© 2010 IEEE. Reprinted, with permission, from John Leaney, Critique of Network Management Systems and Their
Practicality . Engineering of Autonomic and Autonomous Systems (EASe), 2010 Seventh IEEE International
Conference and Workshops on, 2010. This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the University of Technology, Sydney's products or
services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for resale or redistribution must be
obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all
provisions of the copyright laws protecting it

Critique of Network Management systems and their Practicality

Haydn Mearns, John Leaney
Faculty of Engineering and Information Technology
University of Technology, Sydney
Sydney, Australia
Email: haydn,johnl@it.uts.edu.au

Abstract—Networks have become an integral part of the
computing landscape, forming a global interconnection of a
staggering number of heterogeneous systems and services.
Current research focuses on policy based management and
autonomous systems and involves the utilisation of very differ-
ent languages and technologies in concert. This paper examines
four current proposals for autonomous network management
and analyses them using architectural modelling, against a
measure of practicality, as expressed by scalability, reliability
and maintainability.

Keywords-Autonomous; Perfor-

mance; Practicality

Network Management;

I. INTRODUCTION

Telecommunications Network Management systems are
of a class of systems which can be described as large
and complex, with many interacting subsystems, consid-
erable realtime requirements, and, extensive user interface
and business interface requirements. This research focuses
on network management systems as being large complex
software systems, and therefore argues that there is benefit
in using the techniques of design and analysis developed for
large, complex systems. The theory, methods and techniques
for large systems are usually grouped under the umbrella
of software architecture. In particular, this research focuses
on the practicality of the design of network management
systems, the work that had been performed by others, to date,
in this area, and, demonstrated some shortcomings in the
software architecture techniques available. In recent years,
autonomic, policy-based network management systems are
seen as the best approach to the management of networks.
This paper is the first in a series of analyses and recommen-
dations based on current proposals for autonomic network
management systems. This paper analyses four currently
proposed autonomic management designs, with regard to
the validity of their designs, and, with regard to practicality,
as expressed by scalability(focussed on time performance),
reliability and maintainability.

II. RELATED WORK

Although there are many papers which propose autonomic
NM systems, we found no papers which attempted to
estimate the performance in any form. Even survey papers

Dominique Verchere
Alcatel-Lucent Bell Labs
Paris, France
Email: Dominique.Verchere @alcatel-lucent.com

such as [1] make no mention of the issue of performance,
quite apart from any attempt to predict the likely practicality
of the proposals.

III. CRITIQUE OF NM SYSTEMS AND THEIR
PRACTICALITY

To understand the current state of autonomic Network
Management, four models of current frameworks were anal-
ysed using software/systems architectural theory, processes
and tool. The seven NM systems surveyed are FOCALE
[2], Optimizing QoE [3], Pronto [4] ANEMA [5], AORTA
[6], DNA framework [7] and DNSP maintenance manage-
ment [8]. These seven were the only published autonomous
telecommunications network management systems which
had anything like sufficient detail to be used for any form of
modelling of performance. Eventually, AORTA, DNA frame-
work and DNSP maintenance management had to be dis-
carded has having no too little information for architecture,
and therefore performance, modelling. The remaining four
architectures were chosen as the most complete frameworks,
providing a solution to more than one aspect of autonomic
management. The focus of this analysis was on the prac-
ticality of implementation of these AMNs with respect to
time performance, scalability, reliability and maintainability.
This analysis is done from ??our own point of view and
reflect the questions derived from modelling and simulating
the architectures. The frameworks that were reviewed were
FOCALE [2], Optimizing QoE [3], Pronto [4] and ANEMA
[5].

A. FOCALE

The Telecommunication systems and software group,
based at the Waterford institute of Technology, has intro-
duced the FOCALE (Foundation - Observation - Compar-
ison - Action - Learn - Reason) autonomic architecture
[2]. It describes the design as split into a hierarchical
distributed design, with the base element being a AME
(autonomic management element) which handles a managed
resource, be it single device or network. This AME controls
the functionality of the managed resource by marrying an
Autonomic Manager (AM) with a Model Based Translation
Layer (MBTL) which translates the vendor specific data and

commands to the AM’s vendor neutral commands. The AME
is contained in a Autonomic Management Domain and Auto-
nomic Management Environment with each layer providing
context, discovery, security, policy and analysis services. For
the practical implementation of the AME FOCALE utilises
a combination of information models (DEN-ng), ontologies
(OWL) and Domain specific languages to derive the context
model which represents the current state of the network
and services. In its own parlance it does this by dividing
the Monitor, Analyse, Plan, Execute (MAPE) control loop,
described by Kephart & Chess [9] into two, A maintenance
control loop and a adjustment control loop.

However from a practical perspective, the prototype is
still not complete, as it ignores the functionality of the
Domain and Environment layers. It also does not contain
any learning and reasoning elements of the AME and seems
to ignore the functionality of the MBTL, utilising vendor
specific commands in the policy decision point. Finally
there is a question as to why it is necessary to specify
all the information in the DEN-ng information model when
it is immediately translated into specific Domain Service
Languages and system ontologies and then translated again
into a set of rules in the rete-oo based JBOSS rules engine.

B. Optimising QoE

The university of Ghent has designed its own autonomic
network management architecture, with the specific goal
of improving quality of experience in access networks for
multimedia [3]. It utilises three planes, Knowledge, Action
and Monitor to complete the autonomic control loop dis-
cussed by Kephart & chess [9]. The monitor plane retrieves
monitoring information from the devices using various
methods, from standard SNMP for routers and switches to
the ANTMA algorithm for TCP connection monitoring see
[10]. The Action plane translates correction information into
device commands. It stores current and historical monitor-
ing information and system information in a specifically
purposed ontology [11] called the knowledge base. The
Architecture describes four components of the knowledge
plane, a problem detection component, a problem tracking
component, a problem solving component and a learning and
reasoning component, and introduces 2 potential versions of
the problem solving component, a analytical reasoner and a
neural network based reasoner. The paper showed that, in the
authors opinion the neural network reasoner is the superior
decision maker for user QoE. Described as future work is the
implementation and coordination of several planes to make
the architecture distributed.

Of concern in this architecture is that although the prob-
lem detection, problem tracking and learning and reasoning
components are mentioned there is no particular implemen-
tation described, other than the inference that some of the
detection work will be done in the knowledge base ontology
and that the neural network could be trained in real time to

provide the learning and reasoning components. This use of
a neural network in the problem solving and partial learning
and reasoning component, while giving the architecture a
fast decision time, requires such a long training time for
every new service that it seems unworkable in a large
heterogeneous environment.

C. Pronto

Pronto, developed at the university of technology Syd-
ney specifies a Policy based service definition language to
describe services and the system model through service
definitions[4]. Each service definition defines the resources,
devices, services and event condition action policies involved
in each service. The architecture utilises three main com-
ponent types, the Policy based management sub-system, a
generic policy engine which interprets service definitions
and other low level policies, a series of Domain Experts
which perform policy translation or refinement for particular
high level abstract policies to low level concrete policies
[12], and the virtual device, which controls the configuration
of the associated network devices.

Unfortunately this architecture is the least developed with
the implementation of the design been written entirely by
the author. As such there is no specification of the generic
policy engine for the management subsystem. Furthermore
the Domain Experts are listed as being specifically written
for their particular class which implies that any extension to
that particular domain requires either a new Domain expert
or a rewriting of the current domain expert. Further in the
simulation results the functionality of the Domain Experts is
ignored, despite the large role they play in the functionality
of the system.

D. ANEMA

Autonomic ~ Network Management Architecture
(ANEMA) proposed by [5] describes an architecture
which utilises high level strategies to define goal policies
to configure network elements. The high level strategies
are implemented by the Objective Definition Point (ODP)
component using expert defined analytical optimisation
models that express the network functionality in terms of
Network utility functions (NUF). The NUF’s are forwarded
to the Goal definition point (GDP) component which
selects appropriate management strategies, specifically the
configuration and optimisation strategies with which to
optimise the NUF. These strategies represent goal policies
that are defined as an aggregation of management strategies
which are needed to achieve one or more quality metrics
related to the NUF. These goal policies are distributed to
the Distributed goal definition points (DGDP) and analysed
to identify expert given behavioural policies and rules that
can be distributed to the base level of the architecture, the
Autonomic Management Element. The design of this AME
is based on IBM’s MAPE element.

Practically there is an issue with this architecture in the
specification of high level optimisation models. To specify
these analytically means that a level of expertise is required
for any new service or functionality resulting in slow pro-
visioning, and potential difficulties if the expertise is not
available.

IV. INITIAL RESULTS

A. Overall Description and context of Network Architectures
studied

Looking at the network management systems from an
architectural perspective there is similarity in all four net-
work management architectures and some clear architec-
tural structures. The maintenance control loop described by
all four architectures and taken from the IBM vision for
autonomic communications can be seen as as component
and connection pattern, Jennings et al. [2] specifically states
that FOCALE implements a adjustment control loop. The
control loop would be a component and connection pattern
for high level policy transformation. Derbel et al. [5] with
ANEMA and Sheridan-smith with PRONTO [4] while not
stating this specifically describe methods for online Policy
adjustment which fulfil the adjustment control loop pattern.
ANEMA states Policies which can be passed down through
the Objectives layer, to the goal layer, while PRONTO
utilises the PBM subsystem and domain experts to translate
policies at different levels. Likewise, FOCALE, PRONTO
and ANEMA all determine levels of policy characterised by
a version of Strassners Policy continuum [13], which utilises
the clear architectural concept of views.

1) Table of Comparison: The table I gives comparison
of the schemas of the the network management systems.
In the table, NM refers to to the name of the system,
Architecture describes how much of the network is managed,
Class describes whether or not it is autonomic or only
automatic, Implementation is the proposed technology for
implementation, Services describes the type of services
managed, QoE describes the extent of the user quality being
sought.

The table I gives a summary of the common structure,
implementation and purpose of the studied architectures. As
can be seen from the table three out of four frameworks
have stated that the destined role of the architecture is
the complete management of the Network, where as the
Optimising QoE architecture is just focused on the edge.
All four architectures are also deemed automatic, rather than
autonomic as there is little discussion in the literature on
these architectures of their ability to perform the stabilising
aspect of autonomic behaviour. The difference in imple-
mentation, whether by centralised hierarchial distribution
or true distribution through agents is highlighted, and will
be discussed later in the paper. Again three of the four
architectures specify their service offering as a more general
network device configuration, with only Optimising QoE

focussing on the multimedia delivery. However this focus on
multimedia gives Optimising QoE a greater focus on QoE
for its goal states, rather than the QoS focus of the other
three architectures.

B. Architectural Diagrams and Descriptions

Autonomic Management Element

-

Figure 1. Focale AME Prototype model

1) FOCALE: The simulation of FOCALE includes only
the base elements in the FOCALE architecture, that of the
Autonomic Network Element. This reflects our understand-
ing of the current state of development of the FOCALE
architecture, and its current prototype developed by [14].
Figure IV-B1 shows the prototype which utilises the DEN-
ng information model to build the object model, through
the creation of a configuration DSL and a Event Condition
Action Policy DSL. It also used the DEN-ng information
model to create the system ontology. The object model as
well as the system ontology is then used by the policy
analyser to create a set of policy rules that can be interpreted
by the policy decision point (PDP).

Figure 2.

Optimising QoE CAANL model

Table T
CLASSIFICATION SCHEMAS FOR NM SYSTEMS

NM Architecture Class Implementation Services QoE/QoS
FOCALE Whole network | Automatic agents network configuration QoS
Optimising QoE Edge only Automatic | centralised / agents multimedia QoS/ QoE
ANEMA Whole Network | Automatic agents Network Configuration QoS
PRONTO Whole Network | Automatic centralised Policy configuration QoS

2) Optimising QoE: The simulation of this architecture
involves one instance of the three planes called, the central
autonomic access network layer (CAANL). Figure IV-B2
shows the structure of the CAANL as described above.
The model describes a maintenance control loop where
actions are taken to maximise the QoE for the end user.
The path that this maintenance loop describes starts with
the collating, summarising and transformation of monitoring
information to store in the ontological knowledge base. In
the simulation described by Latré et al. [3] there is no
definition of the problem detection and problem tracking
components, therefore the model simply describes the neural
network based problem solving component which provides
the problem solution to the knowledge base. This solution
triggers the action plane which configures the individual
devices in the network.

AME router 1
oy i 1
4
7 S o T
: Paicy manager Modje = %
Moaitanad Module 1 T
\ @
Y 4 T
5 b :
‘num| 5 i ‘
% i
7
! /
1 /
\)

Figure 3. ANEMA AME model

3) ANEMA: The model of this architecture shows the
base layer of the design, the objective achievement layer.
This requires modelling the architecture of the Autonomic
Management Element (AME) as each AME has the capa-
bility to make its own decisions utilising the monitoring
analysing planing and executing capabilities with regards to
meeting the target requirements of the goal policies and NUF
optimisation models. As described in the literature by derbel
et al. [5] Figure 3 describes the control module, with its
sensors and effectors which read and control the network

device. The monitoring module performs the monitoring
functionality of the AME while the Analyse module analyses
this monitoring information to detect change events. Once
an event is detected the information is sent to the Planning
module which in coordination with the Policy Manager mod-
ule defines the set of elementary actions to respond to the
event. These actions are sent to the execution module which
controls the actions that are defined by the planning module.
The coordination of theses modules defines a maintenance
control loop, while the Policy manager module defines a
step in the adjustment control loop as it translates the higher
policies into router executable configuration commands us-
ing the policy descriptions and router capabilities that are
stored in the database.

Figure 4. Pronto Model

4) PRONTO: The model of the PRONTO architecture
is a simple implementation of the framework. Utilising the
simple example of ensuring levels of QoS for network
simulation, it utilises one Domain Expert for QoS and three
virtual devices, representing three elements of the core.
Figure 4 shows the adjustment control loop as it moves from
the detection event in the virtual device, to the QoS Domain
expert where new policies will be defined in reaction to that
event. The Domain expert will pass on the policies to the
PBM subsystem, which in turn executes them on the virtual
devices affected. For the adjustment control loop, high level
policies are defined and sent to the PBM subsystem which,

forwards them to the required Domain expert, in this case
the QoS DE, which translates the high level policies to low
level policies with specific QoS information. these low level
policies are pushed back to the PBM to be distributed to the
virtual devices.

C. Time Performance

To simulate the time performance of all four frameworks,
the architectural modelling tool ABACUS [15] was used.
The time performance simulation relied on specification
of the architectural components described in the literature.
This specification was incomplete to varying degrees for all
four frameworks. To make up this lack, some assumptions
and inferences about general performance parameters of the
particular components were made.

The Framework for Optimising QoE was the most com-
plete with performance results for reading and writing the
ontology to the knowledge base specified in the literature.
However there was no specification of the performance
of the Neural Network. A search turned up some results
of the Levenberg-Marquardt Neural network performing
classifications on problem sets from the machine learning
and intelligent systems at the University of California, see
[16]. The article demonstrates that the neural networks
performance is most likely constant or O(1) ! for data
sets of varying sizes. However there was no performance
characteristics of the Monitor or Action Planes.

Since the configuration time of the Action plane is de-
pendant on the speed of the devices configuration and that
configuration speed would be different for heterogeneous
devices it can be assumed that the performance of the
architecture is not dependant on the performance of the
Action Plane. Likewise the monitoring planes receiving,
summarising and processing of monitoring data is dependant
on the type of data being sent, which would also be
varied, dependant as it is on the type of device sending the
monitoring data. Therefore the general performance of the
architecture is dependant on the individual performance of
the knowledge base and the knowledge plane. This paper
[11] describes the results of a performance test of the
knowledge base’s ontology, specifically its speed at writing
and reading data. The article showed an average read value
of 2.3 ms which is interpreted as the processing time of the
check ontology and trigger configuration processes of the
knowledge base. The processing time for the write monitor-
ing and solution processes is the average write time of 5.7ms.
this test was performed on a single core 2.2 GHz machine
which gives us the knowledge bases processing speed and
number of processors. Since there was no information on the
performance of this implementation of the neural network
algorithm in the literature of the architecture some perfor-
mance statistics had to be assumed based on alternative

Ibig O notation describes the limiting behaviour of a function. Provides
an upper bound on the growth rate of the function

resources. The article on the performance of the neural
network algorithm [16] described above gives an average
response time of 35ms for all sized classification problems
set and is therefore taken as an estimate for the processing
time of the solve problem process. The processing speed of
1.8 GHz of the test equipment in the article was also used
by the component.

To model the responsiveness of FOCALE with regards
to time, the performance of the maintenance control loop
needs to be simulated. To simulate the maintenance control
loop the network data is sent to the parser which updates
the object model. The update to the Object model triggers
an evaluation in the Jboss rules engine (the PDP), which
determines through the satisfaction of the conditions of one
or more policies, whether or not actions need to be taken
[2]. For simulation it can be seen that the timing of this loop
is entirely dependant on the performance of the JBoss rules
engine, as the translation of the parser can assumed to be a
constant, and the update of the object model always results
in triggering the re-evaluation of the policies. Unfortunately
there was quite a lot of difficulty in determining a generic
timing for the JBoss rules engine, only one web based article
[17] showed concrete decision making response time for a
particular rule set from a comparison study done with the
Microsoft rules engine and the DROOLS rules engine, using
no particular optimisations in the rules engines. However
utilising this article shows that there is a linear or O(n)
response time for increased rule sets. For the object model as
well, there were difficulties in deriving a definitive response
time and the timing of O(n?) has been assumed based upon
the complexity and time performance of similar object model
systems.

Performance numbers were not specified in the published
literature of FOCALE. As with Optimising QoE some
reasoning on the relevance of some components and some
assumptions based on the general characteristics of the
identified components needed to be made. The Opnet parser
component, for example, is specifically built to translate
OPNET xml data to the Domain Specific Language XML of
the object model. However since in a practical application,
the performance of this translation would be dependant on
the type of translation needed for specific devices, which
vary widely, it can be seen to be less relevant than the
performance on the Object Model and the Policy Decision
Point. As for the assumptions made, the basis of the perfor-
mance of the Policy Decision Point component is taken from
a performance comparison of the DROOLS rule engine,
around which JBOSS is built. This comparison [17] specifies
a response time for the DROOLS engine when working with
a certain number of rules in the set. To be conservative the
number of rules chosen was 1000 which gives a processing
time of 62 ms. The processing speed of the component is
also taken from the comparison articles test bed with a single
processor running at 2.6 GHz. Furthermore since the model

of FOCALE is focusing on the components of one element
of the architecture, the AME, this same processing speed
can be applied to the Object Model. For the processing time
of the update and trigger process of the Object Model, a
variable figure based on the scalability scenario described
below and the assumed O(n?) response time.

The PRONTO architectures responsiveness to time is de-
pendant on the the runtime execution of the the management
nodes. The literature gives a simulation of the performance
of these management nodes with regards to simple deploy-
ment policies. However, since the Domain Expert is coded
separately, it is difficult to judge its responsiveness. However
future work will endeavour to compensate for this difficulty
and produce some time results.

Unfortunately there is a lack of literature on the ANEMA
architecture. The result of which is that while the AME of
the architecture is described and is based on the Kephart
and Chess MAPE model. There is no current information
on the components implementation which makes simulation
difficult, however since the MAPE model is a well known,
future work will involve an estimation of its performance
from other discovered implementations.

D. Results

1) Scalability: In testing the two architectures, FOCALE
and Optimising QoE, with regards to scalability, we looked
at the Utilisation of the components whose performance
most affected the adjustment control loop as well as the
connection response time. In FOCALE there were two
components of the AME that warranted attention, the JBoss
rules engine and the object model which it is dependant
upon. In Optimising QoE, the two components that are
relevant are the neural network and the knowledge base.
To simulate an increase in users for the architectures a
crude scenario was devised which estimated the number
of network devices needed for service delivery to 5,000
to 2,000,000 users, shown in the table II, and increased
the message rate to the components with respect to the
device numbers. The number of devices was estimated from
experience of a telecommunications network in Australia,
given common capacities for routers and DSLAM’s.

The utilisation of the components was then calculated, as
well as the common connection response time. The calcula-
tion was done with respect to the increased message rate, the
components processing speed as well as each components
process processing time, which is described above in section
4.3. Utilisation was chosen for these calculations as it is not
the absolute values that are important in this initial stage,
rather it is the shape of the curve that matters. Some better
absolute dependent variable will be determined before the
next paper.

For the scalability of FOCALE Figure 6(a) Shows the
utilisation of the object model assuming that the processing
time of the object model is as stated in section 4.3. Figure

Figure 5. FOCALE scalability
Object Model
120.000000
100.000000
~ 80.000000
3
S 60.000000
®
£ 40.000000
=
20.000000
0.000000 NI
5000 100,000 500,000 2,000,000
Users
(a) Object Model Utilisation
PDP
25.00000000
20.00000000
£ 15.00000000
c
S
® 10.00000000
°
= 5.00000000
0.00000000 -
5000 100,000 500,000 2,000,000
Users
(b) PDP Utilisation
Connection response time
6.000000
5.000000
4.000000 5000
< 3000000 ==100000
[}
€ ¥ 500000
= 2.000000
v V' 2000000
\%
1.000000 :
0.000000
1 2 3
Min, Ave, Max

(c) Response time

6(b) shows the utilisation of the Policy Decision Point, while
Figure 6(c) shows the connection response time between
these two components. As can be seen in the graphs, when
the utilisation of the Object model is overwhelmed by the
message rate, it degrades the performance of the connection
and the PDP.

Figures 7(a), 7(b), 7(c) represents the utilisation of the
Neural Network, and the Knowledge Base components of
the Optimising QoE Architecture, as well as the response
time of the linking connection. As can be seen in the
graphs the performance of the knowledge base reflects a
linear response to the input message rates, while the neural
networks performance can be interpreted to have a potential
upper limit to its performance.

A couple of observations can be inferred from the results
of the scalability simulations. First for FOCALE, as the

Table II

NO OF DEVICES TO USERS

residential | servers | switches | core routers | outer routers | edge routers | DSLAMs
2,000,000 400 40 6 100 69 6,944
500,000 100 10 6 25 17 1,736
100,000 20 2 6 5 3 347
5,000 1 0 6 0 0 17
Figure 6. Optimising QoE scalability there will be some limit on the ability of the neural network

Neural Network Utilisation
120

100

Utilisation (%)
(=2}
o

| .
o
5000 100000

500000 2000000

Users

(a) Neural Network Utilisation

Knowledge Base Utilisation

60
50
30
20 I
10
o =m [N

5000 100000 500000 2000000

Utilisation (%)
IS
o

Users

(b) Knowledge Base Utilisation

response Time

5000

20 = 100000
V500000
2000000

Time (s)

0 Y vl
1 2 3

Min Ave Max

(c) Response time

performance of the Object model degrades with the size of
the network it models, and further degrades the performance
of the PDP it would be impractical to implement complete
Object models in each AME. Therefore there must be some
form of distribution or delegation of the object model in each
AME. Secondly for Optimising QoE, the results indicate that

to deal with increased message rates, considering the design
calls for a centralised layer to deal with problems affecting
the whole network, it introduces the possibility of a ceiling
on the amount of devices this architecture can deal with.

2) Resilience:

Reliability: While there has not been any simulation
done yet on the reliability of the four architectures, some
analysis of the chosen components can be made. One
of the most basic observations is in the Optimising QoE
architecture, which uses a neural network for its problem
solving, The neural network can be considered an unreliable
component as a certain percentage of the decisions made will
be in error. Since the system will implement these erroneous
decisions, this will introduce instability into the system.

Redundancy: None of the Network management sys-
tems prototypes deal with the issue of redundancy, other
to indicate that the use of separate AME’s, for FOCALE,
ANEMA, and Optimising QoE, and the use of separate
management nodes, for PRONTO, will limit the problems to
the devices managed by whatever particular AME or Node
that is affected.

3) Maintainability: Considering the purpose of these
architectures is to be able to provide systems of self manage-
ment, a focus of the maintainability becomes a question of
adaptive maintenance, which is the difficulty in integration
of new devices or services. There are issues with the
provisioning of new devices services in ANEMA, PRONTO
and Optimising QoE. In ANEMA for example, any new
service which needs to be provisioned requires an expert to
build the high level optimisation function, a task that would
be difficult for business managers or even general network
operators. PRONTO on the other hand can define new ser-
vices simply through its Policy language however requires,
for any new technology that is added, a Domain Expert to be
coded and integrated with the existing architecture, certainly
a non trivial task. For Optimising QoE the issues lie in the
long process of training the Neural network which would
need to be done for all new services added. FOCALE with
its use of the growing DEN-ng information model is the only
system which offers a chance at integration that is relatively
simple, However this would rely on the level of coverage of
the information model which is currently unknown.

E. Centralised Optimisation vs Distributed Optimisation

The specification of the distribution of work is somewhat
incomplete for the four architectures studied, being mostly
described as future work. For Optimising QoE, the described
architecture requires that information is passed to the Central
autonomous access network layer which has the authority
to solve global problems and coordinate actions amongst its
distributed layers. This indicates a hierarchical distributed
design with centralised control. This form of centralised
optimisation is also indicated in the PRONTO design with
the PBM subsystem being responsible for overall policies
and splitting and delegating individual policies to lower
management nodes. FOCALE as well describes a centralised
optimisation with the Autonomic Management Domain and
Environment Layer possessing both a analysis and policy
service. On the other hand ANEMA, utilises a more dis-
tributed optimisation, for while it describes a centralised
goal layer and distributed goal points for the distribution
of policies, the base AME is completely autonomous in its
execution of these policies.

V. SUMMARY & CONCLUSIONS

This paper has covered the analysis and modelling of four
policy based or autonomic network management systems.
A overview of each system was described from the point
of view of architectural research, showing the architectural
similarities in the network management systems that have
been derived from work done in policy based and au-
tonomous network management, as well as a critique of their
practicality. Simulations were performed on models of the
prototype implementations with regards to time performance
and scalability while gross observations were made about
the management systems resilience and maintainability. The
results of the critique, observations and simulations showed
that these systems are still in an early stage of development
and are currently impractical for use. In light of this de-
velopment a few opportunities have risen for improvement.
For example the initial results of the scalability simulation
showed that the system must be scalable, highlighting the
idea that the distribution and coordination of policies is every
bit as important as the translation of those policies. Another
opportunity is the issue of stability in autonomous systems,
not just as a part of policy conflict resolution but rather as
an active part of the maintenance control loop.

ACKNOWLEDGEMENT

This work was partly funded by Alcatel-Lucent Bell Labs
and a research grant from the Australian Research Council,
The authors would like to thank the respective bodies,
which have provided a scholarship for the first author and
support for the project. The authors would also like to thank
the UTS Centre for Quantum Computation and Intelligent
Systems (QCIS)for its support and Dr Mark Denford and

Dr Tim O’Neill (Avolution F*¥Ltd) for their support with
the modelling presented in this paper.

REFERENCES

[1]1 S. Dobson, S. Denazis, A. Fernandez, D. Gaiti, E. Ge-
lenbe, F. Massacci, P. Nixon, F. Saffre, N. Schmidt, and
F. Zambonelli, “A survey of autonomic communications,”
ACM Trans. Auton. Adapt. Syst., vol. 1, no. 2, pp. 223-259,
2006.

[2] B. Jennings, S. van der Meer, S. Balasubramaniam,
D. Botvich, M. Foghlu, W. Donnelly, and J. Strassner, “To-
wards autonomic management of communications networks,”
Communications Magazine, IEEE, vol. 45, no. 10, pp. 112—
121, October 2007.

[3] S. Latré, P. Simoens, B. D. Vleeschauwer, W. V.
de Meerssche, F. D. Turck, B. Dhoedt, P. Demeester,
S. V. den Berghe, and E. G. de Lumley, “An autonomic
architecture for optimizing qoe in multimedia access
networks,” Computer Networks, vol. 53, no. 10, pp. 1587 —
1602, 2009, autonomic and Self-Organising Systems. [On-
line]. Available: http://www.sciencedirect.com/science/article/
B6VRG-4V0TD93-1/2/628c1f0c33c804ceb963c225¢eelclfd

[4] N. Sheridan-Smith, T. O’Neill, J. Leaney, and M. Hunter, “A
policy-based service definition language for service manage-
ment,” in Network Operations and Management Symposium,
2006. NOMS 2006. 10th IEEE/IFIP, April 2006, pp. 282-293.

[5] H. Derbel, N. Agoulmine, and M. Salan, “Anema:

Autonomic network management architecture to

support self-configuration and self-optimization in ip

networks,” Computer Networks, vol. 53, no. 3, pp.

418 — 430, 2009. [Online]. Available: http://www.

sciencedirect.com/science/article/B6VRG-4TW14Y]J-3/2/

41147806¢839b89928697fc9b724d880

[6] A. Tizghadam and A. Leon-Garcia, “Aorta: Autonomic net-
work control and management system,” in INFOCOM Work-
shops 2008, IEEE, April 2008, pp. 1-4.

[7]1 L. Jun, Z. Shunyi, Z. Zailong, and W. Pan, “A novel net-
work management architecture for self-organizing network,”
in Networking, Architecture, and Storage, 2007. NAS 2007.
International Conference on, July 2007, pp. 146-154.

[81 J. F. G. Fernndez and A. C. Mairquez, “Framework
for implementation of maintenance management in

distribution network service providers,” Reliability
Engineering System Safety, vol. 94, no. 10, pp.
1639 — 1649, 2009. [Online]. Available: http://www.

sciencedirect.com/science/article/B6V4AT-4W3HX4R-3/2/
5d35a620a2149a5a95b3d297b56cd97b

[9] J. Kephart and D. Chess, “The vision of autonomic comput-
ing,” Computer, vol. 36, no. 1, pp. 41-50, Jan 2003.

[10] B. D. Vleeschauwer, W. V. de Meerssche, P. Simoens,
B. Dhoedt, P. Demeester, T. V. Caenegem, H. Dequeker,
K. Struyve, E. Gilon, and E. Six, “Enabling autonomic access
network qoe management through tcp connection monitor-
ing.” in ACNM2007, 2007, pp. 56-63.

(11]

[12]

(13]

(14]

(15]

(16]

(17]

S. Latrée, P. Simoens, B. De Vleeschauwer, W. Van de
Meerssche, F. De Turck, B. Dhoedt, P. Demeester, S. Van
Den Berghe, and E. de Lumley, “Design for a generic knowl-
edge base for autonomic qoe optimization in multimedia
access networks,” in Network Operations and Management
Symposium Workshops, 2008. NOMS Workshops 2008. IEEE,
April 2008, pp. 335-342.

N. Sheridan-Smith, “A distributed policy-based management
(pbm) system for complex networks and services,” Ph.D.
dissertation, University of Technology, 2007.

S. van der Meer, A. Davy, S. Davy, R. Carroll, B. Jen-
nings, and J. Strassner, “Autonomic networking: Prototype
implementation of the policy continuum,” in Broadband Con-
vergence Networks, 2006. BcN 2006. The Ist International
Workshop on, April 2006, pp. 1-10.

K. Barrett, S. Davy, J. Strassner, B. Jennings, S. van der Meer,
and W. Donnelly, “A model based approach for policy tool
generation and policy analysis,” in Global Information In-
[frastructure Symposium, 2007. GIIS 2007. First International,
July 2007, pp. 99-105.

K. Dunsire, T. O’Neill, M. Denford, and J. Leaney, “The
abacus architectural approach to computer-based system and
enterprise evolution,” in Engineering of Computer-Based Sys-
tems, 2005. ECBS ’05. 12th IEEE International Conference
and Workshops on the, April 2005, pp. 62—69.

E. Al-Daoud, “A comparison between three neural network
models for classification problems,” Journal of Artificial
Intelligence, 2009.

C. Young, “Microsofts rule engine scalability results - a
comparison with jess and drools,” http://geekswithblogs.net/
cyoung/articles/54022.aspx, September 2005.

