

Developing efficient photocatalysts for high-performance decomposition of perfluorooctanoic acid

by Xiaoqing Liu

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Prof. Bing-Jie Ni

University of Technology Sydney Faculty of Engineering and Information Technology

March, 2022

CERTIFICATION OF ORIGINAL AUTHORSHIP

I, Xiaoqing Liu declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Civil and Environmental Engineering/Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literatures used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Signature: Production Note: Signature removed prior to publication.

Date: 15/3/2022

ACKNOWLEDGEMENTS

It is my pleasure to express my deepest gratitude to my principal supervisor Prof. Bruce Ni for his endless support, excellent guidance, constant encouragement, and patients throughout my Ph.D. study. During my Ph.D. period, his advanced academic knowledge, valuable suggestion, and motivation help me to overcome difficulties in my research. I could not finish my Ph.D study within the scheduled time without his help and guidance. His patience and encouragement make me more and more confident, which is an asset in my future study and life. I also would like to thank my co-supervisor Dr. Yiwen Liu, whose suggestions and comments are always valuable in my research. I also would like to express my gratitude to Dr. Xiaoguang Duan from The University of Adelaide, who helps me a lot in my experiments design and paper writing.

I would like to express my deep gratitude to my groupmates for their kindness and knowledge, which helps me a lot during my Ph.D study. My thanks also go to lab managers Dr. Johir and Dr. Niren for their help in setting up experiments and analysing results.

Apart from this, I would like to acknowledge the help and assistance from academic and administration staff from the Faculty of Engineering and Information Technology (FEIT) and Graduate Research School (GRS).

Finally, I would like to give my gratitude to my families and friends, especially the lovely friends in Centre for Technology in Water and Wastewater (CTWW); all of them give me encourage and help during my Ph.D study.

RESEARCH PUBLICATIONS

Publications included in this thesis

- Liu, X. Q.; Wei, W., Xu, J., Wang, D. B., Ni, B. J., Photochemical decomposition of perfluorochemicals in contaminated water. *Water Research.* 2020, 186, 116311 (IF, 11.236; Q1). (Chapter 2)
- Liu, X. Q.; Xu, B. T., Duan, X. G., Hao, Q., Wei, W., Wang, S. B, Ni, B. J., Facile preparation of hydrophilic In₂O₃ nanospheres and rods with improved performances for photocatalytic degradation of PFOA. *Environmental Science Nano*, 2021, 8, 1010-1018 (IF, 8.131; Q1). (Chapter 4)
- Liu, X. Q.; Ni, B. J., et al. Fe³⁺ promoted the defluorination of PFOA over In₂O₃.
 ACS ES&T Water, 2021, 1, 2431-2439. (Chapter 5).
- Liu, X. Q.; Ni, B. J., et al. High-Performance Photocatalytic decomposition of PFOA by BiOX/TiO₂ Heterojunctions: Self-Induced Inner Electric Fields and Band Alignment. *Journal of Hazardous Materials*, 2022, 430, 128195 (IF, 10.588, Q1) (Chapter 6)
- **5.** Liu, X. Q.; Ni, B. J., et al. Bismuth single atoms on TiO₂ as a photocatalyst for the efficient decomposition of PFOA. Submitted. (Chapter 7)

Other publications during candidature

- Liu, X. Q.; Duan, X. G.; Wei, W., Wang, S. B., Ni, B. J., Photocatalytic conversion of lignocellulosic biomass to valuable products. *Green Chemistry*. 2019, 21, 4266-4289 (IF, 10.182; Q1).
- Liu, X. Q., Wei, W. and Ni, B.-J. (2021). Photocatalytic and Photoelectrochemical Reforming of Biomass. In Solar-to-Chemical Conversion, H. Sun (Ed.). https://doi.org/10.1002/9783527825073.ch14

TABLE OF CONTENTS

CERTIFICATION OF ORIGINAL AUTHORSHIP	i
ACKNOWLEDGEMENTS	ii
RESEARCH PUBLICATIONS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	xiii
LIST OF SYMBOLS	XV
Ph.D. DISSERTATION ABSTRACT	xvi
CHAPTER 1 Introduction	1
1.1 Research background	2
1.2 Objectives and scope of the research	3
1.3 Research significance	4
1.4 Organization of the thesis	4
CHAPTER 2 Literature review	7
2.1 Introduction	8
2.2 Heterogeneous photochemical process for PFCs decomposition	8
2.2.1 Photo-reductive processes	9
2.2.2 Photo-oxidative processes	12
2.3 Mechanisms for the photocatalytic degradation of PFOA	23
2.3.1 Photo-oxidative degradation of PFOA	23
2.3.2 Photo-reductive degradation of PFOA	24
2.4 Conclusion	24
CHAPTER 3 Experimental methods	25
3.1 Introduction	26
3.2 Materials	
3.3 Characterizations	26
3.3.1 X-ray Diffraction	26
3.3.2 Scanning electron microscopy	26
3.3.3 Transmission electron microscopy	27
3.3.4 X-ray photoelectron spectroscopy	27
3.3.5 UV-vis absorption spectroscopy	27
3.3.6 Photoluminescence spectroscopy	27

3.3.7 High angle annular dark field-scanning transmission electron microscopy images	27
3.3.8 Extended X-ray absorption fine structure spectroscopy	28
3.3.9 N ₂ sorption/desorption measurement	28
3.4 Photocatalytic degradation of PFOA	28
3.5 The analysis of PFOA and the degradation intermediates	29
3.5.1 The analysis of PFOA and its degradation intermediates	29
3.5.2 The analysis of fluoride ion	30
3.6 Photoelectrochemical measurements	31
CHAPTER 4 Facile preparation of hydrophilic In ₂ O ₃ nanospheres and rods	with
improved performences for photocatalytic degradation of PFOA	32
4.1 Introduction	33
4.2 Experimental section	34
4.2.1 Preparation of In ₂ O ₃	34
4.2.2 Characterization	34
4.2.3 Photocatalytic decomposition of PFOA	35
4.2.4 Analyses	36
4.3 Results and discussion	36
4.3.1 Characterization	36
4.3.2 Improved photochemical properties	42
4.3.3 Charge separation	43
4.4 Conclusion	46
CHAPTER 5 Fe^{3+} promoted the photocatalytic defluorination of PFOA over In_2O_3	47
5.1 Introduction	48
5.2 Experimental section	50
5.2.1 Preparation of In ₂ O ₃ samples	50
5.2.2 Characterization of In ₂ O ₃ samples	50
5.2.3 Photocatalytic degradation of PFOA	51
5.2.4 Analysis of PFOA and its decomposition intermediates	51
5.3 Results and discussion	52
5.3.1 Characterization of In ₂ O ₃ catalysts	52
5.3.2 Photocatalytic decomposition of PFOA by In2O3 catalysts	55
5.3.3 Fe^{3+} Promoted the photocatalytic defluorination of PFOA over In ₂ O ₃	57
5.3.4 Mechanism of photocatalytic PFOA decomposition over In_2O_3 in the presence of	of or
without Fe ³⁺	60
5.4 Conclusion	63
CHAPTER 6 High-performance photocatalytic decomposition of PFOA by BiOX/7	ΓiO ₂

heterojunctions: self-induced inner electric fields and band alignment64
6.1 Introduction
6.2 Materials and methods
6.2.1 Preparation of BiOX and BiOX/TiO2 catalysts67
6.2.2 Characterizations of BiOX and BiOX/TiO2 catalysts
6.2.3 Photocatalytic degradation of PFOA
6.2.4 Analysis of PFOA and its decomposition intermediates
6.3 Results and discussion
6.3.1 Characterizations of BiOX and BiOX/TiO2 catalysts
6.3.2 Photocatalytic decomposition of PFOA by BiOX and BiOX/TiO2 catalysts75
6.3.3 The coordination mode and reactive oxygen species
$6.3.4$ Self-Induced Inner Electric Fields in BiOX and Band Alignment between BiOX and TiO_2
6.3.5 Mechanisms for the photocatalytic degradation of PFOA
6.4 Conclusion
CHAPTER 7 Photo-induced bismuth single atoms on ${\rm TiO}_2$ for highly efficient
defluorination of PFOA: the ionization of C-F bond85
7.1 Introduction
7.2 Experimental section
7.2.1 Preparation of photocatalysts
7.2.2 Characterization of as-prepared photocatalysts
7.2.3 Photocatalytic degradation of PFOA
7.2.4 Analysis of PFOA and its decomposition intermediates90
7.3 Results and discussion
7.3.1 Characterization of Bi/TiO ₂ 90
7.3.2 The efficient photocatalytic defluorination of PFOA by Bi/TiO293
7.3.3 The photocatalytic mechanism of PFOA
7.4 Conclusion
CHAPTER 8 Conclusions and perspectives
8.1 Conclusions
8.2 Perspectives
REFERENCES
APPENDIX

LIST OF TABLES

Table 2.1	Photocatalytic removal of PFOA by different semiconductor
	photocatalysts
Table 3.1	The target compounds of PFOA and its degradation products,
	and their MS/MS parameters
Table 3.2	The target compounds of PFOA and its degradation products,
	and their MS/MS parameters
Table 6.1	Removal of target antibiotics during constructed wetlands
	processes
Table 6.2	Photocatalytic removal of PFOA over different semiconductor
	photocatalysts.

LIST OF FIGURES

- Figure 1.1 The main structure of this thesis
- Figure 2.1 Band energy diagram of semiconductors used for PFOA decomposition.
- **Figure 2.2** Photoinduced hydrodefluorination mechanisms of PFOA with SiC/Graphene at room temperature. The dosage of SiC/Graphene was 0.5 g L^{-1} , the wavelength of UV light was 254 nm, the pH value was 7, and the concentration of PFOA was 0.12 mmol L⁻¹ (Huang et al. 2016a).
- Figure 2.3 Schematic diagram of PFOA configurations adsorbed on In_2O_3 and TiO_2 (Li et al. 2012b).
- Figure 2.4 XPS spectra of In 3d (a) and O 1s (b) of different In₂O₃ samples;
 Photocatalytic decomposition of PFOA by different In₂O₃ samples (c); The photocatalytic activity of three nanostructured In₂O₃ materials vs their O_b/O_a ratio: (a) In₂O₃ nanocubes, (b) In₂O₃ nanoplates, and (c) In₂O₃ porous microspheres (d) (Li et al. 2013b).
- **Figure 2.5** Schematic illustration of PFOA decomposition by Ga₂O₃ under UV light irradiation
- Figure 2.6 Proposed pathway of PFOA degradation by FeO/CS under solar light(Xu et al. 2020b).
- Figure 2.7 Pathway for photo-oxidative degradation of PFOA
- Figure 2.8 Possible photo-reductive degradation pathway of PFOA
- Figure 4.1 XRD patterns of commercial In₂O₃ and In-BDC based In₂O₃ (a); N₂ adsorption/desorption isotherm (b) and Barrett-Joyner-Halenda (BJH) pore size distribution plot (inset) (c) of commercial In₂O₃, In₂O₃ NS, and In₂O₃ rods.
- Figure 4.2 XPS survey (a), In 3d core level spectra (b), Room-temperature photoluminescence spectra (c), ESR spectra (d) and the O1s XPS spectra (e, f, g) of In₂O₃ samples.
- Figure 4.3 SEM images of commercial In₂O₃ (a, b), In₂O₃ NS (c, d), In₂O₃ rod (e, f), In-BDC NS (g), and In-BDC rod (h).

- Figure 4.4 TEM images of (a, b) commercial In₂O₃, (c) In-BDC NS, (d, e) In₂O₃ NS, (f) HRTEM of In₂O₃ NS, (g) In-BDC rod, inset is the amplified TEM image of In-BDC rod, and (h, i) In₂O₃ rod.
- Figure 4.5 UV-vis absorption spectra of commercial In₂O₃, In₂O₃ NS and In₂O₃ rods. Inset is the bandgap of samples (a). Contact angles of commercial In₂O₃, In₂O₃ NS, and In₂O₃ rods (b).
- Figure 4.6 Time course of PFOA degradation over commercial In₂O₃, In₂O₃ NS, and In₂O₃ rod (a); and shorter-chain intermediates under UV irradiation in the presence of In₂O₃ NS (b), In₂O₃ rod (c) and commercial In₂O₃ (d).
- Figure 4.7 Fluoride ion detected during the photodegradation of PFOA.
- Figure 4.8 Electrochemical impedance spectroscopy (EIS) Nyquist plots of In₂O₃ electrodes (a), and DMPO spin-trapping ESR spectra under UV irradiation for 4 min at room temperature of water in the presence of In₂O₃ samples (b).
- **Figure 4.9** DRIFT spectra of PFOA and adsorption equilibrium on In₂O₃ samples.
- **Figure 4.10** The proposed pathway for the photocatalytic degradation of PFOA over In₂O₃.
- Figure 5.1 XRD patterns (a), N₂ adsorption/desorption isotherm (b), Barrett-Joyner-Halenda (BJH) pore size distribution plots (c) and Raman spectra (d), In 3d core level spectra (g), and the O1s XPS spectra (e, f, h, i) of In₂O₃ samples.
- Figure 5.2 UV-vis absorption spectra (a); the band gaps (b) and SEM images (c-f) of In₂O₃ samples.
- Figure 5.3 HRTEM images of In₂O₃-400 (a); The SAED pattern of In₂O₃-400 (b); magnified image of the circled area in Fig. 5.3a (c); TEM image of In₂O₃-400 (d); TEM image of In₂O₃-600 (e), magnified image of the circled area in Fig. 5.3h (f), the SAED pattern of In₂O₃-600 (g), HRTEM image of In₂O₃-600 (h).
- Figure 5.4 Time course of PFOA degradation and the defluorination ratio of PFOA in the presence of (a, e) In₂O₃-300, (b, f) In₂O₃-400, (c, g) In₂O₃-500 and (d, h) In₂O₃-600 of different dosages.

- Figure 5.5 The effect of Fe^{3+} on the degradation of PFOA over (a) In_2O_3 -400 and (b) In_2O_3 -600. The defluorination ratio of PFOA in (c) Fe^{3+}/In_2O_3 -400 and (d) Fe^{3+}/In_2O_3 -600 systems.
- Figure 5.6 Time course of PFOA degradation (a) and the defluorination ratio of PFOA in Fe^{3+}/UV systems (b).
- Figure 5.7 The mass balance of fluorine after UV irradiation for 8h (a); Time course of shorter-chain intermediates formation in the UV/Fe³⁺ (25 μ M) system (b).
- Figure 5.8 Time course of shorter-chain intermediates formation under UV irradiation over (a) In_2O_3 -400, (b) In_2O_3 -600, (c) In_2O_3 -400 and (d) In_2O_3 -600 in the presence of Fe³⁺.
- Figure 5.9 DRIFT spectra of PFOA adsorption equilibrium on In₂O₃ catalysts
 (a); The coordination modes of PFOA with In₂O₃ and the coordination mode of PFOA with In₂O₃ in the presence of Fe³⁺ (b); The in-situ DRIFTS spectra for the photocatalytic degradation processes of PFOA over (c) In₂O₃-400, (d) In₂O₃-600.
- Figure 5.10 The proposed pathway of PFOA over oxygen-vacancy-deficient In_2O_3 in the presence of Fe³⁺.
- Figure 6.1 XRD spectra of BiOX and BiOX/TiO₂ catalysts (a-c); XPS spectra of Bi 4f (d-f), Cl 2p (g), Br 3d (h), I 3d (i) of BiOX and BiOX/TiO₂; XPS spectra of Ti 2p (j-m) of BiOX/TiO₂ and TiO₂.
- Figure 6.2 SEM images of BiOCl (a, b), BiOCl/TiO₂ (c, d) and element mapping of O (f), Cl (g), Bi (h) and Ti (i) in BiOCl/TiO₂; TEM image (j) and SAED pattern (k) of BiOCl; HRTEM image (l) and TEM image (m) of BiOCl/TiO₂
- **Figure 6.3** SEM images of BiOBr (a, b), BiOBr/TiO₂ (c, d) and element mapping of O (f), Br (g), Bi (h) and Ti (i) in BiOBr/TiO₂.
- **Figure 6.4** SEM images of BiOI (a, b), BiOI/TiO₂ (c, d) and element mapping of O (f), I (g), Bi (h) and Ti (i) in BiOI/TiO₂.
- Figure 6.5 The TEM images of BiOBr (a-c) and BiOBr/TiO₂ (d-f) photocatalysts.
- Figure 6.6 The TEM images of BiOI (a-c) and BiOI/TiO₂ (d-f) photocatalysts.
- Figure 6.7 PL spectra of BiOX, TiO₂ and BiOX/TiO₂ photocatalysts.

- Figure 6.8 The kinetics of the photocatalytic degradation of PFOA (a-c) and the generation of shorter-chain intermediates (d-f) under UV irradiation in the presence of BiOX and BiOX/TiO₂ catalysts. (Reaction conditions: catalyst dosage, 0.2 g L⁻¹; 254 nm UV light); The defluorination ratios of PFOA in the presence of BiOX and BiOX/TiO₂ catalysts after 8h irradiation under UV 254 nm or Xe lamp (g-i).
- **Figure 6.9** The cycle use of BiOCl/TiO₂ for the photocatalytic defluorination of PFOA.
- Figure 6.10 The DRIFTS spectra of PFOA adsorbed on TiO₂, BiOX and BiOX/TiO₂ photocatalysts (a); and the effects of different scavengers on the photocatalytic degradation of PFOA in the presence of BiOCl/TiO₂ (b). (Reaction conditions: BiOCl/TiO₂ dosage: 0.2 g L⁻¹; Na₂C₂O₄: 5 mM; BQ: 5 mM; PFOA: 10 mg L⁻¹)
- Figure 6.11 ESR signals for the detection of O₂⁻ in the presence of BiOCl (a) and BiOCl/TiO₂ (b); and TEMPO signals for the records of h⁺ in BiOCl (c) and BiOCl/TiO₂ (d) systems.
- Figure 6.12 UV-vis absorption spectra of BiOX and BiOX/TiO₂ catalysts (a); valance band XPS spectra of BiOX and TiO₂ catalysts (b); The illustration of band structures of BiOX/TiO₂ heterostructures (c).
- Figure 6.13 Photocurrent enhancements of BiOX/TiO₂ compared with BiOX (a-c), and the EIS spectra of BiOX and BiOX/TiO₂.
- Figure 6.14 Illustration of the photocatalytic degradation pathway of PFOA over BiOCl/TiO₂.
- Figure 7.1 The XRD data of Cl-Bi/TiO₂ (a); and N-Bi/TiO₂ photocatalysts; Uvvis absorption spectra (c) and Raman spectra (d) of TiO₂, N-10Bi, Cl-10Bi.
- **Figure 7.2** The STEM image of Cl-10Bi (a, b) and its corresponding mapping spectra for the Bi (c), Cl (d), O (e) and Ti (f) elements.
- **Figure 7.3** The STEM images of N-10Bi at different magnifications (a, b).
- Figure 7.4 The STEM image of Cl-10Bi (a) and N-10Bi (b); XPS spectra of Bi 4f of Cl-10Bi (c) and N-10Bi (d); Fourier-transformed magnitudes

of Bi K-edge EXAFS fitting in K space (e) and R space (f) for N-10Bi.

- Figure 7.5 The degradation (a) and defluorination (b) of PFOA over various metal-modified TiO_2 (weight ratio (TiO_2: metal= 135:1)) photocatalysts. Reaction conditions: (Catalyst dosage: 20 mg L⁻¹; Initial PFOA concentration: 10 mg L⁻¹; UV 254 nm irradiation).
- **Figure 7.6** The photocatalytic defluorination ratio of PFOA over Cl-Bi/TiO₂ (a) and N-Bi/TiO₂ (b) catalysts. Reaction conditions: (Catalyst dosage: 20 mg L⁻¹; Initial PFOA concentration: 10 mg L⁻¹; UV 254 nm irradiation); The photocatalytic decomposition (c) and defluorination (d) of PFOA over Cl-10Bi and N-10Bi under Xenon lamp irradiation, the other conditions were the same with those reactions in a and b; The detected intermediates during the decomposition of PFOA over Cl-10Bi (e) and N-10Bi (f).
- **Figure 7.7** The cycle use of N-10Bi for the photocatalytic defluorination under Xenon lamp irradiation.
- Figure 7.8 The scavenging effects on the photocatalytic defluorination of PFOA over Cl-10Bi (a) and N-10Bi (b) under UV 254 nm irradiation.
- Figure 7.9 Valance band XPS spectra of Bi/TiO₂ photocatalysts.
- Figure 7.10 DRIFTS spectra of PFOA adsorbed on TiO₂, Cl-10Bi and N-10Bi
 (a); In-situ DRIFTS spectra of PFOA decomposition over Cl-10Bi
 (b) and N-10Bi (c).

LIST OF ABBREVIATIONS

Symbol	Description
PFOA	Perfluorooctanoic acid
PFOS	Perfluorooctanesulfonic acid
PFHpA	Perfluoroheptanoic acid
PFHxA	Perfluorohexanoic acid
PFPeA	Perfluoropentanoic acid
PFBA	Perfluorobutanoic acid
PFPA	Pentafluoropropionic acid
TFA	Trifluoroacetic acid
PFCAs	Perfluorocarboxylic acids
MOFs	Metal-organic frameworks
In-BDC	Indium (III)-benzenedicarboxylate
PFCs	Perfluorinated chemicals
PFECAs	Perfluoroalkyl ether carboxylic acids
PFAS	Perfluoroalkyl substances
DMF	N,N-dimethylformamide
NS	Nanosphere
SEM	Scanning electron microscopy
XRD	X-ray diffraction
ITO	Indium tin oxide
XPS	X-ray photoelectron spectroscopy
SSA	Specific surface areas
TEM	Transmission electron microscopy
ESR	Electron spin resonance
PL	Photoluminescence spectroscopy
DRIFTS	Diffuse reflectance infrared Fourier transform spectroscopy
FTIR	Fourier transform infrared
EIS	Electrochemical impedance spectroscopy
UHPLC-MS/MS	Triple quadrupole ultra-high-performance liquid
	chromatograph tandem mass spectrometer
MRM	Multiple reaction monitoring

SI	Supporting Information
BJH	Barrett-Joyner-Halenda
BET	Brunauer-Emmett-Teller
BE	Binding energy
\mathbf{O}_V	Oxygen vacancy
EIS	Electrochemical impedance spectroscopy
TOC	Total organic carbon
DMPO	5,5-dimethyl-1-pyrroline-N-oxide
TG	Thermogravimetric
МСТ	Mercury cadmium telluride
VB	Valence band
CB	Conduction band
BIEF	Built-in electric field
IEF	Internal electric field
BiOX	Bismuth oxyhalide
KX	Potassium halide
BQ	p-benzoquinone
BTA	Tertbutyl alcohol
ROS	Reactive oxygen species
IPA	Isopropanol
TEMPO	2,2,6,6-tetramethylpiperidine-1-oxyl free radical
SACs	Single atom catalysts
SPR	Surface plasmon resonance
HAADF	High angle annular dark field
STEM	Scanning transmission electron microscopy

LIST OF SYMBOLS

Symbol	Description
KI	Potassium iodide
C ₇ F ₁₅ COOH	Perfluorooctanoic acid
C ₆ F ₁₃ COOH	Perfluoroheptanoic acid
C ₅ F ₁₁ COOH	Perfluorohexanoic acid
C ₄ F ₉ COOH	Perfluoropentanoic acid
C ₃ F ₇ COOH	Perfluorobutanoic acid
C ₂ F ₅ COOH	Pentafluoropropionic acid
CF ₃ COOH	Trifluoroacetic acid
e _{cb}	Photo-induced electron
NaOAc	Sodium acetate
In(OH) ₃	Indium hydroxide
Eg	Band gap
F^{-}	Fluoride ion
In ₂ O ₃	Indium oxide
TiO ₂	Titanium dioxide
Ga ₂ O ₃	Gallium oxide
Na_2SO_4	Sodium sulfate
•ОН	Hydroxyl radical
O2	Superoxide radical
t-BuOH	t-butyl alcohol
FeCl ₃	Ferric chloride anhydrous
Fe ³⁺	Ferric ion
$Na_2C_2O_4$	Sodium oxalate
λ_g	Band gap wavelength

Ph.D. DISSERTATION ABSTRACT

Author:	Xiaoqing Liu
Date:	February 2022
Thesis title:	Developing efficient photocatalysts for high- performance decomposition of perfluorooctanoic acid
Faculty:	Faculty of Environmental and Information Technology
School:	Civil and Environmental Engineering
Supervisors:	Prof. Bruce Ni (Principal supervisor)
	Dr. Yiwen Liu (Co-supervisor)

Abstract

Perfluorochemicals (PFCs) are a set of chemicals containing C-F bonds, which are concerned due to their persistent and toxicological properties. Perfluorooctanoic acid (PFOA, $C_7F_{15}COOH$) is one of the most widely used PFCs. Photocatalytic approaches appear to be an effective way for the removal of PFCs. We first used metal-organic frameworks (MOFs) derived In₂O₃ for photocatalytic degradation of PFOA under UV light irradiation. The results show that PFOA was completely decomposed in 3 h. MOFs-derived In₂O₃ was super-hydrophilic with a contact angle of ~20°, which facilitated the tight coordination between PFOA and In₂O₃.

Lower calcination temperatures enable higher oxygen vacancy concentrations and larger specific surface area (SSA) of In_2O_3 . In_2O_3 prepared at 300 °C (In_2O_3 -300) and 400 °C (In_2O_3 -400) demonstrated better catalytic performance, and PFOA (10 mg L⁻¹) could be completely removed within 4 h, with a defluorination ratio of 39% over In_2O_3 -400 in 8h. Fe³⁺ only slightly increased the defluorination ratio of PFOA over In_2O_3 -400 to 43%. A much higher defluorination ratio of ~60% was obtained in In_2O_3 -600 system

after the addition of Fe^{3+} , than the defluorination ratio of ~20% over In₂O₃-600. Combined with a series of characterizations, we speculated that Fe^{3+} participated in the coordination between PFOA and In₂O₃-600, thus promoting the defluorination of PFOA.

The BiOX/TiO₂ heterojunctions demonstrated significantly enhanced efficiency for photocatalytic decomposition of perfluorooctanoic acid (PFOA) compared with BiOX or TiO₂. PFOA (10 mg L⁻¹) was completely degraded by BiOCl/TiO₂ in 8h with a high defluorination ratio of 82 %. The charge transfer and photo-induced electron hole separation were facilitated by the p-n heterojunctions between BiOX and TiO₂ and the inner electric fields (IEF) in BiOX. XRD and TEM characterizations indicated that TiO₂ combined with BiOX along the [110] facet, which facilitated photo-induced electron transfer in the [001] direction, thus benefiting PFOA decomposition.

Single bismuth (Bi) atoms decorated TiO₂ catalyst (N-Bi/TiO₂) was synthesized by a green and simple UV irradiation method using Bi(NO₃)₃ as the precursor. When BiCl₃ was used as the Bi precursor, BiOCl nanocluster were formed on the surface of TiO₂ (denoted as Cl-Bi/TiO₂). Both N-Bi/TiO₂ and Cl-Bi/TiO₂ demonstrated excellent performance for the defluorination of PFOA. In-situ DRIFTS spectra demonstrated that the Bi single atoms in N-Bi/TiO₂ induced the ionization of C-F bond of PFOA, leading to the deep defluorination of PFOA. Our findings provide approaches for manipulating the photocatalytic activities of In₂O₃ and TiO₂-based composites for the highperformance decomposition of PFOA.

Keywords: Metal-organic frameworks; hydrophilic In₂O₃; In₂O₃; perfluorooctanoic acid; photocatalytic degradation; oxygen vacancies; Fe³⁺; defluorination ratio; inner electric fields; band alignment; Bi single atoms; in-situ DRIFTS.