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a b s t r a c t

Gas-turbines are widely utilized in the power generation sectors as these require low operational
cost, have very good efficiencies among other turbines, and produce less pollution but required to
improve their performances further. This study used efficient and simple optimization methods of grey
Taguchi and ANN to enhance gas turbine performance. The objective was to increase ηth, horsepower,
and to decrease SFC and heat release of the industrial gas turbine (model # T-4502) by optimizing
different levels of input process parameters by gyey-Taguchi method. Finally, air inlet temperature of
28.8 ◦C,14400 rpm and cartridge filter were found as optimal input parameters at which gas turbine’s
performance improved with less consumption of natural gas. Moreover, ANOVA analysis revealed
that ‘air-inlet-temperature’ is the dominant and ‘type of air-inlet-filter’ is the least effective process
parameter with 71.17% and 1.40% impacts on the output parameters of the gas turbine.

Confirmatory test was carried out experimentally and by ANN at suggested optimal level of input
parameters, satisfactory results obtained which validates the effectiveness of the grey-Taguchi-method.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Abbreviations: GT, Gas Turbine; SFC, Specific fuel consumption; HR, Heat
Release; OA, Orthogonal array; DOE, Design of experiments; GRG, Grey
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QLF, quality loss function; ANOVA, Analysis of Variance; ANN, Artificial Neural
Network; GP, Mixed flow two-stage turbine; PT, Mixed flow single-stage gas
turbine; PLC, programmable logic controllers; SNGPL, Sui Northern Gas
Pipelines Limited
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1. Introduction

Gas Turbines have a broad range of applications in industry,
which are generally used to provide electrical energy and me-
chanical power mainly in the natural gas sector for services such
as prime movers for pipeline compression, gas lifting, gathering
of gas, boosting of gas, etc. (Soares, 2015; Kurz and Brun, 2009;
Bălănescu and Homutescu, 2019; Tahan et al., 2017). The gas
turbine used as a mechanical driver is more efficient than the
steam turbine (RK, 1995). The prime objective of a gas turbine
is to run at optimal parameters to give maximum efficiency by
utilizing the lower fuel consumption during operations in the
prevailing environmental conditions (Cao et al., 2016).

There are a lot of ways to increase the gas turbine output.
Some significant methods include control of humidity (Comodi
et al., 2015), air inlet temperature (Liu et al., 2019; Alhazmy
et al., 2006; Mohapatra and Sanjay, 2014a; Kwon et al., 2018) and
air filtration systems (Effiom et al., 2015; Talaat et al., 2018) as
well as the filter type. Such techniques have more influence on
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.egyr.2020.08.002
http://www.elsevier.com/locate/egyr
http://www.elsevier.com/locate/egyr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.egyr.2020.08.002&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mustabshirha@bzu.edu.pk
mailto:kalam@um.edu.my
mailto:m.mujtaba@uet.edu.pk
mailto:saira.alam865@gmail.com
mailto:m.nsr8080@um.edu.my
mailto:iqra.javed@umt.edu.pk
mailto:engr.attari@gmail.com
mailto:rizwanfarid004@gmail.com
mailto:tahirqureshi@bzu.edu.pk
mailto:shahid.iqbal@bzu.edu.pk
https://doi.org/10.1016/j.egyr.2020.08.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


M. Gul, M.A. Kalam, M.A. Mujtaba et al. / Energy Reports 6 (2020) 2394–2402 2395

t
a
h
e
p
2

s
t
l
c
d
2

s
t
a
t
o
e
t

r
c
f
i
e
a
o
c
o
o
2

s
d
o
b
i
t

n
d
e
D
u
r

t
c
m
a
a
t
p
p
e

v
r

t
p
(
c
a

hermal efficiency, heat rate, fuel consumption, and operational
vailability. Hosseini et al. have reported that inlet temperature,
umidity, and pressure drop have a dominant impact on the
xecution of the gas turbine owing to the air inlet cooling system,
articularly with the evaporative cooling system (Hosseini et al.,
007).
Air quality entering the gas turbine depends upon the filtration

ystems, and thus erroneous choice of filters can have catas-
rophic consequences. Filter-effectiveness creates less fouling and
ess deterioration, which is the key to maintain the higher effi-
iency and power, as the output power of a gas turbine mostly
epends on inlet air temperature and cleanliness (Effiom et al.,
015; Talaat et al., 2018)
Mohapatra and Sanjay (2014b) showed that some variables

uch as ambient temperature, compressor’s pressure ratio, inlet
emperature of compressor, the temperature at turbine inlet,
nd relative humidity have predominant effects on the execu-
ion of gas turbine power plant. Moreover, commercial meth-
ds adopted to cool the inlet air have also been reported as
ffective in improving the performance and efficiency of gas
urbine (Farzaneh-Gord and Deymi-Dashtebayaz, 2011).

The presence of foreign objects may cause engine deterio-
ation including compressor erosion and degradation of turbine
omponents, fouling of compressor airfoils, and corrosion. Hard
oreign objects are removed by proper filters which may further
nfluence engine horse power, engine temperature, and thermal
fficiency. So a gas turbine is fitted with a sophisticated complex
ir filter system for the proper filtration of the contaminations
f the system. Such filters are made up of different media in-
luding paper, cellulose, fiber, membrane, and glass. Each of them
ffers its own filtration capacity, performance, and life depending
n environments and applications (Effiom et al., 2015; Sennett,
007).
Researchers have shown that gas turbine performance is mea-

ured in terms of the compressor health and environmental con-
itions also affect the output of the axial air flow compressor
f gas turbines. Performance deterioration of a compressor can
e compensated by its washing. Both on-line and off-line wash-
ngs of a compressor have revealed pleasant effects on the gas
urbine’s performance (Ogbonnaya, 2011; Schneider et al., 2010).

Ambient air temperature at the inlet, relative humidity, and
ature of fuels made a direct impact on the gas turbine. Moreover,
ecrease in ambient air temperature at the inlet also increases the
fficiency of a plant (Alhazmy et al., 2006; Farzaneh-Gord and
eymi-Dashtebayaz, 2011). Also, the turbines working on nat-
ral gas discharge lesser pollutants when compared with those
unning on conventional fuels (Basha et al., 2012).

All of the above performance parameters should be optimized
o increase the performance of the gas turbine with less fuel
onsumption. This requirement needs a comprehensive experi-
ental testing study of gas turbine. Testing of gas turbine under
ll possible operating conditions is not only time consuming but
lso expensive. Contrary to conventional methods, some statis-
ical and mathematical optimization techniques are available to
rovides the best optimal reaction conditions with minimum
ossible runs of the experiment as compared to the single-factor
xperimental design.
RE (2002) analyzed and optimized the gas turbine through

ariation of different gas turbine cycles, involving important pa-
ameters such as temperature and pressure ratio.

Some researchers used multi-objective genetic algorithms op-
imization and genetic algorithms optimization with Pareto ap-
roach for maximizing the efficiency of gas turbine power plant
Ahmadi and Dincer, 2011; Hajabdollahi and Fu, 2017), the effi-
iency of turbojet engine (Atashkari et al., 2005), cooling of inlet

ir of gas turbine (Shirazi et al., 2014), and exergy efficiency
of biomass-based SOFC (solid oxide fuel cell) gas turbine with
minimum cost (Habibollahzade et al., 2019; Bang-Møller et al.,
2011; Facchinetti et al., 2012).

Juliano Pierezan et al. optimized the heavy-duty gas turbine
to reduce fuel consumption by using coyote optimization algo-
rithm (Pierezan et al., 2019).

Although the above mentioned optimized techniques are avail-
able to predict the arrangement of optimal parameters to improve
the required output results and better economic performance
of gas turbine but these are highly non-linear, time-consuming,
less efficient, and complex. Therefore more linear, simple and
efficient optimization technologies with less time should also
be explored to minimize the SFC at cruise conditions, capital,
and maintenance costs, as well as to maximize the performance,
efficiency, and specific thrust of the gas turbines.

Boulila et al. (2019) used a simple Taguchi optimization
method for designing a gas turbine blade but it requires more
number of experiments. Therefore, Taguchi with grey relational
analysis (GRA) based optimization methodology can be used
to overcome all these drawbacks. Moreover, this grey Taguchi
methodology requires less number of experiments.

Gul et al. (2016, 2019) carried out a useful multi-variable opti-
mization technique to maximize engine performance parameters
by utilizing Taguchi grey relational analysis and pointed out the
influence of input factors on a particular output response.

Karnwal et al. (2011) have utilized the Taguchi based grey
relation analysis for enhancing brake thermal efficiency of a
diesel engine with low emanations. Similarly, multi-response
grey Taguchi optimization techniques have also been widely
used in the development of industrialized sectors like in turning
process on CNC (Lin, 2004; Tzeng et al., 2009), hot turning pro-
cess (Ranganathan and Senthilvelan, 2011), casting process (Patel
et al., 2014; Anbuchezhiyan et al., 2018), machining and milling
processes (Jung and Kwon, 2010; Kopac and Krajnik, 2007; Singh
et al., 2004; Tsao, 2009), end milling of Al-alloy (Unnikrishna Pil-
lai et al., 2018), laser cutting (Tsai and Li, 2009), and energy
management systems (Yao and Chi, 2004), wire EDM (electric
discharge machining) process (Thangaraj et al., 2020). Moreover,
the artificial neural network tool can also be used significantly
for optimizing and validating any experimental data (Gul et al.,
2019; Nikpey et al., 2013). It is a non-linear function that develops
a complex relationship between inputs and targeted outputs
parameters and thus may predict the output responses accu-
rately (Kannan et al., 2013). Thus, the said ANN technique is
deemed to play a decisive role in the validation of the already
developed optimal results.

Although efficient grey Taguchi based optimization techniques
are successfully used for the industrial sector like in CNC, milling,
casting, welding, machining, and turning, laser cutting etc., but
reviewed studies showed that no one used it for the multi-
objective optimization of the industrial gas turbines to get better
economic performance with less fuel consumption. The purpose
of this research is to find the optimal combination of input
factors of industrial gas turbine (GT) model no: T-4502, which
helps in reducing the specific fuel consumption (SFC), heat rate
(HR), and increase horsepower & thermal efficiency of the gas
turbine. Presently, grey taguchi method is used to solve and
convert multiple-objective optimization parameters into a single-
objective output response. In the end, output responses of the
industrial gas turbine (GT) are measured experimentally at the
suggested optimal arrangement of input factors and validated by
the simulated results of the artificial neural network of MATLAB
software. ANN simulated results also ensured the usefulness of
the simple grey Taguchi method that can be used for analysis
and optimization of any type of turbine of any power plant of

the public or private sector.
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Table 1
Performance specification of the Gas Turbine.
Configuration Specifications ranges

Fuel Gas Liquid
NGP RPM 15000 15000
NPT RPM 15500 15500
Minimum horse power (kW) 2909.72 2822.47
Heat rate (kJ/kW-h) 13623.62 13775.01
Minimum compression ratio 8.6 8.6
Compressor mass flow (pps) 37.5 37.5

2. Materials and methodology

2.1. Experimental setup

In the current study, experiments were performed on two
hafts industrial gas turbine (GT) model no: T-4502 at public
ector organization SNGPL (Sui Northern Gas Pipelines Limited)
ultan, Pakistan. GT consisting of axial compressor, annular com-
ustor liner, mixed flow two-stage turbine (GP), and mixed flow
ingle-stage gas turbine (PT). The axial flow air compressor con-
ists of eleven stages. In Fig. 1 station 1 indicates the location of
easuring the air inlet filters differential in which there is an
larm setting mechanism through PLC, in order to observe the
ilter health. For the control of the air inlet ambient temperature,
ir inlet cooling techniques were adopted and thus the evapora-
ive cooling system was installed in the air inlet system. Station 2
hows the inlet of the compressor, while station 3 is the exhaust
f the combustor gases. The combustible gases enter into the
urbines (GP + PT) at station 4, and finally, the exhaust of the
gas turbine is released at location 5.

Air inlet temperature was controlled through an evaporative
ooling system to make an essential modification for a hot cli-
ate, as air inlet temperature is the primary parameter that
ffects the performance characteristics of the machine (Sanaye
t al., 2011; Zadpoor and Golshan, 2006).
Pressure transmitters, thermocouple, pressure gauges, lube oil

low meter and fuel flow meters were used during the experi-
entation.
The GP and PT are not mechanically coupled to each other, GP

uns independent of the PT, and PT runs by using the exhaust of
he GP. The other performance description of the gas turbine is
iven in Table 1.
In a gas turbine, both liquids, as well as gas, can be used as fuel

ut in this study natural gas was used as fuel. The experiments
ere performed on the performance testing facility of the SNGPL
ultan, Pakistan. PT was coupled with a dynamometer through

lexible coupling fully equipped with the instrumentation gad-
etry as well as mechanical equipment.
A dynamometer is used for torque measurement. This is then

sed for the calculation of the horsepower of the gas turbine.
hile the load variation on the power turbine during experimen-

ation was done with the pressurized water controlled through
ressure control valve impinging on a dynamometer. The fuel
ontrol valve was used for measuring, and thus controlling the
upply of the fuel during ramping and accelerating the engine.
or the measurement of gas turbine speed in rpm, magnetic picks
ere used to send signals in terms of frequency to control the
ystem for subsequent calculation.

.2. Grey Taguchi methodology

The grey Taguchi method categorizes the important factors
hich give the best contributions to the variation. The output
arameters can be determined at the various sets of input factors.
 a
Table 2
Experimental input variables and their levels.
Control
variables

Code Levels Output to be observed

1 2 3 Horse Power (HP)

Temp (◦F) A 28.8 13.66 15.5 Thermal efficiency (ïth)
Speed (RPM) B 15000 14700 14400 Specific Fuel

Consumption (SFC)
Filter types C Conical Cartridge Barrier Heat Rate (HR)

Table 3
Orthogonal array L9 (33).
Run No A B C

1 1 1 1
2 1 2 2
3 1 3 3
4 2 1 2
5 2 2 3
6 2 3 1
7 3 1 3
8 3 2 1
9 3 3 2

So L9 OA (orthogonal array) design was adopted to design ex-
periments and output responses were evaluated on OA suggested
combinations of given input parameters.

The grey Taguchi technique shows the connections between
actual and desired experimental data and converts numerous
quality characteristics into a single grey relational grade (GRG)
(Jung and Kwon, 2010). It allows knowing the optimal arrange-
ment of input factors that may influence the execution of the gas
turbine. The changing of the levels of input factors is required to
be specified. No of experiments to be performed increases with
the increase of levels of variation of input factors.

In the grey Taguchi method, suitable orthogonal array OA was
selected to investigate all parameters with their three different
levels. All these levels of variation for each input parameter are
shown in Table 2. An OA was used for the DOE on the basis of L9
(33).

Table 3 shows the L9 (33) OA for the experimental work.

2.3. Normalization of experimental data

As the main objective of current research is to increase the
thermal efficiency and horse Power keeping the heat rate as
well as SFC at their minimum values, so experimental data were
normalized by using higher the better & smaller the better cri-
teria (Lin, 2004). The considered criterion was completed with
respect to better quality aspects of interest (Ranganathan and
Senthilvelan, 2011).

Let the actual and comparable series are represented by Ro(l)
& Ri(l). While i = 1, 2, 3, 4, 5, 6 . . .m and l = 1, 2, 3, 4 . . . n.
Here m represents the total no of conducted experiments and n
represents the total no of observations of the given data.

The normalization of the original comparable series for maxi-
mizing the required outputs follows Eq. (1) i.e ‘‘larger the better’’
criteria.

R∗

i (l) =
Ri(l) − min Ri(l)

max Ri(l) − min Ri(l)
(1)

or the objective to minimize the output, ‘‘smaller the better’’
riterion is as follows as Eq. (2),

∗

i (l) =
max Ri(l) − Ri(l)

max Ri(l) − min Ri(l)
(2)

rey relational coefficient (GRC) is utilized to find relation among
ctual R (l) and comparable series R (l). The value of GRC will be
o i
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nity if these two series are the same. The GRC is formulated as

i =
∆min + γ · ∆max

∆oi(l) + γ · ∆max
0 ≤ γ ≤ 1 (3)

s ∆min and ∆max are the minimum and maximum estimations of
oi(l) series. ∆oi(l) is known as quality loss function & calculated
y subtracting estimated comparable series values of given data
rom the actual values. The quality loss function is utilized to
xamine that specific features are within the given specific limits
r not. γ is the distinguishing coefficient whose value is selected
s γ = 0.5.

oi(l) = (Quality Loss) = [R∗
◦ (l) − R∗

i (l)] (4)
∴ R∗

◦ (l) = 1.0

hen GRG is evaluated by using Eq. (5). The overall multi-response
ptimization of the turbine depends on the GRG i.e the average
f GRC.

=
1
n

n∑
l=1

εloi (5)

Here,[
n∑

l=1

εl = 1

]

2.4. ANOVA (analysis of variance) technique

The ANOVA can be executed on ‘Minitab’ statistical software
to find out the numerical implication of the performance affecting
optimized parameters. The percentage contribution of all the
input factors was measured to evaluate their significance. It is
revealed that input factors with greater F-value have a substantial
influence on multiple output parameters.

2.5. Validation of results by Artificial Neural Network (ANN)

MATLAB ‘nntool’ command was used to develop an artificial
neural network (ANN) that will revalidate the output responses at
optimum combination of input parameters (A1 B3 C2 in this case),
obtained from grey Taguchi optimization method. If the ANN pre-
dicted and experimental values at optimal combination are close
to each other, then the effectiveness of the optimal combination
can be ensured. This will lead to the investigation of performance
of gas turbine experimentally at optimum combination of input
parameters.

Three input (temperature, speed, filter type) and four output
(horse power, thermal efficiency, SFC, heat release) factors of the
network were represented by neurons, which works in a similar
manner as human brain neurons works.

Each neuron of ANN collects and stores the information during
their training from experimental data. Then, this trained network
Table 4
Experimental results based on OA.
Run
No

Orthogonal
array

Horse
power (kW)

Thermal
efficiency

Heat rate
(kJ/kW-h)

SFC (kg
/kW h)

A B C

1 1 1 1 3725 27.41 9284 37.5
2 1 2 2 3629 27.6 9212 35.1
3 1 3 3 3850 28 9165 36.3
4 2 1 2 3501 26.01 9782 40.1
5 2 2 3 3436.8 25.52 9594 38.25
6 2 3 1 3590 26.7 9440 37.03
7 3 1 3 4102 27.35 9300 35.67
8 3 2 1 3780 26.5 9245 34.02
9 3 3 2 3629 27.83 9145 36.9

was utilized to simulate the output responses at the optimal
set of input parameters suggested by the grey Taguchi method.
Neurons of each layer of ANN are connected with each other by
the transfer function (like logsis tansig or purelin) of synaptic
weights which helps in predicting the output response for any
desired combination. The structural model of the artificial neural
network is described in Fig. 2.

3. Results and discussions

3.1. Output response based on OA

Experimental results were obtained after experimentation car-
ried out according to orthogonal array DOE L9 (33). Nine exper-
ments were performed by taking three input variables with the
hree different levels to tabulate the output parameters i.e. horse
ower, heat rate, SFC, and thermal efficiency as shown in Table 4.

The experimental results show the output responses, which
re changing with input factors such as ambient temperatures.
he increase of ambient temperature at inlet & air density reduces
he mass flow rate and ultimately causes a decrease in horse
ower and thermal efficiency (Sanaye et al., 2011).
When air inlet filters were replaced, the changes in the inlet

ressure of the gas turbine were observed due to the different
fficiencies of air inlet filters. This loss in the input pressure
educes thermal efficiency and increases the SFC. Inefficient air
ilters caused a decrease in inlet pressure which in turn decreased
he density and air inlet mass. The decreased mass flow rate
urther reduced the output power and output pressure of the ax-
al compressor. As the exhaust pressure remained unchanged, so
he gas turbine pressure ratio decreased, and ultimately thermal
fficiency was also reduced. The decrease in horse power means
he reduction in fuel flow and heat rate caused by the behavioral
hanges of the cartridge filter. This pressure loss has the same
ffect as lower barometric pressure. It reduces air inlet mass,



2398 M. Gul, M.A. Kalam, M.A. Mujtaba et al. / Energy Reports 6 (2020) 2394–2402

s
p
i
1
e
c
t
c
i
d
r
t
r
t
t
c
&
c
t

3

3

d
w
m
w
t
m

t

3

a

Fig. 2. Natural and structural ANN model.
Table 5
Grey relation generation of output responses.
Horse power Thermal efficiency Heat rate SFC

0.566 0.238 0.218 0.572
0.71 0.161 0.105 0.178
0.378 0 0.031 0.375
0.902 0.802 1 1
1 1 0.705 0.696
0.769 0.524 0.463 0.495
0 0.262 0.243 0.271
0.483 0.605 0.157 0
0.71 0.069 0 0.329

compressor discharge pressure, shaft horse power, and fuel flow
rate.

Moreover, it has a secondary effect of making the inlet pres-
ure lower than the exhaust pressure, thus reducing the engine
ressure ratio as well. The lower pressure ratio causes a reduction
n both horse power (HP) and thermal efficiency. A reduction of
% in engine inlet pressure due to barometric pressure causes
xactly a 1% reduction in output air inlet mass, shaft horse power,
ompressor discharge pressure, and fuel flow. However, a reduc-
ion of 1% in engine inlet pressure due to inlet duct pressure loss
auses a 1% loss of thermal efficiency and almost 2% reduction
n power. Inlet pressure loss lowers the pressure (and thus the
ensity and mass flow rate) at the air inlet. The lower mass flow
ate lowers output power and compressor discharge pressure, but
he exhaust pressure remains unchanged so the engine pressure
atio and thus thermal efficiency are lowered. Higher air inlet
emperature causes an effect on the power to be reduced due
o the low mass flow rate and results in the increase of fuel
onsumption and heat rate. But the increase of horsepower (HP)
thermal efficiency along with the decrease of specific fuel

onsumption & heat release can be achieved simultaneously by
he grey Taguchi optimization technique.

.2. Grey Taguchi scheme

.2.1. Grey relational generation
As experimental results consist of the different units/

imensions, their comparative analysis cannot be made. So, it
as necessary to convert them into non-dimensional values. Nor-
alization of the experimental output data in comparable units
as done through grey relational generation by using ‘‘higher
he better’’ and ‘‘smaller the better’’ criteria for maximizing and
inimizing the output parameters and mentioned in Table 5.
Data is normalized between 0 and 1, and thus the value closer

o 1 indicates better performance (Kopac and Krajnik, 2007).

.2.2. Estimation of GRC and average GRG
A grey relational coefficient (GRC) has the ability to build up
connection between the actual series and comparable series
Table 6
Taguchi QLF (∆0 i) of each response.
Larger-the-better (Xi*) Smaller-the-better (Xi*)

Horse power Thermal efficiency Heat rate SFC

0.434 0.762 0.782 0.428
0.29 0.839 0.895 0.822
0.622 1 0.969 0.625
0.098 0.198 0 0
0 0 0.295 0.304
0.231 0.476 0.537 0.505
1 0.738 0.757 0.729
0.517 0.395 0.843 1
0.29 0.931 1 0.671

Table 7
The estimation of GRC and GRG for various arrangement.
Run
No

OA Grey relational coefficients
(Distinguishing coefficient G = 0.5)

GRG

A B C Horse
power

Thermal
efficiency

HR SFC

1 1 1 1 0.469 0.678 0.696 0.466 0.577
2 1 2 2 0.413 0.756 0.826 0.738 0.683
3 1 3 3 0.569 1 0.941 0.571 0.77
4 2 1 2 0.357 0.384 0.333 0.333 0.351
5 2 2 3 0.333 0.333 0.415 0.418 0.374
6 2 3 1 0.394 0.488 0.519 0.502 0.475
7 3 1 3 0 0.656 0.673 0.648 0.494
8 3 2 1 0.508 0.453 0.761 1 0.68
9 3 3 2 0.413 0.879 1 0.603 0.701

formed during the grey relational generation of the output nor-
malized data. Grey relational coefficient is calculated from the
quality loss function (QLF). QLF is the immediate measurement of
the level of variation among the actual and comparable series (Gul
et al., 2016; Jung and Kwon, 2010) and for optimization, this is a
specific target that needs to be achieved.

The target is a specified upper and lower limit, with the focal
point to be the middle point. Taguchi QLF provides a decent
approach to analyze the costs related to variability even within
the limits and consequently prompts to the decrease of the vari-
ability of gas turbine output performance parameters towards a
particular target value. Table 6 showing the QLF values, QLF is
a measure of the level of variation, a smaller value indicating
an approach towards an ideal target with a smaller loss. As the
objective was to maximize horsepower and thermal efficiency
so ‘‘larger the better’’ criteria was adopted for normalization.
Similarly, the target was to minimize heat rate and specific fuel
consumption so these are normalized by ‘‘smaller-the-better’’
criteria

Conversion of multi-objective cases to the single-objective
case can be made through GRC as shown in Table 7, which is
further used to determine the performance affecting parame-
ters (Jung and Kwon, 2010).
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able 8
verage grey relational grade.
Levels Input factors

Sr No: A B C

1 0.677 0.474 0.578
2 0.401 0.58 0.586
3 0.633 0.657 0.547
Delta 0.276 0.174 0.0323
Rank 1 2 3

Based on OA and Grey relational coefficient, Grey relational
rade is evaluated as shown in Table 7. GRG is required to find an
ptimal arrangement of input factors that would be suitable for
ptimizing all output parameters (Ma et al., 2010). A parametric
rrangement with higher GRG shows that it is nearer to the
ptimal values, and ensures better performance (Gul et al., 2016).

.2.3. Determination of average GRG
The orthogonal design of experiments ensures the indepen-

ent impact of input factors on GRG at various levels. An average
RG helps in defining the best parametric arrangement from all
ther types of parametric arrangements, that will give the desired
esults of output parameters.

Average GRG was established to convert a multi-objective
ariable into a single-objective variable. The average GRG mea-
ured for each level of input factors is summarized in Table 8.
The graphical response of average GRG of every input factor

t different selected levels shown in Fig. 3 and it is used for
hoosing an appropriate combination of input factors. This graph-
cal representation gives information about the more influence of
nput factor on the output results. As the highest point on the
raph is temperature rather than speed and air inlet filter which
ndicates that inlet temperature is a more important and sensitive
arameter and thus is placed at 1st rank position, as shown in
able 8. It has been proved practically that air inlet temperature
s the most influencing and significant factor for the process
arameters of gas turbine (Singh et al., 2004). Subsequently, the
ptimal parametric arrangement at which the required output
onsequences are achieved is given as (A1, B3, C2) = 28.8 as
temperature, 14 400 rpm as speed, and Cartridge as a filter

ype level. Air inlet ambient temperature of 28.8 ◦C, GT speed of
4 400 rpm and use of cartridge filter is the optimal arrangement
t which gas turbine offers maximum efficiency and more horse
ower, together with decreased heat rate and SFC.

.3. ANOVA analysis

Table 9 shows the ANOVA analysis, which was executed on
statistical problem-solving tool called Minitab 16. This showed
he most significant input factor in the form of the relative per-
entage of influencing factors, and thus concluded the most sub-
tantial input factor of optimal arrangement (Zębala and Kowal-
zyk, 2015).
ANOVA results showed that air inlet temperature is 71.17%

as the most significant impact on the performance of the gas
urbine, while the type of air inlet filter is the factor that has the
east effect on performance. From ANOVA analysis, Table 9 reveals
hat the factor A. Air inlet temperature with 71.16% is the most
ignificant factor for the optimization of the gas turbine, while
urbine speed contributes 27.43% to optimization. Air inlet filter
hares only about 1.4% contribution in the optimization of GT,
hich has obviously a very limited impact on the performance
f the turbine.
From the ANOVA analysis, it is clear that the air inlet tem-

erature has the most substantial impact on the performance
of the gas turbine. As low ambient air entering the axial flow
compressor has a high volume which is directly proportional to
the horse power and the turbine’s pressure ratio due to which its
thermal efficiency increases.

ANOVA analysis also cleared that optimal parameter air inlet
filter has a very minimum impact, while the cartridge filter causes
no pressure losses, thus pressure ratio as a whole remained the
same leading to no significant impact on the thermal efficiency
of the turbine. A gas turbine is not consuming much fuel due to
the lower ambient temperature. It is evident that the grey taguchi
method improves multiple responses in the optimization of gas
turbine performance parameters.

3.4. Validation of results by experimentation and ANN

After getting an optimal combination of input factors from the
grey Taguchi method the next step was to verify and validate
the output responses experimentally and also by an artificial
neural network. A1B3C2 optimal parameters were used for the
confirmation of the experiment. ANN model was consisted of
three input, hidden and output layers with 3, 14 and 4 neurons
respectively. These input, hidden and output layers have transfer
functions as logsig, tansig and purelin, as given in Fig. 4.

ANN model was trained by importing experimental data from
Table 5. During training, the number of neurons in the central
hidden layer was changed until the mean square error reduces
to 0.0527. Then this trained artificial neural network was used
to calculate output performance responses on the suggested op-
timal combination (A1B3C2). Screenshots of ANN simulation are
presented in Fig. 5.

Results obtained from the experiment and ANN are shown in
Table 10. Fig. 6 illustrates that experimental results and artificial
neural networking predicted results at the optimal combination
of input factors suggested by grey Taguchi are very close to each
other. This ensures the effectiveness and efficiency of the grey
Taguchi method in optimizing the input factors of the gas turbine.

These experimental and ANN results showed that a combina-
tion of the temperature of 28.8 ◦C and speed of 14400 rpm along
with cartridge filters offers sufficient power. With the increase
in speed, the power also increases because air inlet ambient
temperature is lower which means air entering the axial flow
compressor is dense and has large air volume.

Conclusion

In this study, the grey taguchi scheme was applied to optimize
the performance parameters of the gas turbine. The impact of
process parameters including inlet temperature, type of air inlet
filters, and rotor speed on power, heat rate, SFC and thermal
efficiency was investigated. Following are the key findings of the
study:

1. A1B3C2 (28.8 ◦C, 14400 rpm, cartridge filter) is the best
optimal input parameter’s combination predicted by grey
taguchi method. The said optimal arrangement had im-
proved the performance of gas turbine in terms of higher
thermal efficiency, higher horse power, lower heat rate,
and low SFC of natural gas.

2. ANOVA analysis revealed that among input parameters, air
inlet ambient temperature is the most influential parame-
ter with a 71.16% impact, while the type of air filter is the
least effective one with 1.4% impact on the performance
of the gas turbine. Although the air inlet filter is a neces-
sary accessory of the gas turbine, but it does not matter
which type of filter to be used, the main concern is only
maintenance of the air inlet filtration system.
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Fig. 3. Graph between average GRG and level of factor.
Fig. 4. ANN model.
Fig. 5. Development and training of ANN for simulation of results.
Table 9
ANOVA analysis.
Input factors Levels DOF Sum of square (SS) Mean square (MSS) F-value Contribution (%)

1 2 3

A 0.679 0.474 0.578 2 0.131 0.065 0.065 71.17%
B 0.401 0.58 0.586 2 0.05 0.025 0.025 27.43%
C 0.625 0.657 0.547 2 0.003 0.001 0.001 1.40%
Total 8 0.184 0.092 0.092 100%
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Fig. 6. Validation of results by experimentation and artificial neural networking.
Table 10
Validation of results.
Optimal combination of input factors: A1B3C2 (28.8 ◦C,
14400 rpm, cartridge filter)

Control variables: Experimental results ANN results

Horse power (kW) 3956 3847.81
Thermal efficiency (%) 27.78 28.08
HR (kJ/kW-h) 9267 9165.42
SFC (kg/ kW h) 36.92 35.74

3. Validation of results experimentally and by ANN suggests

that the grey Taguchi methodology is more efficient for the

optimization of any type of gas turbine.
4. This efficient and simple optimization methodology can be

utilized for optimization of any process parameters of gas

turbines used in power generation sectors to improve its

performance and efficiency.
Future recommendations

Optimization of gas turbine can also be done by using other
technologies like PSO, NSGA-II and AI based algorithms. Very little
research is available on these techniques.
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