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ABSTRACT

Brain-Computer Interface (BCI) is an emerging technology that provides natural and

direct communication between humans and machines. Recent BCI works aimed to create

accurate and reliable BCI systems in the field of Human-Robot Interaction (HRI). Of

these, the BCI paradigm based on error-related potentials (ErrPs), a cognitive phe-

nomenon derived from EEG signals, is particularly promising. ErrPs are involuntarily

evoked when a person perceives unexpected errors in the environment. Unlike other

BCI paradigms that require users to actively imagine the mental commands or engage

with additional visual stimuli, ErrPs depends on the user’s experience on assessing the

correctness of the robot behaviours. The ErrP-based BCI does not require additional

training and does not interrupt the user’s original workflow. This thesis presents two

novel ErrP-based BCI systems:

First, a novel robotic design for ErrP-based BCI that allows humans to evaluate

the robot’s intentions continuously. Current ErrP-based BCI cannot handle interaction

sequences that involve continuous robot movements. For example, it is difficult to extract

a time-locked event when the user detects an unexpected error while the robot arm

is already in motion. The high classification accuracy (77.57%) from the first system

confirmed that the proposed ErrP-based BCI paradigm allows continuous evaluation

of robot intentions in real-time and thus enable earlier intervention before the robot

commits an error.

Second, ErrP-based shared autonomy via deep recurrent reinforcement learning.
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Current BCI systems use ErrP as either an implicit control signal to the agent or a

reward signal in reinforcement learning (RL). Our novel framework proposed using ErrP

as an input feature in the trained RL model, which enables human intervention with a

trained autonomous agent. In a simulation with 70% ErrP accuracy, agents completed

the task 14.1 % faster. In the real-world experiment, agents completed the navigation

task 14.9% faster. The evaluation results confirmed that the shared autonomy via deep

recurrent reinforcement learning is an effective way to deal with uncertain human

feedback in a complex HRI task.

These two novel BCI systems advance the current ErrP-based BCI capabilities and

enable a wide range of new interaction possibilities between human and robot. This

thesis represents an important step toward a BCI-based shared autonomy between

humans and robots.
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