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ABSTRACT

Brain-Computer Interface (BCI) is an emerging technology that provides natural and

direct communication between humans and machines. Recent BCI works aimed to create

accurate and reliable BCI systems in the field of Human-Robot Interaction (HRI). Of

these, the BCI paradigm based on error-related potentials (ErrPs), a cognitive phe-

nomenon derived from EEG signals, is particularly promising. ErrPs are involuntarily

evoked when a person perceives unexpected errors in the environment. Unlike other

BCI paradigms that require users to actively imagine the mental commands or engage

with additional visual stimuli, ErrPs depends on the user’s experience on assessing the

correctness of the robot behaviours. The ErrP-based BCI does not require additional

training and does not interrupt the user’s original workflow. This thesis presents two

novel ErrP-based BCI systems:

First, a novel robotic design for ErrP-based BCI that allows humans to evaluate

the robot’s intentions continuously. Current ErrP-based BCI cannot handle interaction

sequences that involve continuous robot movements. For example, it is difficult to extract

a time-locked event when the user detects an unexpected error while the robot arm

is already in motion. The high classification accuracy (77.57%) from the first system

confirmed that the proposed ErrP-based BCI paradigm allows continuous evaluation

of robot intentions in real-time and thus enable earlier intervention before the robot

commits an error.

Second, ErrP-based shared autonomy via deep recurrent reinforcement learning.
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Current BCI systems use ErrP as either an implicit control signal to the agent or a

reward signal in reinforcement learning (RL). Our novel framework proposed using ErrP

as an input feature in the trained RL model, which enables human intervention with a

trained autonomous agent. In a simulation with 70% ErrP accuracy, agents completed

the task 14.1 % faster. In the real-world experiment, agents completed the navigation

task 14.9% faster. The evaluation results confirmed that the shared autonomy via deep

recurrent reinforcement learning is an effective way to deal with uncertain human

feedback in a complex HRI task.

These two novel BCI systems advance the current ErrP-based BCI capabilities and

enable a wide range of new interaction possibilities between human and robot. This

thesis represents an important step toward a BCI-based shared autonomy between

humans and robots.
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1
INTRODUCTION

1.1 Motivation

B
CI enables humans to interact with external devices by using control signals

generated from electroencephalographic activities without muscles. BCI opens

a new channel for humans to interact with their surroundings. This can make

the brain signal communicate directly with external systems. BCI can be invasive and

noninvasive according to whether implanting electrodes into the cortex. The noninvasive

BCI has been more frequently used such as EEG MEG. Recently, noninvasive electroen-

cephalogram (EEG), which measures brain signals with electrodes put on the scalp, was

commonly used to control robots, such as state visual evoked potentials (SSVEP), Motor

Image (MI), P300 potentials. Millan [48] used MI to move a cursor towards a target

successfully. In [51] the P300 served to select the object on the screen. Then the object

image will be scanned by a camera for the later grasping task. In [24], Xiaorong Gao

proposed a BCI robotic arm system using SSVEP to complete the entire move-grasp-lift

task successfully.
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CHAPTER 1. INTRODUCTION

However, the applications of SSVEP, MI, and P300 potentials need constant human

attention, which will cause user fatigue, and usually requires training phases for users

to learn how to modulate thoughts appropriately. The main limitation of SSVEP and

MI is the mismatch between mental commands and robot actions. For example, when

using the MI paradigm, the user might need to map the mental command of moving

left feet to a robot stopping. Similarly, in SSVEP, the user must memorize a mapping

between flashing symbols and robot actions. The limited mapping to commands makes

them incompatible with many HRI applications where people and autonomous robots

engage in different tasks.

A more desirable approach would be one that utilizes a naturally occurring brain

signal, thereby without interfering with the observer’s other tasks and not requiring

extensive training or active thought modulation by the person. The BCI paradigm based

on error-related potentials (ErrPs), a cognitive phenomenon derived from EEG signals,

is one such approach. With this mind, a unique feature of ErrP is that it would be

involuntarily evoked when the human perceives unexpected errors in the environment.

The user does not need to memorize an additional mapping between mental commands

and robot actions. This permits detection and management of errors in any form and

at any time during the interaction, promoting closed-loop passive BCIs as an efficient

and seamless tool for online monitoring and evaluating of a robot’s actions for users

[5]. The ErrP phenomenon was first reported in choice-reaction tasks [41]. After the

participant became aware of an erroneous response made by herself, a negative potential

of approximately 80 ms and a sustained positivity in the time interval between 200 and

500 ms were observed [42, 55]. It was later found that ErrP was also evoked 250 ms after

the user observed an unexpected event in the external environment [174].

Many previous studies have employed ErrPs for the correction of erroneous machine

behaviours [36, 37, 48, 83, 98, 112, 148, 161, 194]. In particular, ErrP used as implicit

2



1.2. PROBLEM DEFINITION

input in a close-loop for real-time feedback on robot errors in real-world environments

has garnered more attention in recent years. Salazar et al. [148] proposed a closed-loop

system that used ErrP as an implicit input to guide the robotic arm in a binary bin-

sorting task. Kim et al. [98] used ErrP as implicit reward for a real robot to learn the

mapping between human gestures and actions. Stefan K. Ehrlich et al. [36] demonstrated

the usability of ErrPs as feedback signals from the human for real-time mediating co-

adaptation in human-robot interaction. Lopes-Dias et al. [112] showed the feasibility of

online asynchronous decoding of ErrP and used it as feedback to control a robotic arm

towards a target once the robot was halted at an unexpected moment. These experiments

show that ErrPs decode human intention and be used as close-loop feedback towards a

system during the interaction between humans and a device.

1.2 Problem definition

However, the ErrP needs to be precisely time-locked to a stimulus, such as the onset of a

sudden robot movement, meaning that it is difficult to integrate the ErrP paradigm into

a scenario that requires continuous user feedback [37, 111, 112, 148]. For example, it

is difficult to use an ErrP-based BCI to stop a robot that continuously moves forward

because the motion is continuous, and there is no clear event from the robot itself

that an ErrP signal can be locked to. In [148], the ErrP was elicited by the robot’s

discrete movement actions. In [83], the robot arm’s stop-action was used as the stimulus.

Meanwhile, in [32], the sudden trajectory change functioned as an ErrP stimulus. The

BCI system in which ErrP is elicited and used to control devices whose actions occur

in a discrete way is well established. One potential breakthrough of continuous ErrP

detection is more convenient for the users as interacting with the robot’s performance

during a continuous HRI task. So an important fundamental question is whether and to

what extent the EEG-based ErrP obtained in a continuous HRI task is observable and

3



CHAPTER 1. INTRODUCTION

decodable.

On the other hand, in most research, ErrP was used as either an implicit control

signal to device [112, 148] or reward signal in reinforcement learning [3, 153, 187]. One

breakthrough is to develop ErrP as an input feature in the human-robot collaboration,

which allows human intervention in the control loop of the autonomous robot to achieve

human-robot common goals. The shared control paradigm is such a method that allows

interaction between humans and agents to achieve a goal. Traditionally, the user needs

to give explicit input, such as keyboard and mouse commands [16, 143, 172], during

interactions in most shared control tasks. The use of shared-control schemes opens the

door to a new use of error-related potentials as a complementary signal for the BCI

system.

However, due to the low decodability of ErrP, a direct mapping of partial observations

to action is not sufficient for the desired behavior. Consequently, another research

question concerns how to build an ErrP-based shared autonomy system in the human-

robot collaboration that is robust to ErrP uncertainty.

1.3 Research aim and objective

To answer the research question about whether and to what extent the EEG-based

ErrP is observable and decodable obtained in a continuous HRI task, this research

proposes a novel ErrP-based interaction paradigm that allows continuous interactions

between humans and the robot. To answer the research question of how to utilize

ErrP in the human-robot collaboration that is robust to ErrP uncertainty, this research

proposes a shared autonomy framework via deep recurrent learning. Under the research

scope in this thesis, ErrP-based BCI for human-robot intelligent systems, the main and

corresponding aims and objectives articulated below.

Aim 1: Explore the feasibility of using ErrP in a continuous human-robot interaction

4



1.3. RESEARCH AIM AND OBJECTIVE

task.

Objective 1: This paper proposed a novel robotic design for continuous implicit robotic

control using ErrP-based passive BCI.

Aim 2: Explore the feasibility of building a shared control system with ErrP.

Objective 2: This paper proposed a novel shared autonomy system incorporating ErrP

information from the user as valuable observations for the robot. Our method jointly

embeds the robot’s observation of the environment with ErrP information from the user

by concatenating them as a neural network input.

Aim 3: Explore the feasibility of the shared autonomy with uncertainty ErrP feedback

using deep recurrent reinforcement learning.

Objective 3: We formulate the shared autonomy with uncertainty ErrP feedback as

Partially Observed Markov Decision Process (POMDP). In this research, the Recurrent

Neural Networks (RNN) which relies on actor-critic method was trained with simulated

ErrP.

The following paragraphs introduce the approaches devised in this research that

correspond to the research aims and objectives.

1.3.1 Continuous implicit Robot Control using Error-related

Potentials

This research proposed a novel robotic design for continuous implicit robotic control

using ErrP-based passive BCI. The key idea was to grant the robot an additional commu-

nication channel that enabled the autonomous robot to continuously signal its intended

destination, from which the observer could evaluate the robot’s intentions at any time

and intervene early if necessary. We mounted an external liquid-crystal display (LCD)

on the autonomous robot, which constantly communicated the intended destination via

a flashing arrow. The LCD serves as an additional visual communication channel and
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allows a person to continuously evaluate the robot’s intentions and intervene earlier, if

necessary, before the robot commits an error. This novel implicit robotic control paradigm

preserves the benefits of ErrP-based passive BCIs while permitting users to intervene

earlier before the robot commits an error. We evaluated the proposed ErrP-based BCI

system via an experiment where an observer controls a Robot Operating System (ROS)

standard ground robot to perform a binary target-reaching task.

1.3.2 BCI-based shared control for human-robot interaction

Shared autonomy combines user input with automated assistance. Various methods

have been used in shared autonomy. Research [56, 57, 152] proposed a flexible self-paced

BCI by switching between automatic and subject control methods. While the switch

model is efficient, there is only one control command at one time. This kind of method

could not simultaneously take advantage of human inputs and robot autonomy. The

weight-based shared control scheme that allocated adopted weights between human and

autonomous robots is a popular method. In [162], the weight of mental command can

be adjusted when performance is unreasonable in order to reduce the uncertain EEG

pattern recognition. This approach [162] balances human preference and the autonomous

controller. However, the autonomous command was generated based on its own infor-

mation without taking advantage of human preference. Recently, deep reinforcement

learning techniques have been used by blending user inputs and agent’s observation

[143]. In [143], they incorporate information from the user as helpful information for the

agent by concatenating the user input and agent’s observation.

This research takes this shared autonomy method [143] as a reference. We incorporate

ErrP information from the user as useful observations for the agent. Our method jointly

embeds the agent’s observation of the environment with ErrP information from the user

by simply concatenating them.
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1.3.3 Shared autonomy via deep recurrent reinforcement

learning

The use of shared-control schemes opens the door to a new use of error-related potentials

as a complementary signal for the BCI system. DRL is a popular method used in shared

autonomy [45, 88, 171]. By leveraging DRL, the performance of shared autonomy has

been significantly improved [171]. This paper [88] utilized model-free deep Q-networks

(DQN) to follow the user’s actions closely enough and modifies the user’s actions when

they are suboptimal. This paper [45] uses DRL for haptic shared control to complete the

task with the least amount of time.

However, DQN’s performance declines when given imperfect inputs. Prior work [88]

has formalized shared autonomy by modeling the system’s task as Observed Markov

Decision Process (POMDP) with the uncertainty of the user’s intent. This paper [88]

use QMDP [109] to solve the problem. The system models both the user input and robot

action to map an assistance action. This paper [68] demonstrated that DRQN, which is a

combination of Long Short Term Memory [71] and a Deep Q-Network [121], is capable of

handling partial observability.

In this research, due to the low decodability of ErrP, a direct mapping of partial

observations to action is not sufficient for optimal behavior. To describe the uncertainty

about ErrP, we consider this as a Partially POMDP. We use the actor-critic method which

relies on Recurrent Neural Networks (RNN) to deal with POMDP. RNN is an approach

to stacking the memory history and robust to partial observation [68].

1.4 Structure of this Dissertation

Chapter 2 starts with a comprehensive literature review about brain-computer interface-

based human-robot interaction, shared control paradigm in human-robot interaction,

7



CHAPTER 1. INTRODUCTION

deep reinforcement learning used in shared control.

Next, Chapter 3 of this thesis will explain the different experimental designs used

for this research project. This chapter will explain the experiment design. Also describe

the different processes for data analysis and the methods used for DRL-based shared

control are explained.

Chapter 4 will focus on the results of the feasibility of ErrP-based implicit robot

control during continuous human-robot interactions.

Chapter 5 will focus on the training and test results of the ErrP-shared control

method using DRL with simulated ErrP.

Chapter 6 will focus on the shared control model performance with real EEG data

derived from real human participants.

Chapter 7 concludes the thesis and sets out the future direction in researching shared

control model with intermittent interface
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LITERATURE REVIEW

2.1 Brain-Computer Interface

EEG is one of the most commonly used approaches in BCIs. An EEG-based BCI allows

humans to communicate with external devices with neural activities. The noninvasive

BCI with electrodes placed on the scalp is widely used due to its convenience and the fact

that it is harmless to the user. The brain potentials recorded by noninvasive electrodes

are transformed into control commands to external devices.

There are different paradigms of EEG-based BCIs, such as P300 potentials [9, 164],

SSVEP [43, 124], MI [44, 177], and ErrP [48, 51]. The P300 potentials are a positive

peak at the latency of around 300ms of brain signal waves after stimuli. Stimuli with

different frequencies visually evoked the SSVEP. The P300 potentials and SSVEP are

based on external stimuli, whereas the MI is independent of external stimuli. The user

needs movement imagination of certain limbs to generate the command.

As shown in Figure 2.1, the critical steps in the design of BCI intelligent systems

based on EEG are to collect, preprocess and analyze EEG signals to identify the brain
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Signal 
Acquisition

Signal 
Preprocessing Classification

Control 
CommandFeedback

Feature
Extraction

Figure 2.1: Critical steps of BCI system.

activity of the user. The different EEG paradigms can be decoded into control commands

via feature extraction and classification algorithms. We review signals acquisition, pre-

processing, feature extraction, and classification, especially on ErrP-based BCIs in the

subsection below.

2.1.1 Signal Acquisition

The noninvasive EEG was recorded with electrodes put on the scalp’s surface. The

electrodes’ locations are the standard of the 10-20 international system, which means

that the actual distances between adjacent electrodes are 10% or 20% of the total front-

back or right-left distance of the skull. Generally, the ErrP signals are recorded at the

frontal to the central area locations with the ground and reference placed on the forehead

and the right or left earlobe. In those papers [80, 85], the ground electrode was placed on

the forehead and the reference channel on the left earlobe. The sixteen active electrodes

were located at Fz, FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, C2, C4, CP3, CP1, CPz, CP2,

and CP4 (according to the 10/10 international system) during the ErrP experiment.
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2.1.2 Preprocessing

Signal preprocessing serves to improve the signal-to-noise ratio. Filtering is widely used

to remove artifacts, including low-pass, high pass, and band-pass filtering. In [20], it

demonstrated that the error-related cognitive brain signals were mainly in the theta

([4-7]Hz) frequency range. In [80], the data was notch filtered at 50Hz, and the band-pass

filtered at [1 10]Hz during the ErrP experiment. In [192], the signals were filtered with

the band-pass frequency of 0.1 Hz and 15 Hz. Independent component analysis (ICA) is

another frequently used method to eliminate artifacts of EEG signals.

2.1.3 Feature extraction

A feature represents a specific property of EEG signals. Feature extraction is meant to

distinguish between different classes of EEG signals. Feature extractions can be divided

into the time-domain feature, which is typically temporal variations amplitudes of time-

locked potentials to a given/event/stimulus, and frequency-domain feature, which is

typically frequency power spectra of EEG signals [8]. Normally, the ErrP and P300-based

BCIs use temporal features, in which the MI- and SSVEP-based BCIs were based on

band power feature [114].

For ErrP paradigm time-samples from a pre-defined window (usually between 200

and 600 ms) were used as features [10, 23, 30, 102]. The averaged time sample in a

certain slide was usually utilized to reduce feature length [192]. In some cases, the

automatic feature selection algorithms over large feature space, e.g. t-statistic, Fisher

score served to quantify discriminant features [30, 59, 77]. These studies reported

similar features that were selected but at better to capture subject-dependent variations

of the feature. This paper [67] uses the inverse projection method as a spatial filtering

technique that increases the signal-to-noise ratio of the discriminant features. The offline

and online classification results demonstrated the validity of the approach. Alternatively,
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spatio-temporal filters and singular value decomposition approaches have been proposed

recently.

The deep learning method was widely used in feature extraction for BCIs that allows

automatic feature extraction without human intervention (citation: Deep Learning EEG

Response Representation for Brain Computer Interface, A systematic deep learning

model selection for p300-based brain-computer interfaces, EEGNet: a compact convo-

lutional neural network for EEG-based brain‚Äìcomputer interfaces). In deep neural

networks, each layer trains on a distinct set of features depending on the out of the

previous layers (cite: Deep Learning-based Classification for Brain-Computer Interfaces).

A few studies explored frequency-domain features on ErrPs with general encouraging

results [11, 135]. This paper [135] use theta power as a feature for three experiments, and

they found that the performance degrades slightly using frequency features compared to

those with the temporal feature. Another experiment [63] suggests the frequency-domain

features may be less sensitive to temporal-domain features across individual trials.

2.1.4 Classification

The classification algorithms estimate the class of EEG data after feature extraction.

Different classification methods can be chosen based on the BCI paradigms. In this

section, we reviewed the classification methods that used in ErrP paradigm.

The most frequently used classification methods of ErrP are Linear discriminant

analysis (LDA) [10, 107, 108, 138, 176] and support vector machines (SVM) [29, 181], as

well as Gaussian classifiers [22, 47, 102]. In [80], single trial was classified as erroneous

and correct by using LDA, and this particularly the case for online and real-time BCI.

In those papers [83, 114, 178], the SVM has been used for classifying ErrP. This paper

compared the performance between LDA and SVM classifiers, and they found little

difference when training and testing on the same subject’s data. Besides, the deep
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convolutional neural networks were used to decode EEG signals in a flanker task, where

the average accuracy was significantly better than linear discriminant analysis classifier

[179].

The classification can be divided into asynchronous classification and event-locked

classification based on whether there is an event onset. Sometimes the event-locked clas-

sification is not applicable online due to missing information. In this case, asynchronous

classification will be used to classify EEG signals. One paper [161] used both event-locked

classification and asynchronous classification methods to classify EEG signal.

It is also divided into average-trial classification offline and single-trial based classifi-

cation online. Typically, the average-trial classification was used for offline training. The

single-trial-based classification detects the EEG features in real-time. An online BCI

system is closed-loop and it was divided into two phases: 1) calibration phase used the

pre-recorded data to train the classifier; and 2) use phase to recognize the EEG signal

features and translate them into commands [113].

In some papers [48, 148, 194], the ErrP was classified online based on a single trial.

Additionally, Millan [48] found that the ErrP potentials are relatively similar for all the

participants. Therefore, it is reasonable to build one classification for all the subjects. In

this case, it does not need to record ErrP to build the classifiers beforehand, which could

simplify the training process.

2.2 Electroencephalogram (EEG)

The term EEG was first proposed and documented by Hans Berger in 1924 [78]. Since

then, it has been widely used in noninvasive BCIs. However, EEG signals have a low

signal-to-noise ratio (SNR). There are many aspects that can contaminate the signals

with artifacts, such as scalp muscular activity, electrode movement, and environmental

noise. Apart from the EEG signals being limited in spatial resolution events, they can
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provide exceptional temporal resolution. EEG has been distinguished with rhythms:

delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30), and gamma (above 30 Hz).

EEG patterns can be influenced by intersubject differences, age, alertness, and mental

disorders. The subject’s behavior and age can both affect EEG rhythms. However, EEG

technology is inexpensive, portable, and most important noninvasive and comfortable

[70].

Noninvasive EEG was recorded by several electrodes placed on the scalp. The

impedance of the interface between the electrodes and scalp should be less than 5KOhms

(citation). The smaller the resistance, the higher the SNR. The electrodes’ position is

very important while recording EEG data. The standard 10-20 electrode system is an

internationally recognized method for describing the electrode positions on the scalp

[87, 140].

EEG of electrodes is measured as the potential difference relative to the reference

electrode. The reference electrode is placed in a specific position, like the scalp central or

earlobe position. Data recorded in each channel measured the potential difference. Thus,

the common average reference montage is a common method to process EEG data to

increase SNR.

The artifact rejection of EEG signals is a necessity. The artifact can emerge from

body movement, nonstable electrode connection, external electromagnetic interference,

etc. EEG is usually digitized by analog-digital conversion with resampling frequency for

recording short-latency potentials.

Event-related potential (ERP). ERP-based BCI is one of the most popular BCI systems.

ERPs are generated with ongoing EEG activities that are time-locked to a stimulus.

The amplitudes with latencies usually describe ERPs. ERP is spontaneous EEG activity

reacting to an external event. The ERP components at different latencies compared to

the stimuli onset are different. The ERP waves consist of a series of position and negative
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components that are identified by latency and polarity. For example, the P300 component

occurs at a peak around 300 ms after the stimuli onset. P300 sometimes also is called P3

designated by the serial order, meaning the third positive peak after the stimulus.

ERP can be evoked by visual, auditory, and somatosensory stimuli. ERP pattern is

strongly related to the stimuli. The ERP component occurs at different latencies with

different stimuli types and strengths. Averaging trials is a common approach for ERP

analysis to reduce the artifact. The basis of averaging trials is under the assumption

that the artifact is a random process and ERP is independent among trials. Time-domain

identified by amplitudes and latency is a common form of ERP analysis. A second general

ERP analysis method is frequency domain analysis by converting an amplitude latency

series into a frequency function.

Error-related potentials (ErrP). ErrP is a goal-directed brain activity that originates

from the frontal to the central cortex, mainly the anterior cingulate cortex [48]. ErrP

is an event-related potential (ERP) elicited when wrong actions are perceived by the

users and was first reported in choice reaction task [48, 51]. This is also called "response

ErrP" [151]. There is a negativity of brain waves around 80 ms after erroneous response

[48]. Later, ErrP was also found in situations where the user simply needs to monitor

how well the system performs. ErrP activity is elicited when the user recognizes that

the external system is incongruent with the users’ intent, rather than when errors are

made by themselves. This is also called observed ErrP. There will be a negativity around

250ms after the stimulus onset [24]. The significant difference of EEG activity between

correct and incorrect trials suggests that ErrPs are particularly well-suited for the user

to monitor the robot’s feedback in a continuous HRI task.
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2.3 BCI applications

There are many different BCI applications, such as brain-controlled wheelchairs or

robots, word processors, and games. This section reviews the BCI applications to external

devices, especially on brain-controlled robotics devices and ErrP-based BCI applications.

Many researchers have applied P300 to mobile robots [142]. In [116, 122, 193, 199],

the SSVEP was used to control mobile robots. In [24], the SSVEP was used to control

robot arm to grasp objects. In [48] J. del R. Mill used MI to move a cursor towards a

target successfully. In [96], the MI was used online to control a lower-body exoskeleton in

a closed loop. However, the main limitation of SSVEP and MI is the mismatch between

the mental commands and the robot actions. For example, when using the MI paradigm,

the user might need to map the mental command of moving left feet to a robot stopping.

Similarly, in SSVEP, the user must memorize a mapping between flashing symbols and

robot actions. The limited mapping to commands makes them incompatible with many

HRI applications where human and autonomous robots engage in different tasks. A

more desirable approach would be one that utilizes a naturally occurring brain signal

without interfering with the observer’s other tasks. It does not require extensive training

or active thought modulation by a human.

The BCI paradigm based on error-related potentials (ErrPs), a cognitive phenomenon

from EEG signals, is one such approach [46]. The ErrP occurs when the user notices

an error made by the user or external agent. The observed ErrP is a component of

event-related potentials. It is an electrical activity that is time-locked to external stimuli,

such as tactile modality, visual, auditory, and spatial change. A lot of research has been

done on the usage of ErrP in the control of robots. In [32], the author used the trajectory

change as the stimuli of ErrP. In [194], the visual feedback was used to elicit ErrP. In

[80, 81], the motion of the robot arm was used as the stimuli. In [35, 37], the author used

LED on the screen as the event instead of the robot’s actual motion, where the green color
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of LED represents correct and red means error. In [101] the LED triggered ErrP during

the continuous movement of the robot. In [83], the action of the stop of the robot arm

was used as the stimuli, and the zero of ErrP locked this moment. In [134], the author

compared the sudden change of the expected trajectory of the cursor and the gradual

deviation. However, it needs to note that the ErrP is goal-related brain activity. Those

papers [103, 104] demonstrate that the ErrP in the fontal area is related to goal-directed

feedback, and no ErrP in the frontal area was found related to the sudden visual stimuli

when the feedback is correct. In [169], the author combined tactile and visual stimuli to

enhance the single-trial detection of ErrP.

ErrP can also be used in hybird BCI. In [48], the computer can detect human intention

via MI while ErrP was used for correction of there is misclassifications of MI to improve

the quality of the brain-computer interaction.

2.3.1 Brain Controlled Robots

The EEG signals were translated into the command that operates a computer display

or other devices in real-time. Many noninvasive EEG applications on robots have been

reported. In [25], the user can freely control the wheelchair in real-time after training

by using the motor imagery paradigm. Hua O. Wang [167] controlled the wheelchair to

move left or right in the real world using only EEG signals. A wheelchair was controlled

to move from avatar to avatar towards the end of a street within virtual reality via

self-paced motor imagery [152]. The EEG signals were decoded in real-time to control an

exoskeleton robot for assisting the stand-up movement [131]. In [185], MI was used to

move the cursor to the target position. In [110], the MI was used to control the direction of

a wheelchair, and the P300 potentials were used to control the velocity of the wheelchair

through the graphical user interface. In [186], MI was used in upper limp rehabilitation

for upper limb stroke patients. In [141], the P300 potentials were used to control the
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wheelchair in the automatic navigation model and direction model, and the eye-blink

times were used for different pattern switches, such as fast stop, on/off P300 system, and

model switch. In [117], the SSVEP signals are decoded to control an exoskeleton to move

the patient’s limbs. In another paper [65], SSVEP induced by one of the four LEDs with

different frequencies served to control the direction of a robot to draw a fixed-sized line.

Meanwhile, in [139], SSVEP was used in the navigation system. In [57], MI was used for

the user to switch control modes: subject control (SC) and automatic control (AC). The

user can control the moving direction during the SC model by MI. The author of [152]

put forward the shared controller model in a wheelchair, which combined the EEG and

autonomous robot.

Compared with other brain-controlled devices, brain-controlled mobile robots need

to perform better (shorter classification time and higher accuracy) since they transport

disabled people. Here, we reviewed the brain-controlled mobile robots-related vital

techniques. Recently, brain-controlled mobile robots have received great attention since

they can bring mobility back to disabled people who can not walk. Since 2004, Millan

[119] successfully used EEG signals to control mobile robots. Many researchers have

developed brain-controlled mobile robots systems.

2.3.2 Brain-Controlled Mobile Robots

Here we divided the brain-controlled mobile robots into two categories. One is that the

EEG signal a direct control command to the robots. For example, Hua O. Wang [167]

controlled the wheelchair to move left or right in the real world using only EEG signals.

Andrzej Cichocki [25] confirms that they use EEG signals as the joystick that directly

controls the wheelchair. The movement of robots depends on the EEG signals, which are

slow and uncertain. Furthermore, users need to send the control command frequently

but this can cause fatigue in users. The other one is that the EEG signals are used to
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control intelligent robots. The robot exhibits autonomous behavior to some extent. The

EEG signals act as high-level decision-makers. The user just needs to send commands

during the decision point, which can reduce fatigue so this is more reliable. Berdakh

Abibullaev [132] used P300 potentials to control a mobile robot go in four directions

(front, back, left, and right) as shown in Figure 8. Toshihisa Tanaka [193] developed a

BCI platform based on SSVEP to control a mobile robot through the Internet remotely. In

[2], a shared control system was built, where the SSVEP was used to provide high-level

commands to an autonomous robot. Gerolf Vanacker [175] uses the MI to send the control

command to the intelligent controller of a wheelchair, which is designed to filter out

the potential erroneous command. In [116], the SSVEP was used to generate the target

position, which was sent to the autonomous navigation systems. In [142], the P300 send

the left and right intentions of the user to the wheelchair intelligent controller, which

can generate the desired guiding paths. Meanwhile in [79], the P300 functioned to detect

the target location, which was sent to the autonomous navigation system. However, little

research about the usage of ErrP in mobile robots has been done till now.

2.3.3 ErrP-based human-robots interaction

Till now, ErrP was mostly used in simulated conditions rather than mobile robots in the

real world. J. del R. Millan [47] implemented a cursor on the screen to represent the

mobile robot. The user tries to move the cursor with a keyboard. The ErrP will be elicited

if the movement of the cursor is not consistent with the user’s intent. The purpose of

this research was to explore whether ErrP could be elicited when the error is made by

the interface during the recognition of the subject’s intent. In [21], the user does not

provide a control command to the simulation system, it simply monitors the agent’s

performance. The ErrP can also be observed if the cursor moves in the wrong direction.

Seldom has employed ErrP in real-world robots. However, the key important thing is
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whether the simulation framework is potentially usable in a real robotic system, whether

real robots can elicit the ErrP, and the feasibility for detecting it online and used to

correct the robots’ behaviors. Recently, more and more studies have focused on the ErrP

in the real world. For examples, in [35–37], the ErrP was elicited by a humanoid robot.

In [81, 148],the ErrP was triggered by the action of the robotic arm.

The application of observed ErrP has been reported in several studies [21, 32, 126,

151, 170].They show that the ErrPs can be used to decode human intention during the

interaction between humans and a device. However, the evocation of ErrP needs to be

precisely time-locked to external stimulus. In [32], the sudden trajectory change was

used as ErrP stimuli. In [170], ErrP was elicited by the robot’s discrete motion actions.

In [126], the robot arm’s stop-action served as the stimuli. The BCI system that ErrP

was elicited and used to control devices whose actions occur discretely is well established.

One potential breakthrough of continuous ErrP detection would provide the users with

more convenience when interfacing with the robot’s performance during a continuous

HRI task.

The ErrP mentioned above was mainly based on the average trial, which can be

easily observed. The averaging ErrP would be clearly observed if the potentials were

deterministic signals superimposed in a linearly additive manner to the independent

noise [177]. If the additive model is valid, averaging is efficient enough to recover the

signal. Yet, when the ErrP was used as the control command of robots in real-time, single

epoch identification is the key to the subject’s feedback that can simultaneously send the

command to robots. The classification of ErrP online, based on single-epoch classification,

is more difficult than offline. Each experiment trial usually changes within an individual

and the EEG signals are too noisy; the potentials are too small in amplitude to detect.

Since 1977, Jacques J. Vidal [177] successfully identified the single epoch in real-time.

Many researchers have attempted to classify EEG in real-time.
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Millan [48] used the online classification of ErrP, and it improved the correct rate

significantly during the interaction of the experiment where users employed MI to move

the cursor to the target position. The recognition of ErrP in real-time was proved but

the experiment was conducted in a simulation scenario. Javier Minguez [83] detected

the ErrP that elicited while monitoring a five-degree of freedom robotic arm performing

correct/incorrect reaching tasks in real-time. In [194], the author conducted a closed-

loop experiment with real-time decoding of the ErrP in a real car. They found that the

decoding of ErrP offline and online has similar performance. However, the ErrP was not

used to control the vehicle in a closed-loop system in real-time directly. In [148], the ErrP

was decoded in real-time and used in the closed-loop to correct the behavior of the robot.

Elsewhere, in [148], the concept of primary ErrP and secondary ErrP that can greatly

improve the classification performance was proposed. The amplitude of secondary ErrP

is larger than the primary ErrP. However, the secondary ErrP was not used online as

the user doesn’t know the exact time of the robot’s next behavior due to the hardware

(robot’s instability in free space). Table 2.1 summarised the BCI pardigms and controller

device.
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❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤BCI paradigm
Controller device

Simulated
agent

Mobile
robot

Robot arm others

P300 [142],
[132], [79]

[141],
[142]

SSVEP [116],
[122],
[193],
[199],
[139],
[116]

[24], [65] [117]

MI [48], [185] [167] [96], [186] [57], [25],
[167],
[152],
[110],
[175]

ErrP [32], [80],
[81], [134],
[47], [21]

[46], [83],
[81], [148],
[126]

[35], [37],
[101], [35],
[36], [37],
[194]

Table 2.1: BCI paradigms and controller devices.

2.3.4 Degree of freedom of BCI applications

This section reviewed the degree of freedom in the BCI paradigm. Understanding the

degree of freedom of a neural command and the controlled device is fundamental. The

control signals should be capable of actuating the device’s degree of freedom. Ideally,

the neural commands’ degree of freedom should be full control of a scalar output, i.e.,

the ability to move in any direction and stop when needed. However, using noninvasive

means to control a high degree of freedom is challenging, since BCI systems offer only

a limited number of degrees of freedom. Even the most advanced BCIs have limited

degrees of freedom and decode neural commands at the sub-prefect level. Direct control

of multiple-degrees of freedom devices is difficult. Some research [191] needs to limit the

degrees of freedom within a limited number. Some research focuses on how to increase
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the degree of freedom of BCIs. We reviewed the limitations concerning the degree of

freedom of typical BCI paradigms, e.g., motor imagery (MI), SSVEP and P300, and the

hybrid BCI, and how to increase the degrees of freedom.

The user’s intended motion can be decoded using MI-based BCI. Most BCI systems

rely on binary classification for brain activity, such as left- and right-hand imagery. The

basic MI paradigm can decode 1-DoF while the user imagines left-hand and right-hand

movements [64]. The robot cannot be controlled intuitively if the MI-based command

cannot provide adequate DoFs. One paper [53] uses an adaptive user interface to offer

multiple degrees of freedom control with a two-class MI-based BCI. In [128], motor

imagery and speech imagery were combined with increasing the degree of freedom in an

online feedback experiment. Elsewhere [118] decomposes three-dimensional space into

two sequential low dimensional cursor control for multiple degrees of freedom control by

reducing the number of degrees of freedom that the BCI needed to interpret. For basic

motor-imagery BCI, the imagination of the right/left hand can be classified by a binary

classifier. Multiple patterns [180] of MI can be extended to increase the degree of freedom.

To summarize, MI method increases the mental task for the user to increase the degree

of freedom. However, switching among multiple mental states will constantly increase

the user’s workload and make classification difficult. In order to increase the degrees of

freedom, a multiclass classifier to map control commands and task [150]. However, the

accuracy will be discounted with a multi-classifier. Indeed, it’s much easier for the user

to involve two mental states. Thus, the subsequent multi-step method based on binary

classification may solve the low degree of freedom but it will decrease task efficiency.

SSVEP and P300: Although MI-based BCI provides more accurate results, SSVEP

and P300 can offer more degrees of freedom based on the stimulus number [4]. SSVEP

can control multi-DoFs devices with blinking flickers with different frequencies. In [24],

SSVEP was used to control one-DoF pneumatic and a six-DoF robotic arm in real-time
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to realize a seven-DoF control. In [158], the SSVEP-based BCI system of multi-DoF

manipulator was presented on the basis of virtual instruments. In [136], P300 was used

to control a 9-DoF wheelchair through a graphical user interface (GUI). In [54] P300

was used to control a simulated two-degree of freedom robotic arm in a point-to-point

real-time session. In this paper, P300 was used to control a 9-DoF system that combined

a 7-DoF robotic arm and a 2-DoF wheelchair with a GUI. To summarize, the way for

P300 and SSVEP to increase the degree of freedom is to increase the stimuli number.

Compared with single model BCI, the hybrid BCI system can achieve a high degree

of freedom. Some papers [196] use hybrid BCI to increase the degree of freedom. This

approach expanded the complexity of the system. A combination of SSVEP and P300

system was devised that can decode more than 100 commands code, which significantly

increased the degree of freedom [188]. However, hybrid BCI requires more training

procedures and mental workload for users to bear compared with a single BCI model.In

[196], SSVEP was used to select the target object and use MI to control the four degrees

of freedom of motion for robot grasping task. Other hybrid methods, such as eye-tracking

[97] and fNIRS [95] were also used to increase the degree of freedom. Target selection

and path planning are indirect ways to provide more freedom for the BCI system.

Using ErrP-based BCI to control many degrees of freedom all at once is difficult for

a human, since ErrP-based BCIs only have two degrees of freedom. How to design a

system that is not limited by the degree issue is an important question. Therefore, one

of the critical objectives of this research is to design a BCI system with a low degree of

freedom so that the robot with a higher degree of freedom can be controlled.

2.4 Human-Robot Interaction

HRI has been an extensive and diverse research field in recent years. HRI focus on

developing a system where robots can interact with human users during a task. The
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collaboration in HRI obtains advantages for solving complicated problems. HRI has been

widely used in different areas, such as search and rescue [86, 125], assistive robotics

[105, 147], military and police [155], entertainment [15], space [50], and home and

industry fields [52]. HRI is expected to make a positive difference in human life.

The HRI design is a common starting point for the HRI. Five key factors affect

the interactions between humans and robots: level of autonomy, nature of information

exchange, team structure, human-robot adaptation and learning, and shape of tasks [60].

Table 2.2 summarised the literature review that focus on different factors.

Key factors of human-robot interaction Review source
Level of autonomy [60], [69]
Information change [75], [91], [13], [6], [5], [57]
Team structure [145], [12]
Human robot adaptation [58], [129], [146]

Table 2.2: Five key factors affect the interactions between humans and robots

The level of autonomy constitutes the critical aspect of designing an HRI task, which

describes what level of the robot can act to accommodate environmental variations. Au-

tonomy designing maps the inputs from the environment to the agent’s actions. Based on

what level the human and robot interact, the level of autonomy scaled from direct control

to dynamic autonomy [60, 69]. On the direct control side, how to reduce the cognitive load

of humans is one issue. Referring to the dynamic side, making robots interact naturally

and efficiently with humans is another issue. A high level of autonomy system needs few

interactions over a long period. Autonomy allows reducing and interaction frequency

of the human user’s workload in a task. This opens up technical challenges in dynamic

environments and robot designs. The robots are not just a tool but interaction partners

in HRI.

HRI is a field that understands and shares the interactions between humans and

robots. Designing desirable interactions is an essential component of HRI. Interaction
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patterns are crucial. Human-Robot Interaction (HRI) requires communication between

humans and robots. Communication can take several forms, like remote interaction

and proximate interaction, according to whether the robot and human are in close

proximity to each other [60, 75]. How to realize communication in HRI is a critical issue.

Information exchange consists of two primary dimensions: the communications medium

and format. In recent years, the media of HRI can be divided into visual displays [91],

audios [13], haptics [6], and neural activities [5, 76] in recent years.

A typical HRI team consists of single human and a single robot [145]. As the tech-

nology develop, the team number is not restricted to two. More humans and robots, and

software agents are coordinated in an HRI team [12].

Adaptation is a critical element of HRI, especially for the long-term interactions

between humans and robots [58]. Also, learning is essential for both humans and robots

so that they can interact with each other. The robots need to learn both offline design

processes [129] and online interaction [146].

Task shaping describes how the task will and should be done. This includes goal-

directed task analysis, cognitive analysis, and ethnographic studies [27, 39].

2.5 Shared autonomy in HRI

Human-robot interaction is a comprehensive research area where a human and robot

interact with each other to complete collaborative tasks [28]. HRI research has arisen

with the introduction of more advanced robotics. The HRI scenario can be divided into

four aspects referring to this work [38].

• Independent: the human and the robot execute tasks independently with individual

work pieces.
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• Simultaneous: The human and the robot execute the same work pieces but without

any dependency between them.

• Sequential: the human and the robot execute the same work piece with sequential

process and time dependence between them.

• Supportive: the human and the robot work on the same process while executing

the same work piece with time and task dependence between them.

There are many applications on independent and simultaneous tasks [144, 154, 182].

The map and human behaviors and robot actions are pre-defined, which is limited in

the dynamic environment. In the sequential and supportive tasks, the robot needs to

understand the human intention and optimize behavior under the interactions with

humans. In [115], the human’s next action was predicted by an anticipative interac-

tions primitives model in an assembly task. In [74], the robot learned the human state

and adaptively changed its policy in a handover task. The sequential and supportive

approaches enable the robot behavior to be more flexible by collaborating with humans.

The shared autonomy (also known as shared control) belongs to the supportive method

that has been widely used in HRIs. The shared control paradigm allows interaction

between humans and agents that together achieve a goal. During shared control, the

robot performs the search task with human supervision and feedback that were combined

to achieve a task performance better than what individual partners alone can do. The

robot can complete some simple tasks with a certain degree of autonomy. In [143] , the

shared autonomy was used in assistive robotics with human input by operating a joystick.

Shared autonomy was also used in industrial robots [40], semi-autonomous vehicles

[149], and space robots [157].
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2.5.1 BCI-based shared autonomy

Shared control is a widely used technology in human-robot interaction. This technique

has been successfully used in the BCI system [18, 84, 173]. The BCIs offered new

channels to allow shared control by integrating user intent directly from the ongoing

brain activity, without the need to exploit any muscular control [82, 123, 190]. In [123],

invasive BCI was used in a shared-control teleoperation framework. Elsewhere, in [190]

motor imagery was used in shared control in a reach and grasp task, while [82] proposed

a shared-control BCI using ErrP for a 2D reaching task.

There are two control components in the BCIs: direct control and shared control [8].

In a direct control model, the brain signals are decoded to directly control the robot’s

actions. The task is entirely dependent on the human user via BCI. The imperfect

accuracy of the BCI system limits the intelligence of the system. The robot has more

autonomy in shared control and is thus more robust to BCI uncertainty. Some paper

[2, 79] used shared control in a hierarchical system, where the brain signal provides

high-level commands via BCIs and the robot perform the low-level task, such as grasping,

navigation, and manipulation. This shared autonomy system allows human user discrete

feedback, which can reduce the [51] user’s burden and fatigue. In [2], SSVEP was used

to select the target, while the robot arm performed the specific grasp action. However,

this shared control method subdivides tasks into separated modules for the human

user and the robot. As well, the hierarchical shared control system was not robust

to misclassification of EEG signals. Another shared control model was to mix human

input and robot observation to generate a policy together. In this paper [143], the user

information and agent’s observation were concatenated as the input of neural networks

to learn a shared autonomy.

The shared control scheme opens the door to a new use of ErrP as an alternative

or complementary signal for the BCI system. Due to its nature, ErrP is particularly
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well suited as feedback or supervision signals during a shared control task. The user

acts as a critic instead of voluntarily generating a command. The agent can exploit the

evaluation of the current searching direction through user monitoring by changing the

searching direction, which can improve searching efficiency. An agent can take advantage

of humans’ implicit brain signals when evaluating the agent’s action. The human user

does not need to explicitly send action commands, thus significantly reducing the burden

on the human user.

In this research, ErrPs acts as a critic or supervisor and provides real-time evalua-

tions or critiques to shape the behavior of the autonomous searching system interactively.

The advantage of using ErrPs brain activity is that they do not require a person to

perform demonstrations and only require an understanding of the task goal. In other

words, the human user only needs to evaluate whether the current agent’s action is good

or not toward the final task goal. Another important issue is that the human user does

not only provide feedback but also tend to provide guidance for future exploration by

evaluating the robot’s action serials. ErrPs provide direct access to the user’s assessment

of the robot operation without the ambiguities. The goal of the shared control system is

to map the agent together with human evaluation to create a desired action.

2.6 Human-in-the-loop reinforcement learning

In this sextion, we reviewed human-in-the-loop RL. Some research learned a reward

function from human feedback based on human preference [7, 26, 195]. The ErrP-

based human-in-the-loop RL frameworks leverage ErrP as a positive or negative reward

depending ErrP decoding result to accelerate training of autonomous agents that operate

independently during the test [3, 153, 187]. ErrP was widely employed in reinforcement

learning as the reward. In [82], inverse RL was used to infer the goal position based

on ErrP in a virtual grid. In [153], ErrP is used in RL to update the reward to find a
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policy in route learning strategy. It is also used in RL to choose the correct target given

several possible targets. In [81], ErrP served as the reward in reinforcement learning

to train the intelligent controller of neuroprosthesis. The objective here was to improve

the control policy. In [98], ErrP was used for the robot to learn the human gesture by

using reinforcement learning based on the features originating from the Leap Motion

and ErrP.

In [143], instead of being used as a reward, the agent receives human feedback as

the agent’s observation for model input in shared control. Human feedback can be a

critique of an agent’s current behavior rather than an alternative reward signal. Shared

autonomy enables a semi-autonomous robot to interpret at test time. This is also the

key difference between this method [143] and human-in-loop RL [3, 153, 187], which

generally requires human evaluation during train but not testing. Table 2.3 summarised

the usage in human-in-the-loop reinforcement learning, either used as rewards or input

features.

ErrP usage in reinforcement learning Review source
rewards [3], [153], [187], [81], [98]
input features [143]

Table 2.3: ErrP usage in reinforcement learning.

2.6.1 POMDP in Human-Robot Interaction

POMDP can deal with a sequential decision with uncertainties from human error feed-

back and sensing noises. POMDP formulate the problem that the state measurements

are partial observations in sequential decisions. Quite recently, POMDP has emerged as a

popular approach in human-robot collaboration tasks [14, 94, 130]. In the POMDP model,

the state information is not fully observable but with partial observation or observation

errors regarding the status of the environment, robots, and humans. POMDP can deal
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with a complex scenario where the agent’s observation has a probability distribution. In

this section, we review the application of DRL for solving POMDP problems.

In [93], human-robot collaboration was formulated as POMDP by characterizing the

robot’s information and human intention as the state space. In this paper [200], HRC

was formulated as POMDP to learn the human model via Bayesian non-parametric

learning to decide the human state. As shown in Figure 2.2, the environment, human,

and robot states were incorporated with cross production. In another study [14], human

intention is represented as an unobservable part of the state space in human-robot

social interactions, which is modeled as POMDP. In [90] the human-aware motion was

formalized as POMPD to address the sequential decision-making problems under the

uncertainty of multimodal perception. As shown in Figure 2.3, the multimodal perception

consisted of robot status, human behavior, and working condition and used for human

intention prediction, autonomy sharing optimization, and robot motion policy learning.

In [137], the human perception hand-off problem was formalized as the POMDP model

when the driver perception module is uncertain about the environment in an HRI-

based autonomous vehicle operation. In [61], a POMDP solver was devised to handle

the infinite number of observations and large state spaces during the collaborative

diaper change scenario. In [197], a supervisory control framework is designed to model

uncertainties from the environment, humans, and robots based on the POMDP modeling.

In [89], human behavior was formulated as a POMDP model, and the planning algorithm

selected the optimal policy based on the history of human behavior. Meanwhile in [106],

the observation model, dynamic machine model, and human model were combined into

a framework and formulated as POMDP model for the human-in-the-loop system. In

[73], human-computer interaction is formulated as a consequence of a POMDP, which

is used to model human perception during interactions. In summary, POMDP does not

assume full observability for the system states. The POMDP capability in representing
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Human states Robot statesEnvironment states

State and observation set

Bayesian non-parameter 
Learning

Figure 2.2: Bayesian non-parametric learning in POMDP.

Human behavior Working conditionRobot status

Autonomy Sharing 
Optimization

Multimodal Perception

Human Intention 
Perception

Robot Motion Policy 
Learning

Figure 2.3: multimodal perception model in POMDP.

uncertainties from different sources makes it a more suitable model in HRC applications.

Due to the low decodability of ErrP, the ErrP input variable is extremely noisy. For

MDP, the best policy is invariably lost when there are imperfect observations. Similarly,

human uncertainty feedback model the shared control as POMDP in our paper, where

ErrP is decoded into binary value. The uncertainty of ErrP decoding can be represented

by a Bernoulli Distribution with a probability p to observe the truth. Consequently,

this can be considered as a Partially Observed Markov Decision Process with uncertain

observation. POMDP makes it possible to make decision under conditions of uncertain

input.
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3
MATERIALS, METHODS AND EXPERIMENT DESIGN

This chapter will explain the two different experiment designs utilized in this research.

Each section will explain each experiment’s materials and the methodologies followed

by data analysis methods. Since the two experiments use same EEG recording and

preprocessing, feature extraction, and classification procedure, we put them in a separate

section. This chapter will also link how each experiment tries to address the different

research objectives proposed in Chapter 1.

We put together of the two experiment in a same chapter, as the EEG recording and

preprocessing, feature extraction, and classification were same in the two experiment.

The first experiment design focus on ErrP-based implicit robot control during continuous

human-robot interactions. The second experiment concentrates on ErrP-based shared

autonomy via deep reinforcement learning. The second experiment was divided into a

simulation experiment to explore the feasibility of the shared control autonomy; and

a real experiment to validate the feasibility of the shared model with real human

participants.
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3.1 Experiment design of ErrP-based implicit robot

control

To explore the feasibility of ErrP-based continuous interactions between humans and

robots, this experiment proposed a novel robotic design for continuous implicit robotic

control using ErrP-based passive BCI. The key idea was to grant the robot an additional

communication channel that enabled the autonomous robot to continuously signal its

intended destination, from which the observer could evaluate the robot’s intentions

at any time and intervene early if necessary. As an example, as shown in Figure 3.1

(a), we mounted an external liquid-crystal display (LCD) on the autonomous robot,

which constantly communicated the intended destination via a flashing arrow. The

LCD serves as an additional visual communication channel and allows the human to

continuously evaluate the robot’s intentions and intervene earlier, if necessary, before

the robot commits an error. We hypothesized that when the robot intention deviates from

the observer’s expectations, e.g., the LCD flashes an arrow indicating a wrong target

destination, an ErrP would be evoked before the robot commits an error. Once the ErrP

was detected, an early correction command could be generated and updated the robotic

movements, which was equivalent to the observer’s implicit control of the robot behavior.

This novel implicit robotic control paradigm preserves the benefits of ErrP-based passive

BCIs while allowing users to intervene earlier before the robot commits an error.

We evaluated the proposed ErrP-based BCI system via an experiment where an

observer controls a Robot Operating System (ROS) standard ground robot to perform a

binary target-reaching task. As shown in Figure 3.1 (b), in each run, the ground robot

moved from a starting point toward the t-junction, made either a left-hand or right-hand

turn at the intersection, then reached the final destination at either side of the road. The

ErrP signals evoked before, during, and after turning at the intersection were recorded
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and analyzed.

Participants Fourteen participants (average age 28.57±3.11 years old, two females)

with no previous BCI training participated in the experiment. The first ten participants

participated only in offline sessions, while the last four participated in offline and online

sessions. The data of one participant were excluded from further analysis, since that the

participant was on medication during the experiment. All participants provided informed

consent for the study, approved by the University of Technology Sydney (UTS) Human

Research Ethics Committee (ETH19-3830). All participants had normal vision and did

not report any known neurological or psychiatric diseases.

Hardware system We used Turtlebot3 [127], a ground-based mobile robot, in this

study. TurtleBot is a ROS standard platform robot and integrated with 3D printing

technology. An LCD was mounted on the robot’s upper surface to communicate the robot’s

intention. The mobile robot was placed on a smooth cushion to reduce robot tremors

while moving. A computer screen was put at the other end of the cushion facing the user.

Experimental Methodology As shown in Figure 3.2 (a), during the experiment,

each participant wore an EEG cap and was seated before the cushion to evaluate the

robot’s intention during its continuous movement. At the start of each run, an arrow was

shown on the computer screen to cue the human user’s desired target destination (left or

right at the end of the road) for the observer, which is also represented human intention.

Then, the ground robot moved from a starting point toward an intersection with a linear

velocity of 0.07 m/s, made either a left or right turn at the intersection with a rotation

velocity of 1 rad/s. It then reached the final destination at either side of the road with

a linear velocity of 0.07 m/s. Using the turning point at the intersection as a reference

point, we could divide the experiment into three stages: before turning (Stage 1), during

the turning (Stage 2), and after turning (Stage 3). As shown in Figure 3.2 (b), during all

stages, the robot constantly shows the intended target destination (left or right) with
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Destination 1 Destination 2

Starting point

Turning point

Robot intention LCD

TurtleBot3
(a)

(b)

Figure 3.1: (a) LCD mounted on the ground robot. (b) The robot performs a binary
target-reaching task.
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either the LCD or robot turning movement. More specifically, as shown in Table 6.1, at

stage 1, the robot signals its intended target destination with an arrow flash on the LCD,

with the direction either left or right. The arrow flashed six times in a random sequence

with the number of directions half left and half right. At stage 2, the robot signals its

intended target destination with either left or right turning at the intersection. At stage

3, the robot signals its intended target destination with an arrow flashing three times

on the LCD, with the direction either directing or deviating the target destination. At

stage 1 and 3, the time duration between two arrow flashes is randomly chosen between

1500 ms and 2000 ms. There are 13 seconds at stage 1, 1.6 seconds at stage 2, and 6

seconds at stage 3. While the robot was moving, the observer was asked to fix his/her

gaze at the robot. ErrP was expected to be detected at each stage if the robot intention

was incongruent with human intention.

Communication Channel Implicit Robot Control
Stage 1 Arrow on the mounted LCD Turning direction at the turning point
Stage 2 Turning motion of the robot Correction of the turning direction
Stage 3 Arrow on the mounted LCD Correction of the moving direction

Table 3.1: Robot communication channels and observer implicit controls command at
different stages.

Offline sessions: No online classification was running while the robot signaled its

intended target destination. After the robot finished stage 1 movement, it turned left

50% of the time, and it turned right the other 50% of the time at the intersection. Then

it executed the stage 3 movement. The observer passively evaluated the robot’s intention

and was aware that their signals were not controlling the robot.

Online sessions: By evaluating the robot’s intention, the observer’s EEG signals

are fed into the decoding model in real-time to correct the movement commands to the

robot once the robot’s intention deviates from the observer’s expectation. Specifically, the

robot intention at stage 2 and stage 3 can reflect the EEG classification result of stage 1
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and stage2, respectively. As shown in Table 6.1, EEG signals at stage 1 were decoded

to control the turning direction at the point of interaction. EEG signals at stage 2 were

decoded to correct the turning direction at the point of interaction once a misclassification

of EEG signals of stage 1 occurred. EEG signals at stage 3 were decoded to correct the

moving direction once a misclassification of EEG signals of stage 2 occurred.

There are three offline sessions and one online session. Each session contains 40 runs.

Each run contains 3 correct trials and 3 error trials at Stage 1, one trial at stage 2 (either

correct or error), and three trials at stage 3 (either correct or error). Thus, each session

contains 240 trials at stage 1, 40 trials at stage 2, and 120 trials at stage 3.

3.2 ErrP-based Shared Autonomy via Deep Recurrent

Reinforcement Learning

This experiment mainly explore the feasibility of shared autonomy, which combines user

input and agent observation to build a shared autonomy control system. As shown in

Figure 3.3, we combine user input with simulated ErrP and robot observation as inputs

of the deep model to learn a shared control strategy. We apply our method in a target

search task. The goal location and agent start position are randomized at each episode

in a constant static map through training and testing. Based on the RL model, the agent

adapted its search direction to the expectations of the simulated human user feedback

during the test. With a sequence of such adaptations, the agent can significantly improve

efficiency in searching .
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Human intention
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Figure 3.2: (a) Real scenario. (b) The robot signals its intentions ten times at three
stages in one run. There were 6 times via LCD at the positions from p1 to p6 at Stage 1,
one time at position p7 via turning movement at Stage 2, and three times at positions
from p8 to p10 via LCD at Stage 3.
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s

a

Figure 3.3: An overview of our method for ErrP-based real-time shared control autonomy
and deep reinforcement learning. We evaluated our method in a target search task with
real human participants. Here the red dot with an arrow is the agent, and the green
square is the target

.

3.2.1 Background

3.2.1.1 Agents and environments RL

At each discrete time step t, an agent takes action and receives the observations provided

by the environment. The environment also provides the next reward Rt+1, discount λ, and

state St+1. The interaction is formalized as an MDP. A Markov decision process (MDP) is

defined as tuple (S, A, T, λ, R) where states S, action A, transitions T: S× A×S → [0,1],

reward function R: S× A×S → R, and discount factor λ∈[0, 1]. In cases where the state

is not fully observable, we can extend this definition to a partially-observable MDP

(POMDP) in which there is an additional set of possible observation Ω and observation

function O: S×Ω→ [0,1]. The expected future discount return of taking action a in state

s with policyπ: S × A → [0,1] is expressed by the state-action value function Qπ(s,a),

and the goal in RL is to learn a policy π∗ that maximizes expected future discounted

return. The agent’s policy induces a value function V and an action value function Q.

The advantage function is given by A=Q-V.
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The REINFORCE algorithm [184] iteratively updates a given policy π∗ in the direc-

tion of the optimal policy. The update direction is defined by the gradient:

g = ET

[
T−1∑
t=0

∇θπ logπ (ut |st )G t

]

REINFORCE samples the gradient estimate by collecting trajectory samples and

then computing the empirical returns G t. This introduces inherent high variability of the

gradients [62]. In actor-critic approaches [99, 156, 166], the policy is trained by following

a gradient that depends on a critic, which usually estimates the a value function.

In particular, G t is replaced by any expression equivalent to Q(τa,ua)−b(st), where

b(st) is a baseline designed to reduce variance [183]. A common choice is to use value

function V as baseline. The agent’s critic estimates Q(τa,ua) and follows a gradient based

on the advantage:

A(τa,ua)=Q(τa,ua)−V (τa)

Where

V (τa)=∑
ua π(ua ∣∣τa )Q(τa,ua)

A(τa,ua) is called advantage function. This is called Advantage Actor-Critic (A2C) algo-

rithm.

Another option is to replace G t with temporal difference (TD) error r+λV (s+1)−V (s),

which is unbiased estimation of advantage function A. In particular, the gradient must

be estimated from trajectories sampled from the environment, and the value function

must be estimated with function approximators or neural networks. Consequently, the

bias and variance of the gradient estimate depend strongly on the exact choice of the

estimator [99].

In this paper, we train critic fc on-policy to estimate Q value, using a TD(λ) [166]

adapted for use of deep neural networks. TD(λ) uses a mixture of n-steps returns. In

particular, the critic parameters θ are updated by minibatch gradient descent to minimize
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the following loss:

δ(θc)= (y(λ) − f c(·t,θc))2

Where y(λ) = (1−λ)
∑∞

n=1λn−1G(n)
t , and the n-step return G(n)

t are calculated with boot-

strapped values estimated by a target network [49, 121] with parameters copied periodi-

cally from θc.

We choose the Advantage Actor-Critic (A2C) algorithm [31, 166] to perform RL. At

every time step, the policy architecture is fed with ErrP and agent local observation

and step number and is tasked with estimating the Q-value function and policy at every

point.

3.2.1.2 Partially Observable Markov Decision Processes

Markov Decision Process (MDP) works on the assumption that the agent knows the full

observation of the environment. Put another way, the agent sensors the environment with

limited observation or uncertain observation. The uncertain observation means the state

signal will no longer be Markovian, violating a key assumption of most reinforcement-

learning techniques [165]. A partially observable Markov decision process allows for

the best decisions to be made under partial observability of the agent [92]. A partially

observable Markov decision process is a tuple 〈S, A,Ω,T,O,R〉in which S is a finite set

of states, A is a finite set of actions, Ω is a finite set of observations, T is a transition

function defined as T: S × A × S → [0,1], O is an observation function defined as O:

S× A×Ω→ [0,1], and R is the reward function defined as R: S× A×S → R.

The discrete set of observation Ω = {
o1, ......, oM}

represents the agent observation,

which depends on the next state s
′
, and sometimes conditioned on its action a. It can

be drawn by the observation function O: S× A×Ω→ [0,1]. The observing o probability

in state s
′
after an action is O

(
s
′
,a, o

)
. It required O

(
s
′
,a, o

)
≥ 0 and

∑
o∈ΩO(s

′
,a, o)= 1.

In this thesis, the discrete partial observation Ω= {0,1}, which represents the decoding
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result of ErrP. The probability is the Bernoulli distribution. If the p=0.7, it can be modeled

as follows. O
(
s
′
,a, o1

)
= 0.7 , O

(
s
′
,a, o2

)
= 0.3, or O

(
s
′
,a, o2

)
= 0.7, O

(
s
′
,a, o1

)
= 0.3. It

can be argued the agent is equipped with a sensor that knows the experiment is correct

in 70% of the cases.

3.2.1.3 ErrP-based human feedback: MDP or POMDP

While using simulated ErrP with 100% accuracy, the learning process can be formulated

as MDP. However, the classification of ErrP collected from humans in a real environment

is not perfect due to misclassification. ErrP uncertainty can be considered as the agent’s

imperfect sensors of the true state regarding the environment.

For instance, let us suppose the ErrP feedback as the robot camera to identify the

arrow traffic sign, which is likely to make mistakes sometimes and report the wrong

identity. The imperfect sensor prevents the agent from knowing the true stage of the

environment. For example, if the arrow is pointing to the left but the camera sensed

right. A partially observable Markov decision process allows for optimal decision when

the environment is partially observed. In general, partial observability stems from two

sources: (1) the agent can only sense the limited part of the environment, and (2) the

sensor is uncertain with noise reading: observing the true state can result in different

observations. The POMDP captures the partial observation in a probabilistic model,

which relates possible observed states. In our paper, the ErrP uncertainty belongs to the

second condition with the probabilistic model as Bernoulli Distribution. The probability

of ErrP observation error is pe.
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3.2.2 Method and experiment design

3.2.2.1 Network architecture

The design of the network architecture was referred to in [49]. The actor consists of 64-bit

gated recurrent units (GRUs) that use fully connected layers both to process the input

and to produce the output values from the hidden states, ha
t . Action probabilities are

produced from the final layers, z, via a bounded softmax distribution that lower-bounds

the probability of any given action by ε
/|U | : P(u)= (1−ε)sof tmax(z)u +ε/|U |. We anneal

ε linearly from 0.5 to 0.05 across 5500 training episodes and set it to 0 during test. The

critic is a feedforward network with multiple ReLU layers combined with fully connected

layers.

3.2.2.2 Task statement

We test our method on two environments. As shown in Figure 3.4, the target search

environment is described by a grid map. The first environment is a grid map without

obstacles while the second environment is a grid map with several obstacles. The map

layout and the obstacles were fixed throughout training and testing.

The size of the grid we selected was 11×11. The location of the agent and target was

simplified as the coordinate of the grid. The horizons of the agent were limited to its

neighbored four positions, with 1×1 horizon to detect the target. The agent can only

move North, South, West, and East in each time step and cannot move to the barriers

or out of the grid. The task for the agent is to find a goal location within the map. The

agent has a limited sensing range, which is assumed to be much smaller than the maze

size. The detection or capture of the target will happen when the target is in the agent’s

sensing range. The goal location and agent start position are randomized (spawned)

at each episode in a constant static map through training and testing. Once the goal

was found, a new episode began. To encourage short trajectories, there is a step cost
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Agent

Target

Obstacle

(a) (b)

Figure 3.4: The environment without obstacles (a) and obstacles (b).

(penalty) in each time step. A typical sparse terminal reward and a step cost are provided

to encourage the agent to reach the target position with minimal steps.

3.2.2.3 Network input features

The agent receives its own observation and human feedback. The agent observation

includes current and four adjacent positions (x, y) and the neighbor’s vision of four

adjacent grids: whether the target is at the adjacent position and whether the agent has

visited it. Apart from this, the step number, step cost, and last agent action are included.

All features are normalized by their maximum values. Any information about the target

position was not included in the input. The human feedback is with simulated ErrP.

We incorporate information from the user as useful observation for the agent by simply

concatenating the agent observation and human input.

Last action: The coupled action was implemented as input as well. The authors

demonstrated [201] that the coupled action-observation pair would improve the per-

formance, especially during the training process. It is true that ErrP is cued by the

agent’s last action. The action and observation are paired. In [201], actions are encoded

via a fully connected layer to match observation vectors. However, in this thesis, the
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observation vector is a small size. We simply concatenate the action and observation

vector.

Mark of visited grads: For a stationary target, an ideal search strategy is simply

represented by a path that tries to cover the entire environment without revisiting

any location. To encourage the agent to search unvisited location, the visited area was

marked. This can be sensed by the agent within its vision (four adjacent grads around

the agent’s current position). The marker was used as input rather than a reward. We

found that when the visited marker was used as input proved to better than as a reward.

If visited, the reward was positive, otherwise it was negative. The poor performance of

using as a reward because when given the sparse reward means the action that goes to

the visited area was bad, and good when the agent goes to the non-visited area. However,

it can be a good action to the visited area even though it is visited, since reaching to

the target needs to go through this visited node. The reward explicitly encourages the

agent to explore the non-visited area by rewarding the agent. Yet, considering a situation

when the neighbor’s area was visited by the agent, the optimal action was going to the

non-visited action. Using the visited marker as input, we found that the model will learn

an optimal strategy. The given reward was limited to the optimal policy. Reward for

action that visiting unexplored areas yields slightly less desirable policy. Removing the

reward and using it as input only results in a better policy. Many research papers use

rewards to encourage exploration [120], but the reward needs to be carefully designed.

ErrP simulation: To eliminate the gap between simulated EEG and real EEG

data collected from a person, we simplify the EEG data as a binary variable, which

corresponds to the decoding output of the ErrP classifier. During model training, we use

binary 0 and 1 to simulate the output of the ErrP binary classifier. To simulate ErrP

during training, we calculate the shortest path towards the target position at each step.

The shortest path [33] was computed with the information of the full map environment.
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This is the same principle whereby the human user has a global view of the environment.

If the current shortest path was longer than the last one, we consider the current step is

a bad action and makes ErrP label noted as 1, otherwise 0.

3.3 Shared autonomy validation with real human

participants

The main purpose of this experiment is to evaluate our shared control model during

the test phase with real human participants. The model we used is pre-trained with

simulated EEG. We want to validate the feasibility that the model trained with simulated

EEG can be used in real human participants in the same task environment.

3.3.1 Experiment

Participants Seven participants (one female) took part in the experiment. All the par-

ticipants were involved in both offline and online sessions. The data of three participants

were excluded from further analysis, as the ErrP classification accuracy was lower than

70% during training using 10-fold cross-validation. All participants provided informed

consent for the study, which was approved by the University of Technology Sydney (UTS)

Human Research Ethics Committee (ETH19-3830). All participants had normal vision

and did not report any known neurological or psychiatric diseases.

Interaction scenario design In order to evoke ErrP signals, the interaction scenario,

especially the stimulus, needs to be carefully considered. The scenario design was referred

to as Klaus’s design [192]. As shown in Figure 3.5 (b), there is a gray grid with a red

agent and a green target on a black background. The agent’s start position and target

were generated with their distance being bigger than 1 (the agent’s observation ability).

The agent moved from its current position to one of the four adjacent positions in each
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(a) (b)

Figure 3.5: We evaluated our method in a target search task with real human partici-
pants (a). The red dot with an arrow is the agent , and the green square is the target (b)

.

step. A 1-s animation within the agent served as a countdown to draw the participants’

attention. The agent would then instantaneously jump to the next position with an

arrow directing to the position. This arrow remained visible for 1 s. Following that, the

highlights disappeared, and the agent would remain at its new position for 1 s more

before the next step.

Offline sessions: Before real-time control, As shown in Figure 3.5 (a), participants

were asked to first perform five blocks of 120 trials on scenario 1 without obstacles. The

agent’s initial position and target position were randomly generated. If the target had

not been reached the target position after 60 trials, a new run was started. The EEG

data collected during these five blocks was used to calibrate the classifier. The agent’s

action with the movement with the distance close to the target position was labeled as

"correct," and the movement far away from the target position was labeled as "error."

The participants mentally judged whether the agent’s action was correct or wrong during

the experiment.
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Online sessions: The online experimental paradigm involved two scenarios, an

11×11 grid without obstacles and an 11×11 grid with obstacles. In this section, we

practically integrate real EEG data to validate the feasibility of the shared control model.

The EEG signals are classified in real-time to be fed back to the shared control system.

The ErrP classifier was trained with offline EEG data. We use two scenarios: one without

obstacles and one with obstacles. To test the model’s target searchability with different

distance scape, we choose samples with an initial distance d = |xT − x0|+ |yT − y0| from 2

to 20 (maximum). There are in total 19 samples with random sequences for each scenario.

The samples were pre-generated for all participants. The 19 samples were divided into

two blocks, with the first block ten samples and the second block nine samples to let the

participants rest between the two blocks. Consequently, there are four blocks for the two

scenarios during the test. The 19 samples were randomly generated separately for the

two scenarios. All the participants used the same group of pre-generated samples.

3.4 EEG processing and classification used for the

two experiments

3.4.1 EEG recording and preprocessing

EEG signals were recorded from 64 locations according to the extended 10/20 system

using a LiveAmp wireless EEG system with a sampling rate of 500 Hz. The reference

channel was placed at the FCz channel position, and the ground channel was placed

at the forehead position [1]. The signal was resampled to 256 Hz and filtered using a

finite impulse response (FIR) bandpass filter with cut-off frequencies 1-50 Hz. Then, the

common average reference served to reduce signal contamination.
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3.4.2 Electrophysiological analysis

After preprocessing, we extracted correct and error trials according to the onset of the

cued human intention. The correct and error trials averaged over all participants in the

offline experiments were segmented into epochs by extracting time intervals of -300 to

800 ms relative to the onset of the visual stimuli. We expected to observe different ERPs

in the participants evoked by correct and error trials. We choose Fz channel to examine

the ErrP, which is located at the frontal area and is normally used to analyze ErrPs

[23, 192]. As ErrP is a goal-directed brain activity that originates from the frontal to the

central cortex, mainly the anterior cingulate cortex.

3.4.3 Feature extraction

Temporal features extracted from time-series data have been used in many ErrP activity

studies [37, 148, 159]. It has been reported that the classification results of temporal fea-

tures are better than those from spectral features in the context of decoding the ErrP [83].

Some research [133, 161] considered frequency domain features in their classification.

In the context of single-trials classification of error-related potentials, temporal features

extracted from time series have been shown to lead to high classification performance

and mostly outperformed other types of features [35, 47, 81, 83]. Similarly, we obtained

comparable results using only time-domain features. Alternatively, one could approach

the detection of error-related potentials from a more generic perspective by taking into

account frequency ranges that are not commonly considered. Temporal features were

used for classification in this study. The averaged signal amplitude within a 30-ms-long

window between 150 ms and 600 ms at each trial and channel was extracted. Thus,

during the time window ranging from 150 ms to 600 ms, there will be 15 ((600-150)/30)

time points for one channel. The classification between correct and error feedback was

done from all 64 EEG electrodes. So the feature vector length is 64*15=960.
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3.4.4 Classification

Classification of ErrP is challenging due to the high-dimensional, noise-contamination

EEG data. To minimize overfitting effects, we used ten-fold cross-validation to train the

classifier with 90% of the data, and the remaining 10% of the data was used for testing.

Since the extracted features include redundant features, traditional linear discriminant

analysis (LDA) had limited flexibility when the feature was complex. It is necessary

to search for a subset from the available features that can improve classification per-

formance . Besides, the reduced feature can also improve the decoding efficacy for real

time implementation. Shrinkage and selection methods are commonly used methods

for feature selection. We compared different classification methods, including shrinkage

LDA [107], stepwise LDA (SWLDA) [34], support vector machine [29] , and elastic net

[66]. The classification performance (overall accuracy (ACC) is reported.

1) Shrinkage LDA

A binary linear classifier can be characterized by a projection vector w and a bias

term b referring to the separating hyperplane wx+ b = 0 . The projection vector of

LDA is defined as:

(3.1) w = S−1
w (ua −ub)

Where S−1
w is the covariance or within class variance, ua and ub is the mean value of

class A and class B.

The empirical covariance is unbiased and contains good properties when the number

of observations is greater than the dimensionality of variables. However, for high-

dimensional data with only a few data trials, the estimation covariance may become

imprecise because the covariance of matrix estimate is singular, and the inverted
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matrix is imprecise. This phenomenon leads to a systematic error: large eigenvalues

of the original covariance matrix are estimated too large, and small eigenvalues are

estimated too small [67]. This estimation error makes the performance of LDA in

high-dimensional situations far from optimal. Shrinkage is a common method that

compensates the systematic bias in the estimated covariance matrix by a regularized

covariance matrix Sb :

(3.2) Sb = (1−λ)Sb +λD

Where D is a diagonal matrix taking the diagonal elements of Sb. Thus, the parameter

λ forces the extreme eigenvalues towards average [67].

2) SWLDA

In essence, the stepwise method identifies the time window and scalp channels along

with the ERP epoch, which best differentiates between the groups of ERPs in the

training data. The stepwise feature selection model is computed in a training set

using CV. The selection model can then be used to classify a test set whose label is

"unknown".

Stepwise extracts a subset of features by employing forward and backward regression

models based on their statistical significance. This method begins with an initial

model and then takes successive modification steps by adding or removing variables.

In each forward step, the F-statistics and p-value of the variable are computed. If the

p-value <0.1, the variable is added to the model. After each variable is entered into

the model, a backward regression analysis is executed to remove the variables if the

p-value >0.15. Here, the maximum feature number was restricted to 60, considering

the limited number of samples in this study. On the other hand, stepwise can also be

seen as a shrinkage method by reducing the size of feature by shrinking the coefficient
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estimates towards zero. If the coefficient shrinks to exactly zero, the corresponding

variables are removed from of the model.

3) Support vector machine (SVM)

A linear SVM is designed to determine the hyperplane that maximizes the separating

margin between the two classes in binary classification. Given a training set of

instance-label pairs (xi , yi), where xi ∈ Rn and yi ∈ {1,−1}, the SVM [19] solve the

following optimization problem:

Subject to

(3.3) yi(wTΘ(xi +b)≥ 1−ζi,ζi ≥ 0

Where yi is the class label, ζi is the distance from the misclassified points to the

margin.

4) Elastic net

The elastic net algorithm is based on the alternating direction method of multipliers

(ADMM) [66]. For a given estimation of lamda, a nonnegative parameter, and alpha

strictly between 0 and 1, elastic solves the problem:

(3.4) min
β0,β

(
1

2N

n∑
i=1

(yi −β0 − xT
i β)2 +λPa(β))

where

(3.5) Pa(β)= 1−a
2

∥∥β∥∥2
2 +α

∥∥β∥∥
1 =

p∑
i=1

(
1−a

2
β2

j +α
∣∣β j

∣∣)
Where, N is the number of observations, yi denotes the response at observation i,

xi stands for data (a vector of length p at observation i), λ represents a nonnegative

regularization parameter corresponding to one value of lambda, the parameters β0 and

β are a scalar and a vector of length p, respectively.
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4
EVALUATION OF IMPLICIT ROBOT CONTROL USING ERRP

This chapter presents the experiment overview, results analysis, and discussion based

on the experiment design explained in Chapter 3, Section 3.1. The results include ERP

analysis over different interaction sequences and offline and online classification perfor-

mance. Discussion includes ErrP observability and decodability at different interaction

sequence.

4.1 Experiment overview

To explore the feasibility of ErrP-based continuous interactions between humans and

robots, this research proposed a novel robotic design for continuous implicit robotic

control using ErrP-based passive BCI. The key idea was to grant the robot an additional

communication channel that enabled the autonomous robot to continuously signal its

intended destination, from which the observer could evaluate the robot’s intentions at

any time and intervene early if necessary. We mounted an external liquid-crystal display

(LCD) on the autonomous robot, which constantly communicated the intended destination
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via a flashing arrow. The LCD serves as an additional visual communication channel and

allows the human to continuously evaluate the robot’s intentions and intervene earlier, if

necessary, before the robot commits an error. This novel implicit robotic control paradigm

preserves the benefits of ErrP-based passive BCIs while allowing users to intervene

earlier before the robot commits an error.

We evaluated the proposed ErrP-based BCI system via an experiment where an

observer controls a Robot Operating System (ROS) standard ground robot to perform

a binary target-reaching task. As shown in Figure 4.1, in each run, the ground robot

moved from a starting point toward the t-junction, made either a left or right turn at

the intersection, then reached the final destination at either side of the road. The ErrP

signals evoked before, during, and after turning at the intersection were recorded and

analyzed. 14 participants with no previous BCI training were recruited.

We hypothesized that when the robot intention deviates from the observer’s expec-

tations, e.g., the LCD flashes an arrow indicating a wrong target destination, an ErrP

would be evoked before the robot commits an error. Once the ErrP was detected, an

early correction command could be generated and updated the robotic movements, which

was equivalent to the observer’s implicit control of the robot behavior. This novel im-

plicit robotic control paradigm preserves the benefits of ErrP-based passive BCIs while

allowing users to intervene earlier before the robot commits an error.

4.2 Results analysis

4.2.1 ERP analysis

4.2.1.1 Event-related potentials for the averaged sequence

Here, we analyze the ERPs of the three stages separately across all the participants.

(a) The ERP of stage 1: As shown in Figure 4.2 (a), we observed clear ErrP activity
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p7p8p9p10
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Figure 4.1: The robot signals its intentions ten times at three stages in one run. There
were 6 times via LCD at the positions from p1 to p6 at Stage 1, one time at position p7
via turning movement at Stage 2, and three times at positions from p8 to p10 via LCD at
Stage 3.

in the Fz channel when the robot signaled its intention via an LCD. The ERPs of

correct and error conditions are similar. There is a small negativity around 150 ms,

a positivity at 200 ms, a negativity at 300 ms and another broad positivity at around

400 ms, and broad negativity at around 500 ms. A statistically significant difference

was found at approximately 200 ms between error and correct conditions using

paired permutation tests. In (citation Testing topographic differences between event

related brain potentials by using non-parametric combinations of permutation

tests), permutation tests was first used to test if two ERP components had different
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scalp distributions.

(b) The ERP of stage 2: As shown in Figure 4.2 (b), a statistically significant difference

was found at around 150 ms and 250 ms between correct and error conditions.

However, compared with that at Stage 1, the peak latency of the ERP in Stage 2

was not clear and had a delay. Additionally, the ERP waves were less smooth at

this stage. We hypothesize the poor observability of ERP waves was due to the ERP

not precisely locking the robot turning action.

(c) The ERP of stage 3: As shown in Figure 4.2 (c), similar to Stage 1, there is a

small negativity around 150 ms, a positivity at 200 ms, a negativity at 300 ms and

another broad positivity at around 400 ms and broad negativity at around 500

ms. There are statistical differences at approximately 150 ms, 200 ms, and 300 ms

between correct and error conditions.

We also compare the ErrP waves of stage 1 and stage 3. As shown in Figure 4.3, we

observed similar ErrP waves in these two stages but the amplitude was different. Here a

statistically significant difference was found at the positive peak at approximately 200

ms and the broad negative peak at approximately 500 ms between Stage 1 and Stage 3

(p<0.05, paired permutation tests).

Figure 4.4 shows the 64-channels scalp potentials topographies of the difference

between correct and error conditions at the main peak time for one of the participants:

the first is a frontal-central negativity, followed by a frontal-central positivity, and then a

frontal-central negativity at the three stages.

4.2.1.2 Event-related potentials for each sequence

At each stimulus sequence, the robot constantly expressed the intended target destination

for the human observer. More specifically, at stage 1, the robot signals its intended
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(a) (b)

(c)

Figure 4.2: ERPs of stage1 (a), stage 2 (b), stage 3 (c)) in channel Fz. Statistically
significant difference (p<0.05) was found at the green area between error and correct
conditions using paired permutations test.
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Figure 4.3: ErrP at Stage 1 and Stage 3. Statistically significant difference (p<0.05) was
found at the green area between error and correct conditions using paired permutation
tests.

destination with an arrow flashes on the LCD at the p1 to p6 sequence. At stage 2, the

robot signals its intended target destination with either left or right turning at the p7

sequence. At stage 3, the robot signals its intended destination with an arrow flashes at

p8 to p10 sequence. We explored the ERPs of each stimulus sequence of the three stages,

p1 to p6 at Stage 1, p7 at Stage 2, and the p8 to p10 at Stage 3, as shown in Figure 3.2.

The average ERP waveforms of the difference between the correct trials and error trials

(correct trials minus error trials) of each stimulus from the Fz channel across all the

participants for the three stages are shown in Figure 4.5.

(a) The ERP difference at Stage 1: A clear negative peak at approximately 200 ms

could be found among the ERP waves of each sequence except for the p1 and p2

sequences. However, the positive was not clear among the sequences. The ERP

waves among p3 to p6 were consistent.

(b) The ERP difference at Stage 2: No clear peak could be found of the ERP difference.

(c) The ERP difference at Stage 3: A clear negative peak at approximately 200 ms and
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Figure 4.4: Grand averaged ERP at Fz, ERP scalp map series at certain latencies of one
of the participants at Stage 1 (a), Stage 2 (b), Stage 3 (c).
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Figure 4.5: Grand averaged difference in the ERP waves between the correct trials and
error trials at Fz of each stimulus in Stage 1, Stage 2 and Stage 3.

a positive peak at approximately 300 ms could be found among the ERP waves of

each sequence. The ERP waves among p8 to p10 were consistent in Stage 3.
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Figure 4.6: Classification accuracy of four classification methods for offline sessions.

4.2.2 Classification Analysis

4.2.2.1 Offline classification performance

(a) Offline classification result for the averaged sequence:

The accuracy (ACC) of different methods at Stage 1 can be seen in Figure 4.6. The

ACC of the shrinkage LDA, elastic net, SVM, and stepwise LDA were 68.31%±
6.42%, 64.86%± 7.21%, 66.27%± 6.67%, and 65.86%± 5.45%, respectively. An

ANOVA with repeated measures on the performance results revealed there was no

significant difference (χ2(5)= 4.348, p = 0.504) between the four classification algo-

rithms when combining all participants. But the receiver operating characteristic

(ROC) curve of shrinkage LDA is better than the other three methods, as shown in

Figure 4.7. Based on this, we choose the shrinkage LDA classifier for the following

discrimination analysis.

As shown in Figure 4.8, the within-participant average ACC for Stage 1, Stage

2, and the Stage 3 were 68.31%± 6.42%, 55.20%± 8.85% and 69.74%± 9.32%,

respectively.
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Figure 4.7: ROC curve of four classification methods for offline sessions.

(b) Offline classification result for each sequence:

In this section, we explored the effect of multiple sequences on classification

performance. At Stage 1, we compared the classification performance of multiple

sequences: p1, p1 to p2, p1 to p3, p1 to p4, p1 to p5, p1 to p6. Similarly, at Stage 3,

we compared the classification performance of the sequence of p8, p8 to p9, and p8

to p10. As shown in Figure 4.9 (a) and 4.9 (b), the ACC increased as the sequence

number increased both at stage 1 and stage 3, which coincides with the intuitive

hypothesis that combining more data sequences improves the signal-to-noise ratio

(SNR) for the expected ErrP signals, leading to better classification accuracy.

We also compared the classification performance of each single sequence. As in

Figure 4.9 (c) and (d) shown, the ACC noticeably increases from sequence p1 to p3

and remains stable from sequence p3 to p6. In comparison, the ACCs of the three

sequences of stage 3 do not change noticeably from p8 to p10. The ACC for a single

sequence between participants is generally around 65% for the p3 to p6 and p8 to

p10 sequences. In comparison, the ACC is around 60% for the single sequence p1

and p2. The classification performance was better when the interaction sequence
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Figure 4.8: ACC for Stage 1 (a), Stage 2 (b), and Stage 3 (c).

65



CHAPTER 4. EVALUATION OF IMPLICIT ROBOT CONTROL USING ERRP

was closed to the turning point compared with the start point at stage 1.

Considering the superior classification performance of sequence close to the turn-

ing position at Stage 1, we explored classification performance based on inverse

sequences: p6, p6 to p5, p6 to p4, p6 to p3, p6 to p2, and p6 to p1. As shown in

Figure 4.9 (e) and (f), the ACC first increased, reached a peak when the sequence

was p6 to p3, and then diminished at Stage 1. The ACC increased as the sequence

number rose at stage 3.

Instead of decoding EEG signals on a single-sequence basis, we used majority voting

for multiple interaction sequences decoding for Stages 1 and 3. More specifically, at

stage 1, if the number of correct decoding sequences is greater than three out of the

six sequences, then the human intention could be correctly recognized. The same

approach for Stage 3: if the number of correct decoding is greater than two out of

the three sequences. At Stage 1, the ACC was 72.30%±9.67% and 77.57%±5.70%

when using the majority voting procedure for the six sequences p1 to p6 and the

three sequence p4 to p6, respectively. At Stage 3, the ACC was 72.89%±11.34%

when voting using all three sequence p7-p9. The ACC can be significantly improved

by voting for the multiple sequences in one run compared with single-sequence

classification. We discovered that majority voting for multiple interaction sequences

can significantly improve the classification performance when using the last three

interactions p4 to p6 in Stage 1.

4.2.2.2 Online classification performance

This session presents the real-time robot control strategy and online closed-loop

classification performance. EEG signals from the human observer are decoded in real-

time to feed to the classifier model for the robot control. The classifier model was trained

using EEG data from the first three offline sessions.
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Figure 4.9: ACC of the multiple sequence of Stage 1 (a) and Stage 3 (b). ACC of the
single sequence of Stage 1 (c) and Stage 3 (d). ACC of the inverse multiple sequence of
Stage 1 (e) and Stage 3 (f).
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Figure 4.10: The robot correct rates at three stages of the online session.

Considering that better performance was achieved for the interaction sequence

composed of p4, p5, and p6 instead of the interaction sequence consisting of the first

three sequences , the interaction sequences p4 to p6 at Stage 1 combining the majority

voting strategy were decoded to correct the turning direction command at the intersection.

The interaction sequence p7 at Stage 2 was decoded to correct the turning direction at the

interaction once a misclassification of EEG signals at Stage 1 occurred. The interaction

sequences p8, p9, and p10 at Stage 3 combining the majority voting strategy were used to

correct the moving direction once a misclassification of EEG signals at Stage 2 occurred.

As shown in Figure 4.10 , the correct rates to successfully decode human intention

at three stages were 69.02%±7.33%, 56.30%±11.30%, and 60.42%±9.62% respectively.

Figure 4.11 further breaks down the performance of Stage 2 and Stage 3 into true-

positive rates (TPRs) and false-positive rates (FPRs). In this context, true positive can be

integrated if the robot intention deviates from human expectation, then ErrP is detected

from human observer. False positive can be integrated where in the human agreed with

the robot intention, and no ErrP was detected from the human observer. The TPR of

Stage 2 and Stage 3 was 81.74%±18.57% and 75.60%±8.46%, respectively, while the

FPR was 45.73%±8.89% and 51.61%±16.57%, respectively, averaged for all participants.
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Figure 4.11: True positive and true negative rates at Stage 2 (a) and Stage 3 (b) of online
session.

4.3 Discussion

4.3.1 ErrP observability and decodability for evaluating of the

robot’s intention

Most of the proposed error-based HRI systems have used ErrP as implicit input to

correct machine errors after an error happens. The error might be costly or dangerous

in a context such as an assembly line or autonomous driving. However, in our proposed

system, the robot signaled its intention to the human before making its decision. ErrP

signals would be elicited and fed to the decoding model in real-time to generate control

commands if the observer disagreed with the robot’s intention. Thus, the observer can

evaluate the robot’s intention at any time via an additional visual channel and intervene

early, if necessary, before the robot commits an error. At Stage 1, the LCD attached on

the ground robot constantly communicated the intended target destination with left or

right arrow flashes. The EEG signals were decoded to generate a turning command at

the intersection. During Stage 2 the robot expressed the intended target destination with
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either left or right turning at the intersection. The EEG signals were decoded to correct

the turning direction at the interaction point once a misclassification of EEG signals of

stage 1 occurs. At Stage 3, the LCD communicated the intended target destination with

arrow flashes with the direction either directing or deviating the target. The EEG signals

were decoded to correct the moving direction once a misclassification of EEG signals of

stage 2 occurred. The high ACC of the single-trial ErrP experiment demonstrated the

feasibility of ErrP evoked by the intention discrepancies between the human and the

robot in the HRI system, which widened the usage of ErrP in traditional HRIs.

The averaged ERP observability across all participants, and single-trial classification

performance was consistent between Stage 1 and Stage 3, as shown in Figure 4.2 and

Figure 4.8. There is a small negativity around 150 ms, a positivity at 200 ms, a negativity

at 300 ms and another broad positivity at around 400 ms, and broad negativity at around

500 ms after the BCI feedback at both Stage 1 and Stage 3, which coincided with ERP

waves in this study [77]. The same ERP phenomenon at Stage 1 and Stage 3 indicates

that the observed brain activity at both these stages originated from the same underlying

neural process of error monitoring [72] [168]. As shown in Figure 4.3, we observed similar

ErrP waves at Stage 1 and Stage 3, but the peak amplitude was statistically different at

the positive peak at approximately 200 ms and the broad negative peak at approximately

500 ms. We hypothesize the peak amplitude difference was due to the stimuli distance

from the human observer. This is because event-related potentials are strongly related

stimuli size [189]. In particular, the stimuli at Stage 1 was closer to the human observer

than those at Stage 3, which could elicit strong ERP waves.

In most studies, ErrPs were observed after an error event occurred. The terms

’primary ErrP’ and ’secondary ErrP’ were first reported in [148]. The authors discovered

that a secondary ErrP was evoked once a misclassification of the EEG signals occurred.

However, the secondary ErrP was not used in real-time due to an ERP time-locked issue.
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In our paper, for the online close-loop session, the robot intention at stage 2 and stage

3 can reflect the classification results of stage 1 and stage 2, respectively. Real-time

decoding of the observer’s EEG signals at stage 2 and stage 3 allows continuous correction

of misclassification.

Previous research [47] explored the effect of 20% and 50% error rates on the ErrP.

They discovered that the ErrP amplitude was small when the error rate was 50%

compared with that when the error rate was 20%. In our proposed method, the correct

and error rate feedback of robot intention was 50% rate. The user needs to mentally judge

the robot’s feedback was correct or not without any other physical response, which can

increase the difficulty of the ErrP discrimination. Additionally, it has been shown that

the classification performance of continuous BCIs was worse than that of noncontinuous

BCIs [161]. It was hypothesized that the continuous interaction would likely lead to a

higher workload than standard BCI systems. The ERP amplitude diminishes with a

high brain activity workload, which could affect the classification performance during

continuous interaction. Continuous interactions could also affect the decodability of ErrP

in our system. Another impact was the moving stimulus, which could affect single-trial

variability, affecting the ErrP decodability.

As shown in Figure 4.11, the TPR of Stage 2 and Stage 3 was 81.74%±18.57% and

75.60%±8.46%, respectively, while the FPR was 45.73%±8.89% and 51.61%±16.57%

averaged all participants, also respectively. The high TPR indicates that ErrP could

be actively evoked if the robot intention deviated from the observer’s expectation. In

contrast, the low FPR indicates that the human observer tends to "over" react to the

robot’s intention even though it was correct.

Another reason for the high TPR and low FPR may be the different levels of human

observer engagement between online and offline sessions. The decoder used for online

control was trained using offline data. The human observer engages more during the

71



CHAPTER 4. EVALUATION OF IMPLICIT ROBOT CONTROL USING ERRP

online session than during offline sessions, since the lack of collaboration during offline

sessions significantly affects the human observer’s engagement. ERP amplitude and

latency were related to the participant’s attentional involvement [19]. Online adaptive

learning would be a useful approach to adapt the variation between offline and online

sessions [17]. The new online data will be utilized to retrain the model obtained from

offline sessions and hence improve it iteratively. However, the findings of the online

performance were based on only four participants. Future research could be conducted

in this direction with more participants.

In our paper, the ErrP decoder was a binary classifier, and the output corresponded to

the robot’s binary intention ( left or right). Our experiment was based only one dimension

(left and right) at the intersection. The robot’s intention (left or right) could be decoded

with the ErrP-based binary classifier. However, one important question is how ErrP

could be decoded and used to control the robot’s movement when the map dimension

increase from one- to two- dimensional direction, for example, left/right and forward/back

in a maze. Further research could be undertaken in this direction.

4.3.2 Using robot motion as time-locked events for ErrP

As shown in Figure 4.2 and Figure 4.8, both the classification performance and ERP

waves of the robot action feedback at Stage 2 are poor compared to that of the arrow

flashing feedback at Stage 1 and Stage 3. In addition, the classification performance

variation was higher across participants when the stimulus was the robot turning

movement at Stage 2 (see Figure 4.8). This finding is consistent with that reported in

[37], where the ErrP was sensitive to the stimulus despite identical protocols. We believe

the poor observability of the ERPs in Stage 2 is because the perceived robot turning

movement onset is not precisely time-locked compared to the flashing arrow stimulus.

To study the time-locked issue, we designed an additional experiment that examined
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the human reaction time toward the robot’s turning motions. In each trial, an arrow

will randomly flash with the direction either left or right. After 2 seconds, the robot

will randomly perform a rotation with direction either left or right. We instructed the

user to press the key "v" when she perceived the left turning motion of the robot and

to press the key "b" when she perceived the right turning motion. The experiment

consists of 100 trials with 50 left turns and 50 right turns. We recruited two participants

for the experiment. The average time for the user to perceive the turning motion was

591.8±117.6.5 ms. The initial result suggests that the selected epoch period, 150 - 600,

for the ErrP analysis and decoding is reasonable. The large variance response time

toward robot turning also confirmed our assumption that the onset of turning motion

could not be precisely time-locked.

The same time-locked issue was also reported in [148], where the terms ’primary

ErrP’ and ’secondary ErrP’ were first reported. The primary ErrP was precisely locked by

a mechanical momentary switch affixed to the robot. However, the secondary ErrP was

not used in real-time control due to an ERP time-locked issue. It should be noted that the

time-locked issue is the limitation of ErrP-based BCI. The feedback onset time is vital

for reliable EEG classification, which needs to be carefully considered for researchers

while designing an ErrP-based BCI experiment.

4.3.3 Interaction sequence effect on ErrP

Given that existing BCI paradigms cannot achieve high precision using one single visual

stimuli, the proposed experiment was designed to explore the optimal number of visual

stimuli and time period for the ErrP-based implicit robot control. The ERP activity

and classification performance of the p1 and p2 sequences were poor compared with

those of the p3, p4, p5, and p6 sequences. A possible reason is that the user was more

involved in the task when the robot was close to the turning point. The poor classification

73



CHAPTER 4. EVALUATION OF IMPLICIT ROBOT CONTROL USING ERRP

performance of the p1 and p2 sequences are made evident by the single sequence ERP

waves, as shown in Figure 4.5. No obvious negative peak at approximately 200 ms could

be found in the p1 and p2 sequences. This was consistent with the low classification rates

for the p1 and p2 sequences. In contrast, a clear negative peak could be found for the

p3 to p6 and p8 to p10 sequences. High classification rates seemed to reflect large N2

components. The ACC for every single sequence across participants is generally around

65% if the corresponding N2 negativity could be clearly seen.

As shown in Figure 4.9 (a) and (b), the ACC increased as the sequence number

increased in both Stage 1 and Stage 3. One potential reason is that the multiple sequences

improved the SNR for the ErrP signals. Another potential reason is related to the

single-sequence difference, especially in Stage 1, as illustrated in Figure 4.9 (c). The

classification rate increased, reached a peak with the sequence p6 to p3, and then

decreased as the inverse sequence due to the poor performance of p1 and p2 sequences.

We found that the majority voting across the classification result for multiple se-

quences can improve classification performance. In particular, when using the voting

procedure for the classification result of the last three sequences in Stage 1, the ACC

reached 77.57%±5.70%. It demonstrated that the voting procedure is an effective way

to decode implicit human intention with multiple interaction sequences. This finding

was consistent with what was reported in [100], in which multiple events analysis can

increase the accuracy of error detection.
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5
EVALUATION THE FEASIBILITY OF SHARED AUTONOMY

WITH SIMULATED ERRP

This chapter presents the experiment overview and results analysis from the experiment

design in Chapter 3, Section 3.2. Later parts of this chapter will discuss what those

results mean.

5.1 Experiment overview

The main purpose of this experiment is to explore the feasibility of shared autonomy,

which combines user input and agent observation to build a shared autonomy control

system. As shown in Figure 3.3, we combine user input with simulated ErrP and robot

observation as inputs of the deep model to learn a shared control strategy. However, due

to the low decodability of ErrP, A direct mapping of partial observations to action is not

sufficient for optimal behavior. To describe the uncertainty about ErrP, we formulate the

shared autonomy as POMDP. We use the actor-critic method that relies on RNN to deal

with POMDP. RNN is an approach to stacking the memory history and robust to partial
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observation [68].

We begin our experiment with simulated user feedback to train and test the shared

autonomy model in target search task. The goal location and agent start position are

randomized at each episode in a constant static map through training and testing. We

hypothesis that the ErrP-based shared autonomy would enables an autonomous robot to

complete the tasks more efficiently.

5.2 Results analysis

We begin our experiments by executing our method under different simulated ErrP

accuracy levels in various environments. We first make ErrP as a full observation with

100% accuracy and then make ErrP as a partial observation with different accuracy levels.

We prime the solo agent without ErrP feedback to function as the baseline. Our central

hypothesis is that our method can improve the agent’s performance despite partial ErrP

observation. Simulating pilots enables us to take a deeper dive into different aspects

of our method (like the effects of ErrP accuracy level on training an effective shared

control model, gradient analysis with different ErrP accuracy at different positions).

Most importantly, we use simulated ErrP to train the shared control model that test on

real human users.

5.2.0.1 100% accuracy ErrP and without ErrP

We make the solo agent without ErrP feedback as the baseline. The agent trained without

ErrP is a solo autonomous agent. We first make ErrP as full observability with 100%

correct probability and compared the training and test performance with that of baseline

condition to check the feasibility of the shared control paradigm. We evaluate the method

on the grid environment without obstacles, as shown in Figure 3.4 (a).
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(a) (b)

Figure 5.1: Training curve with 100% correct probability ErrP and no ErrP conditions
(a). The averaged step is used to reach the target positions (b).

As shown in Figure 5.1 (a), the training convergence is faster and gains more re-

wards with ErrP as input than without ErrP. It demonstrated that the shared control

policy does better than the solo agent policy. The learning curve is smoother with the

ErrP condition, which demonstrates that the performance is more stable. There was a

significant improvement in the training convergence when ErrP was used as input. The

ErrP feedback is deemed to be agent’s additional observation. With more observation

and information gained, the agent can make better decisions. Figure 5.1 (b) was the

averaged steps used during evaluation with 20000 episodes with random start and target

positions. The average steps taken with ErrP and without ErrP feedback were 10 and 32

steps, respectively.

5.2.0.2 ErrP effect on maze size.

In this section, we explored the ErrP effect on different maze sizes. We hypothesize

that the agent’s performance would improve greatly using a large maze. We train and

test the model on three different grid sizes: 9×9, 10×10, 11×11. We compared the

average steps used during the test phase between 100% accuracy ErrP and no ErrP
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Figure 5.2: Average steps during test on different maze size for ErrP and no ErrP
conditions.

conditions. As shown in Figure 5.2, the average steps were 20.8, 24.6, 31.5, respectively,

for no ErrP condition and 8.7, 9.6, 10.1, respectively, for ErrP condition on the three

different mazes as size increased. With ErrP as input, the agent performance concerning

the average steps increased by 58.1%, 60.6%, and 68.0%, respectively, compared with no

ErrP condition for the three different mazes with increased size. The results confirmed

that ErrP wielded more effect on the agent’s performance on the large maze than the

small one. This can be interpreted as meaning that the ErrP acts as a critic of the correct

or error searching direction. With the ErrP guidance, the agent can quickly find the

target position.
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5.2.0.3 ErrP as partial observability.

In this section, we make ErrP as partial observation by adding different noise levels. We

vary the correct accuracy of the ErrP feedback with simulated data and evaluate with the

same level of correct probability. The probabilities of providing the correct ErrP feedback

were initialized from 0.65 to 1. We then used the simulated data to train different models:

no ErrP model, a POMDP model (correct probability from 0.65 to 0.9), and an MPD

model. For testing, we used 20000 episodes with random start and target position. We

evaluated the different models with the same correct probability feedback. The average

steps of 20000 were recorded.

Figure 5.3 (a) shows the training performance with different ErrP correct probability

as well no ErrP feedback conditions. Figure 5.3 (b) depicts the averaged steps used

during evaluation with different conditions. The higher the correct probability, the small

steps used to reach the target position. In other words, the less uncertain feedback from

humans, the better decision they can make. The agent can learn different optimal policies

with diverse sets of partially observable environments. The 100 % correct probability can

be considered a full MDP, while the rest with ErrP feedback can be considered POMDP.

The experiment indicates that the agent can infer the correct probability during training

and learns an optimal policy. This indicated that integration of agent observation and

human perception could greatly improve the search efficiency; even the human feedback

is partially inaccurate during the continuous search task. Furthermore, we found that

when the correct probability was lower than 65 %, more steps were used to reach the

target position than that without the ErrP condition. The less correct probability was

not good enough to train an optimal shared policy compared with that solo agent policy.

In other words, the uncertain human feedback will mislead the agent’s decision.
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(a) (b)

Figure 5.3: Training curve with different level probability ErrP and no ErrP conditions
(a). The averaged step is used to reach the target positions (b).

5.2.0.4 Search policy explanation

We examine the search trajectories while fixing the agent’s start location to understand

the model strategy. In the shared control policy with 100% correct probability, we found

that if ErrP appears, the agent will change its search direction to its left so that takes

up anticlockwise searching, as shown in Figure 5.4. The same performance when ErrP

accuracy was bigger than 80%. The agent will always change its search direction on

the left-hand side. In other words, the policy trained with 80% ErrP accuracy was the

same as that of 100% ErrP accuracy. However, the agent learned a different accuracy

when ErrP accuracy was less than 70%. The agent would not change its search direction

immediately if ErrP occurs. The agent will change its direction when it gains more

confidence. We hypothesize that the confidence has relation to ErrPs of past several steps

and current position. Thus, the confidence the function:

C = f (E(n), (x, y))

Here we use E(n) as the effect of past n steps ErrP.
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We also checked the search pattern that trained on the environment with obstacles,

as shown in Figure 3.4 (b). For the environment without obstacles, the agent will change

its search direction to the left-hand side once there is an ErrP input, other than returning

to the last position, which learns an inverse spiral search strategy. However, for the

environment with obstacles, the agent will first return back to its last location and then

change its direction to the left if there is an ErrP input. The difference was that returning

to the last position for the environment with obstacles was more steady for the agent.

The agent has the potential to be blocked by the obstacles in the following steps if it is

searched in an inverse spiral way.

For the no ErrP model, as shown in Figure 5.5 the agent’s trajectory takes on of

anticlockwise searching. The agent searches along the wall and then narrows the search

region. The trajectory is fixed and depending only on the agent’s start point. While for

the ErrP condition, the agent changes the trajectory in real-time to adapt to human

feedback.

5.2.0.5 Trained with full observation and evaluated with partial observation

In order to test the robustness to the uncertainty of the POMDP model, we compared

two conditions: 1) The agent was trained with partial observation (75% ErrP correct

probability) and evaluated with incrementally more complete observation; and 2) The

agent was trained with full observation (100% correct probability) and evaluated with an

incrementally more complete observation from 70% correct probability to 100% accuracy.

Figure 5.6 show the averaged steps used during the evaluation of different situations.

The averaged steps were reduced when the correct probability increased for both two

conditions. However, when the correct probability is less than 80%, the model trained

with partial observation used fewer steps than with full observation. Conversely, when

the correct probability is greater than 80%, the model trained with partial observation

used more steps than full observation. The POMDP model allows performance to scale
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Agent

Target

Trajectory

Figure 5.4: The agent search policy with 100% accuracy ErrP.

linearly as a function of observation quality. Note that, when evaluated with 70% correct

probability, while both models incur a decrease in performance, the MDP model dropped

to around 40 steps and the POMDP model dropped to approximately 27 steps. Meanwhile,

the performance of the model trained with full observation declined dramatically when

given incomplete observations. When evaluating with 100% accuracy, the POMDP model

used around 12 steps, reaching the near-perfect levels (around ten steps). In all, the

model trained with partial observation is more able to handle partial observability

when the quality of observations changes during evaluation time. The performance

declines dramatically when using the model trained with full observation and tested

with partial observation. The results are consistent in [68]: the model trained with partial

observation is robust enough to handle missing game screens and scalable enough to
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Agent

Target

Trajectory

Figure 5.5: The agent search policy without ErrP.

improve performance as more data becomes available.

It demonstrated that the model trained with partial observation was more robust to

uncertainty during evaluation, despite the learned two models using the same neural

network architecture. Besides, it is also scalable enough to improve performance as

observation of correct probability increases.

5.2.0.6 Gradient analysis on ErrP with different observation level

The gradient is computing derivatives of the outputs of a model with respect to the

input’s variables, which identifies which input variables are important for the prediction

of the outputs. The gradient-based method is a natural and popular attribution way

[198] to explain deep neural network decisions. It indicates how important the input

dimension is for the output based on the learned model.
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Figure 5.6: The averaged steps to reach the target position on different observation
levels with partial and full observation trained model.

To better understand the mechanisms that allow the POMDP model to perform well

in the uncertain environment, we analyzed the performance and gradient between a

POMDP model at different correct probabilities. More specially, we compared the gradient

with 70%, 75%, and 80% correct probability. We found that when the ErrP correct

probability is bigger than 80%. The learned policy is the same as that of 100% probability.

That means the ErrP gradient makes no difference when the correct probability is bigger

than 80%. So, we simply compared the gradient trained with a correct probability lower

than 80%.

As shown in Figure 5.7, ErrP gradient increased as the ErrP correct probability

increased. It revealed that when the ErrP accuracy is higher, it has more important

effects on the outputs than low ErrP accuracy. In contrast, with the large effect on the
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Figure 5.7: ErrP and gradients with different ErrP correct probability.

output of ErrP, the effect on the output of other inputs variables should abate. In other

words, the gradients of the agent’s observation, like position variables, will decrease. The

position gradient decreased as ErrP accuracy increased. The results demonstrated that

human feedback gradually has more effects, and the agent observation has fewer effects

with the ErrP accuracy scale increased during training.

It revealed that the model trained with high ErrP accuracy was more sensitive to

ErrP input. Corresponding to the behavior, the agent will more likely change the search

direction whether there is negative feedback from a human with the model trained with

high ErrP accuracy. In other words, human users have a more significant effect on the

agent’s action with the model trained with a higher ErrP accuracy than less accuracy.
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5.2.0.7 ErrP gradient analysis on different positions

During the test phase, we found that ErrP has more effect on the central area outputs

than in the edge area. We visualized the ErrP gradient map of the model of the two

environments to check whether ErrP has different effects on outputs at different positions.

The computation of the gradient map is extremely quick since it only requires a back-

propagation pass. The gradient map encoded the importance of the ErrP effect on the

agent’s action at different locations. The use of color represents the gradient value.

Figure 5.8 is the model gradient map of two maze environments. The color indicates

the gradient value at different positions. Generally, the gradient is big in the central

area, which means that the ErrP significantly affects the critical position. Meanwhile,

the gradient is lower at the edge areas, which means the ErrP feedback has no noticeable

effect on the agent while searching along the wall.

The initial ErrP gradient analysis showed that ErrP has more effects on the crit-

ical location. In future research, the more advanced interpretation methods such as

Integrated Gradients [163], SmoothGrad [160] could be used for more detailed analysis.

5.3 Discussion

5.3.1 Formula the learning as POMDP with noise ErrP

The policy learned with clean observation (100% accuracy ErrP) is not feasible (vulnera-

ble) when the environment is inherently noisy during the test. The discrepancy between

clean simulated ErrP data and real human EEG data contributes to the "reality gap."

The real human actual ErrP feedback can not 100% match the simulated one. The shared

policy may fail in the real environment due to the low decodability of the ErrP signal. We

formulate the learning as POMDP and train the model with simulated noise observation

during training. We discovered that the model trained with partial observation is more
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(a) (b)

Figure 5.8: ErrP gradient distribution at the different positions of two environments.

robust to noise during the test.

5.3.2 Gradient analysis at different positions

We found that ErrP has more effects on the critical location based on the neural network

weights. This is useful for human involved control, as human can concentrate more on

critical area.

5.3.3 ErrP Accuracy threshold for training

We investigate the agent performance with various noise levels during training. We

sweep the input accuracy during the training phase. We found that the agent learned

different policies while training with different ErrP accuracy levels, demonstrating

that the model could infer the partially observation level during training. Besides, we
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investigated the threshold of ErrP accuracy which is sufficient to train an efficient shared

control model. We found that if the ErrP accuracy is higher than 70%, the model trained

with this level ErrP accuracy will do better with a solo autonomous agent. However,

as if the ErrP accuracy is lower than 70%, the shared control performance was not

compatible with a sole autonomous agent since the sole agent can learn a search policy

without human feedback. If the ErrP accuracy is poor, it will harm the performance of

the task. The result provided a perspective view for the shared control critic regarding

human feedback accuracy. However, the finding of the threshold was only based on the

experiment, the theoretical explanation based on the neural network could be conducted

in future research.

5.3.4 Adaptive human-robot interaction

As a baseline, the solo agent learned an optimal search trajectory for each possible

start point without human feedback. Once the start point was fixed, the agent would

move along the fixed path until the target was found. The trajectory is fixed depending

on the agent’s start point for solo agent without human feedback. However, the agent

search path was dynamically changed during shared control to adapt the human mindset

with ErrP feedback. This is an adaptive search strategy for the agent. From the agent’s

perspective, the user acts like a critic who evaluates the agent’s action to infer the target

position. From the user’s perspective, the agent behaves like an adaptive interface that

(inferring the goal position) learns a personalized mapping from user feedback and agent

observation to actions that maximize task reward.

5.3.5 Efficiency of shared control

Even for the best search strategy, the autonomous agent still needs to explore for a long

time to gain information at the initial time. With human-guided direction, the search
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efficiency will be greatly improved. One sensible approach to speed up the search is to

focus on promising regions. Human guidance provides trial-and-error feedback to narrow

its search to the most promising areas rather than exhaustively enumerating solutions

[16]. Imagine the searching task in a very big maze. This problem is challenging for

robots with limited horizons. If a robot’s searching direction is different to the target

direction, it will take a long time for the robot to realize the mistake (such as reaching

the edge), which is difficult and expensive to explore with limited sensor horizons. For a

robot, understanding what makes a good search direction can be difficult with limited

horizons about the environment. Shared control addresses the target searching problem

by combining human input with automated assistance. Humans are naturally aware of

the domain knowledge of the intrinsic structure of the maze, and, consequently, they

can provide feedback during robot exploration. Indeed, this feedback is a very powerful

way to provide criticism while the robot is exploring a large environment maze. By

establishing collaboration between a human user and a robot in exerting control over a

system, a robot can utilize the user’s guide during a task.
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6
VALIDATION THE LEARNED SHARED AUTONOMY WITH

REAL HUMAN PARTICIPANTS

Following the experiment results shown in Chapter 5, this chapter will present the

experiment overview of user study and the results of testing the feasibility of the shared

autonomy with real EEG data from real human participants, using the model learned

via deep recurrent reinforcement learning. The latter part of this chapter will discuss

those results.

6.1 Experiment overview

The main purpose of this experiment is to evaluate our shared control model during

the test phase with real human participants. The model we used is pre-trained with

simulated EEG. We want to validate the feasibility that the model trained with simulated

EEG can be used in real human participants in the same task environment, as shown in

Figure 6.1.
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s

a

(a) (b)

Figure 6.1: Shared autonomy Frame architecture. We evaluated our method in a target
search task with real human participants (a). The red dot with an arrow is the agent ,
and the green square is the target (b)

6.2 Results analysis

6.2.1 Electrophysiology analysis

Figure 6.2 (a) shows the correct, error, and difference grand averaged potentials (error

minus correct averages) in channel Fz, averaged for all the subjects combined two

scenarios. The grand difference average was characterized by three components: a

negative deflection at around 200 ms, a positive deflection at around 350 ms, and another

negative component at around 400 ms. The results agree with previous studies about

ErrP [77]. We also compare the ErrP of two scenarios to validate the consistency of

the potentials. As shown in Figure 6.2 (b), the shape of peak and peak latency is quite
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(a) (b)

Figure 6.2: ERP analysis for correct and error conditions averaged trials of scenario 1 and
scenario 2 (a). ERP analysis for correct and error conditions of scenario 1 and scenario
2, respectively (b). The legend numbers "1" and "2" refer to scenario 1 and scenario 2,
respectively.

consistent across the two environments. That indicated that the ErrP classifier trained

with another environment could be used in a different environment. Thus, we use the

classifier trained with scenario 1 on two scenarios during the test. The application of

ErrPs to reasonably complex environments demonstrated that ErrP classifiers could

be transferred to another unseen environment with zero-shot learning. This proved

that the ErrP decoder could be trained and tested in varied environments. This also

confirms the superiority of ErrP over other paradigms like MI and SSEVP in terms of

command mapping. ErrP does not need to map the command to agent performance, but

only cognitive judgment, correct or error. It can be used in diverse tasks, implying that

the ErrP-based paradigm is generic. This is in contrast to another paradigm that caters

to a specific category. This is the advantage for the ErrP-based paradigm, in that it is not

limited to a specific stimulus or modality. However, the premise that the ErrP classifier

can be used in different environments is that the stimuli should be the same between

environments since the potential was related to stimuli size and shape [98], which could

affect the peak potentials and latency.
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Participant Offline training (%) Scenario 1 block 1 (%) Scenario 1 block 2 (%) Scenario 2 block 1 (%) Scenario 2 block 2 (%)
S2 69.50 74.5 81.92 75.51 79.34
S4 72.83 56.52 75.35 73.68 63.13
S5 85.17 96.82 92.66 84.59 46.43
S6 74.67 73.98 69.25 67.51 65.92

Average 75.54 75.46 79.80 75.32 63.71

Table 6.1: ErrP training accuracy with 10-fold cross-validation and testing accuracy for
the two scenarios.

6.2.2 Classification analysis of ErrP

In this section, we analyze the real-time classification accuracy of ErrP with the clas-

sification model calibrated with offline data for the two scenarios. As mentioned in the

simulation section, ErrP classification accuracy is vital for agent performance. If ErrP

accuracy is lower than 70%, the performance with low ErrP classification accuracy is

no more superior to no ErrP condition. Table 6.1 was the offline training accuracy using

10-fold-validation. We excluded the participants S1 and S3 due to the poor training

accuracy as this will not work on the learned model. One would argue that removing the

participants with poor performance would bias toward better performance. However, we

just want to demonstrate the feasibility of the shared control when the ErrP accuracy is

above the threshold (70%). This is also why we only analyze the ErrP accuracy.

We analyze the test ErrP accuracy on the blocks for the two scenarios, respectively.

Needing to be checked here is the relationship between test ErrP accuracy and steps

used to reach the target position for the agent for each block. As shown in Table 6.1,

when combined with block 1 and block 2, the overall accuracy was 74.43% and 67.22%

for scenario 1 and scenario 2, respectively. The lower accuracy for scenario 2 was due to

a significant drop in accuracy of participant S5. As the participant was on medication at

the end of the experiment.

In this section, we analyze agent performance with real human feedback. We first

examined the agent’s performance in the simulation environment. We compared the

performance in simulation and real environments to assess the feasibility of our method
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with real human participants during the test phase.

Performance was operationalized as the number of steps taken by the agent to reach

the target position from the start position. Even without human assistance, the agent

would eventually reach the target with its observation and the learned policy.

To check the search ability of different distance ranges, we set the initial distance

ranging from 2 to 20. Each distance consists of 10000 runs. Figure 6.3 sets out the

averaged steps used of each initial distance between agent start position and target

position for two scenarios with no ErrP, 70% accuracy ErrP, and 80% accuracy ErrP.

The averaged steps were 51.2, 34.8, and 24.0 for no ErrP condition, 70% accuracy ErrP

and 80% accuracy condition for scenario 1, and 50.7, 40.8, and 25.7 for scenario 2. The

averaged steps were gradually increased when the initial distance expanded for both

ErrP condition and no ErrP condition for scenario 1 and scenario 2. The exception was

when the initial distance was maximum for no ErrP condition in scenario 2. The averaged

step dropped to 49.9 for the maximum initial distance for no ErrP condition in scenario

2. As only if the start and target positions were limited to the four corner positions, the

initial distance could be the maximum. We found that when the agent start position was

(0,0), the agent moved in the opposite direction. If the agent start and target positions

were (0,0) and (10,10), respectively, it used 20 steps to reach the target position, which

represent the ideal.

Taking 60 steps as the maximum number, if the agent successfully reaches the target

position within 60 steps, then it is can be deemed a success. Otherwise, it failed. Figure

6.4 summarizes the success rate for reaching the target position within 60 steps for

each initial distance. The success rate was gradually decreased as the initial distance

increased for 70% accuracy ErrP and no ErrP conditions for the two scenarios. The

averaged success rates were 79.74%, 83.19% and 95.86% for no ErrP, 70% accuracy ErrP

and 80% accuracy ErrP conditions for scenario 1. For scenario 2 they were 69.43%, 76.70%
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Figure 6.3: The averaged steps used among 10000 times of each initial distance between
agent start position and target position for two scenarios with no ErrP, 70% accuracy
ErrP, and 80% accuracy ErrP.
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Figure 6.4: Success rate to reach the target position within 60 steps for each initial
distance with no ErrP, 70% accuracy ErrP, and 80% accuracy ErrP conditions for scenario
1 and scenario 2.

and 94.21% for no ErrP and 70% accuracy ErrP and 80% accuracy ErrP conditions. The

success rate was better for the 70% accuracy condition than for the no ErrP condition.

We analyzed the averaged steps by removing the trials that failed to reach the target

positions within 60 steps. Figure 6.5 lists the averaged steps for no ErrP, 70% accuracy
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Figure 6.5: The averaged steps by removing the trials that failed to reach the target
positions within 60 steps among 10000 times of each initial distance for two scenarios
with no ErrP, 70% accuracy ErrP, and 80% accuracy ErrP.

ErrP, and 80% ErrP accuracy for two scenarios. The averaged steps were 28.4, 24.4 and

20.8 for no ErrP, 70% accuracy ErrP and 80% accuracy ErrP condition for scenario 1,

and 25.4, 25.6 and 21.6 for no ErrP, 70% accuracy ErrP and 80% accuracy ErrP condition

for scenario 2.

The simulation results confirmed that using ErrP as an agent input can significantly

reduce the steps used to reach the target position compared with that of no ErrP condition.

Although the ErrP accuracy was only 70% with correct probability, it still can improve

the performance by more than 30%.

During the online test, the agent’s last action’s classification as either correct or an

error was fed in real-time to the model as one of the inputs for generating next action

command. If the agent did not reach the target position after 60 steps, this run would be

finished and a new sample would commence. The maximum number of steps was set in

order so as not to discourage the participants after a long time. The maximum steps was
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Figure 6.6: Steps used for participants in real experiment for scenario 1.

set to 60 for each sample for the real experiment. Therefore, the sample with steps that

over 60 steps were included in the averaged steps.

Figure 6.6lists the steps used for the four participants for scenario 1. As shown

in Table 6.2, the success rate for reaching the target position within 60 steps was

84.21%, averaged for all the participants. The average step was 24.18 averaged for all

the participants by removing the failed samples. The success rate was similar to that

with 70% accuracy ErrP condition 83.19% and bigger than no ErrP condition 79.74% in

the simulation. The averaged step was almost the same with 24.4 of 70% accuracy ErrP

and smaller than no ErrP condition at 28.4.
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Figure 6.7: Steps used for participants in real experiment for scenario 2.

Figure 6.7 shows the steps used for the four participants in scenario 2. As shown

in Table 6.2, the success rate to reach the target position within 60 steps was 80.26%,

averaged for all the participants. The average step was 24.35 for all participants and

achieved by removing the failed sample. The success rate was better than that with

70% accuracy ErrP condition 76.70% and no ErrP condition 69.43% in simulation. The

averaged step was smaller than 70% accuracy ErrP 25.6 and no ErrP condition at 25.4.

The success rate was lower in scenario 2 than in scenario 1, both for simulated and

real experiments, since the environment was more complex with obstacles in scenario 2.

The obstacles divided the environment into several regions. Once the agent moves into
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Success rate (%) Averaged steps
Env 1 Env 2 Env 1 Env 2

S2 94.74 89.47 23.1 20.06
S4 78.95 84.21 22.2 26.71
S5 94.74 84.21 21.2 22.44
S6 63.13 63.16 29 28.42
Ave 84.21 80.26 24.35 24.18

Table 6.2: Table: Success rate and averaged steps in real experiment.

the wrong region, it will take several steps to move out of the region. Apart from this,

for a complex maze, it is difficult for a user to evaluate the agent’s action whether it is a

good one or not in the real experiment. This could be shown the level of ErrP accuracy.

The accuracies were 75.46% and 79.80, respectively, for block 1 and block 2 for scenario

1, and 75.32 and 63.71 regarding two blocks for scenario 2.

6.3 Discussion

6.4 Interaction design

ErrP evocation needs precise locked stimulus, for example robot action or a clear visual

cue. In our research, the discrete action with arrow flash was used as the stimulus. It

is, however, difficult to use the robot’s action as the stimulus in a real environment.

Furthermore, it is unnatural to divide the robot’s continuous movement into discrete

actions. Thus, how to design the ErrP stimulus during human-robot interaction is a key

point. One potential way to overcome this is to add an additional communication channel

on the robot, like LCD, to serve as the medium for stimulus.

Feasibility of Simulated ErrP for training and real for testing: We demon-

strated the feasibility of our method of training with simulated data and testing with real

EEG data from human participants in real-time. The key idea was that the simulated
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data had a binary value (0 or 1), based on the ErrP classifier, whose output was a binary

value (0 or 1). The simulated pilot enables us to train the model without real users. After

all, real EEG data collections can be very time-consuming and have other drawbacks,

such as overfitting if there is not enough data. We use binary values instead of a linear

scale between 0 and 1 to reduce the gap between simulation data and real EEG data

classification results. To train the model, one can also use simulated ErrP scaled linearly

from 0 to 1. Correspondingly, the classifier’s output should be scaled linearly with real

ErrP data, which is related to the consistency with goals as mentioned in [192].
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7
CONCLUSIONS AND FUTURE WORK

7.1 Conclusion

This thesis presents two novel ErrP-based BCI systems. we first designed two experi-

ments in Chapter 3. In respond to research aim one, the first experiment was to explore

the observability and decodability of ErrP in a continuous interaction between the

human and the robot. In responding to the research aim two and three, the second

experiment was to explore the feasibility of building an ErrP-based shared autonomy via

deep recurrent reinforcement learning.

In Chapter 4, we presented the result and discussion of a neuro-based method for

human observers that enables evaluating robot intentions in real-time via the LCD and

thus allows continuous evaluation of robot’s behaviors. The observability and decodability

of ErrPs as well as the high classification accuracy (77.57%) in response to robot intention

demonstrated the system usability. We also found that the observability and decodability

of ErrP were better when the interaction sequence was close to the robot decision point

among the continuous interaction sequences at Stage 1, which provided a potential time
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window for such early intervention in this BCI paradigm. Further experiments might

be needed to examine if more sophisticated algorithms or different visual stimuli could

expand the time window for early intervention. In addition, different levels of human

observer engagement between online and offline sessions can significantly affect online

performance. Online adaptive learning would be implemented for future research to

adapt to the variation between offline and online sessions.

We presented and discussed the experiment results of the ErrP-based shared control

autonomy via deep recurrent reinforcement with simulated EEG data in Chapter 5.

To handle the ErrP uncertainty, we formula the learning as POMDP and use RNN to

deal with POMDP. We found that shared autonomy can greatly improve the agent’s

performance. We also found that the model trained with partial observation was more

robust to ErrP uncertainty during the test. Besides, the agent learned different policies

while training with different ErrP accuracy levels. The results provided a perspective

view for the shared control critic regards human feedback accuracy.

Chapter 6 validated the shared autonomy with real-time decoded EEG from real

human participants on two target search environments, using the trained model as

described in Chapter 5. The results showed that the agent’s performance is better

with human feedback than without human feedback. The agent can adaptively change

its search direction with human feedback. In a simulation with 70% ErrP accuracy,

agents completed the task 14.1 % faster. In the real-world experiment, agents completed

the navigation task 14.9% faster. The good performance in real experiments suggests

that this method can be effective at human-robot shared autonomy with uncertainty

noise input, such as neuro activities, which demonstrated the feasibility of the shared

autonomy in the real environment.

These two novel BCI systems advance the current ErrP-based BCI capabilities and

enable a wide range of new interaction possibilities between human and robot. This
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thesis represents an important step toward a BCI-based shared autonomy between

humans and robots.

7.2 Future work

In the shared control method, the user needs to monitor the robot’s action in each step.

The continuous involvement will cause a burden for the human user. This is far from

optimal solutions and not friendly in human-computer interaction tasks. Intermittent

feedback is a promising strategy alternative to human-continuous feedback toward every

step. The human user does not need to monitor the agent’s action at every step. The user

can intervene when there is a need, for example, when the agent has the potential to

make mistakes, which can significantly reduce human wordload. In this case, the human

user doesn’t need to monitor all the time. The model can react to human input at any

time. The intermittent controller can be established through reinforcement learning

by naturally formulating human feedback into three values: positive, negative, and no

feedback. In corresponding, a classification algorithm needs to be used to detect whether

the user involves the task from brain signals. The shared autonomy with intermittent

human feedback can be conducted in future work.

The proposed autonomy approach is evaluated with real human participants in a

2D grid environment. Future research would extend this method with humans and real

robots.

The finding of the threshold of the ErrP accuracy to train an effective model was

based on experimental results. Further research could be conducted to analyze the

computational neural network model to figure out the threshold.
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[40] M. S. ERDEN AND B. MARIĆ, Assisting manual welding with robot, Robotics and

Computer-Integrated Manufacturing, 27 (2011), pp. 818–828.

[41] M. FALKENSTEIN, Effects of errors in choice reaction tasks on the ERP under

focused and divided attention, Psychophysiological brain research, (1990).

[42] M. FALKENSTEIN, J. HOORMANN, S. CHRIST, AND J. HOHNSBEIN, ERP compo-

nents on reaction errors and their functional significance: a tutorial, Biological

psychology, 51 (2000), pp. 87–107.

[43] J. FALLER, BCIs that use steady-state visual evoked potentials or slow cortical

potentials, in Brain-Computer Interfaces, Principles and Practice, Oxford Uni-

versity Press, 2012.

[44] L. A. FARWELL AND E. DONCHIN, Talking off the top of your head: toward a mental

prosthesis utilizing event-related brain potentials, Electroencephalography and

clinical Neurophysiology, 70 (1988), pp. 510–523.

[45] F. C. FERNANDEZ AND W. CAARLS, Deep Reinforcement Learning for Haptic

Shared Control in Unknown Tasks, arXiv preprint arXiv:2101.06227, (2021).

[46] P. W. FERREZ AND J. D. R. MILLÁN, You Are Wrong!—Automatic Detection of

Interaction Errors from Brain Waves, in Proceedings of the 19th international

joint conference on artificial intelligence, 2005.

[47] P. W. FERREZ AND J. D. R. MILLAN, Error-related EEG potentials generated

during simulated brain–computer interaction, IEEE transactions on biomedical

engineering, 55 (2008), pp. 923–929.

112



BIBLIOGRAPHY

[48] P. W. FERREZ AND J. D. R. MILLÁN, Simultaneous real-time detection of motor

imagery and error-related potentials for improved BCI accuracy, in Proceedings

of the 4th international brain-computer interface workshop and training course,

2008, pp. 197–202.

[49] J. FOERSTER, G. FARQUHAR, T. AFOURAS, N. NARDELLI, AND S. WHITESON,

Counterfactual multi-agent policy gradients, in Proceedings of the AAAI Con-

ference on Artificial Intelligence, vol. 32, 2018.

[50] T. FONG AND C. THORPE, Vehicle teleoperation interfaces, Autonomous robots, 11

(2001), pp. 9–18.

[51] G. FORESI, A. FREDDI, S. IARLORI, A. MONTERIU, D. ORTENZI, AND D. P.

PAGNOTTA, Human-robot cooperation via brain computer interface, in 2017

IEEE 7th International Conference on Consumer Electronics-Berlin (ICCE-

Berlin), IEEE, 2017, pp. 1–2.

[52] J. FORLIZZI AND C. DISALVO, Service robots in the domestic environment: a

study of the roomba vacuum in the home, in Proceedings of the 1st ACM

SIGCHI/SIGART conference on Human-robot interaction, 2006, pp. 258–265.

[53] V. GANDHI, G. PRASAD, D. COYLE, L. BEHERA, AND T. M. MCGINNITY, EEG-

based mobile robot control through an adaptive brain–robot interface, IEEE

Transactions on Systems, Man, and Cybernetics: Systems, 44 (2014), pp. 1278–

1285.

[54] G. GARAKANI, H. GHANE, AND M. B. MENHAJ, Control of a 2-DoF robotic arm

using a P300-based brain-computer interface, arXiv preprint arXiv:1901.01422,

(2019).

113



BIBLIOGRAPHY

[55] W. J. GEHRING, B. GOSS, M. G. COLES, D. E. MEYER, AND E. DONCHIN, A

neural system for error detection and compensation, Psychological science, 4

(1993), pp. 385–390.

[56] T. GENG AND J. Q. GAN, Motor prediction in brain-computer interfaces for control-

ling mobile robots, in 2008 30th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society, IEEE, 2008, pp. 634–637.

[57] T. GENG, J. Q. GAN, AND H. HU, A self-paced online BCI for mobile robot control,

International Journal of Advanced Mechatronic Systems, 2 (2010), pp. 28–35.

[58] R. GOCKLEY, A. BRUCE, J. FORLIZZI, M. MICHALOWSKI, A. MUNDELL,

S. ROSENTHAL, B. SELLNER, R. SIMMONS, K. SNIPES, AND A. C. SCHULTZ,

Designing robots for long-term social interaction, in 2005 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, IEEE, 2005, pp. 1338–

1343.

[59] M. K. GOEL, R. CHAVARRIAGA, AND J. D. R. MILLÁN, Cortical current density

vs. surface EEG for event-related potential-based Brain-Computer interface, in

2011 5th International IEEE/EMBS Conference on Neural Engineering, IEEE,

2011, pp. 430–433.

[60] M. A. GOODRICH AND A. C. SCHULTZ, Human-robot interaction: a survey, Now

Publishers Inc, 2008.

[61] N. GOPALAN AND S. TELLEX, Modeling and solving human-robot collaborative

tasks using pomdps, in RSS Workshop on Model Learning for Human-Robot

Communication, vol. 32, 2015, pp. 590–628.

114



BIBLIOGRAPHY

[62] E. GREENSMITH, P. L. BARTLETT, AND J. BAXTER, Variance Reduction Tech-

niques for Gradient Estimates in Reinforcement Learning., Journal of Machine

Learning Research, 5 (2004).

[63] J. GRIZOU, I. ITURRATE, L. MONTESANO, P.-Y. OUDEYER, AND M. LOPES,

Calibration-free BCI based control, in Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 28, 2014.

[64] C. GUGER, W. HARKAM, C. HERTNAES, AND G. PFURTSCHELLER, Prosthetic

control by an EEG-based brain-computer interface (BCI), in Proc. aaate 5th

european conference for the advancement of assistive technology, Citeseer,

1999, pp. 3–6.

[65] A. GÜNEYSU AND H. L. AKIN, An SSVEP based BCI to control a humanoid robot

by using portable EEG device, in 2013 35th Annual International Conference

of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2013,

pp. 6905–6908.

[66] T. HASTIE, R. TIBSHIRANI, AND J. FRIEDMAN, The elements of statistical learning:

data mining, inference, and prediction, Springer Science & Business Media,

2009.

[67] S. HAUFE, F. MEINECKE, K. GÖRGEN, S. DÄHNE, J.-D. HAYNES, B. BLANKERTZ,

AND F. BIESSMANN, On the interpretation of weight vectors of linear models in

multivariate neuroimaging, Neuroimage, 87 (2014), pp. 96–110.

[68] M. HAUSKNECHT AND P. STONE, Deep recurrent q-learning for partially observable

mdps, in 2015 aaai fall symposium series, 2015.

[69] M. A. HEARST, J. ALLEN, C. GUINN, AND E. HORVITZ, Mixed-initiative interac-

tion: Trends and controversies, IEEE Intelligent Systems, 14 (1999), pp. 14–23.

115



BIBLIOGRAPHY

[70] J. C. HENRY, Electroencephalography: basic principles, clinical applications, and

related fields, Neurology, 67 (2006), pp. 2092–2092.

[71] S. HOCHREITER AND J. SCHMIDHUBER, Long short-term memory, Neural compu-

tation, 9 (1997), pp. 1735–1780.

[72] C. B. HOLROYD AND M. G. COLES, The neural basis of human error processing: re-

inforcement learning, dopamine, and the error-related negativity., Psychological

review, 109 (2002), p. 679.

[73] A. HOWES, X. CHEN, A. ACHARYA, AND R. L. LEWIS, Interaction as an emergent

property of a Partially Observable Markov Decision Process, Computational

interaction, (2018), pp. 287–310.

[74] C.-M. HUANG, M. CAKMAK, AND B. MUTLU, Adaptive Coordination Strategies

for Human-Robot Handovers., in Robotics: science and systems, vol. 11, Rome,

Italy, 2015.

[75] H.-M. HUANG, Autonomy levels for unmanned systems (ALFUS) framework volume

I: Terminology version 2.0, (2004).

[76] H.-J. HWANG, S. KIM, S. CHOI, AND C.-H. IM, EEG-based brain-computer inter-

faces: a thorough literature survey, International Journal of Human-Computer

Interaction, 29 (2013), pp. 814–826.

[77] I.ITURRATE, L. MONTESANO, AND J. MINGUEZ, Task-dependent signal variations

in EEG error-related potentials for brain–computer interfaces, Journal of neural

engineering, 10 (2013), p. 026024.
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