controllers defined

by Eqs. (13) and (25).

Figure 8 shows the sum of the squared error signals

measured on the surface of the plate and the radiated sound

power estimate for each control strategy before and after

control. These results show that, over the presented fre-

quency range, AVC achieves a greater reduction in the

structural response than ASAC, which at some higher fre-

quencies actually increases the level of the structural

response. In terms of the sound power estimate, at lower fre-

quencies, where the coupling between the structural

response and the radiated sound power is stronger, ASAC

and AVC achieve a similar level of sound power control.

However, above approximately 175 Hz, ASAC achieves a

much higher level of attenuation in the radiated sound power

than AVC. Above 255 Hz, AVC in fact struggles to achieve

more than approximately 5 dB attenuation and increases the

radiated sound power at some frequencies.

1. Robustness study

To assess the robustness of each control strategy to dif-

ferences between the physical and estimated plant

responses, random error was introduced into each control

system via inclusion of three different levels of normally

distributed random errors in the magnitude and phase of the

measured transfer responses, as in Sec. IV B 1. For AVC,

the uncertainties were introduced into the structural plant

estimate, bG, shown in the block diagram in Fig. 2. In the

ASAC system, the uncertainties were introduced into both

the structural plant estimate and the transfer responses that

were used to identify the estimated radiation resistance

matrix, bR, as in Sec. IV B 1.

Figure 9 shows the uncontrolled structural response

plotted along with the controlled structural response for both

AVC and ASAC, and Fig. 10 shows the uncontrolled sound

power estimate plotted along with the controlled sound

power estimate for both AVC and ASAC. The shaded

regions in each plot show the range of attenuation achieved,

up to the 75th percentile, when control was simulated for

100 iterations of the perturbed plant responses and radiation

resistance matrix for the 3 levels of uncertainty.

From the results presented in Figs. 9 and 10, it can be

seen that AVC is robust to 1 dB and 5� of uncertainty

FIG. 8. The sum of the squared error signals (a) and estimated sound power

(b) when the optimal control for both AVC (dashed line) and the proposed

ASAC strategy (dotted line) was implemented, plotted along with the

uncontrolled response (solid line).
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across the presented frequency range, losing no more than

approximately 3 dB attenuation in either the structural

response or the estimated sound power. For the proposed

ASAC strategy, 1 dB and 5� of uncertainty also reduces the

sound power attenuation performance at frequencies lower

than 250 Hz by no more than approximately 3 dB, and the

overall level of sound power attenuation remains greater

than that of AVC. As the control frequency approaches the

upper frequency limit of the radiation resistance matrix,

there is an increased reduction in the sound power attenua-

tion performance and the range of levels of attenuation also

widens, resulting in an enhancement in the sound power

level at frequencies above around 350 Hz. Although these

results demonstrate that the performance of the ASAC sys-

tem is more sensitive to uncertainties than AVC, it is impor-

tant to note that the level of sound power attenuation

achieved is greater than that of AVC up to 350 Hz. Above

350 Hz, the approximate limit of the radiation resistance

matrix identification procedure, ASAC results in an increase

in the estimated sound power.

As the level of uncertainty is increased to 3 dB and 15�

and then 6 dB and 30�, the range of variation in the con-

trolled structural response and sound power estimate for the

AVC system increases slightly and the overall level of atten-

uation decreases, apart from above approximately 280 Hz,

where there is little to no variation in the controlled sound

power estimate. Increasing the uncertainty in the proposed

ASAC system also widens the range of the controlled sound

power estimate and reduces the overall level of attenuation.

However, the increase in range and decrease in overall

attenuation is greater than that of AVC. This is because

uncertainties are introduced via both the structural plant

response, bG, and the radiation resistance matrix, bR It is clear

from this investigation that uncertainties in the practical sys-

tem should be considered when designing a practical ASAC

system. In particular, it is clear that the performance rapidly

decreases at frequencies greater than the upper limit of the

radiation resistance matrix identification method and, there-

fore, the proposed ASAC strategy should not be applied at

frequencies outside of its intended operating range.

FIG. 9. The sum of the squared error signals before (solid black line) and after (dashed black line) optimal control for both AVC (a) and the proposed

ASAC strategy (b). The shaded regions indicate the range of optimal control achievable when differing levels of uncertainty were introduced into the struc-

tural plant responses bG and bR.

FIG. 10. The estimated sound power before (solid black line) and after (dashed black line) optimal control for both AVC (a) and the proposed ASAC strat-

egy (b). The shaded regions indicate the range of optimal control achievable when differing levels of uncertainty were introduced into the structural plant

responses bG and bR.
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V. EXPERIMENTAL VALIDATION

In this section, results are presented for the AVC and

proposed ASAC strategies implemented in real-time to con-

trol, respectively, the vibration and radiation of the plate

shown in Fig. 4 when it is excited tonally at discrete fre-

quencies. Four frequencies were selected for this study, cor-

responding to resonances at 106 Hz, which is the breathing

mode of the plate; 186 Hz, which is the (1,3) mode; and

297 Hz, which is the (3,1) mode; and one off-resonance fre-

quency of 263 Hz. Using the same control hardware as

described in Sec. IV A, the plate was excited acoustically at

each frequency using a loudspeaker in the sealed cavity

beneath the plate. Each control strategy was then imple-

mented in real-time using the feedforward control architec-

tures described in Sec. III. The convergence gain and

leakage factors for each controller were set to ensure the

quickest stable convergence.

Table II shows the attenuation achieved in each of the

cost functions, Js and JW, as well as the directly evaluated

sound power after convergence at each frequency for the two

control strategies. These results validate the offline results pre-

sented in Sec. IV C with a clear performance advantage in

terms of the sound power control achieved by the proposed

ASAC strategy over AVC. Importantly, the results in Table II

also show that the sound power estimate being minimised by

the ASAC system, JW, matches the directly measured sound

power within 2 dB for the lowest three frequencies. At 297 Hz,

however, the sound power is underestimated by 4 dB for the

ASAC strategy, and this is thought to be related to the errors

inherent in the estimation of the radiation resistance matrix

that is used in the controller and the increased sensitivity to

practical uncertainties at higher frequencies in the ASAC con-

troller, as shown in Sec. IV C 1.

VI. CONCLUSIONS

This paper has proposed and investigated the perfor-

mance of a tonal ASAC strategy that utilises an experimen-

tally identified radiation resistance matrix to control the

sound power radiated from a structure using only structur-

ally located error sensors and control actuators. The pro-

posed ASAC strategy was investigated through both

simulations and experimental implementation for the flat

plate. The performance and robustness of the proposed

ASAC strategy was assessed via comparison to that of an

AVC system that utilises the same control hardware. Both

the simulated and experimental results have shown that at

lower frequencies, the sound power attenuation performance

of the two strategies is comparable; however, as the fre-

quency of the radiated sound increases, the proposed ASAC

strategy is able to provide significantly higher levels of

sound power attenuation compared to AVC. Thus, this vali-

dates the proposed ASAC strategy as an effective method

for controlling radiation from vibrating structures where it is

not otherwise straightforward to relate the structural

response to the radiated acoustic response.

Whilst the study presented has demonstrated the poten-

tial of the proposed ASAC strategy, there are also several

areas of interest that would require further investigation for

practical implementation of the strategy on a larger scale. It

is evident that the number of forces, and therefore, actuators,

required for this setup could quickly grow very large when

scaling the setup for larger radiating structures. Although

the number of forces used in this study is required for the

identification of the radiation resistance matrix, bR, it is not

necessarily needed for the actual control aspect. Therefore,

in order to reduce the number of permanent actuators

required by the system, further work will investigate the use

of temporary structural excitation to perform the identifica-

tion process. Similarly, the number of structural sensors has

the potential to increase significantly in scaling up for larger

structures and, therefore, future work could investigate the

use of remote sensing techniques in the controller to reduce

the number of permanent structural sensors required by the

system. Following these advancements, the identification

and control of more complex structures will be investigated

in future work. Additionally, the work presented in this

paper has only considered the tonal control problem, and for

a variety of practical problems this should be extended to

the control of broadband disturbances.
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