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Abstract 

Perfluorochemicals (PFCs) are a set of chemicals containing C-F bonds, which are 

concerned due to their persistent and toxicological properties. Perfluorooctanoic acid 

(PFOA, C7F15COOH) is one of the most widely used PFCs. Photocatalytic approaches 

appear to be an effective way for the removal of PFCs. We first used metal-organic 

frameworks (MOFs) derived In2O3 for photocatalytic degradation of PFOA under UV 

light irradiation. The results show that PFOA was completely decomposed in 3 h. 

MOFs-derived In2O3 was super-hydrophilic with a contact angle of ~20º, which 

facilitated the tight coordination between PFOA and In2O3.   

Lower calcination temperatures enable higher oxygen vacancy concentrations and 

larger specific surface area (SSA) of In2O3. In2O3 prepared at 300 ºC (In2O3-300) and 

400 ºC (In2O3-400) demonstrated better catalytic performance, and PFOA (10 mg L‒1) 

could be completely removed within 4 h, with a defluorination ratio of 39% over In2O3-

400 in 8h. Fe3+ only slightly increased the defluorination ratio of PFOA over In2O3-400 

to 43%. A much higher defluorination ratio of ~60% was obtained in In2O3-600 system 
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after the addition of Fe3+, than the defluorination ratio of ~20% over In2O3-600. 

Combined with a series of characterizations, we speculated that Fe3+ participated in the 

coordination between PFOA and In2O3-600, thus promoting the defluorination of 

PFOA.  

The BiOX/TiO2 heterojunctions demonstrated significantly enhanced efficiency 

for photocatalytic decomposition of perfluorooctanoic acid (PFOA) compared with 

BiOX or TiO2. PFOA (10 mg L‒1) was completely degraded by BiOCl/TiO2 in 8h with 

a high defluorination ratio of 82 %. The charge transfer and photo-induced electron 

hole separation were facilitated by the p-n heterojunctions between BiOX and TiO2 and 

the inner electric fields (IEF) in BiOX. XRD and TEM characterizations indicated that 

TiO2 combined with BiOX along the [110] facet, which facilitated photo-induced 

electron transfer in the [001] direction, thus benefiting PFOA decomposition.  

Single bismuth (Bi) atoms decorated TiO2 catalyst (N-Bi/TiO2) was synthesized 

by a green and simple UV irradiation method using Bi(NO3)3 as the precursor. When 

BiCl3 was used as the Bi precursor, BiOCl nanocluster were formed on the surface of 

TiO2 (denoted as Cl-Bi/TiO2). Both N-Bi/TiO2 and Cl-Bi/TiO2 demonstrated excellent 

performance for the defluorination of PFOA. In-situ DRIFTS spectra demonstrated that 

the Bi single atoms in N-Bi/TiO2 induced the ionization of C-F bond of PFOA, leading 

to the deep defluorination of PFOA. Our findings provide approaches for manipulating 

the photocatalytic activities of In2O3 and TiO2-based composites for the high-

performance decomposition of PFOA.  

 

Keywords: Metal-organic frameworks; hydrophilic In2O3; In2O3; perfluorooctanoic 

acid; photocatalytic degradation; oxygen vacancies; Fe3+; defluorination ratio; inner 

electric fields; band alignment; Bi single atoms; in-situ DRIFTS.    
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