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Increased DMSP availability
during thermal stress influences
DMSP-degrading bacteria in
coral mucus
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James O’Brien1, Cherie A. Motti4, Justin R. Seymour1,
Peter J. Ralph1, Katherina Petrou4 and Jean-Baptiste Raina1

1Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia, 2Centre for Marine
Science and Innovation, University of New South Wales Sydney, Kensington, NSW, Australia, 3School of
Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia, 4Australian Institute of Marine
Science, Townsville, QLD, Australia
Reef-building corals are among the largest producers of dimethylsulfoniopropionate

(DMSP), an essential compound in marine biogeochemical cycles. DMSP can be

catabolised in coral mucus by a wide diversity of coral-associated bacteria, where it

can either be demethylated, leading to the incorporation of sulfur and carbon into

bacterial biomass – or cleaved by lyases, releasing the climatically-active gas

dimethyl sulfide (DMS). It has been demonstrated that thermal stress increases

DMSP concentrations in many coral species, however the effect of increased DMSP

availability on coral-associated bacteria has not been explored. Here we performed

thermal stress experiments to examine how changes in DMSP availability impact

bacterial degradation pathways in the mucus of Acropora millepora. DMSP

concentrations increased with temperature, reaching a maximum of 177.3 mM
after 10 days of heat stress, which represents the highest concentration of DMSP

recorded in any environment to date. Bacterial communities in coral mucus were

significantly different from the surrounding seawater, yet they did not vary

significantly between temperature or time. However, during thermal stress, when

DMSP concentrations increased, a significant increase in the abundance of both the

demethylation gene dmdA and the cleavage gene dddPwere recorded. Importantly,

our results show that for the highest DMSP concentrations recorded (above 30 mM),

the cleavage pathway became more abundant than the demethylation pathway.

This suggests that under high DMSP concentrations characteristic of heat stress, a

larger fraction of the DMSP pool in the coral mucus is likely catabolised through the

DMS-producing cleavage pathway.

KEYWORDS

microbiome, coral mucus associated bacteria, DMSP-degrading genes, thermal stress,
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Introduction
Dimethylsulfoniopropionate (DMSP) is a critical compound

in the marine sulfur and carbon cycles (Sievert et al., 2007) and

an essential chemical currency in microbial interactions (Kiene

et al., 2000). Global DMSP production is likely to exceed one

billion tons of sulfur per year (Howard et al., 2006), but the

distribution of this compound in the ocean is not homogenous.

Although DMSP is present in seawater at low nanomolar

concentrations (oceanic average: 16.91 ± 22.17 nM; see Kettle

et al., 1999), specific marine environments have been identified

as hotspots, such as highly productive polar waters (Trevena

et al., 2003), or coral reefs (Hill et al., 1995). Within tropical coral

reefs, large concentrations of DMSP have been recorded in many

benthic organisms, including macroalgae (Van Alstyne et al.,

2007), giant clams (Hill et al., 2000), soft corals (Haydon et al.,

2018) and reef-building corals (Broadbent et al., 2002), and their

microalgal symbionts (phylum Dinoflagellata; Caruana and

Malin, 2014). DMSP concentrations in these different benthic

organisms can vary by more than two orders of magnitude

(Broadbent et al., 2002; Tapiolas et al., 2013), but to date the

highest concentration ever measured (54 µM; or more than three

orders of magnitude higher than the global seawater average)

was recorded from the mucus of corals from the genus Acropora

(Broadbent and Jones, 2004).

Coral mucus is a viscous mixture secreted by specialised

epithelial cells, forming a coating over the polyps that is

important for many aspects of coral biology (Meikle et al.,

1988; Bythell and Wild, 2011). The surface mucus layer

protects corals against desiccation at low tide (Brown and

Bythell, 2005), as well as sudden changes in environmental

conditions (e.g., temperature, salinity) (Piggot et al., 2009),

while allowing gas and metabolite exchanges (Bythell and

Wild, 2011), it is key to feeding and cleansing processes

(Brown and Bythell, 2005) and acts as a significant input of

carbon to reef waters that sustains other benthic organisms

(Wild et al., 2004). The chemical composition of the mucus is

variable between coral species (Ducklow and Mitchell, 1979;

Meikle et al., 1988), but one commonality is the presence of large

glycoproteins giving the mucus its gel-like texture (Bythell and

Wild, 2011). Coral mucus has also been described as the first line

of defence against pathogens (Ritchie, 2006a; Shnit-Orland and

Kushmaro, 2009), as it is densely populated by specific bacterial

communities (Garren and Azam, 2010), some of which can

degrade DMSP (Raina et al., 2009; Frade et al., 2015).

DMSP is an important nutrient source for marine bacteria,

contributing significantly to their sulfur (up to 95%; Zubkov

et al., 2004) and carbon (up to 15%; Simó et al., 2002)

requirements. Degradation of DMSP by bacteria occurs

through two major pathways producing either methanethiol

(MeSH; demethylation) or dimethyl sulfide (DMS; cleavage)

as end products (Reisch et al., 2011; Sun et al., 2016).
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The demethylation pathway is estimated to catabolise

approximately 70% of dissolved DMSP (Reisch et al., 2011),

leading to the assimilation of both carbon and sulfur into

bacterial biomass (Kieber et al., 1996; Kiene et al., 1999; Simó,

2001). The gene encoding the first enzymatic step of this

pathway was discovered in an Alphaproteobacterium from the

Roseobacter clade and termed dmdA (Howard et al., 2006). The

second degradation route is the cleavage pathway which leads to

the release of DMS and is suspected to degrade the remaining

30% of dissolved DMSP. Eight different DMSP lyases, termed

ddd+ have been identified so far (Zhang et al., 2019), among

which dddP (Todd et al., 2009) is one of the most prevalent in

the marine environment. Many marine bacteria harbour both

degradation pathways; however, the environmental factors that

dictate which pathway is used have remained hypothetical for

more than 20 years (Kiene et al., 2000; Simó, 2001).

Understanding which pathway marine bacteria preferentially

use under specific conditions is critical because it directly affects

how much DMS is produced and ultimately released into

the atmosphere.

A long standing hypothesis in the DMSP field proposed that

external DMSP concentrations regulate which degradation

pathway is usedby bacteria (Kiene et al., 2000; Simó, 2001).

According to this hypothesis, when DMSP availability is low (or

if there is a high bacterial sulfur demand), most DMSP is

expected to be catabolised through demethylation. On the

other hand, when DMSP availability is high, the less costly

cleavage pathway is likely used (Reisch et al., 2011). Recent

experimental evidence confirmed that external DMSP

concentrations dictate the relative expression of the two

pathways with an increase in DMSP cleavage (leading to DMS

formation) measured near the surface of coral-associated

microalgae, where DMSP concentrations are the highest (Gao

et al., 2020). A previous study comparing different coral species

also revealed that when DMSP concentrations were high, a lower

relative abundance of the gene encoding the first step of the

demethylation pathway (dmdA) was present in bacterial

communities (Frade et al., 2015). Environmental stressors,

such as heat, are known to cause an increase in DMSP

concentrations in some corals (e.g., members of the Acropora

genus; see Raina et al., 2013; Deschaseaux et al., 2014; Gardner

et al., 2017). However, we do not know the effect that a sudden

rise in DMSP availability may have on coral-associated bacterial

communities and on the pathways they use to catabolise

this compound.

Here we investigated how variations in DMSP concentrations

caused by heat stress affect the abundance of bacterial genes

involved in the demethylation and cleavage pathways in

Acropora millepora, a reef building coral widespread throughout

the Indo Pacific. To achieve this goal, we simultaneously

measured: i) DMSP concentrations; ii) bacterial community

structure; and iii) prevalence of DMSP-degrading genes during

thermal stress in the mucus of A. millepora.
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Methods

Coral collection and experimental set-up

Five colonies of Acropora millepora were collected from

Heron Island lagoon in the southern Great Barrier Reef,

Australia (151°55´E, 23°26´S) and acclimatised at ambient

seawater temperature (27°C) in a flow-through aquaria

system under 50% shaded sunlight (daily average of 600

µmol photons m-2 s-1) for 3 days at 27 ± 0.5°C. Each colony

was then split in half and divided between the control and the

treatment tanks (1 tank per colony). Experimental tanks (30

L) were set up in a shaded flow-through aquaria with constant

flow (5 L min-1) of lagoon seawater (approx. 27 ± 0.5°C). The
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ambient light intensity was measured every 5 min using PAR

loggers (Odyssey) and temperature was recorded every

10 min (Thermochron, Australia). For the thermal stress

treatment tanks (n = 5), temperature was increased 1°C per

day over 5 days from the ambient temperature of 27°C to

reach the target temperature of 32°C and then held for a

further 2 days. Physiological parameters (FV/FM and DF/FM';
see below) were recorded daily for the duration of the

experiment. Coral mucus, coral host and seawater samples

were collected over 4 time points; T0 (day 3), T1 (day 6), T2

(day 8) and T3 (day 10) (Figure 1), for chlorophyll a, cell

density, surface area, quantification of DMSP/DMSO, 16S

rRNA gene sequencing and identification of dmdA and dddP

degradation genes.
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FIGURE 1

Physiological parameters measured over time for Acropora millepora under thermal stress including (A) maximum quantum yield of
photosystem II (FV/FM), (B) effective quantum yield of photosystem II (DF/FM'), (C) Symbiodiniaceae density and (D) chlorophyll a for the control
(white circles) and treatments (red circles). Letters indicate significant differences between timepoints for the treatment. Temperature increases
indicated along the top panel for corresponding days and sampling timepoints. Averages (± SE) are shown (n = 4-5).
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Photochemical efficiency of PSII

Using a MiniPAM (Walz GmbH, Effeltrich, Germany; MI: 8,

Gain: 5, SI: 10, SW: 0.8s) chlorophyll a fluorescence was

measured daily at midday (effective quantum yield of PSII; DF/
FM') and just after sunset (maximum quantum yield of PSII; FV/

FM) to monitor photo-physiological stress of each colony, with 2

technical replicate measurements from distinct branches. At T3,

a DivingPAM (Walz GmbH, Effeltrich, Germany; MI: 8 Gain: 7

SI: 8 SW: 0.8s) was used to conduct rapid light curves (RLC; see

Ralph and Gademann, 2005) in the first hour of daylight, using

the same settings as above. The RLC protocol consisted of a low-

light acclimated (c.a. 5 µmol photons m-2 s-1) FV/FM
measurement to initiate the RLC, followed by DF/FM'
measurements under actinic light at eight 30 second intervals

of increasing intensity (98, 162, 240, 325, 480, 610, 971, and

1,359 µmol photons m-2 s-1). The saturating irradiance (EK), an

estimate of the irradiance where PSII transitions from a light-

limited to a light-saturated state, and the maximum

photochemical efficiency of PSII (FQ/FM(max)) were described

using equation 1 (Hennige et al., 2008) where E = irradiance.

Fq′=Fm′ = ½(FQ=FM(max)EK )(1 − exp( − E=EK))�=E (1)

To detect whether utilisation of alternative pathways of

excitation energy dissipation differed across temperature

treatments, the extent of light dependant photochemical

quenching ([1 – C], equation 2) and non-photochemical

quenching ([1 – Q], equation 3) were calculated at each step

of the RLC (Suggett et al., 2015; Nitschke et al., 2018).

½1 − C� = (Fm′ − F)=(Fm′ − Fo′) (2)

½1 − Q� = Fv′=Fm′ð Þ=(Fv=Fm) (3)
Cell density, chlorophyll a and
surface area

Coral tissue was removed from the skeleton of coral

fragments using an airgun in 5 mL FSW (0.2 mm). The tissue

slurry was concentrated via centrifugation at 3000 g for 10 min.

The algal pellets were resuspended in 5 mL FSW (0.2 µm), and

homogenised. A 3 mL subsample was then centrifuged at ~3,600

g for 4 min and resuspended in 3 mL of 90% acetone and left at

4°C in the dark for 24 h before spectrophotometric chlorophyll

determination. Concentrations of chlorophyll a were calculated

using the equations from Ritchie (2006b). The remaining 2 mL

subsample was used for cell density measurements using a

haemocytometer (n = 8). The bare coral skeletons were dried,

and the surface area of each coral fragment was calculated using

the paraffin wax technique (Stimson and Kinzie, 1991; Veal

et al., 2010).
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Sample collection

Coral mucus was collected by exposing the colony to air for

2 min (prompting mucus production from the epithelial cells

and the gastrovascular cavity; see Sweet et al., 2011). Coral

colonies were held inverted to allow excess seawater and

mucus to drip off the branches. After 2 min air exposure, each

colony was dipped back into the water for 1 min, removed from

the seawater, and then held inverted in the air for a further 15 s

to allow excess water to drip from the branches. The resulting

mucus secreted during air exposure was then collected from the

branch tips using a sterile 10 mL syringe with a 21″G sterile

needle. For each colony, 4-5 mL mucus was collected in a falcon

tube, of which 2 mL was immediately added to 4 mL analytical

grade methanol (95%), sealed with parafilm and stored at -20°C

in the dark for nuclear magnetic resonance (NMR) spectroscopy.

An additional 2 mL of coral mucus was filtered using a glass filter

tower (Cole-Parmer Instrument Company, USA) onto

membrane filter (Whatman; 25 mm × 0.2 µm pore size), then

the filter was snap frozen in liquid nitrogen and stored in

cryovials at -80°C for 16S rRNA gene amplicon sequencing

and quantitative PCR (qPCR) analyses. To sample the coral host,

a 3 cm fragment was removed from each colony using sterile

bone cutters; the fragment tip was discarded, and the middle

section added to 3 mL methanol in a falcon tube, sealed with

parafilm and stored in the dark at -20°C for NMR analysis.

Water samples were also taken at each time-point (n = 3), where

1 L was collected from each tank in a large glass Schott bottle at

20 cm distances from the coral colony and filtered using a

vacuum pump (Capex 8C, Charles Austen Pumps Ltd, Surrey,

UK) onto 45 mm × 0.45 µm filters (Whatman). The filters were

snap frozen and stored in cryovials at -80°C.
Quantification of DMSP and DMSO

Coral host fragments and mucus samples in methanol were

stored at -20°C until processing at the Australian Institute of

Marine Science, Townsville, Australia (AIMS). Coral fragments

were further extracted using sonication on ice (bath at 40 kHz)

in 1 mL of HPLC-grade methanol for 5 min. The two extracts

from the coral host were pooled and dried overnight (8 h) using

a concentrator (Savant SpeedVac SC210A, Thermo Scientific,

USA). The coral mucus samples were also dried overnight (14 h)

in the concentrator, then in a freeze drier (Dynavac FD12

Perogon Technologies, Australia) for a further 4 h to ensure

complete dryness. The dried extracts from the host and mucus

were resuspended in a mixture of deuterated methanol (CD3OD;

750 µL) and deuterium oxide (D2O; 250 µL), vortexed to

solubilise the compounds and then centrifuged for 10 min to

pellet the debris. An 800 µL aliquot of the particulate free extract

was transferred into a 5 mm NMR tube (Norell 509-UP) and
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analysed immediately by 1H NMR following the method

described in Tapiolas et al. (2013). Spectra were recorded on a

600 MHz NMR spectrometer (Bruker Avance, Germany) with a

TXI cryoprobe, using the Bruker TOPSPIN 2.1 software, and

referenced using CD3OD (dH 3.31). Concentrations of DMSP

and DMSO were quantified using the ERETIC method

(electronic reference to access in vivo concentrations; Akoka

and Trierweiler, 2002), which electronically generates an

external reference signal that was calibrated using a 2 mM

stock solution of acrylate. After calibration, the concentration

of each target compound was determined by comparing the

signal intensities of well resolved non-exchangeable protons:

(CH3)2SCH2CH2CO2 at d2.95 ppm for DMSP and (CH3)2SO at

d2.73 ppm for DMSO (in the coral host and mucus samples) in a

0.20 ppm window against the intensity of the reference signal

through signal integration (Akoka and Trierweiler, 2002). Coral

skeletons remaining after extraction were soaked in 10% bleach

overnight, dried at 60°C in an oven and used for surface area

measurements using the paraffin wax technique (Stimson and

Kinzie, 1991; Veal et al., 2010). The surface area of each fragment

was then used to normalise NMR data. The coral mucus samples

were normalised to the volume of mucus originally collected in

methanol (2 mL).
DNA extraction, amplicon sequencing
and processing

DNA was extracted from filters used to collect mucus and

water samples using methods modified from Schauer et al.

(2000). Briefly, lysis buffer (0.5 mL) and 75 µL lysozyme (100

mg/mL) were added to cryovials containing the filters and

incubated for 1 h at 37°C. Subsequently, 100 µL SDS (25%)

and 10 µL Proteinase K (20 mg/mL) were added and incubated

for 1 hr at 55°C. The recovered lysate (600 µL) was extracted

twice using equal volumes of phenol:chloroform:isoamyl alcohol

(25:24:1, pH8), followed by chloroform:isoamyl alcohol (24:1)

and centrifuged for 30 min at 4°C and 16,000g. DNA was

precipitated from the recovered aqueous phase (top layer) with

500 µL ice cold isopropanol, left in the dark for 15 min and

centrifuged at 16,000g for 30 min. The pellet was rinsed with 500

µL of 70% ethanol before being dried in a concentrator for

10 min to ensure all ethanol was removed. The remaining DNA

pellet was resuspended in 40 µL sterile milliQ, and the purity of

the DNA was assessed using a NanoDrop spectrophotometer

(Thermo Scientific, USA). Aliquots were stored at -20°C

until use.

To examine the composition of bacterial assemblages, the

16S rRNA gene was amplified using 27F/519R (V1-V3 region)

primers. PCR was carried out using the HotStarTaq Plus Master

Mix Kit (Qiagen, USA) using the following conditions: (i) 3 min

at 94°C; (ii) 28 cycles, with each cycle consisting of 30 s at 94°C,

40 s at 53°C, and 1 min at 72°C; (iii) a final elongation step of
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5 min at 72°C. PCR products were checked in 2% agarose gels,

and samples were pooled in equal proportions based on

molecular weight and DNA concentrations. Pooled samples

were purified using Ampure XP beads (Beckman-Coulter,

USA) and processed using the Illumina TruSeq DNA library

protocol. Sequencing was performed on an Illumina MiSeq

platform (2 × 300 cycles; Molecular Research LP; Shallowater,

TX, USA).

Raw data was demultiplexed and primers were removed

using cutadapt (Martin, 2011). The open-source software

package DADA2 (Callahan et al., 2016) was used to produce a

table of chimera-free amplicon sequence variants (ASVs). ASVs

were taxonomically classified using the RDP Classifier against

the SILVA v.138 (August, 2020) reference database (Quast et al.,

2013). A phylogenetic tree was generated by sequence alignment

with MAFFT (Katoh and Standley, 2013) and the tree was

produced with FastTreeMP (Price et al., 2009) on the CIPRES

v3.3 Science Gateway (Miller et al., 2010). ASV count and

taxonomic data were imported using the phyloseq package

v.1.28 (McMurdie and Holmes, 2013) for analysis in R v3.6.1.

Sequences classified as chloroplast, mitochondria, eukaryota,

and archaea, as well as known common reagent contaminants

(Sheik et al., 2018), were removed before further analysis.

Singleton ASVs, together with one seawater sample

containing <1,000 reads, were removed from the dataset.

Overall, the dataset comprised 17 samples (9 for mucus and 8

for seawater), resulting in 414,856 sequences with a mean length

of 294 bp. After quality filtration, exclusion of chimeras, and

specific retention of bacterial sequences, 1,873 ASVs

(Supplementary Table 1) were obtained from the 17 samples.

Samples were rarefied to 5,099 to account for the variability in

sequencing depth between samples. The mean good’s coverage

score was 99.81% ± 0.38 for the dataset indicating the

sequencing depth was adequate to capture the majority of

diversity in the samples.
Statistical analyses of the 16S rRNA gene
sequencing data

Amplicon sequence variants (ASVs) were analysed with

Phyloseq v1.28 (McMurdie and Holmes, 2013), Vegan v2.5.6

(Oksanen et al., 2007) and rstatix v0.7.0 (Kassambara, 2021).

Alpha diversity indices (chao1 richness and the observed

number of ASVs) were computed and a one-way ANOVA was

run through rstatix for each diversity index after checking for

homogeneity and normality using Levene’s and Shapiro’s tests,

respectively. A principal coordinates analysis (PCoA) was used

to visualise dissimilarities in microbial communities between

sample types (mucus and seawater) and treatments (27°C and

32°C) using weighted unifrac distances, which considers the

relative abundance of each ASV and integrates phylogenetic

distance (Lozupone et al., 2011).
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To statistically analyse differences in microbial community

structure, ASV counts were Hellinger transformed to reduce the

effects of numerically large values from very abundant taxa and

weighted unifrac distances were computed. Permutational

multivariate analysis of variance (PERMANOVA; n = 9,999

permutations, adonis/adonis2 function in Vegan) was performed

to test for significant differences between mucus and seawater

samples and homogeneity of dispersions around group centroids

(i.e., variation) was assessed using PERMDISP (betadisper

function in Vegan). Data were further analysed using a two-

factor nested PERMANOVA to assess differences between

temperature treatment as a fixed factor (two levels: 27°C and

32°C) and time point (two levels: T0 and T3) nested within

sample type (mucus and seawater). Stacked bar graphs were

plotted using ggplot2 v3.3.5 to phylum level and represent those

bacterial taxa with a relative abundance above 1% across

all samples.
DMSP degrading predictions of the
bacterial communities

To determine if thermal stress induced an increase in the

relative abundance of taxa harbouring the demethylation

pathway (dmdA) or the cleavage pathway (dddP), we

functionally predicted the abundance of these two genes in the

bacterial communities from the mucus T3 samples. Briefly,

the mucus samples were rarefied to 9,182 (lowest read depth

for the mucus samples), and all ASVs were compared to

genomes harbouring dmdA and dddP (Supplementary Table 2)

derived from KEGG (Kyoto Encyclopedia of Genes and

Genomes) and NCBI (National Center for Biotechnology

Information). Each ASV with a query coverage ≥ 90% and a

similarity ≥ 95% with the 16S rRNA gene of one of the dmdA or

dddP-harbouring genomes was considered as a putative

DMSP degrader.
Amplification and identification of dmdA
and dddP genes

Quantitative PCR (qPCR) was used to determine the total

abundance of bacterial 16S rRNA genes and genes involved in

marine DMSP cycling. Gene abundance was quantified using an

automated Liquid Handling robot (epMotion 5075l) on a Bio-

Rad CFX Touch Real-Time PCR Detection System. A range of

dmdA subclades were initially screened (A/1, A/2, B/4, C/2, D/1

and D/3, E/2; Varaljay et al., 2010) using qPCR, but only a few

successfully amplified in the samples (A/1, D/3, E/2), the most

successful being dmdA A/1. All sample plates included a

triplicate, six-point calibration curve constructed from a

known amount of amplicon DNA measured by Qubit

(according to the manufacturer’s instructions), followed by five
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successive 10-fold dilutions and negative template controls of

nuclease-free water.

Absolute quantification of the bacterial 16S rRNA gene was

performed using the 16S rRNA specific primers BACT1369F (5’ –

CGGTGAATACGTTCYCGG – 3’) and PROK1492R (5’ –

GGWTACCTTGTTACGACTT – 3’) and a TaqMan probe

TM1389F (5’ – CTTGTACACACCGCCCGTC – 3’) (Suzuki

et al., 2000; Supplementary Table 3) with following cycling

conditions: 95°C for 3 minutes followed by 39 cycles of 95°C for

30 s and 56°C for 60 s with an extension at 72°C for 30 s. Each

individual PCR reaction volume was 5 µL and contained 2.5 µL

iTaq Universal probes SMX (Bio-Rad), 0.2 µL of each forward and

reverse 16S rRNA gene specific primers (10 µM), 0.1 µL of Taqman

Probe Mix, TM1389F (5’ – CTTGTACACACCGCCCGTC – 3’)

(10 µM), 1 µL of nuclease-free water and 1 µL of template DNA.

The relative abundance of bacterial DMSP-degrading genes was

acquired by normalising their copy numbers to the copy number of

bacterial 16S rRNA gene, however, it should be noted that some

bacterial genomes have multiple copies of the 16S rRNA gene (Cui

et al., 2015).

Absolute quantification of the genes encoding DMSP

catabolism were performed using primers for the DMSP

cleavage gene dddP_874F (5 ’ – AAYGAAATWGTT

GCCTTTGA – 3’) and dddP_971R (5’ – GCATDGCRTAA

ATCATATC – 3 ’) (Levine et al. , 2012) and DMSP

demethylation gene dmdA A/1-spFP (5’ – ATGGTGATTTG

CTTCAGTTTCT – 3’) and A/1-spRP (5’ – CCCTGCTTTGA

CCAACC – 3’) (Varaljay et al., 2010; Supplementary Table 3).

Analysis of DMSP degradation genes were performed on three

technical replicates of the following mixture: 2.5 µL of 2 ×

Sensifast SYBRHi-ROXmastermix, 0.2 µL of forward primer (10

µM initial), 0.2 µL of reverse primer (10 µM initial), 0.1 µL

nuclease-free water and 2 µL of DNA template (diluted between

1:1 and 1:20). Amplification of the DMSP cleavage gene dddP

and demethylation gene dmdA A/1, consisted of an initial

denaturation step of 95°C for 5 min, followed by 40 cycles of

95°C for 30 s, 41°C (dddP) and 53°C (dmdA) for 30 s and 72°C

for 30 s. To differentiate target amplicons from non-specific

products, a dissociation melt curve was generated after

each reaction.
Statistical analyses of the qPCR data

Quantitative PCR data was analysed with rstatix v0.7.0

(Kassambara, 2021) in R v3.6.1. Two-way repeated measures

ANOVAs were run for the mucus datasets to determine the

interaction between temperature treatment (27°C and 32°C) and

time point (T0, T1, T2 and T3) after checking for homogeneity

and normality using Levene’s and Shapiro’s tests, respectively.

Tukey’s post-hoc tests were used to determine differences

between groups. Pairwise comparisons, using t-tests, were then

run for each timepoint, for the coral host and mucus samples.
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Throughout the manuscript, all reported values are mean ± SE,

unless mentioned otherwise.
Results

Thermal bleaching responses and a
sharp increase in coral mucus DMSP
concentrations

Measures of Symbiodiniaceae PSII photochemical efficiency,

cell densities, and chlorophyll content indicate A. millepora

corals subjected to 32°C were in the early stages of a thermal

bleaching response. Ten days after the onset of thermal stress,

dark-adapted maximum quantum yields decreased by 39%

relative to controls (FV/FM; Two-way ANOVA; F9,180 = 53.35,

p < 0.001; Supplementary Table 4 and Figure 1A) from 0.694 ±

0.007 (day 1) to 0.426 ± 0.017 (day 10). In addition, a 38%

decrease in effective quantum yield was also recorded (DF/FM';
F8,162 = 5.67, p < 0.001; Supplementary Table 4 and Figure 1B)

from 0.698 ± 0.005 (day 1) to 0.434 ± 0.031 (day 10). In RLCs

performed at day 10, no difference in EK was observed between

treatments (Figure S1A), however FQ/FM(max) was significantly

different, with decreases from 0.72 ± 0.01 to 0.66 ± 0.01 in

thermally stressed corals (One-way ANOVA; F1,8 = 12.64, p <

0.05, Figure S1B and Supplementary Table 4). No differences

were observed in [1 - C]; however, stressed corals exhibited

significantly increased utilisation of [1 - Q] at all RLC irradiance

steps (One-way ANOVA, p < 0.05 for all irradiances,

Supplementary Table 4 and Figure S1C), indicating increased

reliance on non-photochemical quenching. Although no

difference in Symbiodiniaceae density was recorded between

treatments (Figure 1C), chlorophyll a in thermally stressed

corals decreased by 43% from 0.157 ± 0.014 µg chl a mm-2 to

0.088 ± 0.007 µg chl amm-2 (Two-way ANOVA; F3,19 = 5.72, p =

0.007, Supplementary Table 4 and Figure 1D).

At the beginning of the thermal stress experiment (T0),

DMSP concentrations in the coral mucus secreted after air

exposure averaged 4.24 ± 1.35 µM across both treatments but

started to sharply increase when the temperature reached 32°C

by T2 (Figure 2A) to 71.23 ± 12.12 µM. By T3 this value reached

83.15 ± 27.87 µM, corresponding to a 15.6-fold increase over the

controls (F3,32 = 7.031, p < 0.001, Supplementary Table 4 and

Figure 2A). We also measured a 2.9-fold increase for DMSO

(F3,32 = 3.954, p < 0.02, Supplementary Table 4 and Figure 2B),

from 0.79 ± 0.15 µM at T0 to 1.77 ± 0.34 µM at T3 under

elevated temperature. Conversely, in the coral host, no difference

was detected for DMSO (p = 0.570; Supplementary Table 4 and

Figure 2D) between control and thermally-stressed samples,

while DMSP concentrations significantly differed between

control and treatment by T2, and were 2.7-fold higher in

thermally-stressed samples by T3 (F3,32 = 3.85, p = 0.018,

Supplementary Table 4 and Figure 2C).
Frontiers in Marine Science 07
Bacterial community structure differs
across mucus and seawater

Both the observed number of ASVs and their richness

(Chao1) were significantly higher in the mucus samples

(observed: 201.56 ± 45.97; Chao1: 206.24 ± 48.33) compared

with the surrounding seawater (observed: 77.70 ± 15.21, [F1,15 =

5.83, p = 0.029]; Chao1: 77.86 ± 15.19, [F1,15 = 5.78, p = 0.030];

Figure 3A). The overall microbial community structure of the

two environments (coral mucus and seawater) also showed

limited overlap (principal coordinates analysis (PCoA);

Figure 3B). Mucus samples were more tightly clustered than

the seawater samples; however, group dispersion was not

significantly different (PERMDISP, p = 0.959, Figures 3B, C).

Microbial community composition significantly varied between

sample types (PERMANOVA, F = 3.85, R2 = 0.20, p < 0.005),

and between sample types when partitioned between timepoints

and temperature treatments (PERMANOVA, F = 2.49,

R2 = 0.21, p = 0.011). However, no differences in microbial

community composition in mucus samples were detected

between temperatures (PERMANOVA, F = 0.76, R2 = 0.05, p =

0.613) or timepoints (PERMANOVA, F = 1.62, R2 = 0.10, p =

0.115), and variance was similar between groups for both

(PERMDISP, p = 0.590 and p = 0.415, respectively).
The mucus samples were dominated by Proteobacteria from

the Gammaproteobacteria (40.08% ± 5.04%), Alphaproteobacteria

(19.40% ± 2.67) and Bacteroidia (16.10% ± 3.66) classes

(Figure 3C). More specifically, three families represented 34.35%

of the communities: Rhodanobacteraceae (20.63% ± 2.71%),

Flavobacteriaceae (8.49% ± 2.27) and Rhodobacteraceae (5.23% ±

1.51; Supplementary Table 5A and Figure 3C). Conversely, the

seawater samples were dominated by Bacteroidia (47%),

Alphaproteobacteria (26%), and Gammaproteobacteria (10%;

Figure 3C and Supplementary Table 5B). A predictive analysis

was carried out on the samples collected during the last time point

of the experiment (T3; day 10) to determine the taxonomic

composition of DMSP degraders in coral mucus, together with

their relative abundance in response to the large increase in DMSP

concentrations recorded in the thermally stressed colonies.

According to our analysis, an average of 5% of the bacterial

communities harboured the demethylation gene dmdA in the

control samples, the most abundant genera belonging to the

Pelagibacter, Phaeobacter and Cognatishimia (Supplementary

Table 2 and Figure 4). Importantly, the relative abundance of the

bacteria putatively harbouring dmdA significantly increased in

the heat-stressed samples to reach an average of 6.7% of the

communities (t-test; t = -2.86, df = 4, p = 0.045). In comparison,

5.4% of the communities putatively harboured the cleavage gene

dddP, with the Gammaproteobacteria Caballeronia, Acinetobacter

and the Alphaproteobacteria Phaeobacter being the most abundant.

However, heat stress did not significantly affect the relative

abundance of dddP in the communities (t-test; t = -1.18, df = 4,

p = 0.302; Figure 4).
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(A) Alpha diversity indices including the number of observed ASVs and species richness (Chao1) for the mucus (orange boxes), and seawater (blue boxes)
samples. Data was rarefied to the smallest sample size depth of 5,099. Letters indicate post-hoc groupings. (B) Principal coordinate analysis (PCoA)
based on weighted unifrac distance of the 16S rRNA gene amplicon sequences for the mucus (orange symbols) and seawater (dark blue symbols) at
timepoint T0 (circle symbols) and T3 (triangle symbols). Ellipses show 80% confidence intervals. (C) Relative abundance of bacterial taxa plotted at the
phylum level for the mucus and seawater samples, showing total relative abundance of each phylum >1%.
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The abundance of DMSP degrading
genes increase in coral mucus under
thermal stress

To go beyond the functional predictions based on 16S rRNA

gene similarities, we quantified the abundance of both dmdAA/1

and dddP in coral mucus throughout the experiment. The

demethylation gene dmdA A/1 significantly increased in

abundance in the thermally stressed fragments between T2

and T3 (ANOVA; p = 0.0144; Supplementary Table 2 and

Figure 5A). At T3, the abundance of dmdA A/1 (per 16S

rRNA gene copy) was 1.5-fold higher in the mucus from

fragments exposed to 32°C compared to the controls (F3,23 =

4.89, p = 0.009; Supplementary Table 2 and Figure 5A). The

abundance of the cleavage gene dddP in coral mucus exhibited a

similar but more pronounced increase with temperature, with an

8.6-fold increase recorded between T1 and T2 (ANOVA; p <

0.001; Supplementary Table 2 and Figure 5B). At T2, the

abundance of the dddP gene was 2.95-fold higher in the

thermally stressed fragments than the controls. This difference

slightly decreased by T3, with 2.3-fold more dddP gene copies in

the thermally stressed fragments compared with the controls.

To determine if DMSP concentrations affected the

prevalence of a specific pathway, we calculated the ratio of

dddP:dmdA A/1 in each sample collected during the

experiment (Figure 5C). For DMSP concentrations under 29.4

µM, the dddP:dmdA ratio was consistently less than 1, indicating

that the demethylation pathway was more abundant in the

mucus microbiome than the cleavage pathway. However, when

DMSP concentrations were above 29.4 µM, 75% of the samples

had a ratio larger than 1, which means that the cleavage pathway

became more abundant than demethylation. Based on these

data, a significant association was identified between DMSP

concentrations and dddP:dmdA ratio (Fisher’s exact test; p =

0.002; Figure 5C).
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Discussion

DMSP is a keymolecule in themarine sulfur cycle (Sievert et al.,

2007), which is produced in large amounts by reef-building corals

(Broadbent et al., 2002; Broadbent and Jones, 2004). Thermal stress

is known to cause sudden increases in DMSP concentrations that

have been linked to its antioxidant capabilities (Raina et al., 2013;

Deschaseaux et al., 2014; Gardner et al., 2017), yet the subsequent

response of coral-associated microbes that can catabolise this

compound remains undefined. Our study aimed to identify how

the increased availability of DMSP in Acropora millepora mucus

during an ecologically relevant thermal stress affected the

abundance of DMSP degrading bacteria and the genes they use to

degrade this molecule. As predicted, elevated seawater temperature

resulted in order of magnitude increase in DMSP concentration in

themucus layer ofA.millepora.We subsequently identified putative

DMSP degraders in the mucus secreted after air exposure and

confirmed that the abundance of genes mediating the two DMSP

degradation pathways increased with higher DMSP concentrations.

Notably, at the highest DMSP concentrations recorded, the cleavage

gene causing DMS production became more abundant than the

demethylation gene, suggesting that a greater proportion of DMSP

is catabolised through this route during heat stress, which has

potentially significant implications given the climatic importance

of DMS.

Elevated seawater temperature caused reductions in PSII

photochemical efficiency (FV/FM) and chlorophyll content

without a loss of Symbiodiniaceae cells. This, along with the

increased reliance on non-photochemical quenching,

indicates a nascent bleaching response where light energy is

in excess and the integrity of the photosynthetic electron

transport chain is compromised (Rochaix, 2011). A

reduction in FV/FM is typical of thermally stressed Acropora

symbionts at our sampling site (Heron Island) (Fisher et al.,

2012; Gardner et al., 2017; Nitschke et al., 2018), which belong
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to Cladocopium of the C3 radiation (LaJeunesse et al., 2003;

Fisher et al., 2012; Gardner et al., 2017). Cumulative thermal

stress likely overwhelmed Symbiodiniaceae photosystem

repair mechanisms (Takahashi et al., 2009), alternative

electron flow pathways (e.g., the mehler reaction, see

Roberty et al., 2014), and antioxidant systems (Gardner

et al., 2017), leading to net production of reactive oxygen
Frontiers in Marine Science 10
species (ROS) (Lesser, 2006; Lesser, 2011). Elevated cellular

ROS emissions are characteristic of temperature sensitive

Symbiodiniaceae cells (Suggett et al., 2008; Goyen et al.,

2017; Buerger et al., 2020), and ROS leakage into host cells

has been proposed as one of the mechanisms responsible for

Cnidarian-Symbiodiniaceae dysbiosis (Lesser, 1997; Lesser,

2006; Lesser, 2011).
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Coral mucus contains high concentrations of DMSP under

normal conditions (Broadbent and Jones, 2004). In the present

study, concentrations measured in the temperature treatments

averaged 83 µM, more than 1.5-fold higher than previously

reported for Acropora. In addition, increased temperature led to

the highest concentrations yet reported in any environment (177

µM). Our observations of Symbiodiniaceae photosystem stress

and concurrent increases in DMSP concentrations in the coral

host aligns well with its putative role in photosystem repair

(Archer et al., 2010) and also corroborate the ROS-detoxifying

role of DMSP proposed for Acropora (Raina et al., 2013;

Deschaseaux et al., 2014; Jones and King, 2015; Gardner et al.,

2017) and demonstrated for other species (Sunda et al., 2002).

Mucus has long been thought to play an essential role in a coral’s

ability to adapt to environmental change (Reshef et al., 2006).

The exceptionally high concentrations of DMSP measured here,

together with a nutrient-rich cocktai l of proteins,

polysaccharides and lipids, make coral mucus an ideal

environment for microbial growth (Wild et al., 2004;

Tremblay et al., 2011), and as such, the maintenance of a

healthy coral microbiome.

We found little overlap in the identity of the taxonomy of the

bacterial communities between mucus and seawater samples,

consistent with previous work showing that mucus harbour

specific taxa (Rohwer et al., 2001; Frias-Lopez et al., 2002;

Rohwer et al., 2002). The two most abundant classes of bacteria

present in mucus samples were Alphaproteobacteria and

Gammaproteobacteria, known to harbour DMSP-degrading genes

(Howard et al., 2008; Varaljay et al., 2010). We matched the 16S

rRNA gene of bacteria present in the mucus samples to genomes

that harbour dmdA and dddP, to identify and quantify putative

DMSP degraders in the control and heat-stressed samples. The

majority of the dmdA-harbouring bacteria identified in mucus

belong to the Alphaproteobacteria class and include many

representatives of the Roseobacter clade, such as Phaeobacter,

Ruegeria, Shimia, or Marinovum. These Roseobacters are

commonly associated with reef-building corals (Huggett and

Apprill, 2019; Luo et al., 2021; Kuek et al., 2022), and akin to

their interaction with phytoplankton (Seyedsayamdost et al., 2011),

their relationships with corals can range from mutualistic (Sharp

et al., 2015; Freire et al., 2019; Miura et al., 2019) to pathogenic

under environmental stress (Casey et al., 2015; Pollock et al., 2017).

In addition, the oligotrophic bacterium Pelagibacter was also

present among the dmdA-harbouring bacteria identified in coral

mucus. Given that this DMSP-degrading bacterium is the most

abundant microorganism in seawater (Giovannoni, 2017), and

mucus viscosity is known to trap particles from seawater (Wild

et al., 2004), is it possible that some of these oligotrophs get also

trapped in mucus. Conversely, the majority of dddP-harbouring

bacteria belonged to the Gammaproteobacteria class, most notably

members of the genus Caballeronia. The functional role of this

genus is unknown in corals, but it is involved in mutualisms with

plants (South et al., 2021) and insects (Mendiola et al., 2022).
Frontiers in Marine Science 11
Although our approach enabled us to identify some of the DMSP

degraders in coral mucus, our estimated proportion of DMSP

degraders in the mucus (less than 10% of the total community) is

most likely an underestimation, since our conservative functional

assignment relies on a small number of genomes harbouring ratified

or orthologous dmdA/dddP genes, but disregards the many

homologous sequences that may be functional.

The abundance of the cleavage and demethylation genes in

bacterial communities is an indicator of how DMSP is being

catabolised. This is important because the demethylation pathway

shunts the sulfur moiety towards the synthesis of amino acids (e.g.,

methionine; see Howard et al., 2006; Reisch et al., 2011), while the

cleavage leads to the production of the climatically active DMS

(Curson et al., 2011). Quantification of both dmdA and dddP genes

using qPCR revealed that their abundance in coral mucus (per 16S

rRNA gene copy) increased (1.5-fold and 3-fold increases,

respectively) with DMSP concentrations during thermal stress. In

addition, when DMSP concentrations increased beyond 30 µM in

mucus, the cleavage gene dddP became more abundant than the

demethylation gene dmdA (ratio of dddP:dmdA A/1 above 1).

DMSP concentrations have long been hypothesised to be the key

determinant of which of the two DMSP degradation pathways is

preferentially used (Kiene et al., 2000; Simó, 2001). Recent

laboratory results on a model bacterium confirmed that at low to

medium concentrations, most of the DMSP is degraded via

demethylation, but at elevated concentrations (>10 mM) a shift

occurs toward cleavage (Gao et al., 2020). Although we did not

investigate the expression of these pathways, we found that a similar

threshold exists for the abundance of these genes in coral mucus.

Therefore, our results suggest that under high DMSP

concentrations, such as the ones recorded in coral mucus under

thermal stress, a larger proportion of DMSP may be converted

to DMS.

Here we measured the largest DMSP concentrations ever

recorded in any environment in the mucus of the reef-building

coral Acropora millepora. Thermal stress caused sharp increases

in both DMSP, and the proportion of bacterial genes involved in

its degradation. In addition, our results suggest that when DMSP

concentrations are high, a greater proportion of DMSP is

converted to DMS by bacteria, which corroborates the increase

in DMS concentrations previously measured in corals under

various environmental stressors (Deschaseaux et al., 2014).

Stronger convection forces occurring in tropical regions result

in fast transport of volatile gases, such as DMS (Randel and

Jensen, 2013), which means that shifts in DMSP-degradation

route used by coral-associated bacteria may have important

effects on atmospheric chemistry.
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(2015). Dimethylsulfoniopropionate in corals and its interrelations with bacterial
assemblages in coral surface mucus. Environ. Chem. 13 (2), 252–265. doi: 10.1071/
EN15023
frontiersin.org

https://github.com/StephGardner/Mucus-DMSP
https://www.frontiersin.org/articles/10.3389/fmars.2022.912862/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmars.2022.912862/full#supplementary-material
https://doi.org/10.1081/CI-100108768
https://doi.org/10.4319/lo.2010.55.4.1579
https://doi.org/10.1071/MF04114
https://doi.org/10.1006/ecss.2002.1021
https://doi.org/10.3354/meps296291
https://doi.org/10.1126/sciadv.aba2498
https://doi.org/10.1016/j.jembe.2011.07.028
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.1016/j.pocean.2013.10.014
https://doi.org/10.1038/srep11903
https://doi.org/10.1128/aem.03873-14
https://doi.org/10.1038/nrmicro2653
https://doi.org/10.1038/nrmicro2653
https://doi.org/10.4319/lo.2014.59.3.0758
https://doi.org/10.4319/lo.2014.59.3.0758
https://doi.org/10.4319/lo.1979.24.4.0706
https://doi.org/10.4319/lo.1979.24.4.0706
https://doi.org/10.1007/s00338-011-0853-0
https://doi.org/10.1071/EN15023
https://doi.org/10.1071/EN15023
https://doi.org/10.3389/fmars.2022.912862
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Gardner et al. 10.3389/fmars.2022.912862
Freire, I., Gutner-Hoch, E., Muras, A., Benayahu, Y., and Otero, A. (2019). The
effect of bacteria on planula-larvae settlement and metamorphosis in the octocoral
rhytisma fulvum fulvum. PloS One 14 (9), e0223214. doi: 10.1371/journal.
pone.0223214

Frias-Lopez, J., Zerkle, A. L., Bonheyo, G. T., and Fouke, B. W. (2002).
Partitioning of bacterial communities between seawater and healthy, black band
diseased, and dead coral surfaces. Appl. Environ. Microbiol. 68 (5), 2214–2228. doi:
10.1128/AEM.68.5.2214-2228.2002

Gao, C., Fernandez, V. I., Lee, K. S., Fenizia, S., Pohnert, G., Seymour, J. R., et al.
(2020). Single-cell bacterial transcription measurements reveal the importance of
dimethylsulfoniopropionate (DMSP) hotspots in ocean sulfur cycling. Nat.
Commun. 11 (1), 1942. doi: 10.1038/s41467-020-15693-z

Gardner, S. G., Raina, J.-B., Nitschke, M. R., Nielsen, D. A., Stat, M., Motti, C. A.,
et al. (2017). A multi-trait systems approach reveals a response cascade to bleaching
in corals. BMC Biol. 15 (1), 117. doi: 10.1186/s12915-017-0459-2

Garren, M., and Azam, F. (2010). New method for counting bacteria associated
with coral mucus. Appl. Environ. Microbiol. 76 (18), 6128–6133. doi: 10.1128/
AEM.01100-10

Giovannoni, S. J. (2017). SAR11 bacteria: The most abundant plankton in the
oceans. Annu. Rev. Mar. Sci. 9 (1), 231–255. doi: 10.1146/annurev-marine-010814-
015934
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