Xiaofei Wang

School of Computer Science Faculty of Engg. & IT University of Technology Sydney NSW - 2007, Australia

Error-related potentials-based human-robot intelligent system.

by Xiaofei Wang

A thesis submitted in fulfilment of the requirements for the degree of

> Doctor of Philosophy in Software Engineering

Principle Supervisors: Professor Chin-Teng Lin Co-Supervisors: Dr. Tim Chen, and Dr. YK Wang

School of Computer Science Faculty of Engineering and Information Technology University of Technology Sydney

February 2022

CERTIFICATE OF ORIGINAL AUTHORSHIP

Xiaofei Wang declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Computer Science, Faculty of Engineering and Information Technology at the University of Technology Sydney, Australia, is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. This document has not been submitted for qualifications at any other academic institution. This research is supported by the Australian Government Research Training Program.

Production Note: SIGNATURE: Signature removed prior to publication.

[Xiaofei Wang]

DATE: 4th July, 2022

PLACE: Sydney, Australia

ABSTRACT

Brain-Computer Interface (BCI) is an emerging technology that provides natural and direct communication between humans and machines. Recent BCI works aimed to create accurate and reliable BCI systems in the field of Human-Robot Interaction (HRI). Of these, the BCI paradigm based on error-related potentials (ErrPs), a cognitive phenomenon derived from EEG signals, is particularly promising. ErrPs are involuntarily evoked when a person perceives unexpected errors in the environment. Unlike other BCI paradigms that require users to actively imagine the mental commands or engage with additional visual stimuli, ErrPs depends on the user's experience on assessing the correctness of the robot behaviours. The ErrP-based BCI does not require additional training and does not interrupt the user's original workflow. This thesis presents two novel ErrP-based BCI systems:

First, a novel robotic design for ErrP-based BCI that allows humans to evaluate the robot's intentions continuously. Current ErrP-based BCI cannot handle interaction sequences that involve continuous robot movements. For example, it is difficult to extract a time-locked event when the user detects an unexpected error while the robot arm is already in motion. The high classification accuracy (77.57%) from the first system confirmed that the proposed ErrP-based BCI paradigm allows continuous evaluation of robot intentions in real-time and thus enable earlier intervention before the robot commits an error.

Second, ErrP-based shared autonomy via deep recurrent reinforcement learning.

Current BCI systems use ErrP as either an implicit control signal to the agent or a reward signal in reinforcement learning (RL). Our novel framework proposed using ErrP as an input feature in the trained RL model, which enables human intervention with a trained autonomous agent. In a simulation with 70% ErrP accuracy, agents completed the task 14.1 % faster. In the real-world experiment, agents completed the navigation task 14.9% faster. The evaluation results confirmed that the shared autonomy via deep recurrent reinforcement learning is an effective way to deal with uncertain human feedback in a complex HRI task.

These two novel BCI systems advance the current ErrP-based BCI capabilities and enable a wide range of new interaction possibilities between human and robot. This thesis represents an important step toward a BCI-based shared autonomy between humans and robots.

ACKNOWLEDGMENTS

want to express my sincere gratitude to my principle supervisor, Professor CT Lin, for the guidance, motivation and weekly feedback during these years. He has always motivated and guided my work in the right directions. Without those, I don't think I would have been able to finish this project. It is my great honor to be supervised by Professor CT Lin. I would also like to thank my co-supervisor, Tim Chen. Thank you for the hard work and endless support. Whenever there is a problem in research or outside the school environment, he always tries his best to help. Thank you for all the help, guidance, and mentoring received during these years. I would also like to thank my co-supervisor, Dr. YK Wang. Thank you for the weekly discussion. Thank you for the help on papers and thesis.

I want to thank all the CIBCI lab members for all the help and knowledge they provided during my years. Special thanks to Carlos Tirado, Fred Chang, Tien-Thong Do, Avinash Kumar Singh, Howe Zhu, Jia Liu, Jie Yang, Sai Kalyan Ranga, Yanqiu Tian, and Liang Ou.

I want to thank all my friends in Techlab. Thank all the friends since the first day I came to Techlab. And thank all the friends outside the school environment. The green mountain won't change, the flowing water is endless. See you around!

I want to thank the Australian Research Council (ARC) for its financial support. This work was supported in part by the ARC under discovery grant DP180100656 and DP210101093. I also want to thank the UTS International Research Scholarship for covering my tuition fees.

Last but not least, I want to thank my family for their constant love and support. Without their support and motivation, I would not be where I am now. No words can express how thankful and grateful as being one of the members in my family. I love you all!

DEDICATION

To my father, my mother, and my brothers for their endless love, support and encourage ...

LIST OF PUBLICATIONS

JOURNAL:

- X.-F. Wang, H.-T. Chen, Y.-K. Wang, C.-T. Lin, "Implicit Robot Control using Error-related Potential-based Brain-Computer Interface," IEEE Transactions on Cognitive and Developmental Systems. (accepted)
- 2. X.-F. Wang, H.-T. Chen, Y.-K. Wang, C.-T. Lin, "Error-Related Potential-Based Shared Autonomy via Deep Recurrent Reinforcement Learning". (draft)
- 3. **X.-F. Wang**, H.-T. Chen, Y.-K. Wang, C.-T. Lin, "Error-Related Potential used to correct robot movement during continuous searching task in a maze". (draft)

TABLE OF CONTENTS

Ti	tle		ii		
Ce	Certificate of Original Authorship				
Ał	Abstract Acknowledgments Dedication				
Ac					
De					
Li	List of Publications				
Co	Contents				
Li	List of Figures				
Li	st of	Tables	xx		
1	Intr	oduction	1		
	1.1	Motivation	1		
	1.2	Problem definition	3		
	1.3	Research aim and objective	4		
		1.3.1 Continuous implicit Robot Control using Error-related Potentials .	5		
		1.3.2 BCI-based shared control for human-robot interaction	6		

		1.3.3	Shared autonomy via deep recurrent reinforcement learning	7
	1.4	Struct	ure of this Dissertation	7
2	Lite	rature	review	9
	2.1	Brain-	Computer Interface	9
		2.1.1	Signal Acquisition	10
		2.1.2	Preprocessing	11
		2.1.3	Feature extraction	11
		2.1.4	Classification	12
	2.2	Electro	oencephalogram (EEG)	13
	2.3	BCI ap	oplications	16
		2.3.1	Brain Controlled Robots	17
		2.3.2	Brain-Controlled Mobile Robots	18
		2.3.3	ErrP-based human-robots interaction	19
		2.3.4	Degree of freedom of BCI applications	22
	2.4	Huma	n-Robot Interaction	24
	2.5	Sharee	l autonomy in HRI	26
		2.5.1	BCI-based shared autonomy	28
	2.6	Huma	n-in-the-loop reinforcement learning	29
		2.6.1	POMDP in Human-Robot Interaction	30
3	Mat	erials,	methods and experiment design	33
	3.1	Experi	ment design of ErrP-based implicit robot control	34
	3.2	ErrP-b	oased Shared Autonomy via Deep Recurrent Reinforcement Learning	38
		3.2.1	Background	40
		3.2.2	Method and experiment design	44
	3.3	Sharee	d autonomy validation with real human participants	47
		3.3.1	Experiment	47

	3.4	EEG p	processing and classification used for the two experiments $\ldots \ldots$	49
		3.4.1	EEG recording and preprocessing	49
		3.4.2	Electrophysiological analysis	50
		3.4.3	Feature extraction	50
		3.4.4	Classification	51
4	Eva	luatio	n of implicit robot control using ErrP	55
	4.1	Exper	iment overview	55
	4.2	Result	s analysis	56
		4.2.1	ERP analysis	56
		4.2.2	Classification Analysis	63
	4.3	Discus	sion	69
		4.3.1	ErrP observability and decodability for evaluating of the robot's	
			intention	69
		4.3.2	Using robot motion as time-locked events for $ErrP$	72
		4.3.3	Interaction sequence effect on ErrP	73
5	Eva	luatio	n the feasibility of shared autonomy with simulated ErrP	75
	5.1	Exper	iment overview	75
	5.2	Result	s analysis	76
5.3 Discussion		sion	86	
		5.3.1	Formula the learning as POMDP with noise ErrP	86
		5.3.2	Gradient analysis at different positions	87
		5.3.3	ErrP Accuracy threshold for training	87
		5.3.4	Adaptive human-robot interaction	88
		5.3.5	Efficiency of shared control	88

6 Validation the learned shared autonomy with real human participants 91

	6.1	Experiment overview	91
	6.2	Results analysis	92
		6.2.1 Electrophysiology analysis	92
		6.2.2 Classification analysis of ErrP	94
	6.3	Discussion	.00
	6.4	Interaction design	.00
7	Con	clusions and future work 1	.03
	7.1	Conclusion	.03
	7.2	Future work	.05
Bi	bliog	graphy 1	.07

LIST OF FIGURES

FIGURE		age
2.1	Critical steps of BCI system	10
2.2	Bayesian non-parametric learning in POMDP	32
2.3	multimodal perception model in POMDP.	32
3.1	(a) LCD mounted on the ground robot. (b) The robot performs a binary target-	0.0
3.2	(a) Real scenario. (b) The robot signals its intentions ten times at three stages	36
	in one run. There were 6 times via LCD at the positions from p1 to p6 at Stage	
	1, one time at position p7 via turning movement at Stage 2, and three times	
	at positions from p8 to p10 via LCD at Stage 3	39
3.3	An overview of our method for ErrP-based real-time shared control autonomy	
	and deep reinforcement learning. We evaluated our method in a target search	
	task with real human participants. Here the red dot with an arrow is the	
	agent, and the green square is the target	40
3.4	The environment without obstacles (a) and obstacles (b)	45
3.5	We evaluated our method in a target search task with real human participants	
	(a). The red dot with an arrow is the agent , and the green square is the target	
	(b)	48

4.1	The robot signals its intentions ten times at three stages in one run. There	
	were 6 times via LCD at the positions from p1 to p6 at Stage 1, one time at	
	position p7 via turning movement at Stage 2, and three times at positions	
	from p8 to p10 via LCD at Stage 3	57
4.2	ERPs of stage1 (a), stage 2 (b), stage 3 (c)) in channel Fz. Statistically sig-	
	nificant difference (p<0.05) was found at the green area between error and	
	correct conditions using paired permutations test	59
4.3	ErrP at Stage 1 and Stage 3. Statistically significant difference (p<0.05) was	
	found at the green area between error and correct conditions using paired	
	permutation tests.	60
4.4	Grand averaged ERP at Fz, ERP scalp map series at certain latencies of one	
	of the participants at Stage 1 (a), Stage 2 (b), Stage 3 (c).	61
4.5	Grand averaged difference in the ERP waves between the correct trials and	
	error trials at Fz of each stimulus in Stage 1, Stage 2 and Stage 3	62
4.6	Classification accuracy of four classification methods for offline sessions	63
4.7	ROC curve of four classification methods for offline sessions. \ldots	64
4.8	ACC for Stage 1 (a), Stage 2 (b), and Stage 3 (c)	65
4.9	ACC of the multiple sequence of Stage 1 (a) and Stage 3 (b). ACC of the single	
	sequence of Stage 1 (c) and Stage 3 (d). ACC of the inverse multiple sequence	
	of Stage 1 (e) and Stage 3 (f)	67
4.10	The robot correct rates at three stages of the online session	68
4.11	True positive and true negative rates at Stage 2 (a) and Stage 3 (b) of online	
	session.	69
5.1	Training curve with 100% correct probability ErrP and no ErrP conditions (a).	
	The averaged step is used to reach the target positions (b).	77
5.2	Average steps during test on different maze size for ErrP and no ErrP conditions.	78

5.3	Training curve with different level probability ErrP and no ErrP conditions	
	(a). The averaged step is used to reach the target positions (b). \ldots	80
5.4	The agent search policy with 100% accuracy ErrP	82
5.5	The agent search policy without ErrP.	83
5.6	The averaged steps to reach the target position on different observation levels	
	with partial and full observation trained model.	84
5.7	ErrP and gradients with different ErrP correct probability.	85
5.8	$\operatorname{Err} P$ gradient distribution at the different positions of two environments. $\ . \ .$	87
6.1	Shared autonomy Frame architecture. We evaluated our method in a target	
	search task with real human participants (a). The red dot with an arrow is	
	the agent , and the green square is the target (b) $\ldots \ldots \ldots \ldots \ldots \ldots$	92
6.2	ERP analysis for correct and error conditions averaged trials of scenario 1	
	and scenario 2 (a). ERP analysis for correct and error conditions of scenario	
	1 and scenario 2, respectively (b). The legend numbers "1" and "2" refer to	
	scenario 1 and scenario 2, respectively	93
6.3	The averaged steps used among 10000 times of each initial distance between	
	agent start position and target position for two scenarios with no ErrP, 70%	
	accuracy ErrP, and 80% accuracy ErrP.	96
6.4	Success rate to reach the target position within 60 steps for each initial	
	distance with no ErrP, 70% accuracy ErrP, and 80% accuracy ErrP conditions	
	for scenario 1 and scenario 2.	96
6.5	The averaged steps by removing the trials that failed to reach the target	
	positions within 60 steps among 10000 times of each initial distance for two	
	scenarios with no ErrP, 70% accuracy ErrP, and 80% accuracy ErrP	97
6.6	Steps used for participants in real experiment for scenario 1	98
6.7	Steps used for participants in real experiment for scenario 2	99

LIST OF TABLES

r	FABLE H	age
2.1	BCI paradigms and controller devices.	22
2.2	Five key factors affect the interactions between humans and robots $\ldots \ldots$	25
2.3	ErrP usage in reinforcement learning.	30
3.1	Robot communication channels and observer implicit controls command at different stages.	37
6.1	ErrP training accuracy with 10-fold cross-validation and testing accuracy for	
	the two scenarios.	94
6.2	Table: Success rate and averaged steps in real experiment.	100