
1 | INTRODUCTION

Patient-reported outcome measures (PROMs) are being used more often in healthcare systems as funders increasingly seek 
value-based care. Non-preference based PROMs are increasingly included in clinical studies, health service management and 
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Abstract
Non-preference-based patient-reported outcome measures (PROMs) are popular in 
health outcomes research. These measures, however, cannot be used to estimate 
health state utilities, limiting their usefulness for economic evaluations. Mapping 
PROMs to a multi-attribute utility instrument is one solution. While mapping is 
commonly conducted using econometric techniques, failing to specify the complex 
interactions between variables may lead to inaccurate prediction of utilities, result-
ing in inaccurate estimates of cost-effectiveness and suboptimal funding decisions. 
These issues can be addressed using machine learning. This paper evaluates the 
use of machine learning as a mapping tool. We adopt a comprehensive approach to 
compare six machine learning techniques with eight econometric techniques to map 
the Patient-Reported Outcomes Measurement Information System Global Health 
10 (PROMIS-GH10) to the EuroQol five dimensions (EQ-5D-5L). Using data 
collected from 2015 Australians, we find the least absolute shrinkage and selection 
operator (LASSO) model out-performed all machine learning techniques and the 
adjusted limited dependent variable mixture model (ALDVMM) out-performed all 
econometric techniques, with the LASSO performing better than ALDVMM. The 
variable selection feature of LASSO was then used to enhance the performance of 
the ALDVMM in a hybrid model. Our analysis identifies the potential benefits and 
challenges of using machine learning techniques for mapping and offers important 
insights for future research.
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research. However, these measures cannot be used to estimate health state utility values (henceforth “utilities”), limiting their 
usefulness for economic evaluations. Mapping non-preference based PROMs to a multi-attribute utility instrument (MAUI), 
which can be used to estimate utilities, is one solution to this problem (Kearns et al., 2013).

Mapping is a statistical technique used to link outcomes from non-preference-based PROMs (“explanatory variables”) to 
a MAUI using an alternative data source. The benefits of mapping have been acknowledged in a review of the UK's National 
Institute for Health and Care Excellence (NICE) appraisals conducted over 2004–2008 (Tosh et al., 2011), which found an 
increase in the use of utility mapping approaches, accounting for over a quarter of total submissions. Consequently, the updated 
NICE guidelines for 2013 recommended using mapping to estimate utilities in the absence of direct utility measures (National 
Institute for Health and Care Excellence, 2013). Mapping is also accepted by the Pharmaceutical Benefits Advisory Commit-
tee and the Medical Services Advisory Committee (MSAC) in Australia as an alternative approach for estimating utilities in 
economic evaluations (Department of Health, 2016; Medical Services Advisory Committee, 2016).

Existing literature on mapping health outcomes has adopted direct and indirect mapping approaches. The direct approach 
estimates utilities directly from explanatory variables. The indirect approach, also known as response mapping, first predicts 
the probabilities for each response to each MAUI question, and then uses relevant tariffs to convert them into utilities 
(Hernandez-Alava et al., 2014). The resulting algorithm can be applied to PROM data to estimate the associated utilities, and 
thus quality adjusted life years (QALYs) (Wailoo et al., 2017).

To investigate the validity of different mapping techniques, Brazier and colleagues undertook a systematic review of studies 
mapping between non-preference based PROMs, generic preference based measures and MAUIs (Brazier et al., 2010). They 
found most studies using the direct approach typically adopted the linear, ordinary least square (OLS) regression technique to 
predict health state utilities. This could result in inaccurate prediction of utilities since utilities are bounded at one and have 
a distribution skewed to the left (Ara & Brazier, 2008; Brazier et al., 2010; Crott & Briggs, 2010; Rowen et al., 2009). Other 
popular econometric techniques used to directly predict utilities include Tobit (Sullivan & Ghushchyan, 2006), generalizsed 
linear model (GLM) (Sharma et  al.,  2019), censored least absolute deviation (CLAD) (Kaambwa et  al.,  2006; Sullivan & 
Ghushchyan, 2006), and median regression (Wu et al., 2007). Each of these techniques are better suited to predict utilities 
than the OLS technique particularly in accommodating unique characteristics of utilities being bounded, and clustering at one. 
Specifically, the standard Tobit technique accounts for the bounded utilities but does not allow for a gap below the mass of 
observations at one found in preference-based measures (Sullivan & Ghushchyan, 2006). Certain families of GLM are able 
to accommodate flexible non-linear relationships but may produce inconsistent estimates when the link function is misspeci-
fied (Dakin et al., 2010). Median regression is more robust to outliers (Shaw et al., 2010) but does not consider utilities being 
bounded. The CLAD extends the median regression with the dependent variable constrained on a fixed interval (Powell, 1984). 
However, since cost-effectiveness analyses (the main reason for needing mapping exercises) are based on mean values, tech-
niques based on medians are less useful. For indirect mapping, multinomial logit (MLOGIT), ordered logit (OLOGIT), and 
generalized ordered logit (GLOGIT) have been applied in the literature (Gray et al., 2006).

Recently, mixture models such as the mixture beta regression model (Betamix) and the adjusted limited dependent variable 
mixture model (ALDVMM) have been adopted in mapping studies as preferred techniques due to their flexibility and ability 
to accommodate multimodality (Basu & Manca, 2012; Gray & Hernandez-Alava, 2018; Hernandez-Alava & Wailoo, 2015; 
Hernandez-Alava et al., 2013; Khan & Morris, 2014; Yang, Wong, et al., 2019; Young et al., 2015). The Betamix is a two-part 
model (consisting of a multinomial logit and a beta mixture model), which allows estimation of multimodal dependent varia-
bles bounded in an interval (Gray & Hernandez-Alava, 2018) and has been shown to out-perform linear regression (Khan & 
Morris, 2014; Yang, Wong, et al., 2019). ALDVMM is a mixture model of adjusted Tobit-like distributions (Hernandez-Alava 
& Wailoo, 2015), which deals with utility data's distributional features and accounts for the multimodality. ALDVMM assumes 
that utilities can be modeled as a mixture of multiple components, each representing a cluster of respondents with similar 
utility scores. It combines multiple component distributions with a multinomial logit model of the probabilities of component 
membership. ALDVMM has been shown to perform better than other traditional econometric techniques used in the mapping 
literature (Gray & Hernandez-Alava, 2018).

While mapping has become a common practice in estimating utilities, the characteristics of health utilities may limit the 
accuracy of mapping algorithms. In addition to being bounded highly skewed (full health) (Brazier et  al.,  2010), utilities 
often have conditional distributions that are not easily accommodated by standard parametric distributions. For economic 
evaluations, it is imperative for these utility predictions to be accurate. The relationships between PROMs and MAUIs are 
commonly non-linear and involve complex interactions among explanatory variables. In standard econometric techniques used 
for mapping, selection of the distribution function and explanatory variables are based on prior knowledge of the clinical rela-
tionships between the variables for standard statistical tests. Moreover, the probabilistic distribution of the error terms is often 
not explicit and the relevant explanatory variables and their relationship with utilities are not immediately apparent. Failing to 
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specify these relationships appropriately will reduce the accuracy of the mapping algorithm. One way to avoid this potential 
problem is to use machine learning techniques for mapping.

The use of machine learning has increased in recent years in all areas of research (Athey & Imbens, 2019), including health 
economics. Applications include estimating the treatment effects of medical interventions (Kreif et  al.,  2015), analysis of 
prescribing patterns (Schilling et al., 2016), identifying thresholds and hierarchies in funding decisions (Schilling et al., 2017), 
and predicting healthcare costs (Konig et al., 2013). The key strengths of machine learning techniques compared to standard 
econometric techniques are prediction accuracy and parsimony as there is less requirement to impose parameters. Machine 
learning does not require prespecifying the probabilistic distribution of the error term, selecting explanatory variables, or 
assuming their inter-relationships that is, additive or multiplicative interactions of their effect on the conditional mean of the 
outcome as well as their linear or non-linear associations with the dependent variable (Varian, 2014). This is particularly useful 
when explanatory variables are numerous, and their significance and potential interactions are unknown. While it is not feasible 
to test all the possible combinations of explanatory variables with standard econometric techniques, machine learning has the 
advantage of using data driven techniques to determine the relationships between explanatory variables and outcome (Breiman 
et al., 1984; Strobl et al., 2009).

The objective of this study was to evaluate the performance of machine learning techniques for mapping non-preference 
based PROMs to MAUIs compared to standard econometric techniques. In the absence of preference based measures, mapping 
predicts utilities from non-preference based PROMs. Given the predicted utilities are used in economic evaluation and ulti-
mately in funding decisions, producing a robust and appropriate mapping algorithm is crucial as the accuracy of a mapping 
technique affects the predicted utilities, and thus the estimated cost-effectiveness of an intervention. Thus, it is essential to 
compare the performance of commonly used econometric techniques with a selection of machine learning techniques, and 
choose the most accurate one (Yang, Devlin, & Luo, 2019).

One of the most popular and well-established PROM is the Patient Reported Outcomes Measurement Information System 
(PROMIS), developed by the National Institutes of Health in the United States in 2004. One of its three instrument types is the 
PROMIS short form Global Health 10 (PROMIS-GH10), which is a generic measure of health focusing on physical, mental and 
social well-being from the patient perspective (Cella et al., 2010; Hays et al., 2009). The PROMIS-GH10 is widely used across 
the world as the gold standard for patient-centered assessment. In Australia, New South Wales (NSW) Health has adopted 
PROMIS-GH10 as a key evaluation component of the NSW Health Integrated Care Strategy (Thompson et al., 2016). In the 
UK, the National Institute for Health Research has supported validating and calibrating PROMIS-GH10 for administration in 
clinical practices and research, in an attempt to unify the PROMs and shift toward a more patient-centered health system (Evans 
et al., 2018). Internationally, PROMIS-GH10 has been recommended as a core outcome measure in several clinical areas by the 
International Consortium for Health Outcomes Measurement (Nijagal et al., 2018; Salinas et al., 2016).

The growing preference toward patient reported outcomes has resulted in a rapidly expanding literature using PROMIS-GH10 
to collect patient reported data. Since a commonly used measure in economic evaluations is the EuroQol five dimensions 
(EQ-5D-5L), this paper predicted utilities from the PROMIS-GH10 response using EQ-5D-5L as the target measure of 
mapping. The relationship between PROMIS-GH10 and EQ-5D-5L questions is not obvious and given the complexity of 
the possible interactions among the questions and different levels, there is potential to explore the latest techniques such as 
machine learning to improve mapping accuracy. This paper makes three important contributions to the literature. First, based 
on the techniques used in the existing literature, we used a range of econometric techniques including linear regression, Tobit, 
median regression, GLM, CLAD, Betamix, ALDVMM, and GLOGIT and machine learning techniques including classifica-
tion and regression trees analysis (CART), bagged CART, random forests, Neural Networks (NN), quantile regression neural 
networks (QRNN), and least absolute shrinkage and selection operator (LASSO) to map from PROMIS-GH10 to EQ-5D-5L. 
To the best of our knowledge, this is the first study to apply multiple machine learning techniques to map non-preference 
based PROMs to a MAUI and compare them to econometric techniques. The only other study comparing the performance of 
econometric techniques to machine learning techniques was Park and Basu (2018), which assessed the predictive accuracy 
of these techniques in the context of risk-adjustment in the health insurance market. Second, capitalizing on our approach of 
comparing techniques, we combine the best performing machine learning technique (LASSO) and best performing economet-
ric technique (ALDVMM) to propose a hybrid model for prediction. This enabled us to highlight the advantage of combining 
machine learning and econometric techniques for better outcomes particularly since LASSO as a prediction technique cannot 
produce a mapping algorithm. Finally, while most existing studies focused on mapping PROMIS-GH10 to EQ-5D-3L (Revicki 
et al., 2009; Thompson et al., 2017), we undertook the first mapping exercise to map from PROMIS-GH10 to EQ-5D-5L, which 
has greater sensitivity and covers a wider range of health states. We provide a mapping algorithm to predict EQ-5D-5L utilities 
when only PROMIS-GH10 data is collected but a health economic evaluation is desired.
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The rest of this paper is organized as follows. The next section describes our data and the measures of performance followed 
by Section 3, where we discuss the methods. Section 4 presents the results and Section 5 concludes with a discussion.

2 | DATA

An online survey was conducted in February 2018 to collect responses to the PROMIS-GH10 and EQ-5D-5L instruments from 
a representative general population of 2015 Australians (Hays et al., 2009; Herdman et al., 2011). The PROMIS-GH10 consists 
of 10 questions about physical function, pain, fatigue, emotional distress, social health, and general perceptions of health. Each 
question measures the severity level ranging between one and five, except for pain which ranges from 0 to 10. Two summary 
scores of physical and mental health are derived from PROMIS-GH10 (Hays et al., 2009).

The five-level version of the EQ-5D has recently been introduced by the EuroQol Group to attain greater sensitivity to 
health states changes and a broader range of utilities than the previous three-level version (EQ-5D-3L) (Janssen et al., 2008). 
The EQ-5D-5L consists of five questions about mobility, self-care, usual activities, pain/discomfort, and anxiety/depression. 
Each dimension has five levels from having no problems to having extreme problems (Herdman et al., 2011). The EQ-5D-5L 
utilities were estimated using Australian tariffs (Norman et al., 2017), (see tab. 1, Approach 5 of their paper). Demographic 
information on age, sex, state, postcode, and an optional response to the Charlson Comorbidity Index (CCI) was also collected 
(Chaudhry et al., 2005).

3 | METHODS

All statistical analyses were conducted in STATA 16 and R (Version 4.0.3). The mapping techniques used in this paper comply 
with the ISPOR Good Practices for Outcomes Research Task Force Report (Wailoo et  al.,  2017), and the Mapping onto 
Preference-Based Measures Reporting Standards (MAPS) checklist (Dakin et al., 2018; Petrou et al., 2015) (see Appendix A 
for details).

3.1 | Overview

We developed algorithms to predict the conditional mean of the target measure (here EQ-5D-5L utilities) from the observations 
of the source measure (here PROMIS-GH10). The predictions were then compared with the actual target measure observations 
to assess the accuracy of the algorithms.

In direct mapping, source measure or explanatory variables (here the PROMIS-GH10 items or summary scores) were 
directly mapped onto the target measure or dependent variable (here EQ-5D-5L utility values). In comparison, indirect mapping 
was performed in two stages: the responses to each dimension of the target measure (EQ-5D-5L dimensions: mobility, self-care, 
usual activity, pain and discomfort and depression and anxiety) were considered as the dependent variable; and then the 
predicted responses were combined using a relevant tariff to estimate utilities.

3.2 | Measures of model performance

The performance of prediction models was measured by in-sample cross-validation using a k-fold technique (Fushiki, 2011) for 
10 folds. The dataset was randomly divided into k = 10 subsamples, of which k-1 = 9 subsamples were used as the estimation 
sample, and one subsample was used as the validation sample for testing the accuracy of the predictions. This process was 
repeated 10 times with each of the 10 subsamples used once as the validation data. The 10-fold cross-validation was performed 
for both machine learning and econometrics techniques to enable comparability. 1

The predictive accuracy was determined by the degree to which the predicted utilities reflected the observed utilities. 
The primary measure of predictive accuracy was average Mean Absolute Error (MAE) after truncation across the validation 
subsamples (Wailoo et al., 2017). While MAE was used as the primary measure of the predictive accuracy of each technique, 
other measures of predictive accuracy were also reported, including the MAE before truncation, the Mean Squared Error (MSE) 
before and after truncation, the predicted mean utility, the predicted minimum utility, and the predicted maximum utility. 2
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The predicted mean utility was reported as this is often used in cost-effectiveness analyses, while the minimum and maxi-
mum utilities were reported to assess how the techniques performed in the extremes. Plots comparing the distribution of the 
observed versus predicted utilities were also presented to examine how each technique fits different parts of the distribution. It 
is important to note that the goodness of fit criteria was based on overall utility and does not reveal the prediction accuracy of 
the techniques relating to the underlying items. This does not affect the analysis as the objective was to assess the prediction 
accuracy relating to the overall utility for each respondent, which can be used in cost-effectiveness analyses. Due to the lack of 
data on the five-level version of EQ-5D-5L, no external dataset was available, thus, only internal cross-validation was applied 
in this study.

3.3 | Econometric techniques

3.3.1 | Direct mapping

In direct mapping, where the explanatory variables (here PROMIS-GH10 items or summary scores) were directly mapped onto 
the EQ-5D-5L utility values, seven econometric techniques were used. This included linear regression, Tobit, median regres-
sion, GLM, CLAD, Betamix, and ALDVMM.

The dependent variable (target measure) in estimating the linear regression, Tobit, median regression, GLM and CLAD 
techniques was disutilities (=1-utilities) and predictions were deducted from one to estimate utilities. We used the utilities as 
the dependent variable to estimate the Betamix and ALDVMM models.

Four models based on the sets of explanatory variables were specified as follows:

 Set 1:
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 Set 3:
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)

, 1

]

 (4)

where EQ-5D-5Li represents the predicted utility for the individual i.
In set 1, EQ-5D-5L utilities were predicted using the physical (PROMIS-GH10 physical-score) and mental (PROMIS-GH10 

mental-score) health summary scores of PROMIS-GH10 (as continuous variables), age, age squared, and sex. In set 2, all the 
PROMIS-GH10 questions as continuous variables, age, age squared, and sex were included. The set 3 of explanatory variables 
consisted of PROMIS-GH10 questions as categorical variables (PROMIS-GH10_items_cat), age, age squared, and sex; and for 
set 4, PROMIS-GH10 questions, age (Age_cat), and sex (all as categorical variables) were considered. The age categories were 
defined based on Australian Bureau of Statistics (ABS) age categories (Australian Bureau of Statistics, 2017). Sets 1 and 2 were 
selected according to Revicki et al. (2009). Sets 3 and 4 directly included PROMIS-GH10 items to take into account the ordinal 
nature of PROMIS-GH10 responses (Revicki et al., 2009).
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In the estimation of GLM, the Modified Parks Test identified the family distribution of Poisson and log link for the EQ-5D-5L 
utilities (Manning & Mullahy, 2001). Results were reported with and without predicted utilities being truncated at one.

3.3.2 | Indirect mapping

In indirect mapping, the responses to each EQ-5D-5L question were the dependent variables, then the predicted responses were 
combined to predict utilities. As each question was modeled separately, each mapping algorithm consisted of five separate 
models. One set of explanatory variables was considered in indirect mapping, including PROMIS-GH10 questions as categor-
ical variables, age, and sex.

In indirect mapping, as the dependent variables are categorical variables with discrete outcomes, one option would be the 
use of the ordered logit model (OLOGIT) to predict the probability of each response level. The OLOGIT has the advantage of 
accounting for the order of categorical responses to EQ-5D-5L questions. However, the OLOGIT relies on an assumption of 
proportional odds or parallel lines/slopes. It generates a set of binary response models for the different ordered categories, in 
which the intercepts are different, but the coefficients for the explanatory variables are the same. This leads to the cumulative 
probability curves for the different ordered categories having parallel slopes. If this assumption is violated, OLOGIT provides 
biased estimates. An alternative to OLOGIT is the multinomial logit model (MLOGIT). However, it does not consider the ordi-
nal structure of the dependent variables.

In this paper, the generalized logit model (GLOGIT) was chosen over MLOGIT or OLOGIT as while it considers the ordi-
nal structure of the dependent variable; it is less restrictive in relaxing the parallel slopes assumption (Long & Freese, 2006). 
The conditional probability of an observation belonging to class m, (for m = 2–5) can be written as:

Pr (𝐸𝐸𝐸𝐸-5𝐷𝐷-5𝐿𝐿-𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑑𝑑|𝑋𝑋𝑑𝑑) =
𝑑𝑑𝑒𝑒𝑒𝑒(𝑋𝑋𝑑𝑑𝛽𝛽𝑑𝑑)

1 +
𝐽𝐽
∑

𝑗𝑗=2

𝑑𝑑𝑒𝑒𝑒𝑒(𝑋𝑋𝑑𝑑𝛽𝛽𝑗𝑗)

 (5)

where m denotes one of the five dimensions of EQ-5D-5L and 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴(𝑋𝑋𝑖𝑖𝛽𝛽𝑚𝑚) is normalized as 1 for the reference category.
GLOGIT generates several equations, each of them being a binary logistic regression that compares that group with a 

reference group, and each of them yields a probability that the observation falls into that category. Once these were obtained, 
individuals were assigned to one of the five levels using a Monte Carlo simulation approach where the predicted probabil-
ities were compared to a random number from a uniform distribution. We ran 100 Monte Carlo simulations across the full 
sample. This approach is known to produce a more accurate distribution of responses in each dimension of EQ-5D-5L (Gray 
et al., 2006). Then the predicted responses were combined and utilities were calculated using the Australian EQ-5D-5L tariff 
(Gray et al., 2006; Long & Freese, 2006; Norman et al., 2017).

3.4 | Machine learning techniques

Supervised machine learning techniques are primarily concerned with building predictive models that performs well in predict-
ing outcomes for yet unseen data. An important feature of these techniques making them suitable for mapping is their ability to 
incorporate a large set of variables in a non-linear pattern to improve prediction accuracy. We explored six supervised machine 
learning techniques to map from the PROMIS-GH10 to the EQ-5D-5L, including CART, bagging, random forests, NN, QRNN 
and LASSO. The choice of techniques was based on the relative advantage of each technique. For all the machine learning 
techniques, except for LASSO, the explanatory variables were not prespecified. Instead, the explanatory variables included 
was decided by the machine learning technique from the set of all the potential explanatory variables in the data (big model), 
including PROMIS-GH10 responses, age, and sex.

3.4.1 | Classification and regression trees analysis (CART)

Generating a CART model involves selecting explanatory variables, and the split points on those variables, until an optimal 
tree is constructed. A tree is a prediction algorithm that splits the data at nodes and grows. At each node, the value of one of the 
explanatory variables (e.g., age >50 or age =<50) determines the next split.
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Classification trees and regression trees are adopted when the dependent variable is discrete and continuous, respectively. 
The selection of explanatory variables and the splits are chosen by minimizing a cost function. While in econometric tech-
niques, the inclusion of explanatory variables (PROMIS-GH10 questions) or their interactions are predefined, CART has 
the flexibility to include variables and their interactions automatically. For example, the interaction between pain intensity 
(question 10 of PROMIS-GH10) and other PROMIS-GH10 questions (physical function, fatigue, emotional distress, etc.) may 
impact the EQ-5D-5L utility values. In addition to accommodating interactions, CART produces algorithms that can readily be 
expressed and easily understood (Breiman et al., 1984), making it more favorable for mapping.

In direct mapping using CART, the regression trees were generated for EQ-5D-5L utility values. The MSE between the 
observed and predicted utility values in each node was used to split the data and grow the tree. A range of restrictions was 
imposed on the tree construction such as the minimum number of observations in the node before the split (n = 10), complexity 
parameters (cp = 0.001), 10-fold cross-validation (xval = 10) and setting the “minisplit” and “maxdepth” at different numbers 
to control the size of the tree (Breiman et al., 1984). The tree construction was stopped when the cost of adding another split to 
the tree from the current node was above the value of the parameter cp.

For indirect mapping using CART, classification trees were grown for all five dimensions of EQ-5D-5L. In growing classi-
fication trees, the Gini index was used as the splitting criterion (Breiman et al., 1984; Varian, 2014; Venables & Ripley, 2002). 
Similar to regression trees, the fully-grown tree was pruned back to the point where cross-validation error was minimized.

The best sized regression and classification trees were chosen according to the smallest misclassification error within the 
estimation sample and smallest cross-validation error. In case of classification trees, the predicted responses to each dimension 
of EQ-5D-5L were combined, and an Australian tariff applied to calculate utilities (Norman et al., 2017). An example of a 
classification tree is presented in detail in Appendix B.

3.4.2 | Random forest and bagging (bagged CART)

The single tree generated by CART is highly susceptible to variance in data. There are ensemble approaches such as random 
forest and bagging that aim to minimize this variance in the prediction and thus improve predictive accuracy (Friedman 
et al., 2001). However, the lower variance comes with the cost of reduced interpretability, which makes it less desirable for a 
mapping exercise. The ensemble approaches were adopted in this study to compare the predictive accuracy of models, although 
they do not generate an algorithm. With these techniques a multitude of decision trees are generated and then aggregated to a 
single tree based on either the mode (for classification trees) or the mean prediction (for regression trees) of the individual trees 
(Strobl et al., 2009). Bagging improves variance by averaging the outcome from multiple fully-grown trees on variants of the 
training data. This reduces the risk of overfitting and substantially improves predictive accuracy compared to a single decision 
tree (Breiman, 1996, 2001; Liaw & Wiener, 2002). The random forest technique is a modification of the bagging technique. 
It improves variance by reducing correlation between trees by allowing a selection of a random subset of the explanatory 
variables at each split to grow independent trees, overcoming the problem of tree correlation inherent in bagging (Boehmke & 
Greenwell, 2019).

In direct mapping, random forests were developed for EQ-5D-5L utility values by splitting each node using a subset of 
explanatory variables (PROMIS-GH10 responses, age, and sex) each time. This technique was used to generate 500 decision 
trees from the randomly selected subsets of the training dataset for each tree. As each tree is well-fitted to a sub-sample of data, 
the final random forests generated by aggregating these individual trees are expected to fit the whole dataset perfectly. Bagging 
is performed similarly, however when splitting a node the whole set of explanatory variables is considered.

For indirect mapping using ensemble methods, the aggregated trees were generated for each dimension of EQ-5D-5L, and 
then the predicted values were combined, and an Australian tariff was applied to obtain utilities (Norman et al., 2017).

3.4.3 | Neural networks

Another machine learning method adopted was NN. Although the black box nature of NN is not desirable for this study, they 
were chosen for their prediction superiority and the ability to perform with a relatively small dataset (Fausett, 1994; Shaikhina 
& Khovanova, 2017). Moreover, the ability of NN to learn hidden relationships in the data without imposing any fixed relation-
ships makes it an excellent technique for prediction (Tu, 1996).

To estimate utilities with NN, we used a series of multi-layer perceptron feedforward NN, where the information flows from 
the input nodes (explanatory variables) through the hidden nodes (if any) to the output node (utilities). The model consisted of 
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an input layer of PROMIS-GH10 items, age and sex (12 nodes), different layers of hidden nodes, and one output node. With 
direct mapping the output was the EQ-5D-5L utilities, and with indirect mapping, the output was each dimension of EQ-5D-5L.

We also adopted another NN-based technique, QRNN, a mixed technique with the combined advantage of quantile regres-
sion and NN. This technique has the ability to model data with non-homogeneous variances and can capture non-linear patterns 
by using NN, thus advances the standard quantile regression (Cannon, 2011). Moreover, being more resistant to outliers, this 
technique allowed the predictions to preserve some aspects of the overall distribution of utilities. With this technique we used 
median regression NN, which was only adopted in direct mapping using PROMIS-GH10 items, age, and sex as inputs nodes 
to predict EQ-5D-5L utilities (output).

3.4.4 | Least absolute shrinkage and selection operator (LASSO)

We also included the machine learning technique, LASSO, because of its superiority in predicting utilities and model selection. 
Least absolute shrinkage and selection operator is a type of regression that uses the “shrinkage” technique by imposing a constraint 
on the parameters that cause regression coefficients for less important variables to shrink toward zero (Tibshirani, 1996). The 
remaining variables with non-zero coefficients are most strongly associated with the dependent variables, thus enhancing the 
prediction accuracy and interpretability of the results while reducing the issue of overfitting with regression models. The varia-
ble selection feature of LASSO is desirable for mapping. However, in this study we have a relatively small number of explana-
tory variables. In other mapping exercises using a source measure with a higher number of items and levels a method superior in 
variable selection could be more beneficial. For the present analysis, we used LASSO for both prediction and variable selection. 
The former was used as an additional machine learning technique for mapping and the latter was used to enhance the model 
performance when estimating the hybrid models (see Section 4.2.4).

For direct mapping, LASSO was implemented with several model specifications and the Poisson model was found to 
perform the best (Park & Hastie, 2007). For prediction with LASSO, two model specifications were considered. The first 
included only PROMIS-GH10 items, age, age squared, sex, and the second additionally included all two-way interactions of 
these variables. The training data was used to estimate the model parameters and then the best model was selected based on the 
smallest out-of-sample MSE. Similar steps were followed to estimate LASSO in the indirect mapping, with the binomial model 
chosen to predict each dimension of EQ-5D-5L. However, due to computational difficulties, only one set of variables without 
their interaction were reported in this case. 3

4 | RESULTS

4.1 | Descriptive statistics

The sample used to map from PROMIS-GH10 to the EQ-5D-5L comprised of 2015 Australian respondents who completed 
both instruments. Table 1 provides the sample descriptive statistics.

A high degree of overlap between the source and target measures contributes to more accurate mapping algorithms (Long-
worth & Rowen, 2013). The overlap between PROMIS-GH10 questions and EQ-5D-5L dimensions and utilities were measured 
by their correlation, using Spearman's rank correlation coefficients (Zar,  1972). Moderately strong statistically significant 
correlations between EQ-5D-5L utilities and PROMIS physical (Spearman's rho (ρ) = −0.69, p = 0.00) and mental health 
scores (Spearman's rho (ρ) = −0.47, p = 0.00) were observed. These correlations are desirable as the accuracy of a mapping 
technique depends on the magnitude of overlap between the source and target measures (Longworth & Rowen, 2013).

4.2 | Model performance

Table 2 presents the performance of all the econometric and machine learning techniques across a range of criteria. Figures 1–3 
compares the distribution of predictions with the observed distribution for the econometric techniques, direct mapping using 
machine learning techniques, and indirect mapping using machine learning techniques, respectively. Each econometric model 
was estimated separately for the four sets of covariates described in Section 3.1. We first evaluate the performance of the two 
types of techniques individually and then compare the two types.
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4.2.1 | Econometric techniques

Models using set 3 and set 4 consistently performed better than those using set 1 and set 2, which is expected since the ordinal 
nature of PROMIS-GH10 responses were not considered in the latter two sets. Our comparison is therefore based on these two 
sets of results. Overall, models using set 3 performed better than those using set 4, suggesting a quadratic functional form fits 
better than the dummy coded age variable. This is also expected since the categorization of a continuous variable would often 
lose information.

In estimation with ALDVMM 4 we considered two and three component models 5 and found the performance of the former 
to be superior to the latter. Assuming constant probabilities of component membership, no variables were included in the prob-
abilities of component membership, this might have affected the performance of three component model. The convergence was 
not achieved when we tried to fit a four-component ALDVMM. As expected, linear regression, median regression and CLAD 
overpredicted utilities (utilities >1) since they do not consider them being bounded.

Our primary measure of predictive accuracy, the MAE (after truncation), was the lowest for mixture models (ALDVMM 
and Betamix) using set 3, with values of 0.095826 and 0.096645, respectively. This is consistent with the literature, which 
suggests their superiority over traditional econometric models for their high level of flexibility (Gray & Hernandez-Alava, 2018; 
Hernandez-Alava & Wailoo, 2015). The next best performing model was median regression using set 3, whose MAE (after 
truncation) was 0.099122. The remaining models using set 3 had similar MAEs (after truncation), ranging from 0.103923 to 
0.107047. The indirect model GLOGIT performed rather poorly with a MAE of 0.107066. This performance ranking remained 
overall the same for MSE (after truncation) with the exception that the performance of GLOGIT was not the worst in this case.

Specifically, of all the econometrics techniques, the two mixture models (Betamix and ALDVMM) using set 3 and 4 were 
the most accurate in predicting the observed mean, with ALDVMM predicting it closer to the observed mean (0.820902). 
GLOGIT had the poorest performance in predicting the observed mean. All the models performed poorly in terms of predicting 
the observed minimum utility of −0.426200, with the best performing ones being median regression using set 3 (−0.410107) 
and two mixture models using set 3 (−0.353980 and −0.367103), and the worst performing being Tobit (−0.242088). The 
models performed better in terms of predicting the observed maximum utility of one. Among the models whose predictions did 
not exceed the bound, as expected, the indirect mapping approach GLOGIT performed the best with a maximum utility of one. 
The others performed similarly, however; the maximum utility ranged from 0.986097 to 0.988465. The comparison between 
the sample distribution and the distribution of the predictions is more revealing (Figure 1). All the models, apart from the two 
mixture models, performed poorly toward the extremes. It is particularly interesting that, while median regression could be rated 
as good as the two mixture models based on Table 2, it is clearly inferior in fitting the different parts of the full distribution.

Based on these comparisons, ALDVMM, closely followed by Betamix, was the best performing among the econometric 
techniques. The indirect model GLOGIT performed the worst, especially given its relatively poor mean utility prediction.
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Variables General population survey

Age (years)

 Mean (SD) 48.31 (17.79)

 Range 18–89

Female (%) 53.40%

EQ-5D-5L utilities

 Mean (SD) 0.82 (0.25)

 Range −0.43 to 1

 Utilities <0 (%) 38 (1.89%)

 Utilities = 1 (%) 440 (21.84%)

 Utilities >0.9 (%) 1120 (55.58%)

PROMIS-GH10

 Physical score (SD) 14.21 (2.87)

 Mental score (SD) 13.22 (3.45)

No. of observations 2015

Abbreviation: SD, standard deviation.

T A B L E  1  Descriptive statistics
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Models

MAE MSE

Mean 
(after 
truncation) Minimum

Maximum 
(before 
truncation)

Maximum 
(after 
truncation)

% Of 
observations 
predicted 
>1 before 
truncation

Before 
truncation

After 
truncation

Before 
truncation

After 
truncation

Actual 0.820901 −0.426230 1 1

Econometric models, direct mapping

 Explanatory variable set 1

 Linear 
regression

0.142246 0.137432 0.044354 0.042543 0.832334 0.267356 1.198189 1 5.11%

  Tobit 0.131474 0.131474 0.040423 0.040423 0.829745 0.203345 0.964564 0.964564

 Median 
regression

0.126732 0.126144 0.040256 0.039332 0.838288 0.181222 1.076223 1 5.26%

  GLM 0.135323 0.135323 0.042167 0.042167 0.839760 0.325465 0.985476 0.985476

  CLAD 0.139422 0.136421 0.044545 0.042567 0.835377 0.173245 1.377532 1 5.46%

  Betamix 0.137780 0.137780 0.040465 0.040465 0.830632 0.123434 0.956323 0.956323

  ALDVMM 0.135323 0.135323 0.038232 0.038232 0.830053 0.111389 0.968134 0.968134

 Explanatory variable set 2

 Linear 
regression

0.138100 0.130477 0.043210 0.042005 0.832442 0.253322 1.143212 1 5.06%

  Tobit 0.126243 0.126243 0.042901 0.042901 0.833654 0.196564 0.973114 0.973114

 Median 
regression

0.125325 0.124466 0.042132 0.038965 0.835564 0.186231 1.032231 1 5.11%

  GLM 0.129445 0.129445 0.041543 0.041543 0.834412 0.294223 0.985234 0.985234

  CLAD 0.135165 0.129321 0.044532 0.041345 0.834117 0.165564 1.144556 1 5.16%

  Betamix 0.121943 0.121943 0.037553 0.037553 0.830987 0.117326 0.975344 0.975344

  ALDVMM 0.120387 0.120387 0.036890 0.036890 0.829922 0.116745 0.977111 0.977111

 Explanatory variable set 3

 Linear 
regression

0.105861 0.105061 0.034974 0.034195 0.819438 −0.283661 1.013015 1 4.96%

  Tobit 0.103923 0.103923 0.030912 0.030912 0.817443 −0.243432 0.986097 0.986097

 Median 
regression

0.101734 0.099122 0.029041 0.028455 0.829874 −0.410107 1.020771 1 5.01%

  GLM 0.106531 0.106531 0.031326 0.031326 0.817477 −0.296354 0.988065 0.988065

  CLAD 0.108825 0.107047 0.035533 0.033462 0.829588 −0.333890 1.030432 1 5.31%

  Betamix 0.096645 0.096645 0.026508 0.026508 0.820799 −0.353980 0.988395 0.988395

  ALDVMM 0.095826 0.095826 0.025877 0.025877 0.820902 −0.367103 0.988465 0.988465

 Explanatory variable set 4

 Linear 
regression

0.109855 0.107442 0.036302 0.035441 0.820402 −0.285332 1.039458 1 5.01%

  Tobit 0.105336 0.105336 0.033271 0.033271 0.814437 −0.242088 0.986098 0.986098

 Median 
regression

0.103902 0.101391 0.031441 0.030102 0.830179 −0.375063 1.021416 1 5.21%

  GLM 0.107401 0.107401 0.032052 0.032052 0.816418 −0.287088 0.988033 0.988033

  CLAD 0.110184 0.108371 0.035336 0.034298 0.829330 −0.318164 1.089408 1 5.26%

  Betamix 0.100066 0.100066 0.029044 0.029044 0.819360 −0.355600 0.988022 0.988022

  ALDVMM 0.987012 0.987012 0.027421 0.027421 0.819057 −0.366211 0.988195 0.988195

T A B L E  2  Predicted statistics summary mapping PROMIS-GH10 to EQ-5D-5L
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4.2.2 | Machine learning

None of the machine learning techniques over predicted the utilities, thus the MAE before truncation and after truncation were 
identical. We used the LASSO technique to estimate a model without variables' interaction (LASSO 1), and a model with 
variables' interaction (LASSO 2). While LASSO 1 was used in both direct and indirect mapping, the inclusion of interactions 
was specific to direct mapping due to computational difficulty. The direct LASSO 1 model performed the best with a MAE of 
0.095523 while regression trees the worst with a MAE of 0.126756.

The best performing machine learning technique, direct LASSO 1, selected following variables to optimize the prediction: 
PROMIS-GH10 questions 1 (general health), question 4 (mental health), question 5 (social activities), question 6 (physical 
activities), question 7 (pain), question 9 (social activities), question 10 (emotional problems), sex, age, and age squared. The 
inclusion of two-way interactions in the direct LASSO 2 model, somewhat surprisingly, worsened the predictive performance 
and the MAE increased from 0.095523 to 0.101939.

In comparison, PROMIS-GH10 question 6 (physical activities), question 7 (pain), question 9 (social activities) and question 
10 (emotional problems) had high importance in predicting utilities with the regression tree as most splits for growing the tree 
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T A B L E  2  (Continued)

Models

MAE MSE

Mean 
(after 
truncation) Minimum

Maximum 
(before 
truncation)

Maximum 
(after 
truncation)

% Of 
observations 
predicted 
>1 before 
truncation

Before 
truncation

After 
truncation

Before 
truncation

After 
truncation

Machine learning, direct mapping

 CART 
(regression 
trees)

0.126756 0.126756 0.048433 0.048433 0.812054 −0.111331 0.981242 0.981242

 Random 
forests

0.111418 0.111418 0.037371 0.037371 0.818166 −0.202419 0.998012 0.998012

 Bagged 
CART

0.112339 0.112339 0.041446 0.041446 0.817192 −0.196299 0.991002 0.991002

  NN 0.107195 0.107195 0.033278 0.033278 0.818389 −0.245290 0.992866 0.992866

  QRNN 0.104027 0.104027 0.031190 0.031190 0.819744 −0.300812 0.997521 0.997521

  LASSO 1 0.095523 0.095523 0.025323 0.025323 0.820901 −0.399345 0.998733 0.998733

  LASSO 2 0.101939 0.101939 0.029339 0.029339 0.810058 −0.432911 0.964977 0.964977

Econometric models, indirect mapping

  GLOGIT 0.107066 0.107066 0.029267 0.029267 0.836044 −0.281108 1 1

Machine learning, indirect mapping

CART  
(classification  
trees)

0.118269 0.118269 0.041493 0.041493 0.860133 −0.190286 1 1

Random  
forests

0.107251 0.107251 0.031279 0.031279 0.843662 −0.235079 1 1

Bagged  
CART

0.111491 0.111491 0.032466 0.032466 0.846118 −0.222931 1 1

  NN 0.104729 0.104729 0.030422 0.030422 0.831362 −0.260450 1 1

  LASSO 1 0.104419 0.104419 0.030680 0.030680 0.830096 −0.355210 1 1

Note: Results were obtained from 10-fold cross-validation. Explanatory variables for set 1: the physical and mental health summary scores of PROMIS-GH10 (as 
continuous variables), age, age squared, sex; set 2: the PROMIS-GH10 items, age, age squared, sex; set 3: the PROMIS-GH10 (as categorical variables), age, age 
squared, and sex; set 4: the PROMIS-GH10, age, and sex all as categorical variables. LASSO 1: LASSO technique is used for prediction. Explanatory variables 
(without interactions) are only considered. LASSO 2: LASSO technique is used for prediction. Explanatory variables and their two-way interactions are considered.
Abbreviations: ALDVMM, adjusted limited dependent variable mixture model; Betamix, mixture beta regression model; CLAD, censored least absolute deviation; 
GLM, generalized linear model; GLOGIT, generalized logistic regression; LASSO, least absolute shrinkage and selection operator; MAE, mean absolute error; MSE, 
mean squared error; NN, neural networks; PROMIS-GH10, PROMIS short form Global Health 10; QRNN, quantile (median) regression neural networks.
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were based on responses to these questions. In classification trees, a set of different variables had high importance depending 
on the dimension. As an example, in predicting the depression and anxiety dimension, PROMIS-GH10 questions 10 (emotional 
problems) and question 4 (mental health states) had a greater contribution.

The predictive accuracy of regression and classification trees improved when random forests and bagging were applied. For 
regression trees, the MAE improved from 0.126756 to 0.111418 with random forests and to 0.112339 with bagging. For classi-
fication trees, the MAE improved from 0.118269 to 0.107251 with random forests and to 0.111491 with bagging. An example 
of classification tree prediction is presented in Appendix B.

Direct mapping with NN further improved the MAE to 0.107195 and indirect mapping with NN resulted in the MAE of 
0.104729. With QRNN, the MAE again improved to 0.104027.

This performance ranking remained the same for MSE. The direct machine learning techniques were more accurate in 
predicting the observed mean compared to the indirect ones, and direct LASSO 1 was the most accurate in predicting 0.820901 
exactly. Classification trees were the worst, predicting the mean as 0.860133. Both direct and indirect LASSO 1 and direct 
LASSO 2 performed well in terms of predicting the observed minimum utility of −0.426230, with the best performing ones 
being direct LASSO 2 (−0.432911) and direct LASSO 1 (−0.399345). Apart from direct LASSO 2, all the machine learning 
techniques performed well in predicting the maximum utilities, with the indirect techniques predicting the exact maximum util-
ity value of one, and the direct techniques predicting the maximum in the range 0.981242–0.998733. Direct LASSO 2 predicted 
0.9649770.

The comparison between the sample distribution and the distribution of the predictions gives more insights on how these 
techniques performed. Figures 2 and 3 suggest that, except LASSO models, all direct techniques fitted the distribution poorly. 
The indirect approaches using CART, random forest, bagged CART, and NN fitted better than the direct approaches.
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F I G U R E  1  Distribution of the observed versus predicted utilities using the econometric techniques. ALDVMM, adjusted limited dependent 
variable mixture model; Betamix, mixture beta regression model; CLAD, censored least absolute deviation; GLM, generalized linear model; 
GLOGIT, generalized logistic regression; MR, median regression [Colour figure can be viewed at wileyonlinelibrary.com]
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Overall, the direct LASSO 1 seemed to dominate all the other machine learning techniques. The indirect LASSO 1 also 
performed the best among all the indirect techniques. CART techniques (classification trees and regression trees) appeared to 
perform the worst overall. The performance of indirect approaches in each dimension of EQ-5D-5L is presented in Appendix D.

4.2.3 | Comparison of econometric and machine learning techniques

The direct LASSO 1 out-performed the best performing econometric model (ALDVMM using set 3) for all criteria, although 
only by a relatively small margin. The former had slightly smaller MAE and MSE, with the minimum prediction closer to the 
observed and the maximum better (i.e., closer to one). Both were able to predict the observed mean and fitted the distribution 
similarly. It is worth mentioning that, within the indirect mapping approaches, LASSO 1 out-performed the best performing 
econometric technique (GLOGIT).

4.2.4 | Estimating the hybrid model

Overall, the LASSO and ALDVMM techniques out-performed all the other machine learning and econometric techniques, 
respectively. However, the calculation of standard errors and variance-covariance matrices with LASSO is not straightforward. 
Moreover, LASSO regularization excludes some variables to estimate a simpler model. The correlation between the selected 
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F I G U R E  2  Distribution of the observed versus predicted utilities using direct mapping with machine learning techniques. LASSO 1: 
LASSO technique is used for prediction. Explanatory variables (without interactions) are only considered. LASSO 2: LASSO technique is used 
for prediction. Explanatory variables and their two-way interactions are considered. LASSO, least absolute shrinkage and selection operator; NN, 
neural networks; QRNN, quantile (median) regression neural networks [Colour figure can be viewed at wileyonlinelibrary.com]
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variables and those excluded might lead to bias in the estimated coefficients (Ahrens et al., 2019; Barlin et al., 2013; Lee 
et al., 2016).

Overcoming the limitation of LASSO and making use of the variable selection feature of this technique, we developed 
additional hybrid models (Hybrid 1 and Hybrid 2) wherein we improved model performance by combining machine learning 
and econometric techniques. Specifically, we first selected the variables using LASSO and then re-estimated ALDVMM using 
these variables.

However, choosing the variables using the whole sample and then re-fitting the model can be problematic as only the 
significant variables are chosen, and the standard errors cannot be trusted (Lee et al., 2016; Mullainathan & Spiess, 2017). One 
way to address this issue is to divide the dataset into two sub-samples and use one for the variable selection, and the other for 
estimation of the models (Zhao et al., 2017). Following this approach, we used half of the data for LASSO variable selection 
and then re-fitted ALDVMM with the selected variables using the other half of the data. Also, we estimated the ALDVMM 
with explanatory variable set 3 and LASSO separately with the exact estimation and validation sample (50% of the sample) to 
be able to compare the results.

For the Hybrid 1 model, we used the LASSO technique for variable selection among PROMIS-GH10 items, age, and 
sex (without their two-way interactions). For the Hybrid 2 model, we additionally included two-way interactions for variable 
selection.

The results presented in Table 3 suggests the Hybrid 1 model resulted in improved utility predictions in the extremes, with 
the MAE lower than the ALDVMM. The selected variables enabled ALDVMM to predict the minimum utility of −0.322932, an 
improvement of 0.016082 compared to −0.306850 predicted by the ALDVMM with set 3. Moreover, the superiority of mixture 
models in accommodating multimodality combined with the selected variables, resulted in better accuracy in predicting full 
health utilities. However, ALDVMM performed slightly better in predicting the exact mean. These results suggest LASSO's 
variable selection feature resulted in improving the performance of the ALDVMM in terms of MAE, minimum, and maximum 
utilities.

The hybrid model with the inclusion of interactions (Hybrid 2), on the other hand, did not improve the overall performance 
of the model. Although this model was superior in predicting the minimum utility, it was at the cost of a more inaccurate predic-
tion of the mean and maximum utility.

Overall, these results suggest that not only does direct LASSO one out-perform all other models in prediction, but also 
utilizing LASSO's variable selection feature improved ALDVMM's predictive performance.
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F I G U R E  3  Distribution of the observed versus predicted utilities using indirect mapping with machine learning techniques. LASSO 1: 
LASSO technique is used for prediction. Explanatory variables (without interactions) are only considered. LASSO, least absolute shrinkage and 
selection operator; NN, neural networks; QRNN, quantile (median) regression neural networks [Colour figure can be viewed at wileyonlinelibrary.
com]
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5 | DISCUSSION

There has been increased interest in machine learning techniques in the health economics literature with the presumption they 
will out-perform standard econometric techniques (Konig et al., 2013; Kreif et al., 2015; Schilling et al., 2017). However, there 
has been a realization that while econometric techniques can perform poorly regarding predicting complex and non-linear rela-
tionships, they are easier to implement and are superior in explaining and interpreting those relationships. This has inspired the 
use of hybrid econometric-machine learning techniques to predict and interpret complex relations (Boelaert & Ollion, 2018; 
Böheim & Stöllinger, 2021; Kauffman et al., 2017; Malhotra, 2021; Yu et al., 2007; Zheng et al., 2017).

This paper explored the feasibility of using machine learning techniques and combining them with econometric meth-
ods as a valuable tool for mapping PROMs to MAUIs. We used machine learning techniques to map from PROMIS-GH10 
to EQ-5D-5L and compared their performance to the standard econometric techniques previously adopted in the literature. 
Both direct and indirect techniques of mapping were applied, and utilities were estimated for six machine learning techniques 
(CART, random forests, bagged CART, NN, QRNN, and LASSO) and eight econometric techniques (linear regression, Tobit, 
GLM, median regression, CLAD, Betamix, ALDVMM, and GLOGIT).

The direct LASSO 1 model performed the best across the range of econometric and machine learning techniques, followed 
by ALDVMM with MAEs of 0.095523 and 0.095826, respectively. Similar to those observed in a previous study mapping 
PROMIS-GH10 to EQ-5D-3L by Thompson et al. (2017) using a substantially larger sample (n = 13,955) with MAEs ranging 
between 0.069 and 0.144.

CART techniques (classification trees and regression trees) were the worst performing machine learning techniques. 
Consistent with the literature, applying ensemble algorithms (Random Forest and Bagging) to them is essential as it increases 
prediction accuracy, although this improved performance comes at the cost of interpretability (Breiman, 1996, 2001; Friedman 
et al., 2001; Liaw & Wiener, 2002).The mapping literature has been dominated by the efforts of selecting optimal model spec-
ifications while less attention has been paid to variable selection. Our results suggest that the latter is equally important and 
should be considered in mapping exercises. Traditionally variables have been selected using a “cherry picking” approach or 
a “kitchen sink” approach, where the former is based on theory and the latter relies on the implicit variable selection through 
the coefficient values (Chen et al., 2019). The advantage of using machine learning techniques for variable selection has been 
emphasized in the literature (Athey & Imbens, 2019). However, the value of using LASSO for variable selection continues to 
be debated, with recent studies comparing the performance of several techniques reporting mixed results (Vasquez et al., 2016; 
Zou, 2006).

While LASSO out-performed the other techniques in prediction, the calculation of standard errors and variance-covariance 
matrices is not straight forward for LASSO, like any other machine learning techniques. Consequently, if a researcher was inter-
ested in more than the deterministic results of a cost-effectiveness analysis (e.g., probabilistic sensitivity analysis) then machine 
learning techniques could not be used to generate a mapping algorithm. Nevertheless, machine learning techniques' variable 
selection feature can be adopted to enhance econometric techniques. As it is examined in this study, combining this feature  with 
the best performing econometric techniques resulted in a hybrid model with improved predictive performance in several  
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Models MAE

Rank 
in 
MAE MSE

Rank 
in MSE Mean

Rank 
in 
mean Minimum

Rank in 
minimum Maximum

Rank in 
maximum

Hybrid 1 0.096125 2 0.026310 3 0.826410 3 −0.322932 3 0.998757 2

Hybrid 2 0.098943 4 0.298421 4 0.815864 4 −0.405733 1 0.979543 4

LASSO 1 a 0.095993 1 0.025773 1 0.826159 1 −0.347765 2 0.998831 1

LASSO 2 a 0.995188 5 0.029542 5 0.810641 5 −0.449753 5 0.969521 5

ALDVMM a 0.096341 3 0.026052 2 0.826335 2 −0.306850 4 0.988367 3

Actual observations in 
the validation sample 
(50% of dataset)

0.826099 −0.426230 1

Note: Hybrid 1: explanatory variables (without interactions) are selected by LASSO and the ALDVMM is re-estimated with the selected variables. Hybrid 2: 
explanatory variables (variables and their two-way interactions) are selected by LASSO and the ALDVMM is re-estimated with the selected variables.
Abbreviations: ALDVMM, adjusted limited dependent variable mixture model; LASSO, least absolute shrinkage and selection operator.
 aThese three models are re-estimated using 50% estimation and 50% validation sample to be comparable with Hybrid models, thus the statistics are different from ones 
previously reported in Table 2.

T A B L E  3  Performance of hybrid models

1539



criteria. The standard errors and variance-covariance matrices for the hybrid model are easy to obtain. However, to address 
overfitting bias, and acquire reliable standard errors, the parametric models are required to be estimated on a different sample.

Based on the performance of the hybrid models, we have proposed two algorithms to map from the PROMIS-GH10 to 
EQ-5D-5L in Appendix C. One is based on ALDVMM with explanatory variable set 3, and the other one is based on the Hybrid 
1 model which includes variables selected by LASSO technique and it is re-estimated with ALDVMM. The corresponding 
variance-covariance matrices are also presented in Appendix E.

It should be noted that in our estimation, the LASSO variable selection was implemented for several model specifications, 
with Poisson performing the best for direct mapping and binomial for the indirect mapping. However, the ALDVMM model 
was not included in the comparison as such an algorithm has yet to be developed. Our hybrid model represents a pragmatic 
approach that combines the power of LASSO variable selection and the flexibility of ALDVMM model specification. Indeed, 
this approach improved the original ALDVMM (without variable selection) on almost every metric. Nevertheless, how to 
implement the LASSO variable selection within the ALDVMM model and whether this may further improve the predictive 
performance are interesting questions and should be explored in future research.

In prediction with LASSO and the hybrid model, the inclusion of two-way interactions led to worse predictive performance 
than the exclusion of the interactions. This may be due to the high correlations between predictors and the relatively small 
sample size (so the interactions cannot be precisely estimated). However, it should be noted that considering interactions in 
LASSO led to the best performance on predicting lower utilities (but very poor performance on predicting high utility values), 
suggesting that when the health is poor, the interaction may play a more important role in predicting the utilities.

We adopted a sample splitting approach to obtain reliable standard errors to address regularization bias associated with the 
LASSO (Mullainathan & Spiess, 2017). However, there might be some concerns around the randomness associated with the 
method (i.e., different splits would yield different results). One possible way to resolve this issue is to perform multiple random 
splits and aggregate the information accordingly (Meinshausen et al., 2009). This should be explored in future studies.

Given these limitations with machine learning techniques for variable selection in general, including LASSO, these tech-
niques should be used and interpreted cautiously. However, we recommend a hybrid model can be regarded as a supplementary 
tool in mapping exercises to guide the variable selection and maximize predictive performance.

While an advantage of a machine learning technique is its capability to learn and improve its performance (Breiman 
et al., 1984), model interpretability and explainability restrict its application to mapping. The “black box” nature of some of the 
machine learning techniques imposes a significant limitation on their adoption as there is no algorithm that can be reported for 
another researcher to use. However, as shown in this paper, certain machine learning techniques like LASSO alongside standard 
econometric mapping techniques can enhance predictions by improving variable selection.

Moreover, the emerging field in machine learning of explainable Artificial Intelligence (AI) has demonstrated practical 
success in providing an insight into the “black box” (Holzinger et al., 2017). We believe research in explainable AI could facil-
itate the implementation of machine learning in patient reported data, and specifically in mapping.

Moreover, some machine learning techniques can optimize a joint loss function comprised of different items without 
collapsing them into an overall score. Recent machine learning literature has attempted to address this by relaxing the hypoth-
esis of the piecewise linear loss function in adopting multi-task learning (Brault et al., 2019; Dosovitskiy & Djolonga, 2019; 
Shoshan et al., 2019; Wang et al., 2019). Brault et al. (2019) proposed Infinite Task Learning, which jointly solves parametrized 
tasks for a continuum of parameters. Dosovitskiy and Djolonga (2019) proposed an approach “you only train once (YOTO)”, 
which trains one models across the entire space of different loss weightings. However, evidence on the reliable performance 
of these models for relatively small datasets like ours is not sufficiently validated and should be explored in the future studies.

While the advantage of using a machine learning technique is its capability to learn and improve its performance (Breiman 
et al., 1984), this capability is limited by the availability of data. Machine learning is data driven and usually requires a large 
dataset (optimally 75–100 observations per class) to work efficiently. In comparison, this study had 2015 observations, with 
some levels having less than 10 observations. This was more pronounced in lower utilities as only 2% of the respondents in the 
full sample reported negative utilities. While this is a smaller sample than some machine learning studies in other disciplines, 
ours is a substantial sample relative to other studies using machine learning in patient level health outcome research (Konig 
et al., 2013; Kreif et al., 2015; Schilling et al., 2017). With the likelihood of patient level datasets being relatively smaller in 
most future studies, we believe our analysis offer important insights for future studies aimed at evaluating a range of methodo-
logical techniques for mapping.

Our analysis was based on a single case study of mapping from PROMIS-GH10 to EQ-5D-5L. As with all mapping studies, 
there is uncertainty around the results and the differences in MAE, our primary measure of model performance. In fact, for a 
different dataset another model could perform better. Thus, future research applying machine learning to other data sets, involv-
ing different instruments, sample sizes, and types of respondents, would be needed to further validate our results.
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6 | CONCLUSION

This study makes two significant contributions to the literature. This is the first study to simultaneously consider a broad range 
of econometric and machine learning techniques for mapping and to compare their performance in predicting utilities. While 
most mapping literature has exclusively used econometric techniques that are parametric in nature and require some tweak-
ing (e.g., truncation, stepwise regression) that can lead to biases. A key advantage of using machine learning techniques for 
mapping is that they overcome the need to prespecify the functional specifications of the models. This would be an advantage 
if the PROM had a high number of items and levels. Our approach of combining econometric and machine learning techniques 
brings new insights to the mapping literature. Future research on mapping patient outcome data would further validate our 
results for predictive accuracy of machine learning techniques and hybrid models for different datasets. The second contribution 
of this study is the development of two mapping algorithms to map from the PROMIS-GH10 to the EQ-5D-5L.
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ENDNOTES
  1 For the machine learning techniques, we used the random pre-defined 10 subsamples used in the econometric techniques to predict the utilities. This 

enabled the comparability between machine learning and econometrics models.
  2 The MAE and MSE are expressed as: 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 =

∑𝑛𝑛
𝑖𝑖=1

|𝑦𝑦𝑖𝑖 − �̂�𝑦𝑖𝑖|

𝑛𝑛
 and 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 =

∑𝑛𝑛
𝑖𝑖=1 (𝑦𝑦𝑖𝑖− �̂�𝑦𝑖𝑖)

2

𝑛𝑛
 where n is the number of observations, yi  is the observed value 

of utilities, and 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 is predicted value by the mapping algorithm.
  3 The model failed to converge when all interactions were included.
  4 ALDVMM was estimated by using the Stata command “aldvmm”.
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  5 ALDVMM accounts for multimodality by modeling utilities as a mixture of multiple components, each representing a cluster of respondents with 
similar utility scores. Here the estimated models consisted of two components.

REFERENCES
Ahrens, A., Hansen, C. B., & Schaffer, M. (2019). LASSOPACK: Stata module for lasso, square-root lasso, elastic net, ridge, adaptive lasso estima-

tion and cross-validation.
Ara, R., & Brazier, J. (2008). Deriving an algorithm to convert the eight mean SF-36 dimension scores into a mean EQ-5D preference-based score from 

published studies (where patient level data are not available). Value in Health, 11(7), 1131–1143. https://doi.org/10.1111/j.1524-4733.2008.00352.x
Athey, S., & Imbens, G. W. (2019). Machine learning methods that economists should know about. Annual Review of Economics, 11(1), 685–725. 

https://doi.org/10.1146/annurev-economics-080217-053433
Australian Bureau of Statistics. (2017). Australian demographic statistics.
Barlin, J. N., Zhou, Q., St Clair, C. M., Iasonos, A., Soslow, R. A., Alektiar, K. M., Hensley, M. L., Leitao, M. M., Barakat, R. R., & Abu-Rustum, N. 

R. (2013). Classification and regression tree (CART) analysis of endometrial carcinoma: Seeing the forest for the trees. Gynecologic Oncology, 
130(3), 452–456. https://doi.org/10.1016/j.ygyno.2013.06.009

Basu, A., & Manca, A. (2012). Regression estimators for generic health-related quality of life and quality-adjusted life years. Medical Decision 
Making, 32(1), 56–69. https://doi.org/10.1177/0272989x11416988

Boehmke, B., & Greenwell, B. M. (2019). Hands-on machine learning with R. CRC Press.
Boelaert, J., & Ollion, É. (2018). The great regression. Revue Française de Sociologie, 59(3), 475–506. https://doi.org/10.3917/rfs.593.0475
Böheim, R., & Stöllinger, P. (2021). Decomposition of the gender wage gap using the LASSO estimator. Applied Economics Letters, 28(10), 817–828. 

https://doi.org/10.1080/13504851.2020.1782332
Brault, R., Lambert, A., Szabó, Z., Sangnier, M., & d’Alché-Buc, F. (2019). Infinite task learning in RKHSS. In Paper presented at the 22nd Interna-

tional Conference on Artificial Intelligence and Statistics.
Brazier, J. E., Yang, Y., Tsuchiya, A., & Rowen, D. L. (2010). A review of studies mapping (or cross walking) non-preference based measures of health 

to generic preference-based measures. The European Journal of Health Economics, 11(2), 215–225. https://doi.org/10.1007/s10198-009-0168-z
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140. https://doi.org/10.1007/bf00058655
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/a:1010933404324
Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees. Wadsworth International Group.
Cannon, A. J. (2011). Quantile regression neural networks: Implementation in R and application to precipitation downscaling. Computers & 

Geosciences, 37(9), 1277–1284. https://doi.org/10.1016/j.cageo.2010.07.005
Cella, D., Riley, W., Stone, A., Rothrock, N., Reeve, B., Yount, S., Amtmann, D., Bode, R., Buysse, D., Choi, S., Cook, K., DeVellis, R., DeWalt, D., 

Fries, J. F., Gershon, R., Hahn, E. A., Lai, J. S., Pilkonis, P., Revicki, D., … & Hays, R. (2010). The patient-reported outcomes measurement 
information system (PROMIS) developed and tested its first wave of adult self-reported health outcome item banks: 2005-2008. Journal of 
Clinical Epidemiology, 63(11), 1179–1194. https://doi.org/10.1016/j.jclinepi.2010.04.011

Chaudhry, S., Jin, L., & Meltzer, D. (2005). Use of a self-report-generated Charlson comorbidity index for predicting mortality. Medical Care, 43(6), 
607–615. https://doi.org/10.1097/01.mlr.0000163658.65008.ec

Chen, J. C., Dunn, A., Hood, K., Driessen, A., & Batch, A. (2019). Off to the races: A comparison of machine learning and alternative data for predict-
ing economic indicators. In Big Data for 21st Century Economic Statistics. University of Chicago Press.

Crott, R., & Briggs, A. (2010). Mapping the QLQ-C30 quality of life cancer questionnaire to EQ-5D patient preferences. The European Journal of 
Health Economics, 11(4), 427–434. https://doi.org/10.1007/s10198-010-0233-7

Dakin, H., Abel, L., Burns, R., & Yang, Y. (2018). Review and critical appraisal of studies mapping from quality of life or clinical measures to 
EQ-5D: An online database and application of the MAPS statement. Health and Quality of Life Outcomes, 16(1), 1–9. https://doi.org/10.1186/
s12955-018-0857-3

Dakin, H., Petrou, S., Haggard, M., Benge, S., & Williamson, I. (2010). Mapping analyses to estimate health utilities based on responses to the 
OM8-30 Otitis Media Questionnaire. Quality of Life Research, 19(1), 65–80. https://doi.org/10.1007/s11136-009-9558-z

Department of Health. (2016). Guidelines for preparing a submission to the pharmaceutical benefits advisory committee. Commonwealth of Australia
Dosovitskiy, A., & Djolonga, J. (2019). You only train once: Loss-conditional training of deep networks. Paper presented at the International Confer-

ence on Learning Representations.
Evans, J. P., Smith, A., Gibbons, C., Alonso, J., & Valderas, J. M. (2018). The national Institutes of health patient-reported outcomes measurement 

information system (PROMIS): A view from the UK. Patient Related Outcome Measures, 9, 345–352. https://doi.org/10.2147/PROM.S141378
Fausett, L. V. (1994). Fundamentals of neural networks: Architectures, algorithms and applications. Prentice Hall.
Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning. Springer series in statistics.
Fushiki, T. (2011). Estimation of prediction error by using K-fold cross-validation. Statistics and Computing, 21(2), 137–146. https://doi.org/10.1007/

s11222-009-9153-8
Gray, L. A., & Alava, M. H. (2018). A command for fitting mixture regression models for bounded dependent variables using the beta distribution. 

STATA Journal, 18(1), 51–75. https://doi.org/10.1177/1536867x1801800105
Gray, L. A., Rivero-Arias, O. R., & Clarke, P. M. (2006). Estimating the association between SF-12 responses and EQ-5D utility values by response 

mapping. Medical Decision Making, 26(1), 18–29. https://doi.org/10.1177/0272989X05284108

AGHDAEE Et Al.1542

https://doi.org/10.1111/j.1524-4733.2008.00352.x
https://doi.org/10.1146/annurev-economics-080217-053433
https://doi.org/10.1016/j.ygyno.2013.06.009
https://doi.org/10.1177/0272989x11416988
https://doi.org/10.3917/rfs.593.0475
https://doi.org/10.1080/13504851.2020.1782332
https://doi.org/10.1007/s10198-009-0168-z
https://doi.org/10.1007/bf00058655
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1016/j.cageo.2010.07.005
https://doi.org/10.1016/j.jclinepi.2010.04.011
https://doi.org/10.1097/01.mlr.0000163658.65008.ec
https://doi.org/10.1007/s10198-010-0233-7
https://doi.org/10.1186/s12955-018-0857-3
https://doi.org/10.1186/s12955-018-0857-3
https://doi.org/10.1007/s11136-009-9558-z
https://doi.org/10.2147/PROM.S141378
https://doi.org/10.1007/s11222-009-9153-8
https://doi.org/10.1007/s11222-009-9153-8
https://doi.org/10.1177/1536867x1801800105
https://doi.org/10.1177/0272989X05284108


Hays, R. D., Bjorner, J. B., Revicki, D. A., Spritzer, K. L., & Cella, D. (2009). Development of physical and mental health summary scores from 
the patient-reported outcomes measurement information system (PROMIS) global items. Quality of Life Research, 18(7), 873–880. https://doi.
org/10.1007/s11136-009-9496-9

Herdman, M., Gudex, C., Lloyd, A., Janssen, M., Kind, P., Parkin, D., Bonsel, G., & Badia, X. (2011). Development and preliminary testing of the 
new five-level version of EQ-5D (EQ-5D-5L). Quality of Life Research, 20(10), 1727–1736. https://doi.org/10.1007/s11136-011-9903-x

Hernandez-Alava, M., & Wailoo, A. (2015). Fitting adjusted limited dependent variable mixture models to EQ-5D. STATA Journal, 15(3), 737–750. 
https://doi.org/10.1177/1536867x1501500307

Hernandez-Alava, M., Wailoo, A., Wolfe, F., & Michaud, K. (2013). The relationship between EQ-5D, HAQ and pain in patients with rheumatoid 
arthritis. Rheumatology, 52(2), 944–950. https://doi.org/10.1093/rheumatology/kes400

Hernandez-Alava, M., Wailoo, A., Wolfe, F., & Michaud, K. (2014). A comparison of direct and indirect methods for the estimation of health utilities 
from clinical outcomes. Medical Decision Making, 34(7), 919–930. https://doi.org/10.1177/0272989X13500720

Holzinger, A., Biemann, C., Pattichis, C. S., & Kell, D. B. (2017). What do we need to build explainable AI systems for the medical domain? arXiv 
preprint arXiv.

Janssen, M. F., Birnie, E., Haagsma, J. A., & Bonsel, G. J. (2008). Comparing the standard EQ-5D three-level system with a five-level version. Value 
in Health, 11(2), 275–284. https://doi.org/10.1111/j.1524-4733.2007.00230.x

Kaambwa, B., Bryan, S., Barton, P., Parker, H., & Martin, G. (2006). Relationship between the EuroQol-5d and Barthel Index—examining the use 
of proxy outcome measures for older people.

Kauffman, R. J., Kim, K., Lee, S.-Y. T., Hoang, A.-P., & Ren, J. (2017). Combining machine-based and econometrics methods for policy analytics 
insights. Electronic Commerce Research and Applications, 25, 115–140. https://doi.org/10.1016/j.elerap.2017.04.004

Kearns, B., Ara, R., Wailoo, A., Manca, A., Alava, M. H., Abrams, K., & Campbell, M. (2013). Good practice guidelines for the use of statistical 
regression models in economic evaluations. PharmacoEconomics, 31(8), 643–652. https://doi.org/10.1007/s40273-013-0069-y

Khan, I., & Morris, S. (2014). A non-linear beta-binomial regression model for mapping EORTC QLQ-C30 to the EQ-5D-3L in lung cancer patients: 
A comparison with existing approaches. Health and Quality of Life Outcomes, 12(1), 163. https://doi.org/10.1186/s12955-014-0163-7

Konig, H. H., Leicht, H., Bickel, H., Fuchs, A., Gensichen, J., Maier, W., Mergenthal, K., Riedel-Heller, S., Schafer, I., Schon, G., Weyerer, 
S., Wiese, B., van den Bussche, H., Scherer, M., Eckardt, M., & MultiCare study group. (2013). Effects of multiple chronic conditions on 
health care costs: An analysis based on an advanced tree-based regression model. BMC Health Services Research, 13(1), 219. https://doi.
org/10.1186/1472-6963-13-219

Kreif, N., Grieve, R., Diaz, I., & Harrison, D. (2015). Evaluation of the effect of a continuous treatment: A machine learning approach with an appli-
cation to treatment for traumatic brain injury. Health Economics, 24(9), 1213–1228. https://doi.org/10.1002/hec.3189

Lee, J. D., Sun, D. L., Sun, Y., & Taylor, J. E. (2016). Exact post-selection inference, with application to the lasso. Annals of Statistics, 44(3), 907–927. 
https://doi.org/10.1214/15-aos1371

Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News, 2(3), 18–22.
Long, J. S., & Freese, J. (2006). Regression models for categorical dependent variables using Stata. STATA Press.
Longworth, L., & Rowen, D. (2013). Mapping to obtain EQ-5D utility values for use in NICE health technology assessments. Value in Health, 16(1), 

202–210. https://doi.org/10.1016/j.jval.2012.10.010
Malhotra, A. (2021). A hybrid econometric–machine learning approach for relative importance analysis: Prioritizing food policy. Eurasian Economic 

Review, 11(3), 1–33. https://doi.org/10.1007/s40822-021-00170-9
Manning, W. G., & Mullahy, J. (2001). Estimating log models: To transform or not to transform? Journal of Health Economics, 20(4), 461–494. 

https://doi.org/10.1016/s0167-6296(01)00086-8
Medical Services Advisory Committee. (2016). Technical guidelines for preparing assessment reports for the Medical Services Advisory Committee 

–medical service type: Therapeutic version 2.0. Department of Health, Commonwealth of Australia. http://www.msac.gov.au/internet/msac/
publishing.nsf/Content/0BD63667C984FEEACA25801000123AD8/$File/TherapeuticTechnicalGuidelines-Final-March2016-Version2.0-ac-
cessible.pdf

Meinshausen, N., Meier, L., & Bühlmann, P. (2009). P-values for high-dimensional regression. Journal of the American Statistical Association, 
104(488), 1671–1681. https://doi.org/10.1198/jasa.2009.tm08647

Mullainathan, S., & Spiess, J. (2017). Machine learning: An applied econometric approach. The Journal of Economic Perspectives, 31(2), 87–106. 
https://doi.org/10.1257/jep.31.2.87

National Institute for Health and Care Excellence. (2013). Technology appraisals: A guides to the methods of technology appraisal.
Nijagal, M. A., Wissig, S., Stowell, C., Olson, E., Amer-Wahlin, I., Bonsel, G., Brooks, A., Coleman, M., Devi Karalasingam, S., Duffy, J. M. N., 

Flanagan, T., Gebhardt, S., Greene, M. E., Groenendaal, F., R Jeganathan, J. R., Kowaliw, T., Lamain-de-Ruiter, M., Main, E., Owens, M., & 
Franx, A. (2018). Standardized outcome measures for pregnancy and childbirth, an ICHOM proposal. BMC Health Services Research, 18(1), 
953. https://doi.org/10.1186/s12913-018-3732-3

Norman, R., Viney, R., Mulhern, B., Brazier, J. E., Ratcliffe, J., Lancsar, E., & Flattery, M. (2017). A large Australian DCE with duration and dead 
to value EQ-5D-5L health states. In Paper presented at the 2017 EuroQol Meeting Barcelona.

Park, M., & Hastie, T. (2007). L1-regularization path algorithm for generalized linear models. Journal of the Royal Statistical Society: Series B, 69(4), 
659–677. https://doi.org/10.1111/j.1467-9868.2007.00607.x

Park, S., & Basu, A. (2018). Alternative evaluation metrics for risk adjustment methods. Health Economics, 27(6), 984–1010. https://doi.org/10.1002/
hec.3657

Petrou, S., Rivero-Arias, O., Dakin, H., Longworth, L., Oppe, M., Froud, R., & Gray, A. (2015). Preferred reporting items for studies mapping onto 
preference-based outcome measures: The MAPS statement. PharmacoEconomics, 33(10), 985–991. https://doi.org/10.1007/s40273-015-0319-2

AGHDAEE Et Al. 1543

https://doi.org/10.1007/s11136-009-9496-9
https://doi.org/10.1007/s11136-009-9496-9
https://doi.org/10.1007/s11136-011-9903-x
https://doi.org/10.1177/1536867x1501500307
https://doi.org/10.1093/rheumatology/kes400
https://doi.org/10.1177/0272989X13500720
https://doi.org/10.1111/j.1524-4733.2007.00230.x
https://doi.org/10.1016/j.elerap.2017.04.004
https://doi.org/10.1007/s40273-013-0069-y
https://doi.org/10.1186/s12955-014-0163-7
https://doi.org/10.1186/1472-6963-13-219
https://doi.org/10.1186/1472-6963-13-219
https://doi.org/10.1002/hec.3189
https://doi.org/10.1214/15-aos1371
https://doi.org/10.1016/j.jval.2012.10.010
https://doi.org/10.1007/s40822-021-00170-9
https://doi.org/10.1016/s0167-6296(01)00086-8
http://www.msac.gov.au/internet/msac/publishing.nsf/Content/0BD63667C984FEEACA25801000123AD8/$File/TherapeuticTechnicalGuidelines-Final-March2016-Version2.0-accessible.pdf
http://www.msac.gov.au/internet/msac/publishing.nsf/Content/0BD63667C984FEEACA25801000123AD8/$File/TherapeuticTechnicalGuidelines-Final-March2016-Version2.0-accessible.pdf
http://www.msac.gov.au/internet/msac/publishing.nsf/Content/0BD63667C984FEEACA25801000123AD8/$File/TherapeuticTechnicalGuidelines-Final-March2016-Version2.0-accessible.pdf
https://doi.org/10.1198/jasa.2009.tm08647
https://doi.org/10.1257/jep.31.2.87
https://doi.org/10.1186/s12913-018-3732-3
https://doi.org/10.1111/j.1467-9868.2007.00607.x
https://doi.org/10.1002/hec.3657
https://doi.org/10.1002/hec.3657
https://doi.org/10.1007/s40273-015-0319-2


Powell, J. L. (1984). Least absolute deviations estimation for the censored regression model. Journal of Econometrics, 25(3), 303–325. https://doi.
org/10.1016/0304-4076(84)90004-6

Revicki, D. A., Kawata, A. K., Harnam, N., Chen, W. H., Hays, R. D., & Cella, D. (2009). Predicting EuroQol (EQ-5D) scores from the patient-reported 
outcomes measurement information system (PROMIS) global items and domain item banks in a United States sample. Quality of Life Research, 
18(6), 783–791. https://doi.org/10.1007/s11136-009-9489-8

Rowen, D., Brazier, J., & Roberts, J. (2009). Mapping SF-36 onto the EQ-5D index: How reliable is the relationship? Health and Quality of Life 
Outcomes, 7(1), 27. https://doi.org/10.1186/1477-7525-7-27

Salinas, J., Sprinkhuizen, S. M., Ackerson, T., Bernhardt, J., Davie, C., George, M. G., Gething, S., Kelly, A. G., Lindsay, P., Liu, L., Martins, S. C., 
Morgan, L., Norrving, B., Ribbers, G. M., Silver, F. L., Smith, E. E., Williams, L. S., & Schwamm, L. H. (2016). An international standard set 
of patient-centered outcome measures after stroke. Stroke, 47(1), 180–186. https://doi.org/10.1161/STROKEAHA.115.010898

Schilling, C., Mortimer, D., & Dalziel, K. (2017). Using CART to identify thresholds and hierarchies in the determinants of funding decisions. Medi-
cal Decision Making, 37(2), 173–182. https://doi.org/10.1177/0272989X16638846

Schilling, C., Mortimer, D., Dalziel, K., Heeley, E., Chalmers, J., & Clarke, P. (2016). Using Classification and Regression Trees (CART) to identify 
prescribing thresholds for cardiovascular disease. PharmacoEconomics, 34(2), 195–205. https://doi.org/10.1007/s40273-015-0342-3

Shaikhina, T., & Khovanova, N. A. (2017). Handling limited datasets with neural networks in medical applications: A small-data approach. Artificial 
Intelligence in Medicine, 75, 51–63. https://doi.org/10.1016/j.artmed.2016.12.003

Sharma, R., Gu, Y., Sinha, K., Aghdaee, M., & Parkinson, B. (2019). Mapping the strengths and difficulties questionnaire onto the child health utility 
9D in a large study of children. Quality of Life Research, 28(9), 2429–2441. https://doi.org/10.1007/s11136-019-02220-x

Shaw, J. W., Pickard, A. S., Yu, S., Chen, S., Iannacchione, V. G., Johnson, J. A., & Coons, S. J. (2010). A median model for predicting United States 
population-based EQ-5D health state preferences. Value in Health, 13(2), 278–288. https://doi.org/10.1111/j.1524-4733.2009.00675.x

Shoshan, A., Mechrez, R., & Zelnik-Manor, L. (2019). Dynamic-net: Tuning the objective without re-training for synthesis tasks. In Paper presented 
at the IEEE International Conference on Computer Vision.

Strobl, C., Malley, J., & Tutz, G. (2009). An introduction to recursive partitioning: Rationale, application, and characteristics of classification and 
regression trees, bagging, and random forests. Psychological Methods, 14(4), 323–348. https://doi.org/10.1037/a0016973

Sullivan, P. W., & Ghushchyan, V. (2006). Mapping the EQ-5D index from the SF-12: US general population preferences in a nationally representative 
sample. Medical Decision Making, 26(4), 401–409. https://doi.org/10.1177/0272989X06290496

Thompson, C., Sansoni, J., Morris, D., Capell, J., & Williams, K. (2016). Patient-reported outcome measures: An environmental scan of the Austral-
ian healthcare sector. ACSQHC.

Thompson, N. R., Lapin, B. R., & Katzan, I. L. (2017). Mapping PROMIS global health items to EuroQol (EQ-5D) utility scores using linear and 
equipercentile equating. PharmacoEconomics, 35(11), 1167–1176. https://doi.org/10.1007/s40273-017-0541-1

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B, 58(1), 267–288. https://doi.
org/10.1111/j.2517-6161.1996.tb02080.x

Tosh, J. C., Longworth, L. J., & George, E. (2011). Utility values in national institute for health and clinical excellence (NICE) technology appraisals. 
Value in Health, 14(1), 102–109. https://doi.org/10.1016/j.jval.2010.10.015

Tu, J. V. (1996). Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. Journal 
of Clinical Epidemiology, 49(11), 1225–1231. https://doi.org/10.1016/s0895-4356(96)00002-9

Varian, H. R. (2014). Big data: New tricks for econometrics. The Journal of Economic Perspectives, 28(2), 3–28. https://doi.org/10.1257/jep.28.2.3
Vasquez, M. M., Hu, C., Roe, D. J., Chen, Z., Halonen, M., & Guerra, S. (2016). Least absolute shrinkage and selection operator type methods for the 

identification of serum biomarkers of overweight and obesity: Simulation and application. BMC Medical Research Methodology, 16(1), 1–19. 
https://doi.org/10.1186/s12874-016-0254-8

Venables, W. N., & Ripley, B. D. (2002). Tree-based methods. In Modern Applied Statistics with S. Statistics and Computing. Springer.
Wailoo, A. J., Hernandez-Alava, M., Manca, A., Mejia, A., Ray, J., Crawford, B., Botteman, M., & Busschbach, J. (2017). Mapping to estimate 

health-state utility from non-preference-based outcome measures: An ISPOR good practices for outcomes research task Force report. Value in 
Health, 20(1), 18–27. https://doi.org/10.1016/j.jval.2016.11.006

Wang, X., Yu, K., Dong, C., Tang, X., & Loy, C. C. (2019). Deep network interpolation for continuous imagery effect transition. In Paper presented 
at the IEEE Conference on Computer Vision and Pattern Recognition.

Wu, E. Q., Mulani, P., Farrell, M. H., & Sleep, D. (2007). Mapping FACT-P and EORTC QLQ-C30 to patient health status measured by EQ-5D in 
metastatic hormone-refractory prostate cancer patients. Value in Health, 10(5), 408–414. https://doi.org/10.1111/j.1524-4733.2007.00195.x

Yang, F., Devlin, N., & Luo, N. (2019). Impact of mapped EQ-5D utilities on cost-effectiveness analysis: In the case of dialysis treatments. The Euro-
pean Journal of Health Economics, 20(1), 99–105. https://doi.org/10.1007/s10198-018-0987-x

Yang, F., Wong, C., Luo, N., Piercy, J., Moon, R., & Jackson, J. (2019). Mapping the kidney disease quality of life 36-item short form survey 
(KDQOL-36) to the EQ-5D-3L and the EQ-5D-5L in patients undergoing dialysis. The European Journal of Health Economics, 20(8), 1195–
1206. https://doi.org/10.1007/s10198-019-01088-5

Young, T. A., Mukuria, C., Rowen, D., Brazier, J. E., & Longworth, L. (2015). Mapping functions in health-related quality of life: Mapping 
from two cancer-specific health-related quality-of-life instruments to EQ-5D-3L. Medical Decision Making, 35(7), 912–926. https://doi.
org/10.1177/0272989x15587497

Yu, L., Wang, S., & Lai, K. K. (2007). A hybrid econometric-AI ensemble learning model for Chinese foreign trade prediction. In Paper presented at 
the International Conference on Computational Science.

Zar, J. H. (1972). Significance testing of the spearman rank correlation coefficient. Journal of the American Statistical Association, 67(339), 578–580. 
https://doi.org/10.1080/01621459.1972.10481251

AGHDAEE Et Al.1544

https://doi.org/10.1016/0304-4076(84)90004-6
https://doi.org/10.1016/0304-4076(84)90004-6
https://doi.org/10.1007/s11136-009-9489-8
https://doi.org/10.1186/1477-7525-7-27
https://doi.org/10.1161/STROKEAHA.115.010898
https://doi.org/10.1177/0272989X16638846
https://doi.org/10.1007/s40273-015-0342-3
https://doi.org/10.1016/j.artmed.2016.12.003
https://doi.org/10.1007/s11136-019-02220-x
https://doi.org/10.1111/j.1524-4733.2009.00675.x
https://doi.org/10.1037/a0016973
https://doi.org/10.1177/0272989X06290496
https://doi.org/10.1007/s40273-017-0541-1
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1016/j.jval.2010.10.015
https://doi.org/10.1016/s0895-4356(96)00002-9
https://doi.org/10.1257/jep.28.2.3
https://doi.org/10.1186/s12874-016-0254-8
https://doi.org/10.1016/j.jval.2016.11.006
https://doi.org/10.1111/j.1524-4733.2007.00195.x
https://doi.org/10.1007/s10198-018-0987-x
https://doi.org/10.1007/s10198-019-01088-5
https://doi.org/10.1177/0272989x15587497
https://doi.org/10.1177/0272989x15587497
https://doi.org/10.1080/01621459.1972.10481251


Zhao, S., Witten, D., & Shojaie, A. (2017). In defense of the indefensible: A very naive approach to high-dimensional inference. arXiv preprint 
arXiv:1705.05543.

Zheng, E., Tan, Y., Goes, P., Chellappa, R., Wu, D., Shaw, M., Sheng, O., & Gupta, A. (2017). When econometrics meets machine learning. Data and 
Information Management, 1(2), 75–83. https://doi.org/10.1515/dim-2017-0012

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101(476), 1418–1429. https://doi.
org/10.1198/016214506000000735

SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Aghdaee, M., Parkinson, B., Sinha, K., Gu, Y., Sharma, R., Olin, E., & Cutler, H. (2022). An 
examination of machine learning to map non-preference based patient reported outcome measures to health state utility 
values. Health Economics, 31(8), 1525–1557. https://doi.org/10.1002/hec.4503

APPENDIX A

Index: tables included in the Appendix A
The mapping techniques used in this paper comply with the ISPOR Good Practices for Outcomes Research Task Force Report, 
and the Mapping onto Preference-Based Measures Reporting Standards (MAPS). Tables A1 and A2 provide the details of the 
two checklists.
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Section/topic
Item 
no. Recommendation

Reported on 
page no.

Title and abstract

 Title 1 Identify the report as a study mapping between outcome measures. State the source 
measure(s) and generic, preference-based target measure(s) used in the study.

1

 Abstract 2 Provide a structured abstract including, as applicable: Objectives; methods, 
including data sources and their key characteristics, outcome measures used 
and estimation and validation strategies; results, including indicators of model 
performance; conclusions; and implications of key findings.

1

Introduction

 Study rationale 3 Describe the rationale for the mapping study in the context of the broader evidence 
base.

2–4

 Study objective 4 Specify the research question with reference to the source and target measures used 
and the disease or population context of the study.

3–4

Methods

 Estimation sample 5 Describe how the estimation sample was identified, why it was selected, the 
methods of recruitment and data collection, and its location(s) or setting(s).

4

 External validation sample 6 If an external validation sample was used, the rationale for selection, the methods 
of recruitment and data collection, and its location(s) or setting(s) should be 
described.

NA

 Source and target measures 7 Describe the source and target measures and the methods by which they were 
applied in the mapping study.

4

T A B L E  A 1  Mapping onto preference-based measures reporting Standards (MAPS) checklist

(Continues)
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T A B L E  A 1  (Continued)

Section/topic
Item 
no. Recommendation

Reported on 
page no.

 Exploratory data analysis 8 Describe the methods used to assess the degree of conceptual overlap between the 
source and target measures.

8

 Missing data 9 State how much data were missing and how missing data were managed in the 
sample(s) used for the analyses.

NA

 Modeling approaches 10 Describe and justify the statistical model(s) used to develop the mapping 
algorithm.

5–8

 Estimation of predicted scores 
or utilities

11 Describe how predicted scores or utilities are estimated for each model 
specification.

5–8

 Validation methods 12 Describe and justify the methods used to validate the mapping algorithm. 5–8

 Measures of model 
performance

13 State and justify the measure(s) of model performance that determine the choice 
of the preferred model(s) and describe how these measures were estimated and 
applied.

4

Results

 Final sample size(s) 14 State the size of the estimation sample and any validation sample(s) used in the 
analyses (including both number of individuals and number of observations).

8

 Descriptive information 15 Describe the characteristics of individuals in the sample(s) (or refer back to 
previous publications giving such information). Provide summary scores for 
source and target measures, and summarize results of analyses used to assess 
overlap between the source and target measures.

8–9

 Model selection 16 State which model(s) is(are) preferred and justify why this(these) model(s) 
was(were) chosen.

9–15

 Model coefficients 17 Provide all model coefficients and standard errors for the selected model(s). 
Provide clear guidance on how a user can calculate utility scores based on the 
outputs of the selected model(s).

Appendix C

 Uncertainty 18 Report information that enables users to estimate standard errors around mean 
utility predictions and individual-level variability.

Appendix C&E

 Model performance and face 
validity

19 Present results of model performance, such as measures of prediction accuracy 
and fit statistics for the selected model(s) in a table or in the text. Provide an 
assessment of face validity of the selected model(s).

Tables 2 and 3

Discussion

 Comparisons with previous 
studies

20 Report details of previously published studies developing mapping algorithms 
between the same source and target measures and describe differences between 
the algorithms, in terms of model performance, predictions and coefficients, if 
applicable.

15–16

 Study limitations 21 Outline the potential limitations of the mapping algorithm. 16–17

 Scope of applications 22 Outline the clinical and research settings in which the mapping algorithm could be 
used.

15–17

Other

 Additional information 23 Describe the source(s) of funding and non-monetary support for the study, and the 
role of the funder(s) in its design, conduct and report. Report any conflicts of 
interest surrounding the roles of authors and funders.

17

Abbreviation: NA, not applicable.
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Recommendation Reported

1. Describe relevant differences between data sets that are candidates for 
mapping estimation.

One only dataset was used, which was collected for the purpose of 
this mapping study.

2. Give full details of the selected data set. Describe how the study 
was run and patients were sampled. Provide baseline and follow up 
characteristics including the distribution of patients' disease severity. 
Missingness in the longitudinal pattern of responses should be 
described.

How the study was conducted and patients sampled provided in 
Section 2 (Data), patient characteristics provided in Table 1.

Data was cross-sectional with all questions mandatory, except for 
the Charlson comorbidity index (CCI), which was not used in the 
mapping study. Hence there was no missing data.

3. Plot the distribution of the utility data. Distribution of the observed versus predicted utilities presented in 
Figures 1–3.

4. Justify the type of model(s) selected with reference to the 
characteristics of the target utility distribution and the proposed use of 
the mapping function.

Justification of models selected presented in Sections 3.3 and 3.4.

5. Compare the dimensions of health covered by the target utility 
instrument and those covered by the explanatory clinical measure(s).

Description of instrument dimensions provided in Section 2. 
Spearman's rank correlation coefficients presented in Section 4.1.

6. Describe the approach to determining the final model. Include tests 
conducted and judgments made.

Described in Section 3.2

7. Summary measures of fit are of limited value for the total sample. 
Provide information on fit conditional on disease severity as measured 
by the clinical outcome measure(s). A plot of mean predicted versus 
mean observed utility conditional on the clinical variable(s) should be 
included.

A range of summary measures are presented in Table 2. Distribution 
of the observed versus predicted utilities presented in 
Figures 1–3.

8. Coefficient values, error term(s) distributions(s), variances, and 
covariances are required.

Presented in Appendix C and E.

9. Provide an example predicted value for some sets of covariates. 
Consider providing a program that calculates predictions for user-
defined inputs.

Examples of machine learning presented in Appendix B. Example of 
how to estimate predicted utility value presented in Appendix C.

10. Parameter uncertainty in a mapping regression should be reflected 
using standard methods for Probabilistic Sensitivity Analysis (PSA). 
Assessment of model suitability for use in cost-effectiveness analysis 
should also consider the distribution of utility values for PSA, with 
particular focus on whether these lie outside the feasible utility range 
for the preference based measure (PBM).

Table 2 presents the proportion of observations truncated at one.

11. When imputing data from a mapping function, individual-level 
variability should be incorporated using simulation methods and 
information about the distribution of the error term(s). These 
simulated data can be compared with the raw observed data, including 
an assessment of the range of values compared with the feasible range 
for the PBM.

Not applicable – no imputation conducted.

12. Re-estimation of mapping results in a separate data set or other forms 
of validation are not routinely required.

Due to the lack of data on the five-level version of EQ-5D-5L, no 
external dataset was available, and only internal cross validation 
was applied in this study (mentioned in Section 3.2).

Note: Summary of reporting of mapping studies recommendations.

T A B L E  A 2  Mapping to estimate health-state utility from non-preference-based outcome measures: An ISPOR good practices for outcomes 
research task force report
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APPENDIX B

Index: figures included in the Appendix
Figures B1–B5 illustrate examples of classification trees developed for different dimensions of EQ-5D-5L. It should be noted 
that a single tree does not produce the best algorithm for mapping. The classification tree for the anxiety and depression 
dimension of the EQ-5D-5L is also explained here to provide a better understanding of CART prediction algorithm:

F I G U R E  B 1  Classification tree for Mobility dimension of EQ-5D-5L. Pr6: PROMIS-GH10, question 6: To what extent are you able to carry 
out your everyday physical activities such as walking, climbing stairs, carrying groceries, or moving a chair? 1: Not at all, 2: A little, 3: Moderately, 
4: Mostly, 5: Completely. Pr3: PROMIS-GH10, question 3: In general, how would you rate your physical health? 1: Poor, 2: Fair, 3: Good, 4: Very 
good, 5: Excellent. MOB-EQ-5D: 1: I have no problems in walking about, 2: I have slight problems in walking about, 3: I have moderate problems 
in walking about,4: I have severe problems in walking about, 5: I am unable to walk about. PROMIS-GH10, PROMIS short form Global Health 10
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F I G U R E  B 2  Classification tree for Self-care dimension of EQ-5D-5L. Pr6: PROMIS-GH10, question 6: To what extent are you able to 
carry out your everyday physical activities such as walking, climbing stairs, carrying groceries, or moving a chair? 1: Not at all, 2: A little, 3: 
Moderately, 4: Mostly, 5: Completely SC-EQ-5D: 1: I have no problems washing or dressing myself, 2: I have slight problems washing or dressing 
myself, 3: I have moderate problems washing or dressing myself, 4: I have severe problems washing or dressing myself, 5: I am unable to wash or 
dress myself. PROMIS-GH10, PROMIS short form Global Health 10

AGHDAEE Et Al. 1549



F I G U R E  B 3  Classification tree for usual activities dimension of EQ-5D-5L. Pr6: PROMIS-GH10, question 6: To what extent are you 
able to carry out your everyday physical activities such as walking, climbing stairs, carrying groceries, or moving a chair? 1: Not at all, 2: A little, 
3: Moderately, 4: Mostly, 5: Completely. Pr1: PROMIS-GH10, question 1: In general, would you say your health is? 1: Poor, 2: Fair, 3: Good, 
4: Very good, 5: Excellent. UA-EQ-5D: 1: I have no problems doing my usual activities, 2 I have slight problems doing my usual activities, 3: I 
have moderate problems doing my usual activities, 4: I have severe problems doing my usual activities, 5: I am unable to do my usual activities. 
PROMIS-GH10, PROMIS short form Global Health 10
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F I G U R E  B 4  Classification tree for Pain and Discomfort dimension of EQ-5D-5L. Pr7: PROMIS-GH10, question 7: In the past 7 days, how 
would you rate your pain on average? From 0 (no pain) to 10 (worst pain imaginable). Pr3: PROMIS-GH10, question 3: In general, how would you 
rate your physical health? 1: Poor, 2: Fair, 3: Good, 4: Very good, 5: Excellent. PD-EQ-5D: 1: I have no pain or discomfort, 2 I have slight pain 
or discomfort, 3: I have moderate pain or discomfort, 4: I have severe pain or discomfort, 5: I have extreme pain or discomfort. PROMIS-GH10, 
PROMIS short form Global Health 10
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F I G U R E  B 5  Classification tree for Depression and Anxiety dimension of EQ-5D-5L. Pr10: PROMIS-GH10: In past 7 days, how often have 
you been bothered by emotional problems such as feeling anxious, depressed, or irritable? 1: Always, 2: Often, 3: Sometimes, 4: Rarely, 5: Never. 
Pr4: In general, how would you rate your mental health, including your mood and your ability to think? 1: Poor, 2: Fair, 3: Good, 4: Very good, 5: 
Excellent. AD-EQ-5D: 1: I am not anxious or depressed, 2: I am slightly anxious or depressed, 3: I am moderately anxious or depressed, 4: I am 
severely anxious or depressed, 5: I am extremely anxious or depressed

The pruned classification tree for the anxiety and depression dimension of EQ-5D-5L had five terminal nodes. PROMIS- 
GH10 question 10 had the principal role in data splitting and growing the tree. This concords with the nature of these questions 
as PROMIS-GH10 question 10 and the anxiety and depression dimension of EQ-5D-5L both ask the same question about feel-
ing anxious, depressed or irritable. The tree predicted that respondents who either never or rarely experienced emotional prob-
lems (PROMIS-GH10 question 10 ≥ 4) responded with a score of one to the anxiety and depression dimension of EQ-5D-5L, 
reflecting that they were not depressed or anxious. Similarly, the classification tree suggested that respondents who were some-
times bothered emotionally (PROMIS-GH10 question 10 ≥ 3 and PROMIS-GH10 question 10 < 4) were slightly anxious or 
depressed based on the EQ-5D-5L (anxiety and depression dimension of the EQ-5D-5L = 2).

Respondents who were often troubled by anxiety and depression (PROMIS-GH10 question 10 ≥ 2 and PROMIS-GH10 
question 10 < 3) were further classified by the PROMIS-GH10 question 4, which asks about mental health, mood and thinking 
ability. Ones who reported good to excellent mental health (PROMIS-GH10 question 4 ≥ 3) were classified as slightly anxious 
or depressed in EQ-5D-5L questionnaire (the anxiety and depression dimension of the EQ-5D-5L = 2). Those with lower 
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mental health status (PROMIS-GH10 question 4 < 3) were predicted to respond with a score of three to anxiety and depression 
dimension of the EQ-5D-5L.

Finally, the tree algorithm predicted that respondents who always experienced emotional issues (PROMIS-GH10 question 
10 < 2) were severely depressed or anxious based on EQ-5D-5L (anxiety and depression dimension of EQ-5D-5L = 4).

The classification tree was unable to predict the number of extremely depressed or anxious (anxiety and depression dimen-
sion of EQ-5D-5L = 5) as only five people in the sample were in this category and this low number in the training sample was 
not sufficient to train the tree properly.

As it is reflected in the Figures B1–B5, the performance of trees for each dimension of EQ-5D-5L varied. As an example, 
the tree for Pain and Discomfort dimension, could predict people who ranked their pain one, two, three, and four. In the contrast 
the tree for Self-care dimension, could only predict ones in class 1 and 3. The reason for this variation was from the differences 
in the number of observations in the training sample in each class. The fewer, the number of observations in certain class, the 
ability of tree to predict the correct class accurately was poorer.

Moreover, the Self-care tree generated two leaves for a given class (level = 1). This was due the fact that there were more 
observations in that class in the training sample. Also, there were several criteria (questions or age interactions) to classify the 
observations.

An example of machine learning codes for generating Regression trees in R programming software

library(rpart)
library(rpart.plot)

#spliting data to training and testing sample

set.seed(111)
split = sample.split (all_data$eq-5d, SplitRatio = 0.5)
train = subset(all_data, split==TRUE)
test = subset(all_data, split==FALSE)

# growing a regression tree
tree _utility = rpart (formula= eq-5d ∼ pr01 +pr02 +pr03 +pr04 +pr05 +pr06+ pr07+ 
pr08+ pr09+ pr10+age+gender, train, method=“anova”, ,control=rpart.control (mini-
split=10 ,cp=0.001, xval=10)

#predicting the utilities
tree_pred= predict(tree_utility, test)
hist(tree_pred)
hist(test$ eq-5d)
mean((tree_pred - test$ eq-5d)^2))

APPENDIX C

Index: tables and figures included in the Appendix C
Appendix C provides two algorithms to calculate the utilities. One is based on adjusted limited dependent variable mixture 
model (ALDVMM) with explanatory variable set 3. The other is based on the Hybrid 1 model, which includes variables 
selected by the LASSO technique and is re-estimated with ALDVMM.

Calculation of utilities
Utilities are calculated from PROMIS-GH10 by matching responses to question and level specific coefficients reported in 
Tables C1 and C2 using the following formula:

EQ-5D-5L Utility  =  (Component one expected EQ-5D-5L utility  ×  Component one probability)  +  (Component two 
expected EQ-5D-5L utility × Component two probability)

Where:
Component (n) expected EQ-5D-5L utility = ∑ Qi,k(n) + β1(n)∗(Age) + β2(n)∗ (age squared)+β3(n)∗ Female + Constant (n)
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Where:
Qi,k(n):  Coefficient Q for question i and level k in component n.
β1(n):  Age coefficient in component n.
β2(n): Age squared coefficient in component n.
β3(n): Female coefficient in component n.
And,

Component one probability = 𝐴𝐴

(

exp(Componant one probability constant)

exp(Componant one probability constant)+1

)

Component two probability = 𝐴𝐴

(

1

exp(Componant one probability constant)+1)

)
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Predictor variables Component one coefficients Standard errors Component two coefficients Standard errors

PROMIS-GH10 Q1

 Level-1 −0.385959 0.0207294 0.0925135 0.0794249

 Level-2 −0.0009395 0.0111615 0.018756 0.0642693

 Level-3 0.0027596 0.0095323 0.0402084 0.0565958

 Level-4 −0.00748 0.0082035 0.0325671 0.0520424

PROMIS-GH10 Q2

 Level-1 −0.0585196 0.0139972 −0.0794948 0.0714324

 Level-2 −0.0070622 0.0093945 −0.0291088 0.0569722

 Level-3 −0.0066033 0.0082136 −0.0320562 0.0509567

 Level-4 −0.0058776 0.0072301 −0.0638011 0.0457145

PROMIS-GH10 Q3

 Level-1 −0.0493412 0.0190513 −0.0260497 0.0764026

 Level-2 −0.0097279 0.0104587 0.002096 0.0630417

 Level-3 0.0061863 0.0095075 0.0626543 0.0583958

 Level-4 0.009719 0.0082286 0.1288012 0.0550993

PROMIS-GH10 Q4

 Level-1 −0.0192356 0.0109768 −0.1073274 0.0579867

 Level-2 −0.0156022 0.0076756 0.0167262 0.0484853

 Level-3 −0.0012259 0.0065005 0.0983137 0.0424271

 Level-4 −0.0038548 0.0056822 0.0472543 0.0368971

PROMIS-GH10 Q5

 Level-1 −0.0055637 0.0098399 −0.0332379 0.059465

 Level-2 −0.0088215 0.0081152 0.0007317 0.0532768

 Level-3 −0.0104855 0.0074152 0.0262982 0.0486364

 Level-4 −0.0085666 0.0066697 0.0076209 0.0428807

PROMIS-GH10 Q6

 Level-1 0.5729949 0.051003 −0.4978277 0.0734452

 Level-2 −0.0321034 0.0131572 −0.2048257 0.0383186

 Level-3 −0.0295483 0.0063002 −0.0573564 0.029585

 Level-4 −0.0185259 0.0045397 −0.0534656 0.0284769

PROMIS-GH10 Q7

 Level-1 −0.0359491 0.0058377 −0.0286145 0.048754

 Level-2 −0.0489133 0.006043 −0.1483418 0.0453403

 Level-3 −0.0557849 0.0062876 −0.2193954 0.0464523

T A B L E  C 1  Coefficients and standard errors from the best performing econometric model (Adjusted limited dependent variable mixture 
model [ALVDMM])
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T A B L E  C 1  (Continued)

Predictor variables Component one coefficients Standard errors Component two coefficients Standard errors

 Level-4 −0.0648232 0.0073438 −0.2431705 0.0518035

 Level-5 −0.0737154 0.0080798 −0.2560148 0.0444581

 Level-6 −0.0957117 0.0088171 −0.2982205 0.046128

 Level-7 −0.1336154 0.0096407 −0.3547439 0.04672

 Level-8 −0.583629 0.0197676 −0.4905812 0.0504853

 Level-9 −0.1927814 0.0229887 −0.7341895 0.0704952

 Level-10 −1.099365 0.0245806 −0.4552999 0.0904497

PROMIS-GH10 Q8

 Level-1 −0.0309681 0.0143363 −0.13651 0.075945

 Level-2 −0.0336167 0.0089216 −0.2188279 0.0544924

 Level-3 −0.0107356 0.0065049 −0.169407 0.0489464

 Level-4 −0.0088674 0.0061089 −0.1161397 0.0479181

PROMIS-GH10 Q9

 Level-1 −0.013529 0.0160572 −0.0730294 0.0648042

 Level-2 0.0015722 0.0087684 0.01400000 0.0536675

 Level-3 0.0013122 0.0072035 −0.0279388 0.0471441

 Level-4 0.0017452 0.0063561 0.0180966 0.0431105

PROMIS-GH10 Q10

 Level-1 −0.0165344 0.0130433 −0.2807613 0.0587058

 Level-2 −0.0495842 0.0073591 −0.2297149 0.0439222

 Level-3 −0.0330347 0.0059642 −0.0321068 0.0374949

 Level-4 −0.0139751 0.0054585 0.0172828 0.0368554

 Age 0.0003956 0.0005682 0.0043447 0.0033483

 Age squared −9.99E-06 5.71E-06 −0.0000673 0.0000338

 Female 0.0009506 0.0035428 −0.0446998 0.0201271

 Constant 0.9745076 0.0168771 0.97559610 0.0993999

Probability -Component 1

 Constant 0.1232367 0.0777262

 /lns_1 −3.240571 0.0435271

 /lns_2 −1.403876 0.0336056

 sigma1 0.0391416 0.0017037

 sigma2 0.2456429 0.008255

Note: PROMIS-GH10 Q n = nth question of PROMIS-GH10. The algorithm is based on ALVDMM set (3) that included PROMIS-GH10 questions as items, age, age 
squared and sex (Female = 1) as explanatory variables. For PROMIS-GH10 Q1, Q2, Q3, Q4, Q5, Q6, Q8, Q9, Q10 reference levels are level 5 and for PROMIS-GH10 
Q7 reference level is level 0.
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Predictor variables Component one coefficients Standard errors Component two coefficients Standard errors

PROMIS-GH10 Q1

 Level-1 −0.3433060 0.0148387 0.0514095 0.0570408

 Level-2 −0.0293574 0.0090414 0.0184637 0.0470782

 Level-3 −0.0093709 0.0075675 0.0806698 0.0432715

 Level-4 −0.0137952 0.0073393 0.1219705 0.0431204

PROMIS-GH10 Q4

 Level-1 −0.0216585 0.0121445 −0.0596429 0.0550486

 Level-2 −0.0216042 0.0078642 0.0436002 0.0464942

 Level-3 −0.0017283 0.0066908 0.1149595 0.0405404

 Level-4 −0.0067162 0.0058649 0.0598039 0.034641

PROMIS-GH10 Q5

 Level-1 −0.0112022 0.0100856 −1.18E-02 5.52E-02

 Level-2 −0.0150583 0.0078866 0.0234542 0.0493677

 Level-3 −0.0168738 0.0072386 0.0576217 0.0450475

 Level-4 −0.0127415 0.006478 0.0196911 0.0400461

PROMIS-GH10 Q6

 Level-1 −0.8875440 0.0476422 −0.2675420 0.0653272

 Level-2 −0.0503005 0.0135963 −0.2063312 0.0361192

 Level-3 −0.032574 0.0069206 −0.0737328 0.0281568

 Level-4 −0.0193999 0.004604 −0.0544085 0.0275175

PROMIS-GH10 Q7

 Level-1 −0.0373753 0.0060229 −0.0454425 0.0457808

 Level-2 −0.050612 0.0061428 −0.1630828 0.0425605

 Level-3 −0.0583187 0.0063182 −0.2345283 0.0439714

 Level-4 −0.0679572 0.0074092 −0.2694051 0.0491968

 Level-5 −0.0763415 0.0080467 −0.2772628 0.0416786

 Level-6 −0.0977318 0.0086558 −0.3293773 0.0435022

 Level-7 −0.1341808 0.0097872 −0.3876107 0.0447105

 Level-8 −0.1393537 0.0265474 −0.6160806 0.0480539

 Level-9 −0.2173441 0.0232659 −0.7665818 0.0676771

 Level-10 −0.0343796 0.0450647 −0.6329282 0.0739894

PROMIS-GH10 Q9

 Level-1 −0.0179659 0.0155147 −0.0987504 0.0611147

 Level-2 −0.0016861 0.0093691 −0.0312816 0.050512

 Level-3 0.0066662 0.0072761 −0.0893566 0.0449948

 Level-4 0.0039562 0.0062173 −0.0171913 0.0399247

PROMIS-GH10 Q10

 Level-1 −0.0350141 0.01417 −0.4081824 0.0529913

 Level-2 −0.0561646 0.0071169 −0.3029859 0.0403542

 Level-3 −0.0360541 0.0060193 −0.0912567 0.0349469

 Level-4 −0.0150028 0.0055922 −0.0184979 0.0343078

 Age 0.0004218 0.0005884 0.003671 0.0032549

 Age squared −0.00001 5.89E-06 −0.0000534 0.0000328

 Female 0.0001425 0.0036659 −0.0395839 0.0194046

 Constant 0.9989450 0.0167456 0.98656421 0.0882295

T A B L E  C 2  Coefficients and standard errors from the Hybrid 1
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T A B L E  C 2  (Continued)

Predictor variables Component one coefficients Standard errors Component two coefficients Standard errors

Probability -Component 1

 Constant 0.0898711 0.0818972

 /lns_1 −3.217258 0.0491279

 /lns_2 −1.423268 0.0335654

 sigma1 0.0400648 0.0019683

 sigma2 0.2409255 0.0080868

Note: PROMIS-GH10 Q n = nth question of PROMIS-GH10. The algorithm is based on ALVDMM set (3) that included PROMIS-GH10 questions as items, age, age 
squared and sex (Female = 1) as explanatory variables. For PROMIS-GH10 Q1, Q4, Q5, Q6, Q9, Q10 reference levels are level 5 and for PROMIS-GH10 Q7 reference 
level is level 0.

APPENDIX D

Index: tables and figures included in the Appendix D
Table D1 provides the details of the performance of indirect approaches in each dimension of EQ-5D-5L.

  Mobility Self-care Usual activity Pain and discomfort Anxiety and depression

Indirect mapping approaches

 Glogit 66.35% 75.96% 71.83% 85.30% 54.87%

 CART (classification trees) 61.70% 72.15% 68.54% 82.15% 53.52%

 Random forests 66.67% 75.92% 72.53% 85.92% 55.87%

 Bagging 63.91% 73.49% 72.49% 83.35% 55.87%

 NN 68.08% 76.53% 73.24% 86.35% 57.75%

 LASSO 1 69.48% 76.85% 73.24% 86.38% 58.22%

Note: The table presents the percentage of correctly predicted for each dimension of EQ-5D-5L. LASSO 1, LASSO technique is used for prediction. Explanatory 
variables (without interactions) are only considered.
Abbreviations: GLOGIT, generalized logistic regression; LASSO, least absolute shrinkage and selection operator; NN, neural networks.

T A B L E  D 1  Goodness of fit for indirect approaches
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