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Abstract. We develop two models for index futures arbitrage that take the financing

constraints faced by real-world arbitrageurs into account. Our models predict that the

price of an index futures contract and the value of its underlying index should deviate

further from their theoretical cost-of-carry relationship when (a) the contract has a long

time to go before expiry, and (b) volatility is high. The fact that these predictions enjoy

considerable empirical support highlights the importance of financing constraints for

explaining index futures mispricing.
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2 FINANCIALLY CONSTRAINED INDEX FUTURES ARBITRAGE

1. Introduction

In theory, the price of an index futures contract and the value of its underlying index

should obey a simple cost-of-carry relationship that depends only on the dividend

yield of the index and the return on cash. Violations of this relationship should offer

straightforward opportunities to arbitrageurs, and should therefore be extremely rare.

In reality, however, mispriced index futures are commonplace. Their prevalence seems

to be a brazen violation of the law of one price and a striking failure of the arbitrage

assumptions at the heart of financial economics. With that in mind, it is unsurprising

that index futures mispricing has attracted considerable attention in the academic

finance literature.

Modest and Sundaresan (1983) rationalised limited deviations of index futures prices

from their theoretical cost-of-carry values. They noted that transaction costs allow

the price of a futures contract to fluctuate with impunity inside a band around its

theoretical price, since the round-trip costs of initiating and liquidating an arbitrage

trade would exceed any potential profit in that case. However, their reasoning implies

that the width of the non-arbitrageable band should be independent of the maturity of

the contract.1

MacKinlay and Ramaswamy (1988) argued that the width of the non-arbitrageable

band around the theoretical price of an index futures contract should increase with its

maturity, for three reasons. First, there is a greater risk that unanticipated changes in

dividends will erode the profits of arbitrage strategies involving long-dated index futures

contracts. Second, the cost of financing unanticipated mark-to-market cash flows

increases with the maturity of the futures leg of an index futures arbitrage strategy.

Finally, the cost of rebalancing the basket of stocks used to track the index is higher

for index futures arbitrage strategies involving longer-dated futures contracts, due

1While the analysis of Modest and Sundaresan (1983) justifies maturity-independent non-arbitrageable
gaps between observed and theoretical futures prices, due to transaction costs, there is a plausible
argument that transaction costs could be responsible for a non-arbitrageable band around theoretical
prices that depends on contract maturity. This is because longer-dated contracts are likely to be less
liquid than shorter-dated contracts, and therefore subject to higher transaction costs. We thank the
discussant for pointing this out.
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FINANCIALLY CONSTRAINED INDEX FUTURES ARBITRAGE 3

to larger tracking errors. As a result, they predicted larger gaps between observed

and theoretical index futures prices for longer-dated contracts. This prediction was

confirmed empirically for S&P 500 index futures.

The positive dependence of S&P 500 index futures mispricing on contract maturity

has been documented by several other studies, including Bhatt and Cakici (1990) and

Switzer et al. (2000). It has also been documented in index futures markets outside

the U.S. For example, Yadav and Pope (1990, 1994) observed that absolute differences

between theoretical and observed prices of FTSE 100 index futures in the U.K. are

positively related to contract maturity, while Bühler and Kempf (1995) found that

maturity was a significant determinant of mispricing for German DAX index futures.2

Similarly, Fung and Draper (1999) and Draper and Fung (2003) showed that contract

maturity is an important determinant of mispricing for Hong Kong Hang Seng index

futures contracts.

A second empirical feature of index futures mispricing concerns the dependence

of the gap between theoretical and observed futures prices on volatility. Numerous

studies have documented a positive relationship between index futures mispricing and

volatility, including Merrick (1987), Hill et al. (1988), Kawaller et al. (1990), Stoll and

Whaley (1990), Chan (1992), Brailsford and Hodgson (1997), Fung and Draper (1999),

Gay and Jung (1999), Draper and Fung (2003), Richie et al. (2008) and Cummings and

Frino (2011).

The usual interpretation for the volatility dependence of index futures mispricing is

that futures contracts impound new information more rapidly than their underlying

indices, so that futures prices quickly diverge from their theoretical cost-of-carry values

during periods of high volatility. However, Tu et al. (2016) showed the gap between the

price of an index futures contract and its fair value is positively related to the expected

future volatility over the life of the contract, which suggests that there may be more

2As an aside, the DAX is a very narrow index, comprising only 30 liquid German blue chips. Moreover,
since it is a total return index, its performance is based on the assumption that dividends are reinvested
in the index portfolio. Arbitrageurs wishing to exploit mispriced DAX index futures are thus not exposed
to meaningful tracking error or dividend risk. This casts doubt on two of the explanations for the positive
maturity dependence of index futures mispricing proffered by MacKinlay and Ramaswamy (1988).
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4 FINANCIALLY CONSTRAINED INDEX FUTURES ARBITRAGE

to the volatility dependence of index futures mispricing than differences in efficiency

between index futures markets and underlying equity markets.

This paper contributes to the literature on index futures arbitrage by showing that

the empirical features of index futures mispricing described above can be explained

parsimoniously in terms of the financing constraints encountered by arbitrageurs. In

particular, we demonstrate that those features are the inevitable consequence of two

simple facts: (a) arbitrageurs periodically experience negative cash flows (in the form

of margin calls and collateral payments) during the life of an arbitrage trade; and

(b) arbitrageurs only have access to limited supplies of capital.

In Section 2 we present a baseline model of index futures arbitrage, in which an

arbitrageur with a limited stock of trading capital initiates an index futures arbitrage

position at some time when the futures contract is trading away from its theoretical

fair value. If his capital is sufficient to fund the margin calls and collateral payments

that occur during the life of the strategy, he unwinds the position when the futures

contract expires, realising a profit. However, if his capital is insufficient, the position

is unwound involuntarily when he can no longer fund margin calls and collateral

payments, and his capital is lost.

The crucial innovation of our model is the introduction of financing risk, which is

the risk of being closed out involuntarily due to an inability to fund margin calls and

collateral payments. In Section 3, which examines the stylised features of our baseline

model, we demonstrate that this innovation explains a lot. In particular, we show

that the arbitrageur will only initiate an arbitrage trade involving a long-dated futures

contract if the gap between the futures price and the fair value of the contract is large. A

similar observation applies to the situation when volatility is high. This is because the

maturity of a futures contract and its volatility both increase the financing risk borne

by arbitrageurs. Our baseline model therefore captures the most important empirical

features of index futures mispricing documented in the literature surveyed above.

A limitation of our baseline model is that, in reality, an index futures arbitrageur

does not have to wait until maturity to close out their position. They have the option
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FINANCIALLY CONSTRAINED INDEX FUTURES ARBITRAGE 5

to unwind their position prior to maturity should the mispricing move in their favour.

Indeed, this option can add significant value to a prospective arbitrage opportunity.

Such an early unwinding option was first introduced by Brennan and Schwartz (1988),

and many subsequent models of index futures arbitrage have also included this option

(see e.g, Brennan and Schwartz 1990, Dai et al. 2011, Duffie 1990). Therefore, in

Section 4, we extend our baseline model in a similar vein. Formally, this gives rise to

an optimal stopping problem, which we convert into a free-boundary problem that can

be solved numerically.

In Section 5 we examine the stylised features of our extended model, which includes

the option to unwind early. We find that, although the model is more sophisticated

than the baseline model, it captures the same empirical features of index futures mis-

pricing. In other words, the inclusion of financing constraints still induce a minimum

level of mispricing below which an arbitrageur would not entertain a potential arbi-

trage opportunity, even with the option to unwind the position early. Importantly, the

minimium mispricing level is found, once more, to be an increasing function of both

the futures contract’s time to maturity and volatility.

Section 6 summaries our results and offers a few brief conclusions. Proofs are given

in the appendix.

2. A Baseline Model

Let St be the value of an equity index at time t and let Ft be the contemporaneous

price of a futures contract on the index with expiry date T > t. Let Dt denote the

present value at time t of the dividends paid by the basket of stocks in the index over

the time interval [t, T ], and let Pt denote the price at time t of a unit par discount bond

maturing at time T . The theoretical fair value of the futures contract is then given by

F̂t := St−Dt
Pt

.

We refer to the difference

Xt := Ft − F̂t = Ft −
St −Dt

Pt
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6 FINANCIALLY CONSTRAINED INDEX FUTURES ARBITRAGE

between the futures price and the fair value of the futures contract as the arbitrage

spread of the contract. In an ideal market without frictions or constraints, a textbook

arbitrage strategy would allow a risk-free profit to be made with zero initial investment

whenever the arbitrage spread is non-zero. To wit, if Xt > 0, an arbitrageur could

take a short position in the futures contract, short-sell the discount bond and use the

proceeds to purchase the basket of stocks in the index, with all dividends reinvested

in the discount bond. On the other hand, if Xt < 0, he could take a long futures

position, short-sell the basket of stocks in the index and invest the proceeds in the

discount bond, with that investment used to fund dividend payments. In both cases,

the trade would terminate upon expiry of the futures contract, with the cash flow from

the futures position used to settle the stock and bond positions. Since the price of

the futures contract and its fair value are guaranteed to converge to the index value at

expiry, implying that XT = 0, a profit of |Xt| would be realised at expiry in either case.

A major shortcoming of the naive strategy outlined above is its failure to account for

the real-world financing constraints that make index futures arbitrage a risky venture

in practice. These constraints stem from the interim payments required during the

life of an arbitrage trade, before any profit can be realised. On the futures leg, an

arbitrageur will receive margin calls whenever the futures price moves against his

position. In the case when the strategy involves borrowing and buying the basket of

stocks, the stock will typically be used as collateral for a margin loan. A fall in the stock

price will then trigger a call for additional collateral. Alternatively, when the stock is

borrowed and sold short, the arbitrageur will be required to post collateral with the

lender. In that case, a significant increase in the stock price will also precipitate a call

for additional collateral. In practice, any increase in the arbitrage spread after a trade

has been initiated will result in a call for additional margin or collateral, possibly on

both legs of the transaction. Since no arbitrageur has an unlimited supply of capital,

the accumulation of margin calls and collateral payments could exhaust their financial
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FINANCIALLY CONSTRAINED INDEX FUTURES ARBITRAGE 7

reserves before they have an opportunity to realise a profit. In such an event, they could

be forced to unwind an ultimately profitable arbitrage position at a considerable loss.3

In keeping with the theoretical literature on index futures arbitrage, we regard the

arbitrage spread Xt of an index futures contract as an exogenous stochastic process.

Brownian bridge-type models are a popular choice for this purpose (see e.g., Brennan

and Schwartz 1988, 1990, Dai et al. 2011, Duffie 1990). We follow suit by modelling

the arbitrage spread as a Brownian bridge determined by the SDE

dXt = − Xt

T − t
dt+ σ dBt, (2.1)

where σ > 0 is the instantaneous standard deviation of the spread and Bt is a standard

one-dimensional Brownian motion. This model captures two essential features of the

arbitrage spread. First, since the drift term in (2.1) is negligible when t � T , it

follows that Xt behaves like a driftless Brownian motion in that case. The economic

implication is that the gap between the price of a futures contract and its fair value can

be large when the remaining time to expiry is large, and can remain that way for an

extended period of time. Second, since − 1/(T − t)→ −∞ as t→ T , the drift term in (2.1)

becomes arbitrarily large in absolute value as t → T , whenever Xt 6= 0, and with the

opposite sign to that of Xt. It therefore follows that Xt → 0 as t → T . Economically,

this captures the fact that the futures price and the index value must converge as

the expiry date of the contract approaches, resulting in an arbitrage spread of zero at

expiry.

In order to model the impact of financing constraints on index futures arbitrage, we

consider a financially constrained arbitrageur who wants to exploit the opportunities

presented by (2.1). His preferences are governed by a CARA utility function

U(z) :=
1

γ
(1− e−γz),

3This is a large part of the story of the failure of Long-Term Capital Management (Lowenstein 2000).
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8 FINANCIALLY CONSTRAINED INDEX FUTURES ARBITRAGE

where γ > 0 quantifies his risk-aversion.4 We suppose that he initiates an arbitrage

trade at some time t < T , when the arbitrage spread Xt ≥ 0 is non-negative.5 This is

done by taking a short position in the futures contract, short-selling the discount bond

and purchasing the basket of stocks in the index. We assume that the arbitrageur

intends to unwind the position at time T , when the futures contract expires.6 In the

textbook scenario without financing constraints, he would make a guaranteed profit

of Xt −XT = Xt ≥ 0. However, in our model he only has a limited amount of capital

c > 0 to fund margin calls. This means that the arbitrage trade is no longer risk-free,

since the arbitrageur must contend with the possibility that the arbitrage spread could

increase beyondXt+c at some time prior to expiry. Since each increase in the arbitrage

spread (due to an increase in the futures price, a decrease in the value of the basket of

stocks, or both) precipitates in a call for an equivalent amount of collateral, his capital

c will have been consumed by margin calls by the time the arbitrage spread reaches

the liquidity threshold Xt + c, and his position will be unwound involuntarily.

Based on the analysis above, the arbitrage will be unwound (either voluntarily or

involuntarily) at time ζt, where

ζt := inf{s ∈ [t, T ] |Xs = Xt + c}.7

There are two cases to consider. First, if ζt = T , then the arbitrage spread does not

reach the liquidity threshold prior to expiry and the arbitrageur unwinds his position

voluntarily on the expiry date T , realising a profit of Xt. On the other hand, if ζt < T ,

then the arbitrage spread does reach the liquidity threshold before expiry and the

arbitrageur’s position is unwound involuntarily at time ζt, realising a loss of c. By

combining these two cases, we obtain the following expression for the value of an

4Note that the arbitrageur is risk-averse if γ > 0 and becomes risk-neutral in the limit as γ → 0.
5Note that the symmetry of (2.1) implies that −Xt is also a Brownian bridge. Hence, the analysis that
follows can be applied equally well to the case when Xt ≤ 0. We will focus exclusively on non-negative
initial arbitrage spreads, with the understanding that doing so results in no loss of generality.
6In reality, index futures arbitrage positions are rarely held all the way through to the expiry of the
futures contract, since there are usually better opportunities to unwind the position prior to expiry. We
address this limitation of our baseline model in Section 4.
7In the event that Xs < Xt + c, for all s ∈ [t, T ], this definition implies that ζt = T .
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FINANCIALLY CONSTRAINED INDEX FUTURES ARBITRAGE 9

arbitrage trade initiated at time t < T when the arbitrage spread is Xt ≥ 0:

V (t, x) := Et,x

Å
1{ζt=T}e

−ρ(T−t)U(x) + 1{ζt<T}e
−ρ(ζt−t)U(−c)

ã
= e−ρ(T−t)U(x)− Et,x

Å
1{ζt<T}e

−ρ(T−t)U(x)− 1{ζt<T}e
−ρ(ζt−t)U(−c)

ã
= e−ρ(T−t)U(x)︸ ︷︷ ︸

V∞(t,x)

−
Å

e−ρ(T−t)U(x)Pt,x(ζt < T )− U(−c)Et,x

Å
1{ζt<T}e

−ρ(ζt−t)
ãã

︸ ︷︷ ︸
C(t,x)

,

(2.2)

where ρ > 0 is a discount factor that reflects the arbitrageur’s cost of capital, Pt,x

is the probability measure under which Xt = x ≥ 0, and Et,x is the corresponding

expected value operator. Note that the first term V∞(t, x) in (2.2) is the value of the

unconstrained arbitrage opportunity, while the second term C(t, x) can be interpreted

as a penalty charge due to the financing constraint imposed by having a limited supply

of capital to fund margin calls and collateral payments.

Using Jeanblanc et al. (2009, Proposition 4.3.5.3), we obtain the following expression

for the probability that the arbitrage spread reaches the liquidity threshold before the

futures contract expires, given that Xt = x ≥ 0:

Pt,x(ζt < T ) = e
− 2c(x+c)

σ2(T−t) . (2.3)

Furthermore, in Appendix A we demonstrate that

Et,x

Å
1{ζt<T}e

−ρ(ζt−t)
ã

= G(t, x), (2.4)

with

G(t, x) :=
1

2σ
√
T − t

∫ 1

0

e−ρ(T−t)z(
z(1− z)

)3/2
(

(zx+ c)e
− 2c(x+c)

σ2(T−t)φ

(
z(x+ 2c)− c

σ
√

(T − t)z(1− z)

)

−
(
z(x+ 2c)− c

)
φ

(
zx+ c

σ
√

(T − t)z(1− z)

))
dz,

(2.5)
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10 FINANCIALLY CONSTRAINED INDEX FUTURES ARBITRAGE

where φ(y) := 1√
2π

e−y
2/2 is the standard normal probability density function. Using

these expressions, (2.2) can be written as

V (t, x) = e−ρ(T−t)U(x)︸ ︷︷ ︸
V∞(t,x)

−
Å
U(x)e−ρ(T−t)e

− 2c(x+c)

σ2(T−t) − U(−c)G(t, x)

ã
︸ ︷︷ ︸

C(t,x)

. (2.6)

Since (2.5) cannot be evaluated analytically, we cannot obtain an explicit formula for

the value function (2.6). Nevertheless, standard numerical integration techniques allow

for quick and accurate numerical approximation of the function.

Given t < T and x ≥ 0, observe that U(x) ≥ 0, U(−c) < 0 and G(t, x) > 0, which

ensure that C(t, x) > 0. Hence, V (t, x) < V∞(t, x), which is to say that the risk of

capital depletion unambiguously reduces the value of any arbitrage opportunity. Also

note that C(t, x) → 0 as c → ∞, whence V (t, x) → V∞(t, x) as c → ∞. Economically,

this means that the risk of capital depletion becomes insignificant if the arbitrageur

is very well capitalised, since he will almost always be able to fund margin calls and

collateral payments. In that case, the penalty charge is essentially zero and the value

of the arbitrage opportunity is close to the value of the unconstrained opportunity.

The possibility of capital exhaustion makes index futures arbitrage a risky strategy.

As a result, the arbitrageur may choose not to exploit arbitrage opportunities under

certain conditions. We assume that he will attempt to exploit a non-negative arbitrage

spread if the value of the opportunity, given by (2.6), exceeds the value U(0) = 0 of

doing nothing. However, he will disregard any arbitrage opportunity for which the

value of the spread does not exceed the value of doing nothing. The first condition

can be expressed mathematically as V (t, x) > 0, while the second condition can be

expressed as V (t, x) ≤ 0. Based on these assumptions, we can partition [0, T ] × R+

into a trade region T and a no-trade region N , given by

T := {(t, x) ∈ [0, T ]× R+ |V (t, x) > 0}

N := {(t, x) ∈ [0, T ]× R+ |V (t, x) ≤ 0}.
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FINANCIALLY CONSTRAINED INDEX FUTURES ARBITRAGE 11

The arbitrageur will initiate an arbitrage trade at time t if the observed spread Xt ≥ 0

satisfies (t,Xt) ∈ T . On the other hand, he will do nothing if (t,Xt) ∈ N .

Inspection of (2.6) reveals that V (t, 0) < 0, for all t < T , while it follows from the

dominated convergence theorem that V (t, x) → ∞ as x → ∞. In addition, V (t, x)

increases monotonically as x → ∞, for all t < T , by virtue of the properties of the

Brownian bridge (2.1). Consequently, the trade region and the no-trade region are

separated by a no-trade frontier [0, T ] 3 t 7→ x∗(t), with the property that (t, x) ∈ T

if x > x∗(t) and (t, x) ∈ N if x ≤ x∗(t). The frontier is implicitly determined by the

equation V (t, x∗(t)) = 0, which is equivalent to

1− e
− 2c(x∗(t)+c)

σ2(T−t) = − U(−c)
U(x∗(t))

eρ(T−t)G(t, x∗(t)). (2.7)

Although this equation cannot be solved explicitly, standard numerical techniques

yield quick and accurate answers.

3. Analysis of the Baseline Model

The primary insight from our model is that margin calls and collateral requirements

can make index futures arbitrage a very risky strategy, since arbitrageurs have limited

supplies of capital. If an arbitrageur runs out of capital to fund those cash flows,

their position is unwound involuntarily, which usually crystallises a significant loss.

Consequently, the attractiveness of an arbitrage opportunity should depend on the

level of risk-aversion of a would-be arbitrageur.

The dependence of the value function (2.6) on the arbitrageur’s level of risk aversion

is illustrated in Figure 3.1. Panel (a) plots the value function against the size of the

arbitrage spread, for a fixed time to expiry and different levels of risk aversion, while

Panel (b) plots the value function against the time to expiry of the futures contract, for

a fixed arbitrage spread and different levels of risk aversion. The solid curve in both

panels illustrates the value function for a risk-neutral arbitrageur, while the dashed

curves illustrate the cases for risk-averse arbitrageurs. Both panels show that higher

levels of risk-aversion correspond with lower values for an arbitrage opportunity, all
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12 FINANCIALLY CONSTRAINED INDEX FUTURES ARBITRAGE

else being equal, since a more risk-averse arbitrageur attaches a larger penalty charge

to the possibility of exhausting their capital on margin calls.

As expected, Panel (a) confirms that the value of an arbitrage opportunity increases

with the size of the arbitrage spread. However, the relationship becomes increasingly

concave as risk-aversion increases. This means that large arbitrage spreads are not

much more attractive than moderate spreads, for risk-averse arbitrageurs. In Panel (a)

we also see that every curve intercepts the horizontal axis at some positive arbitrage

spread, which is the value of the no-trade frontier for that level of risk-aversion and

time to expiry. This point shifts to the right as risk-aversion increases, indicated that

more risk-averse arbitrageurs require a larger spread before they are willing to initiate

an index futures arbitrage trade.

Panel (b) shows that the value of a given arbitrage spread is a decreasing function

of the time to expiry of the futures contract. This is because an arbitrage position

involving a long-dated futures contract is riskier than an otherwise identical position

involving a short-dated contract. To understand why, note that the drift term in (2.1)

is smaller (assuming that the arbitrage spread is positive) in the case of the long-dated

contract. Since the drift term provides the force that pins the arbitrage spread to zero

at expiry, it is more likely that the spread will reach the liquidity threshold before

expiry, in the case a long-dated contract. In Panel (b) we also see that there is always

some time to expiry beyond which the value of the arbitrage opportunity is negative.

That is to say, for a given arbitrage spread, there is a maximum time to expiry, beyond

which an arbitrageur loses interest in the opportunity. As expected, less risk-averse

arbitrageurs are willing to exploit longer-dated arbitrage opportunities, since they are

more tolerant of financing risk. However, even risk-neutral arbitrageurs are unwilling

to exploit a given arbitrage spread beyond a certain time to expiry.

Figure 3.2 illustrates the behaviour of the no-trade frontier, which is determined

by solving (2.7). Each panel illustrates the relationship between the frontier and the

time to expiry of the futures contract, while varying one of the remaining parameters.

Panel (a) demonstrates the impact of varying the arbitrageur’s initial capital, while
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Figure 3.1. The behaviour of the value function for different levels of
risk-aversion. Panel (a) plots the function x 7→ V (t, x), for a fixed time
to expiry T − t = 1. Panel (b) plots the function T − t 7→ V (t, x), for
a fixed arbitrage spread x = 1. The solid curves in both panels depict
the risk-neutral case when γ → 0, while the dashed curves depict the
risk-averse cases when γ = 0.5, 1, 1.5, with higher levels of risk-aversion
corresponding to lower values for the value function. The remaining
parameter values are c = σ = 1 and ρ = 0.05.

Panels (b)–(d) do the same for the volatility of the arbitrage spread, the discount rate

and the arbitrageur’s level of risk aversion. The solid curve in each panel depicts the

same base case, corresponding to a set of default parameter values.

Overall, the evidence in Figure 3.2 points to an unambiguous positive dependence of

the no-trade frontier on the time to expiry of the futures contract. This dependence is

robust to changes in the values of the model parameters. Economically, it stems from

the fact that index futures arbitrage involving long-dated futures contracts results in

elevated levels of financing risk. Consequently, arbitrageurs are only willing to exploit

the opportunities presented by long-dated futures contracts when the arbitrage spread

is sufficiently large to compensate for the higher penalty charge due to an increased

likelihood of capital depletion. This provides a straightforward explanation for the

widely documented positive dependence of index futures mispricing on time to expiry

(see e.g., Bhatt and Cakici 1990, Bühler and Kempf 1995, Draper and Fung 2003,

Fung and Draper 1999, MacKinlay and Ramaswamy 1988, Switzer et al. 2000, Yadav

and Pope 1990, 1994).
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Panel (a) shows that the no-trade frontier is negatively related to the arbitrageur’s

initial capital. The economic explanation is that a lower level of capital increases the

financing risk of an index futures arbitrage trade, which in turn increases the penalty

charge associated with that risk. An arbitrageur with less capital to fund margin calls

and collateral payments will require a larger arbitrage spread as compensation, before

being willing to initiate a trade.

In Panel (b), we see that the no-trade frontier is positively related to the volatility of

the arbitrage spread. Once again, this can be explained in terms of financing risk, since

a higher volatility increases the probability that the spread will reach the arbitrageur’s

liquidity threshold prior to the expiry of the futures contract. Since his position will be

unwound automatically if that happens, resulting in a substantial loss, it follows that

an increase in the spread volatility will increase the arbitrageur’s financing risk, and

therefore also the penalty charge associated with that risk. He will thus require a larger

arbitrage spread as compensation, before being willing to exploit mispriced futures

contract. This analysis provides a parsimonious explanation for the well-documented

positive dependence of index futures mispricing on volatility (see e.g., Brailsford and

Hodgson 1997, Chan 1992, Cummings and Frino 2011, Draper and Fung 2003, Fung

and Draper 1999, Gay and Jung 1999, Hill et al. 1988, Kawaller et al. 1990, Merrick

1987, Richie et al. 2008, Stoll and Whaley 1990).

Panel (c) indicates that an increase in the discount rate marginally reduces the value

of the no-trade frontier, which means that smaller arbitrage spreads are slightly more

attractive, but the impact is not significant. Finally, as expected, Panel (d) shows that

an increase in the arbitrageur’s risk aversion has a dramatic effect on the no-trade

frontier, increasing its value substantially. The economic interpretation is that a more

risk-averse arbitrageur will require a higher arbitrage spread to offset the financing risk

due to margin calls and collateral payments, before being willing to initiate an index

futures arbitrage trade, all else being equal.
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Figure 3.2. The behaviour of the no-trade frontier as a function of time
to expiry. The figure in each panel plots the function T − t 7→ x∗(T − t),
for different parameter values, with the solid line in each figure depicting
the case when x = c = σ = γ = 1. Panel (a) illustrates the impact of
the arbitrageur’s initial capital c on the no-trade frontier, with the upper
dashed curve corresponding to the case when c = 0.5 and the lower dotted
curve corresponding to the case when c = 1.5. Panel (b) illustrates the
impact of the volatility σ of the arbitrage spread on the no-trade frontier,
with the lower dashed curve corresponding to the case when σ = 0.8 and
the upper dotted curve corresponding to the case when σ = 1.2. Panel (c)
illustrates the impact of the discount rate ρ on the no-trade frontier, with
the upper dashed curve corresponding to the case when ρ = 0 and the
lower dotted curve corresponding to the case when ρ = 0.1. Panel (d)
illustrates the impact of the arbitrageur’s risk aversion γ on the no-trade
frontier, with the lower dashed curve corresponding to the case when
γ → 0 and the upper dotted curve corresponding to the case when γ = 2.

4. A Model with Optimal Unwinding

Our assumption that the arbitrageur chooses to unwind his position only when the

futures contract expires (unless it is unwound beforehand because the arbitrage spread

reaches his liquidity threshold) is a limitation of the baseline model in Section 2. In

reality, it may be preferable for him to unwind before the contract expires. For example,
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if the arbitrage spread reaches zero prior to expiry, then the impact of discounting

means that unwinding then is certainly better than waiting until expiry. But there

may be an even better time to unwind, since if the trade is initiated when the arbitrage

spread is Xt ≥ 0, it could overshoot the origin at some random time τ , where τ ∈ [t, T ],

which is to say that Xτ < 0. Unwinding at that time would yield a larger profit

Xt −Xτ > Xt than unwinding when the spread first reaches zero.

Following Brennan and Schwartz (1988, 1990), Duffie (1990), and Dai et al. (2011),

we extend the baseline model by allowing the arbitrageur to unwind an index futures

arbitrage position before the futures contract matures. Assuming, as before, that he

initiates the trade at time t < T , when the arbitrage spread is Xt ≥ 0, this amounts

to choosing a stopping time τ ∈ [t, T ] at which to unwind the position. As before,

there are two cases to consider. First, if ζt ≥ τ , then the arbitrage spread does not

reach the liquidity threshold before the arbitrageur chooses to unwind his position,

and he unwinds voluntarily at time τ , realising a profit of Xt − Xτ . On the other

hand, if ζt < τ , then the arbitrage spread does reach the liquidity threshold before the

arbitrageur chooses to unwind, and his position is unwound involuntarily at time ζt,

realising a loss of c. By combining these two cases and allowing the arbitrageur to

choose the optimal time to unwind his position, we obtain the following expression for

the value of an arbitrage trade initiated at time t < T when the arbitrage spread is

Xt = x ≥ 0:“V (t, x) := sup
τ∈St,T

Et,x

Å
1{ζt≥τ}e

−ρ(τ−t)U(x−Xτ ) + 1{ζt<τ}e
−ρ(ζt−t)U(−c)

ã
, (4.1)

where St,T denotes the set of all stopping times taking values in the interval [t, T ].

In order to evaluate (4.1), we begin by postulating the existence of a lower threshold

[0, T ] 3 t 7→ x∗(t) ≤ 0, with the property that it is optimal for the arbitrageur to unwind

his position when the arbitrage spread first reaches that threshold. That is to say, the

optimal unwinding time is

τ∗ := inf{s ∈ [t, T ] |Xs = x∗(s)}.
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Next, using standard results from optimal stopping theory (see e.g., Peskir and Shiryaev

2006), the solution to the optimal stopping problem (4.1) must also solve the following

free-boundary problem:

∂‹V
∂t

(t, z)− z

T − t
∂‹V
∂z

(t, z)

+
1

2

∂2‹V
∂z2

(t, z)− ρ‹V (t, z) = 0

if (t, z) ∈ [0, T )×
(
x∗(t), x+ c

)
; (4.2a)

‹V (t, x+ c) = U(−c) if t ∈ [0, T ); (4.2b)‹V (t, z) = U(x− z) if (t, z) ∈ [0, T ]×
(
−∞, x∗(t)

]
; (4.2c)

∂‹V
∂z

(
t, x∗(t)

)
= U ′

(
x− x∗(t)

)
if t ∈ [0, T ); (4.2d)‹V (T, z) = U(z). (4.2e)

The partial differential equation in (4.2a) describes the local dynamics of the value

of the arbitrage trade and condition (4.2b) fixes this value to be U(−c) at the liquidity

threshold. Condition (4.2c) fixes the value when the arbitrageur has unwound the

arbitrage trade and (4.2d) is the so-called smooth-pasting condition which ensures

optimality of the optimal unwinding boundary x∗(t), determined endogenously. Finally,

condition (4.2e) fixes the arbitrage value at the maturity of the futures contract T

(should the position not have been unwound prior to this time).

Like the majority of finite-maturity optimal-stopping problems, the solution to (4.2)

does not appear to admit an explicit solution and so we must appeal to standard

numerical techniques. Specifically, in what follows the function [0, T ] × R 3 (t, z) 7→‹V (t, z) and the free boundary [0, T ] 3 t 7→ x∗(t) are determined by solving this system of

equations numerically using finite-difference methods with a projected SOR algorithm

(for further details see, for example, Cryer 1971). Finally, we obtain the arbitrage value

in (4.1) by setting “V (t, x) := ‹V (t, z)|z=x.
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5. Analysis of the Model with Optimal Unwinding

Extending the baseline model to include the option of unwinding an index futures

arbitrage trade before the futures contract expires has some interesting consequences,

although it does not fundamentally alter the positive dependencies of the no-trade

frontier on contract maturity and volatility. The most significant consequence is that

arbitrage opportunities become much more attractive. In particular, the freedom to

unwind early induces the arbitrageur to initiate arbitrage positions when the arbitrage

spread is much smaller than he would be willing to countenance if he had to hold those

positions for their full term. There are two reasons. First, being able to close-out a

position at any time allows the arbitrageur to manage the financial risk resulting from

margin calls and collateral payments. Second, it allows him to derive an additional

profit from instances when the arbitrage spread overshoots the origin.

Figure 5.1 illustrates the dependence of the value (4.1) of an arbitrage position on

the arbitrage spread and the time to expiry of the futures contract, for different levels

of risk aversion, if early unwinding is possible. For comparison, the dependencies of

the values without early unwinding and the financing constraint are considered as

well. The solid curves depict the value function with the early unwinding option (4.1),

while the dashed and dotted curves depict the value functions without the option,

(2.6), and without the financing constraint (V∞), respectively. As expected, we observe

that the value functions with the early unwinding option (solid lines) and without the

financing constraint (dotted lines) always exceed the value function with the financing

constraint but without the freedom to unwind early (dashed lines). This is because

the freedom to close-out an arbitrage trade before expiry enhances its value, for the

reasons described above, while the presence of financing risk decreases its value.

We also see that the relationship between the solid and dotted lines is inconsistent,

implying that the tradeoff between the benefit of being able to unwind early and the

benefit of not being constrained by margin calls and collateral payments can resolve in

either direction.
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Panels (a) and (b) show that the value of an arbitrage opportunity increases with

the size of the arbitrage spread, irrespective of the level of risk aversion. However, the

dependence is approximately linear for the risk-neutral arbitrageur and significantly

concave for his risk-averse counterpart. In particular, the risk-averse arbitrageur

derives almost no marginal value from an increase in the arbitrage spread beyond a

certain point, which implies that very large spreads are not significantly more attractive

than smaller ones.

Note that the dotted curves in Panels (a) and (b) intersect the origin, indicating that

the value of a zero arbitrage spread is zero, in the case of a textbook arbitrage trade

without financing constraints. However, the dashed curves assume negative values as

the arbitrage spread approaches zero, which means that the arbitrageur in our baseline

model will reject small arbitrage opportunities which do not compensate him for the

financing risk arising from margin calls and collateral payments. The solid curves, by

contrast, exhibit the surprising feature of being positively valued when the arbitrage

spread is zero (for T − t = 1 at least). This means that the freedom to unwind early

confers a positive value on an arbitrage spread of zero. Economically, this is because

an arbitrage trade initiated when the spread is zero can be unwound for a profit if the

spread ever becomes negative before the futures contract expires, and the probability

of that happening is positive.8

The curves in Panels (c) and (d) show the value of a given fixed arbitrage spread

is a decreasing function of the time to expiry of the futures contract, irrespective of

the arbitrageur’s risk aversion or the ability to unwind early. However, for very short

maturities, we note the value of the strategy with the early unwinding option (solid

curves) significantly exceeds the values of the other two strategies (dashed and dotted

curves). This is because of the dominance of the drift term in (2.1) when the time to

expiry is very small, which causes any deviation of the arbitrage spread from zero to be

8Note that an arbitrage trade initiated when the spread is zero could be either short the futures contract,
short the discount bond and long the basket of stocks or long the futures contract, long the discount
bond and short the basket of stocks. Due to the symmetry of (2.1), the expected payoff of the strategy
at any future time would be the same in either case.

Electronic copy available at: https://ssrn.com/abstract=3895655



20 FINANCIALLY CONSTRAINED INDEX FUTURES ARBITRAGE

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

x

V

(a)

0.0 0.5 1.0 1.5 2.0

-0.2

0.0

0.2

0.4

0.6

0.8

x

V

(b)

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

T-t

V

(c)

0 1 2 3 4 5 6

-0.2

0.0

0.2

0.4

0.6

T-t

V

(d)

Figure 5.1. The behaviour of the value functions for different levels of
risk aversion. The solid curve in each panel represents the value “V (t, x)
of the financially constrained arbitrage trade with the option to unwind
early, the dashed curve represents the value V (t, x) of the financially
constrained arbitrage trade without the option to unwind early, and the
dotted curve represents the value V∞(t, x) of the textbook unconstrained
arbitrage strategy. Panels (a) and (c) describe the risk-neutral scenario
(γ → 0), while Panels (b) and (d) describe a risk-averse scenario (γ = 1).
Panels (a) and (b) illustrate the dependence of the value of an arbitrage
trade on the arbitrage spread, under the two risk-aversion scenarios,
with the values of the remaining parameters given by T − t = σ = c = 1
and ρ = 0.05. Panels (c) and (d) illustrate dependence of the value of
the arbitrage trade on time to expiry, with the values of the remaining
parameters given by x = σ = c = 1 and ρ = 0.05.

corrected quickly. With discretionary unwinding, the arbitrageur can profit from such

deviations.

Next, Figure 5.2 illustrates the dependence of the value of an arbitrage on the volatil-

ity of the arbitrage spread and the arbitrageur’s initial capital, for different levels of risk

aversion. The solid curves represent the value (4.1) with the option to unwind early
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and the dependencies of the value (2.6) without early unwinding (dashed curves) and

the value without the financing constraint (dotted curves) are illustrated as well.

Panels (a) and (b) show that the value of an arbitrage trade in our baseline model

with financing risk but no early unwinding option decreases monotonically as volatility

increases, eventually becoming negative, with a substantially stronger rate of decline

in the case of a risk-averse arbitrageur. This is because an increase in volatility in-

creases the probability of the arbitrage spread reaching the liquidity threshold. In

the case of the arbitrage position with the early unwinding option, the relationship

is non-monotonic, increasing before decreasing. The explanation is that an increase

in volatility also increases the probability that the arbitrage spread will overshoot the

origin, giving the arbitrageur an opportunity to close out the position for a larger profit

than the initial spread. For moderate volatilities, this effect dominates the increased

financing risk, but the situation is reversed for very high volatilities.

In Panels (c) and (d), we observe that the value of an arbitrage trade is an increasing

function of the arbitrageur’s initial capital, while his risk-aversion does not have a

significant effect on the relationship. Moreover, the freedom to unwind early yields a

relatively modest increase in value, relative to the value for the baseline model. For

both the baseline model and the extended model, the positive relationship between the

value of an arbitrage trade and the arbitrageur’s initial capital follows from the fact

that having more capital decreases the financial risk due to margin calls and collateral

payments.

Despite the impact of the early unwinding option on the value of an arbitrage trade,

the no-trade boundary exhibits the same qualitative behaviour when early unwinding

is possible as it does in the baseline case without early unwinding. This is illustrated

in Figure 5.3, which plots the no-trade frontier for the baseline model and the extended

model. We see that the no-trade frontier is an increasing function of time to maturity

for both models, which is consistent with the empirical evidence on the relationship

between index futures mispricing and contract maturity.
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Figure 5.2. The behaviour of the value functions for different levels of
risk aversion. The solid curve in each panel represents the value “V (t, x)
of the financially constrained arbitrage trade with the option to unwind
early, the dashed curve represents the value V (t, x) of the financially
constrained arbitrage trade without the option to unwind early, and the
dotted curve represents the value V∞(t, x) of the textbook unconstrained
arbitrage strategy. Panels (a) and (c) describe the risk-neutral scenario
(γ → 0), while Panels (b) and (d) describe a risk-averse scenario (γ = 1).
Panels (a) and (b) illustrate the dependence of the value of an arbitrage
trade on the arbitrage spread, under the two risk-aversion scenarios,
with the values of the remaining parameters given by T − t = x = c = 1
and ρ = 0.05. Panels (c) and (d) illustrate dependence of the value of
the arbitrage trade on time to expiry, with the values of the remaining
parameters given by T − t = x = σ = 1 and ρ = 0.05.

Figure 5.3 illustrates an interesting consequence of the early unwinding option,

briefly mentioned before. We see that the solid curve starts at zero at some strictly

positive time to expiry, while for shorter times to expiry it does not exist. In other words,

the no-trade frontier for the extended model does not exist when the time to expiry of

the futures contract is very short. Economically, this means that the arbitrageur
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Figure 5.3. The behaviour of the no-trade frontier as a function of time to
expiry for the models with and without the early unwinding option. The
dashed curve represents the no-trade frontier for the baseline model,
computed from (2.7), and the solid curve represents the no-trade frontier
for the model with the option to unwind the arbitrage position early,
computed from (4.2). The default parameter values, σ = c = γ = 1, are
used for both curves.

in the extended model with optional early unwinding is always willing to initiate an

arbitrage trade involving a very short dated futures contract, even if the contract is

priced correctly and the arbitrage spread is zero. This is because the financial risk

of an arbitrage position is trivial for very short-dated contracts, since the likelihood

of the spread reaching the liquidity frontier before the contract expires is very small.

However, with the option to unwind at any time, initiating an arbitrage position under

such circumstances will allow the arbitrageur to profit from any short-lived deviations

of the arbitrage spread from zero.

Next, we investigate the impact of the remaining model parameters on the no-trade

frontier for the extended model. Figure 5.4 illustrates the dependence of the no-trade

frontiers for the baseline model (dashed curves) and the extended model (solid curves)

on time to maturity. The greyed-out curves in each panel correspond to the default

parameter values. The dark curves in Panels (a) and (b) illustrate the impact of varying

risk-aversion, while leaving the values of the remaining parameters unchanged. The

dark curves in Panels (c) and (d) and Panels (e) and (f) do the same for initial capital
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and volatility, respectively. We confirm once more that the no-trade frontiers for both

models are increasing functions of time to expiry. Moreover, since the positive maturity

dependence of the no-trade frontier is unaffected by variations in the remaining model

parameters, this empirical prediction of our models is robust. Comparing the solid

curves with the dashed curves in all panels confirms that changing the values of any of

the model parameters has the same qualitative impact for the baseline model and the

extended model. In particular, the no-trade frontiers for both models are increasing

functions of volatility, as evidenced by Panels (e) and (f). Economically, these results

imply that the financing constraints faced by arbitrageurs dominate the impact of early

unwinding in determining the characteristics of index futures mispricing.

Finally, and for completeness, we analyse the optimal unwinding threshold. Recall

that the threshold x∗(t), for t ∈ [0, T ], specifies the value of the arbitrage spread at

which it is optimal for the arbitrageur to unwind an index futures arbitrage position in

our extended model. The dependence of this threshold on time to expiry is analysed

in Figure 5.5, with Panel (a) illustrating the effect of varying the arbitrageur’s initial

capital and Panel (b) illustrating the effect of varying his risk aversion. For an arbitrage

position initiated when the futures spread is non-negative, the curves indicate that the

optimal level to close out the position is always negative, so long as the time to maturity

of the futures contract is not too large. This agrees with our intuition that the early

unwinding option gives the arbitrageur an opportunity to profit from the arbitrage

spread overshooting its equilibrium level of zero. Hence, under normal circumstances,

it is sub-optimal to unwind an arbitrage position when the spread is non-negative.

Interestingly, however, the curves in Figure 5.5 also reveal that it is optimal to unwind

an arbitrage position involving a very long-dated futures contract when the arbitrage

spread is positive. This is because, in the case of arbitrage positions involving very long-

dated futures contracts, the probability of the arbitrage spread reaching the liquidity

threshold is very high, which is to say that the financing risk of the arbitrage trade is

very high. For this reason, the arbitrageur should be keen to unwind earlier, rather

than later.
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Figure 5.4. The behaviour of the no-trade frontier as a function of time
to expiry. The figures in each panel plot the function T − t 7→ x∗(t),
for different parameter values. The dashed curves in all panels depict
the no-trade frontier for the baseline model, while the solid curves depict
the no-trade frontier for the extended model with early unwinding. The
greyed-out solid and dashed curves correspond to the default parameter
values x = σ = c = γ = 1 and ρ = 0.05, which are presented for easy com-
parison. Panels (a) and (b) present a low risk-aversion scenario (γ = 0.5)
and a high risk-aversion scenario (γ = 1.5), respectively, with the remain-
ing parameters assigned their default values. Panels (c) and (d) present
a low capital scenario (c = 0.5) and a high capital scenario (c = 1.5), re-
spectively, with the remaining parameters assigned their default values.
Panels (e) and (f) present a low volatility scenario (σ = 0.8) and a high
volatility scenario (σ = 1.2), respectively, with the remaining parameters
assigned their default values.

Electronic copy available at: https://ssrn.com/abstract=3895655



26 FINANCIALLY CONSTRAINED INDEX FUTURES ARBITRAGE

0 1 2 3 4 5 6

-1.0

-0.5

0.0

0.5

1.0

T-t

x
*

(a)

0 1 2 3 4 5 6

-1.0

-0.5

0.0

0.5

1.0

T-t

x
*

(b)

Figure 5.5. The behaviour of the optimal unwinding threshold as a func-
tion of time to expiry. The figures in each panel plot the function
T − t 7→ x∗(t), which determines the arbitrage spread at which it is
optimal to unwind an index futures arbitrage position. The solid curves
in both panels correspond to the base case with x = σ = c = γ = 1 and
ρ = 0.05. The dashed curves in Panel (a) illustrate the optimal unwinding
threshold for c = 0.5, 1.5, while the dotted curve plots the threshold for
the unconstrained case when c→∞. The dashed curves in Panel (b) il-
lustrate the optimal unwinding threshold for γ = 0.5, 1.5, while the dotted
curves plots the threshold for the risk-neutral case when γ → 0.

6. Conclusions

We presented two theoretical models of index futures arbitrage. The main innovation

of these models is the introduction of a financing constraint that limits an arbitrageur’s

supply of capital for funding margin calls and collateral payments. If his stock of capital

is exhausted by these cash flows during the life of an arbitrage trade, his position will be

closed-out involuntarily and he will realise a substantial loss. The incorporation of this

real-world constraint allows us to explain two widely documented empirical features

of index futures mispricing: (1) the gap between the price of a futures contract and

its theoretical fair value tends to be larger for longer-dated contracts; and (2) futures

contracts generally trade further away from their theoretical fair values during times of

high volatility. Our models capture these features because the financing constraint is a

source of risk that reduces the appeal of arbitrage opportunities, and thus reduces the

demand from arbitrageurs. This, in turn, increases the slack between futures prices

and theoretical cost-of-carry values of futures contracts. The risk that the financing

constraint will bind during the lifespan of an index futures arbitrage trade increases
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with both contract maturity and volatility. This explains why our model captures the

empirical features described above.

Our baseline model assumes that index futures arbitrage positions are held until

the futures contract matures, once initiated. Our second model allows an arbitrageur

to choose when to unwind an arbitrage trade. While the financing constraint reduces

the value of an arbitrage opportunity, the option to unwind early increases its value.

Moreover, the value of the option to unwind early also increases as the time to maturity

of the futures contract increases and as its volatility increases. In other words, there

may be a trade-off between the benefit being able to unwind early and the cost of the

financing constraint. However, we find that the qualitative features of the baseline

model continue to hold in the model with optional early unwinding, which indicates

that the financing constraint dominates the option to unwind early. In particular, the

inclusion of this option does not change the empirical predictions of our model.

7. Data Availability Statement

Data sharing is not applicable to this article as no new data were created or analyzed

in this study.

Appendix A. Proof of Equation (2.4)

Given t < T and x ≥ 0, we obtain

Pt,x(ζt ≤ t+ u) = Pt,x

Å
sup

s∈[t,t+u]
Xs ≥ x+ c

ã
= P

Å
sup
s∈[0,u]

(x+ σB̃s) ≥ x+ c
∣∣∣x+ σB̃T−t = 0

ã
= P

Å
sup
s∈[0,u]

B̃s ≥
c

σ

∣∣∣ B̃T−t = −x
σ

ã
,

where B̃s is a standard one-dimensional Brownian motion. This expression can be

evaluated with the help of Beghin and Orsingher (1999, Theorem 2.1), yielding

Pt,x(ζt ≤ t+u) = e
− 2c(x+c)

σ2(T−t) Φ

Å
(x+ 2c)u− c(T − t)

σ
√

(T − t)(T − t− u)u

ã
+1−Φ

Å
c(T − t) + xu

σ
√

(T − t)(T − t− u)u

ã
,
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Where Φ( · ) is the standard normal cumulative distribution function. Since

Et,x

Å
1{ζt<T}e

−ρ(ζt−t)
ã

=

∫ T

t

e−ρuPt,x(ζt ≤ t+ du),

we get (2.4) and (2.5) by differentiating the previous expression with respect to u and

performing the substitution z := u/(T − t).
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