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ABSTRACT

the social platforms (i.e., social networks and e-commerce platforms) for their

benefits. Spammers, rumours, and some other unexpected activities are almost an
appendage to all social platforms that disrupt the network order. We summarize these
unexpected activities as misbehaviours in social platforms. To detect such social platform
misbehaviours, machine learning is an expected method where modelling and algorithms
are two significant elements. Such an interesting topic that has application prospects
and research value has attracted the attention of many researchers, and some results
have also been put forward in the literature.

In terms of spammer detection, because of the rich data types of e-commerce platform,
such as score, comment content, and comment time, the mainstream detection methods
rely on the above data to construct features on e-commerce platforms. For example,
text-based features, behaviour features etc. in conjunction with some supervised learning
algorithms like Naive Bayes, Decision trees etc. are the most frequently used combi-
nations for spammer detection in e-commerce platforms. However, social networks are
based on interaction data and are relatively deficient in data types, thus, spammer detec-
tion in social networks requires a detection framework that relies on relational data but
is independent of content data. Along this line, the existing research attempts to define
complex network features (e.g., degree, K-Core, PageRank, connected component, etc.)
and interactive sequence-based features. Nevertheless, the deep semantic information
hidden in the multi-relational networks has not been fully utilized.

Furthermore, rumour as another type of misbehaviours in social networks has been
run through the whole evolutionary history of mankind. People maliciously disseminate
rumours to increase awareness, slander others or cause panic, etc. To eliminate this
issue, many researchers resort to detecting rumours in social networks. However, rumour
detection is not sufficient to eliminate the negative impact, which also requires official
institutions to provide the refutations. In practice, the number of rumours in social
networks is too large, there is no need to refute some rumours with little or no concern.
Therefore, an evaluation of the impact of the rumours in advance is essential.

To address the aforementioned research problems, a few approaches are proposed in
the works introduced in this thesis.

T he liberty to contribute content freely has encouraged malicious users to exploit

* Based on the non-content data, we fully excavate the deep semantic information
hidden in the heterogeneous network and define a series of user behaviour features
using relational network data for spammer detection.
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* Based on the graph embedding method, we propose a “Send-Receive” Role Separa-
ble Graph-Embedding Model (RS-GEM) to extract and fuse the hidden features of
heterogeneous relations in multi-relational social networks to detect spammers.

¢ Inspired by deep sequential networks, we propose a “Multi-level Dependency Model”
(MDM), which exploits user’s behaviours in terms of long-term and short-term
dependency from both individual-level and union-level to detect multi-relational
social spammers.

e Before a rumour has an impact on social networks, we need to assess the possible
impact it may have. Therefore, we devise a rumour influence prediction model
RISM (Rumour Impact on Social Media) based on a popular rumour intensity
formula to predict the impact of a newborn rumour.

Last but not least, since the global outbreak of COVID-19 in early 2019, COVID-
19-related topics have become hot spots on social networking platforms. At the end
of this thesis, we shall also analyze the COVID-19-related tweets on Twitter and get
a preliminary understanding of the public’s focus and sentiment trends during the
pandemic.

Keywords: Multi-relational Social Network; Behaviour Analysis; Spammer Detection;
Feature Construction; Rumour Analysis; Sentiment Analysis
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