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Abstract – Human robot interaction has become an important 
area of research in the robotics community. High level 
abstractions, which are commonly used by humans, can be 
learnt by robots to effectively communicate with humans. In this 
paper, we propose a Semantic Grid Map (SGM) to represent an 
environment. SGM is similar to an Occupancy Grid (OG) map, 
however with high level information as environment type labels. 
We use a robot-mounted laser range finder (LRF) data to learn 
and classify an environment into various area types. Then the 
classification results are combined probabilistically to update 
the semantic grid map. The classification accuracy is further 
improved by outlier rejection and topological correction. 
Finally we present a labeling strategy while a robot is exploring 
an unknown environment. Experimental results of a robot 
exploring in a university environment are presented to assess 
the performance of the algorithm.  

I. INTRODUCTION 

NVIRONMENT classification enables a robotic device 
to build a human understandable, more meaningful 

representation, and it is the basis of building a Semantic Grid 
Map. This high level information can be shared between 
robots and humans, or used to support the robots to perform 
complex, advanced tasks. 

Some popular sensors that have been used in environment 
classification schemes are cameras and laser range finders. 
For example, many prior works propose environment 
classification algorithms by matching lines and landmark 
objects extracted from vision data [1][2]. Some other 
researchers have been working on machine learning 
approaches to classify environments based on laser range 
finder data [3][4]. Multi-sensor based approaches for 
environment classification are also not uncommon [5]. 
However, our belief is that the potential use of the laser range 
finder data has not yet been well exploited. Therefore, in this 
paper, we have restricted our sensory module to laser range 
finder.  

In this research area, Poncela et al. [6] adopted Principal 
Component Analysis to classify the objects as walls or doors 
based on laser range data. Buschka et al. [7] proposed a 
rectangular-fit algorithm to extract room-like nodes and 
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thereby segmented the space into room and corridor regions. 
Both approaches rely on the invariant width and length 
parameters of certain objects or space. Tapus et al. [8] 
proposed a Bayesian approach for topology recognition and 
door detection by considering many detailed topological 
situations like X-crossing, T-crossing etc. Mozos et al. [3] 
extracted variety of features from laser range data and used 
AdaBoost to label indoor environments as rooms, corridors, 
doorways and halls. In a similar approach, Sousa et al. [4] 
classified places using Support Vector Machines (SVM). In 
both cases, only the positions of the robot were labeled but 
not the environment itself.  

In this paper, we firstly evaluated some common features 
extracted from laser range data and select four dominant 
features for our application using Differential Evolution 
algorithm [21]. Then we classify places by using logistic 
regression as a multi-class classifier. The classification 
results can be used to label either the observer’s positions or 
the obstacle points (environmental features). Then we adopt 
the independent opinion pool approach to fuse the 
probabilities assigned to certain obstacle points detected by 
different observations, resulting in a semantic grid map. The 
labeling accuracy of the semantic grid map is improved in 
two ways: through outlier rejection, and through topological 
constraints. Finally, these techniques are combined to 
construct an exploration and labeling framework, which 
enables a robot to navigate in a relatively unknown 
environment and construct accurate labeled maps. 

Remainder of the paper is organized as follows: Section II 
discusses the details about the classifier and the feature 
selection method. Data fusion approach and topological 
information based correction are discussed in the Section III. 
The idea of exploration and labeling is proposed in Section 
IV. In Section V, experimental results are presented, and 
Section VI concludes the paper.  

II. CLASSIFICATION 

A. Semantic Labels  

In a typical university building, some commonly observed 
areas are office rooms, lecture rooms, corridors and 
doorways. All of them can be used as semantic labels. 

However, as a doorway can be considered as a transition 
between other areas, it is not adopted as an independent 
semantic class in the application discussed in this paper. 

Environment Classification and Semantic Grid Map 

Building Based on Laser Range Finder Data 

L. Shi, S. Kodagoda and G. Dissanayake, Member, IEEE 

E



  

B. Feature Selection 

In supervised machine learning problems, feature selection 
issue directly affects the generalization ability, overhead and 
overfitting of the system. As is widely accepted that a small 
subset of features is sufficient to approximate some problems 
well [10]. Finding the dominant features becomes a key issue 
for most applications. 

In general, office rooms, lecture rooms and corridors have 
different gross shapes and sizes. However due to the presence 
of various furniture, a laser range finder may not observe the 
gross shapes [20]. This causes the laser range/bearing data to 
appear in complex shapes and sizes. Therefore, environment 
classification based on few trivial features, such as the gross 
shape of a place will be erroneous.  

There are various features that could be used for semantic 
classification of places. Mozos et al. [3][13] derived two sets 
of simple features from laser range data. One set was derived 
from raw range data and the other from polygonal 
approximation of the observed area. They employed about 
150 single-valued features (considering different thresholds) 
of 21 kinds, and fed these features into a multi-class 
AdaBoost classifier. In a similar manner, Sousa et al. [4] 
selected 14 single-valued features to train a binary SVM 
classifier. In this paper, we adopt all 21 kinds of single-valued 
features proposed by Mozos et al. [3][13] as candidate 
features.  

Instead of using the total number of available features, we 
utilized the feature selection algorithm proposed by 
Khushaba et al. [21]. In this algorithm, Differential Evolution 
was used to implement a constrained feature selection 
algorithm. The author proposed to build statistical feature 
distribution factors and employ them to guide the search 
toward the vicinity of the optimal solutions.  

As a result, four dominant features were selected and 
adopted considering their performance and computational 
overhead. 

C. Logistic Regression 

Some prominent classifiers used in semantic labeling of 
places and other general applications are AdaBoost [11] and 
Support Vector Machines (SVM) [12]. The former constructs 
a strong classifier as a linear combination of many weak 
classifiers, and the latter solves the classification problem in a 
high-dimensional feature space and has the advantage of 
dealing with sparse training samples.  

However, in this paper, we adopt Logistic Regression as 
classifier because it directly generates probabilistic output, 
which can be conveniently processed in data fusion. 

Logistic Regression is an approach to learn functions of the 
form  |P y x


 in the case where y  is discrete-valued, and 

x


 is any vector containing discrete or continuous variables 
[9]. It assumes a parametric form for the distribution 

 |P y x


 while directly estimating its parameters from the 

training data [9].  

For binary classification, given data x


 and parameters or 
weights w


, the parametric model is: 
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Then the objective of the training task is to minimize the 
negative log-likelihood, 
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However, overfitting is a potential risk of logistic 
regression especially when data is with high dimension and 
training data is sparse [9]. Therefore, regularization 
approaches which encourage the fitted parameters to be small 
are usually employed to reduce over fitting [10].  

Here, we use L2 regularization, which solves the following 
problem. 
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where 0C   is a penalty parameter.  
Logistic regression is originally a binary classifier, 

however it has been extended to deal with multi-class 
problems by applying strategies such as one-against-all and 
one-against-one [19]. 

III. DATA FUSION AND CORRECTION 

In this section, we describe the process of environment 
classification and semantic grid map building.  

A. Independent Opinion Pool 

In data fusion, the output of a sensor could be either a 
likelihood  |P z x  or an opinion  |P x z  , where z  is an 

observation and x  is a state of the target. Three common 
approaches to combine these probabilistic evidences are 
linear opinion pool, independent opinion pool and 
independent likelihood pool [14][15].  

In this application, observations are made independently 
from unduplicated positions and they are processed to 
produce a probabilistic opinion on their labels. As this 
happens while the observer is moving, temporal data can be 
fused. Based on the structure of this application, independent 
opinion pool is an appropriate method to solve the problem.  

The independent opinion pool can be described as follows: 

   1| ,..., |
n

n i
i

P x z z P x z         (4) 

where iz  is the thi  observation of an obstacle point, x  is 

the state of the obstacle point, and  is a normalizing factor.  
Equation (4) can be further rephrased in a recursive way: 
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B. Accumulative Map Building 

With the availability of temporal data, it is possible to 
update and improve the grid map based on equation (5). This 
results in a semantic grid map. As the classifier grossly label 
the whole laser range/bearing scan as belonging to a 
particular class, the generated semantic grid map has poor 
labeling results. With opened doors, the laser can “see” 
features in multiple area types. Therefore, if we can further 
discriminate the obstacle points in a single scan into different 
regions, the accuracy of the final semantic grid map can be 
improved. 

C. Outlier Rejection 

Here inliers are defined as the obstacle points belonging to a 
particular area type and outliers are belonging to another area 
type. For example, if a robot in an office room detects 
obstacle points both in the same office room and in an 
adjacent corridor, then the former are called inliers and the 
latter are called outliers. By discriminating inliers and outliers, 
it is possible to improve the quality of the semantic grid map.  

One way to discriminate inliers and outliers is to find the 
doors which could be considered as the transition between 
two area types. There are some door detection techniques 
proposed in the literature based on assumption of a fixed door 
width [16], dynamic door states [17] and fuzzy temporal rules 
[18]. Here, we have combined some of the above thoughts to 
build a door detector using the following heuristics. 
 Door is presented by two break points (door frame 

points), which are supported by “walls” 
 The distance between the two break points should be 

within a certain range (a reasonable door width) 
 All obstacle points seen through doors are belonging 

to another area type 

Another simple way is to filter the laser data based on a 
range threshold. Although it is not always true, intuitively it 
could be perceived that most probably the short range data 
belongs to inliers. In addition, these near ranges are more 
reliable and accurate. Therefore, we only use obstacle points 
which are within a certain range to the observer to build the 
semantic grid map.  

In our application, statistics show that only 1% of outliers 
lie within 2.5m of the laser ranges.  

D. Correction Based on Topology 

The semantic grid map could also be improved based on the 
topological data. For example, room to corridor transition is 
more common than that of room to room or corridor to 
corridor transitions.  

In this application, we define following heuristics: 
 Corridors: Enclosed by obstacles (like walls) and at 

least one other environment types (like office rooms) 
 Office rooms / lecture rooms: Enclosed by obstacles 

(like walls or furniture) and at least one corridor 

 

The algorithm initially segments the semantic grid map to 
generate a “segment and neighborhood table”. All segments 
that do not comply with above heuristics are merged 
iteratively with their largest neighbor (which must not be an 
“obstacle”).  

IV. EXPLORATION AND LABELING 

The complete process of exploration and labeling is shown 
in Fig. 1. It consists of two sub-modules, which are actual and 
virtual exploration stages.  

In the actual exploration stage, the robot explores an 
unknown space based on any suitable exploration algorithm 
to generate an occupancy grid map (OG map). Then a virtual 
exploration is carried out on the OG map visiting all the 
possible robot locations while obtaining laser range data. 
Orientation of the robot is not significant here as the laser data 
provides a 360o field of view. These laser data and position of 
the robot are used to generate a labeled robot position map. 
The quality of the labeled robot position map is further 
improved by incorporating topological knowledge. Corrected 
labeled robot positions along with laser range finder data are 
probabilistically fused to generate a semantic grid map.  

 
Fig. 1. Block diagram of exploration and labeling 

V. RESULTS 

A. Data Set 

A simulated data set collected using a robot equipped with 
laser range finders operating in an indoor environment (Level 
6, Building 2 of the University of the University of 
Technology, Sydney) are used for the analysis. As shown in 
Fig. 2, the space is consisted of 3 long corridors, 3 lecture 
rooms with tables and chairs (middle part in the figure) and 
15 office rooms of different shapes with furniture (outer most 
areas in the figure). Two laser range finders were attached 
back to back to provide 360° laser range scans. 



  

 
Fig. 2. Map of the environment 

B. Feature Selection 

All 21 single-valued features defined in [3][13] was used 
and Differential Evolution algorithm [21] was employed to 
find the optimal combinations. The evaluation result is shown 
in Fig. 3, and the corresponding time performance on testing 
and feature extraction are shown in Fig. 4 and Fig. 5. It is to 
be noted that the most dominant times are related to feature 
extraction (Fig. 5 in milliseconds) and not the classification 
(Fig. 4 in microseconds).  

By comparing the performance of classification interms of 
accuracy and computational complexity, it can be seen that 
four features argubly provided the best performance. Those 
four features were identified as: 
 Standard deviation of the distances between the 

centroid and the shape boundary 
 Ma / Mi (Ma and Mi are Major axis and Minor axis of 

the ellipse that approximates P(z)) 
 Normalized circularity of P(z) 
 Kurtosis of the laser range sequence 

 
Fig. 3. Performance of best N (N = 2, 3,..21) features on 

 testing data set (blue) and noised validation data set (red) 

 
Fig. 4. Time comsumption of of best  
N (N = 2, 3,..21) features in testing 

 
Fig. 5. Time comsumption of of best  

N (N = 2, 3,..21) features in feature extraction 

C. Classification Results 

In this experiment, observer’s positions are classified into 
three semantic labels. For this purpose, 2957 scans have been 
used as the training data set (as identified in Fig. 6 (a)), and 
another 2956 scans have been used as the testing data set. 

Classification is carried out using L2-regularized logistic 
regression as a multi-class classifier and the output is in the 
form of probability estimation. Performance of the classifier 
is shown in TABLE I, and the testing result on entire testing 
data set is visualized as in Fig. 6 (b).  

TABLE I 
PERFORMANCE OF CLASSIFIER 

Item Error 

Training Error (2957 cases, mixed) 0.47 % 

Testing Error (401 cases, Corridor) < 0.01 % 

Testing Error (746 cases, Lecture Room) 0.61 % 

Testing Error (1809 cases, Office Room) < 0.01 % 

 
(a) 

 
(b) 

Fig. 6. (a) Training data set and (b) Testing data set. The grey points depict 
the background map as a reference. Red, black and blue points are observer’s 
positions which are labeled as in office room, corridor and lecture room 
respectively (training data set is manually labeled and testing data set is 
labeled by classifier). 



  

D.  Outlier Rejection 

In this section, two approaches to remove outliers 
mentioned in (Section III.C) are tested and compared.  

The door detection approach is carried out using heuristic 
rules, and the results are shown in Fig. 7. In the corridor 
scenario (Fig. 7, (b)), the door detection is reasonable due to 
the lack of foreign objects like furniture. However, there are 
few possible candidate doors (false detections) detected in the 
office room scenario (Fig. 7, (a)). This is due to the presence 
of various furniture providing similar features to doors. 

 
(a) 

 
(b) 

Fig. 7. Performance of door detection: The observer marked as a star is in (a) 
an office room and (b) a corridor. The blue points are the laser based 
observations. Red lines indicate the potential doors. 

The second approach, which only labels near obstacle 
points, is not visualized here because it is relatively simple. 
Compared with the other approach, this method is the fastest 
and no additional implementation is required, even though 
there is a significant information loss due to discarding long 
range readings. In the following experiments, this approach is 
adopted. 

E. Virtual Exploration and Labeling 

This experiment implements the idea of exploration and 
labeling (Section IV) of an unknown environment. 

For an actual implementation, any complex exploration 
algorithm can be used. Here we adopt right-wall following 
algorithm as an example, to actually explore an environment 
and generate an OG map (as shown in Fig. 8). Localization of 
the robot is assumed to be known. 

 
Fig. 8. Occupancy Grid Map generated by right wall following exploration 

Once the OG map is generated, a virtual exploration is 
carried out. It is based on a cell (a different concept, not a grid 
in OG map) lay over the environment. The size of a cell is 
determined by the size of the robot. 

It is assumed that the robot can move to the all four adjacent 
cells (front, back, left, and right) if there are no obstacle cells. 
Two variable-length buffers are maintained by the robot: one 
buffer is used to store unvisited cells, and another buffer is 
used to store visited empty cells. After placing the robot 
randomly in any empty cell, the robot moves to neighboring 
four cells (while obtaining laser range/bearing data) and they 
are marked as visited cells. The rest of the cells are 
maintained as unvisited cells. This process is to be continued 
until there are no unvisited empty cells.  

During virtual exploration, the robot labels its positions and 
builds a labeled robot position map as shown in Fig. 9. As can 
be seen in the figure, it has many wrong robot position 
classifications (error rate 4.25%). 

 
Fig. 9. Labeled robot position map that was built during virtual exploration. 
Blue, cyan and red points are either observer’s positions labeled as belonging 
to office room, lecture room and corridor respectively. 

This map can be further improved by topological 
correction. Fig. 9 is represented in a tabular form preserving 
the neighborhood relationship of segments (a segment means 
a connected grid cells with the same label). The table will be 
processed according to the topological heuristics given in 
Section III. D. It starts with the smallest segments and 
iteratively updates the table by merging segments with the 
biggest neighbors based on the heuristics. This is to be 
repeated until all the segments satisfy the topological 
heuristics.  

The resulting corrected labeled robot position map is 
shown in Fig. 10 (a) (error rate 0.69%). Then the corrected 
labeled robot position map along with the respective laser 
range finder data can be used in independent opinion pool 
framework to generate a semantic grid map as shown in Fig. 
10 (b) (error rate 1.25%). In this figure, it is to be noted that 
the obstacle points are labeled rather than the robot’s 
positions.  

Evaluation results show that by introducing the topological 
correction, the error rates in labeling the robot position map is 
reduced from 4.25% to 0.69% and error rates of semantic grid 
map have improved from 5.77% (if built based on 
uncorrected robot position map) to 1.25%. Therefore, it 



  

shows that the topological correction approach dramatically 
improves the accuracy of the final semantic grid map. 

 
(a) 

 
(b) 

Fig. 10. (a) corrected labeled robot position map and (b) semantic grid map. 
Blue, cyan and red points are either observer’s positions or obstacle points 
labeled as belonging to office room, lecture room and corridor respectively. 

VI. CONCLUSIONS 

In this paper, we have presented an approach to classify the 
robot positions in an environment based on laser range data. 
This is followed by a classification of obstacle points in the 
environment based on a probabilistic temporal update leading 
to a semantic grid map. The accuracy of semantic grid map 
was further improved based on outlier rejection algorithm and 
topological information. In addition, an idea of virtual 
exploration and labeling is proposed and implemented, 
which enables a robot to explore a relatively unknown 
environment and produce semantic grid maps. Experiments 
on university indoor environments with lecture rooms, office 
rooms and corridors show that the results are convincing with 
low labeling errors.  

We are currently in the process of implementing the 
algorithms on an indoor robot platform.  
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