

# Solvent-Assisted Headspace Sampling and Physical Investigation of SPME Fibres

By

Rawaa Natiq Al-Baghdadi

A thesis submitted for the Degree of Doctor of Philosophy (Science)University of Technology Sydney

January 2022

**Certificate of Authorship and Originality** 

I certify that the work in this thesis has not previously been

submitted for a degree, nor has it been submitted as part of the

requirements for a degree except as fully acknowledged within the

text.

I also certify that I have written the thesis, and any help that I have

received in my research work and the preparation of the thesis itself

has been acknowledged. In addition, I certify that all the information

sources and literature used are indicated in the thesis. Also, "This

research is supported by an Australian Government Research

Training Program".

Date: 15.01.2022

Rawaa Al-Baghdadi

ii

### **DEDICATION**

To my parent

And, I will always be grateful to my wonderful mother, who supported and surrounded me with her love, tenderness, and beautiful prayers that illuminated my path. If I have succeeded in my life, that is because you are in it.

### Acknowledgements

- ❖ First of all, I would like to express my sincere gratitude for the great interest, valuable support, and professional guidance that I have got throughout my research project from my supervisor Prof. Bradley Williams. Words are powerless to express my appreciation: I could never have thought I would have a better doctoral supervisor.
- ❖ I want to express my gratitude to all academic and professional staff at UTS for providing me with the facilities necessary to complete my PhD thesis.
- ❖ I am also grateful for the PhD scholarship from the Republic of Iraq, the Higher Education and Scientific Research Ministry that allowed the project to be finished.
- ❖ I want to express my appreciation and gratitude to all of my colleagues, especially Smitha, Sana and Raja, who made time more enjoyable and friendly.
- ❖ To the spirit of my dearest uncle Tariq, who died in August of this year before I could return with a PhD certificate to make him happy
- ❖ Finally, I am grateful to my family, my husband, family relatives and lovely children, Eesa, Anas, Lammar and Adam, who were the greatest losers in this battle, to be awarded a PhD and ask forgiveness that I did not give them sufficient time and attention.

### **Abstract**

The analysis of samples contaminated by organic compounds is an essential aspect of environmental monitoring. While pesticides are beneficial to crops, they have a harmful influence on the environment that must be considered when using them. Excessive use of pesticides may result in the extinction of biodiversity. Other human-related activities also lead to pollutants in the environment; these include polycyclic aromatic compounds (PAH) and aromatic (semi)volatiles. The term "semi-volatile" refers to a collection of contaminants having a wide range of chemical and structural characteristics. Analytes of interest in this study were PAH, Pesticide, TPH and discretionary aromatic volatiles. Because of the complex nature of environmental samples, isolating target organic compounds from their matrices is a significant challenge. In addition, trace organic components in water samples must be isolated and pre-concentrated to be analysed using analytical procedures. Therefore, sample preparation is a significant focus in environmental analysis nowadays. Over the past decade, the use of SPME in sample preparation has grown steadily. It is often combined with chromatographic separation modules to extract volatile and semivolatile organic chemicals and allows the trace analysis of substances in complicated matrices.

In the present study, a solvent-free solid-phase microextraction (SPME) method has been developed to determine PAH, pesticides, TPH and discretionary aromatic volatiles in water and different matrices. The developed method was applied to various

environmental samples such as aqueous samples, milk, Orange juice and stream water.

The optimisation process will involve an analysis of the function of some commercially available fibres in achieving maximum analyte absorption and research of the various fibres' reactions to the solvents utilised, which has been investigated with each material. These fibres have also been subjected to solvent-assisted headspace analysis to determine their suitability. The method showed good linearity for 0.2 and  $0.0005 \, \mu g.m L^{-1}$  with regression coefficients ranging between 0.997 and 0.999. The relative standard deviation (RSD) (n = 6) for the target analytes were in the range of 4  $-15 \, \%$ , respectively. The developed technique was successfully applied to preconcentration and determination of the target analytes in environmental water and different matrices.

## **Table of contents**

## **Contents**

| Certif      | fication of authorship and originality                                   | ii       |
|-------------|--------------------------------------------------------------------------|----------|
| Dedic       | cation                                                                   | iii      |
| Ackn        | owledgment                                                               | iv       |
| Abstr       | act                                                                      | v        |
| Table       | of contents                                                              | vii      |
| List o      | f Figures                                                                | xiv      |
| List o      | f Abbreviations                                                          | xxv      |
| List o      | f Tables                                                                 | xxvi     |
| <u>Chap</u> | ter 1: Introduction and literature review                                | 1        |
| 1.1         | Introduction to sample preparation                                       | 2        |
| 1.2         | Extraction methods to pre-concentrate analyte                            | 3        |
| 1.2.1       | Liquid-liquid extraction (LLE)                                           | 3        |
| 1.2.1.      | 1 Ionic liquids as solvents in LLE                                       | 5        |
| 1.2.2       | Solid-phase extraction (SPE)                                             | 8        |
| 1.3         | Micro-extraction methods used to isolate and concentrate organic         | analytes |
|             |                                                                          | 12       |
|             | Liquid phase micro-extraction (LPME) / single drop micro-extraction      |          |
|             | Solid-phase micro-extraction                                             |          |
| 1.3.2.      | 1 Headspace microextraction                                              | 20       |
| 1.4 0       | bjectives of this study                                                  | 22       |
| 1.5 M       | ethodology                                                               | 24       |
|             | ter 2: Application and optimisation of solid-phase microextraction techr |          |
| polyc       | cyclic aromatic hydrocarbons mixture                                     | 26       |
| 2.1         | Introduction                                                             | 27       |
| 2.2         | Experimental                                                             | 32       |
| 2.2.1       | Chemical and reagents                                                    | 32       |
| 2.2.2       | Standard solutions                                                       | 32       |

| 2.2.3   | Preparation of SPME samples32                                                        |
|---------|--------------------------------------------------------------------------------------|
| 2.2.4   | Instrument33                                                                         |
| 2.2.5   | The procedure for microextraction                                                    |
| 2.2.6   | Preparation and conditioning of different types of fibres35                          |
| 2.3     | Results and discussion36                                                             |
| 2.3.1   | General method development and optimisation36                                        |
| 2.3.2   | Method development and GC optimisation                                               |
| 2.3.2.  | Extraction optimisation38                                                            |
| 2.4     | Exploring various parameters to optimise the extraction efficiency of headspace      |
| samp    | ling47                                                                               |
| 2.4.1   | Selected fibres                                                                      |
| 2.4.2   | Extraction as a function of time50                                                   |
| 2.4.3   | The effect of NaCl in aqueous solutions51                                            |
| 2.4.4   | Solvent choice                                                                       |
| 2.5     | Application to other matrices57                                                      |
| 2.5.1.  | No-solvent and solvent-assisted headspace sampling of a water matrix containing      |
| 0.05 p  | pm PAH mixture58                                                                     |
| 2.5.1.k | No-solvent and solvent-assisted headspace sampling of a milk matrix containing 0.05  |
| ppm F   | PAH mixture62                                                                        |
| 2.5.1.0 | No-solvent and solvent-assisted headspace sampling of Orange juice matrix containing |
| 0.05 p  | pm PAH mixture64                                                                     |
| 2.5.1.0 | d No-solvent and solvent-assisted headspace sampling of stream water matrix          |
| contai  | ning 0.05 ppm PAH mixture67                                                          |
| 2.5.2.  | a No-solvent and solvent-assisted headspace sampling of a water matrix containing    |
| 0.000   | 5 ppm PAH69                                                                          |
| 2.5.2.k | No-solvent and solvent-assisted headspace sampling of milk matrix containing 0.0005  |
| ppm F   | PAH72                                                                                |
| 2.5.2.0 | No-solvent and solvent-assisted headspace sampling of Orange juice matrix containing |
| 0.000   | 5 ppm PAH73                                                                          |

|            | d No-solvent and solvent-assisted headspace sampling of stream water maining 0.0005 ppm PAH |     |
|------------|---------------------------------------------------------------------------------------------|-----|
| 2.6 St     | tatistical data and other relevant data processing                                          | .76 |
|            | Headspace sampling of PAH compounds containing (0.2-0.0005) ppm PAH mixture                 |     |
| water      |                                                                                             | .76 |
| 2.6.2      | Solvent-assisted headspace sampling of PAH compounds containing (0.2-0.0005)                |     |
| ppm l      | PAH mixture in water                                                                        | .80 |
| 2.6        | General conclusion                                                                          | .83 |
| -          | ter 3. Optimisation and application of solid-phase microextraction technique                |     |
| pesti      | cide mixture                                                                                | .85 |
| 3.1        | Introduction                                                                                | .86 |
| <b>3.2</b> | Experimental                                                                                | .90 |
| 3.2.1      | Chemicals and reagents                                                                      | .90 |
| 3.2.2      | Standard solutions                                                                          | .90 |
| 3.2.3      | Preparation of SPME samples                                                                 | .90 |
| 3.2.4      | Instrument                                                                                  | .91 |
| 3.2.5      | The procedure for microextraction                                                           | .91 |
| 3.2.6      | Preparation and conditioning of different types of fibres                                   | .92 |
| 3.3        | Results and discussion                                                                      | .93 |
| 3.3.1      | General method development and optimisation                                                 | 93  |
| 3.3.2      | Method development and GC optimisation                                                      | .95 |
| 3.3.2.     | 1 Extraction optimisation                                                                   | 95  |
| 3.4 E      | xploring various parameters to optimise the extraction efficiency of headspace sampl        | ing |
|            | 1                                                                                           | 03  |
| 3.4.1      | Selected fibres1                                                                            | 03  |
| 3.4.2      | Extraction as a function of time1                                                           | 04  |
| 3.4.3      | The influence of sodium chloride on aqueous solutions1                                      | 06  |
| 3.4.4      | Solvents choice1                                                                            | 07  |
| 3.5        | Application to the other matrices1                                                          | 09  |
| 3.5.1.     | a No-solvent and solvent-assisted headspace sampling of a water matrix containing 0         | .05 |
| ppm p      | pesticide mixture1                                                                          | 09  |
| 3.5.1.     | b No-solvent and solvent-assisted headspace sampling of a milk matrix containing 0          | .05 |
| ı maa      | pesticide mixture1                                                                          | 14  |

| 3.5.1.c No-solvent and solvent-assisted headspace sampling of Orange                                                                                                                                                                                                                                                                                                                                                                                              | juice matrix                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| containing 0.05 ppm pesticide mixture                                                                                                                                                                                                                                                                                                                                                                                                                             | 117                                          |
| 3.5.1.d No-solvent and solvent-assisted headspace sampling of Stream                                                                                                                                                                                                                                                                                                                                                                                              | water matrix                                 |
| containing 0.05 ppm pesticide mixture                                                                                                                                                                                                                                                                                                                                                                                                                             | 120                                          |
| 3.5.2.a No-solvent and solvent-assisted headspace sampling of a water matr                                                                                                                                                                                                                                                                                                                                                                                        | ix containing                                |
| 0.0005 ppm pesticide mixture                                                                                                                                                                                                                                                                                                                                                                                                                                      | 123                                          |
| 3.5.2.b No-solvent and solvent-assisted headspace sampling of milk matrix conta                                                                                                                                                                                                                                                                                                                                                                                   | aining 0.0005                                |
| ppm pesticide mixture                                                                                                                                                                                                                                                                                                                                                                                                                                             | 128                                          |
| 3.5.2.c No-solvent and solvent-assisted headspace sampling of Orange                                                                                                                                                                                                                                                                                                                                                                                              | juice matrix                                 |
| containing 0.0005 ppm pesticide mixture                                                                                                                                                                                                                                                                                                                                                                                                                           | 131                                          |
| 3.5.2.d No-solvent and solvent-assisted headspace sampling of stream v                                                                                                                                                                                                                                                                                                                                                                                            | water matrix                                 |
| containing 0.0005 ppm pesticide mixture                                                                                                                                                                                                                                                                                                                                                                                                                           | 134                                          |
| 3.6 Statistical data and other relevant data processing                                                                                                                                                                                                                                                                                                                                                                                                           | 139                                          |
| 3.6.1 Headspace sampling of pesticide compounds containing (0.2-0.0005) ppm                                                                                                                                                                                                                                                                                                                                                                                       | ı pesticide                                  |
| mixture in water                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 139                                          |
| 3.6.2 Solvent-assisted headspace sampling of pesticide compounds containing                                                                                                                                                                                                                                                                                                                                                                                       | (0.2-0.0005)                                 |
| ppm pesticide mixture in water with diethyl ether                                                                                                                                                                                                                                                                                                                                                                                                                 | 143                                          |
| 3.7 General discussion                                                                                                                                                                                                                                                                                                                                                                                                                                            | 146                                          |
| Chapter 4: Application and optimisation of solid-phase microextraction te                                                                                                                                                                                                                                                                                                                                                                                         | chnique for                                  |
| Total petroleum hydrocarbon mixture                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |
| 4.1 Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 149                                          |
| 4.2 Experimental                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 152                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |
| 4.2.2 Chemicals and reagents                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              |
| 4.2.2 Chemicals and reagents                                                                                                                                                                                                                                                                                                                                                                                                                                      | 152                                          |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 152<br>152                                   |
| 4.2.3 Standard solutions                                                                                                                                                                                                                                                                                                                                                                                                                                          | 152<br>152<br>152<br>153                     |
| 4.2.3 Standard solutions                                                                                                                                                                                                                                                                                                                                                                                                                                          | 152<br>152<br>152<br>153                     |
| 4.2.3 Standard solutions                                                                                                                                                                                                                                                                                                                                                                                                                                          | 152<br>152<br>152<br>153                     |
| 4.2.3 Standard solutions  4.2.3 Preparation of SPME samples  4.2.4 Apparatus  4.2.5 The procedure for microextraction                                                                                                                                                                                                                                                                                                                                             | 152<br>152<br>152<br>153<br>153              |
| 4.2.3 Standard solutions  4.2.3 Preparation of SPME samples  4.2.4 Apparatus  4.2.5 The procedure for microextraction  4.2.6 Preparation and conditioning of different types of fibres.                                                                                                                                                                                                                                                                           | 152<br>152<br>152<br>153<br>153<br>154       |
| 4.2.3 Standard solutions  4.2.3 Preparation of SPME samples  4.2.4 Apparatus  4.2.5 The procedure for microextraction  4.2.6 Preparation and conditioning of different types of fibres.  4.3 Results and discussion  4.3.1 General method development and optimisation  4.3.2 Method development and GC optimisation                                                                                                                                              | 152152153153154155155                        |
| 4.2.3 Standard solutions  4.2.3 Preparation of SPME samples  4.2.4 Apparatus  4.2.5 The procedure for microextraction  4.2.6 Preparation and conditioning of different types of fibres.  4.3 Results and discussion  4.3.1 General method development and optimisation  4.3.2 Method development and GC optimisation  4.3.3 Extraction optimisation.                                                                                                              | 152152153153154155155                        |
| 4.2.3 Standard solutions  4.2.3 Preparation of SPME samples  4.2.4 Apparatus  4.2.5 The procedure for microextraction  4.2.6 Preparation and conditioning of different types of fibres.  4.3 Results and discussion  4.3.1 General method development and optimisation  4.3.2 Method development and GC optimisation                                                                                                                                              | 152152153153154155155                        |
| 4.2.3 Standard solutions  4.2.3 Preparation of SPME samples  4.2.4 Apparatus  4.2.5 The procedure for microextraction  4.2.6 Preparation and conditioning of different types of fibres.  4.3 Results and discussion  4.3.1 General method development and optimisation  4.3.2 Method development and GC optimisation  4.3.3 Statistical data and other relevant data processing  4.4 Exploring various parameters to optimise the extraction efficiency of headsp | 152152152153153154155157157165 pace sampling |
| 4.2.3 Standard solutions 4.2.3 Preparation of SPME samples 4.2.4 Apparatus 4.2.5 The procedure for microextraction 4.2.6 Preparation and conditioning of different types of fibres. 4.3 Results and discussion 4.3.1 General method development and optimisation 4.3.2 Method development and GC optimisation 4.3.3 Statistical data and other relevant data processing                                                                                           | 152152153153154155157157165 pace sampling    |

| 4.4.2 Extraction as a function of time                                                                            | 170     |
|-------------------------------------------------------------------------------------------------------------------|---------|
| 4.4.3 The influence of sodium chloride on aqueous solutions                                                       | 171     |
| 4.4.4 Solvent choice                                                                                              | 173     |
| 4.5 Application to other matrices                                                                                 | 175     |
| 4.5.1.a No-solvent and solvent-assisted headspace sampling of a water matrix contai 0.05 ppm TPH mixture          | -       |
| 4.5.1.b No-solvent and solvent-assisted headspace sampling of milk matrix contain 0.05 ppm TPH mixture            | •       |
| 4.5.1.c No-solvent and solvent-assisted headspace sampling of Orange juice                                        | matrix  |
| containing 0.05 ppm TPH mixture                                                                                   | 180     |
| 4.5.1.d No-solvent and solvent-assisted headspace sampling of stream water matrix containing 0.05 ppm TPH mixture | 184     |
| 4.5.2.a No-solvent and solvent-assisted headspace sampling of water matrix contain                                | ing     |
| 0.0005 ppm TPH mixture                                                                                            | 186     |
| 4.5.2.b No-solvent and solvent-assisted headspace sampling of milk matrix containing                              | ıa      |
| 0.0005 ppm TPH mixture                                                                                            | •       |
| 4.5.2.c No-solvent and solvent-assisted headspace sampling of Orange juice                                        |         |
| containing 0.0005 ppm TPH mixture                                                                                 |         |
| 4.5.2.d No-solvent and solvent-assisted headspace sampling of stream water                                        |         |
| containing 0.0005 ppm TPH mixture                                                                                 | 195     |
| 4.6 Statistical data and other relevant data processing                                                           | 197     |
| 4.6.1 Headspace sampling of pesticide compounds containing (0.2-0.0005) ppm pe                                    |         |
| mixture in water                                                                                                  | 197     |
| 4.6.2 Solvent-assisted headspace sampling of pesticide compounds containing (0.2-                                 | 0.0005) |
| ppm pesticide mixture in water                                                                                    | 201     |
| 4.7 General conclusion                                                                                            | 204     |
| Chapter 5: Application and optimisation of solid-phase microextraction techniq                                    | ue for  |
| discretionary volatile aromatic mixture                                                                           | 205     |
| 5.1 Introduction                                                                                                  | 206     |
| 5.2 Experimental                                                                                                  | 209     |
| 5.2.1 Chemicals and reagents                                                                                      | 209     |
| 5.2.2 Standard solutions                                                                                          | 209     |
| 5.2.3 Preparation of SPME samples                                                                                 | 209     |
| 5.2.4 Apertures                                                                                                   | 210     |
| 5.2.5 The procedure for microextraction                                                                           | 210     |
| 5.2.6 Preparation and conditioning of different types of fibres                                                   | 211     |

| 5.3 Results and discussion                                                                                                                                                               | 212        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 5.3.1 General method development and optimisation                                                                                                                                        | 212        |
| 5.3.2 Method development and GC optimisation                                                                                                                                             | 214        |
| 5.3.2.1 Extraction optimisation                                                                                                                                                          | 215        |
| 5.4 Exploring various parameters to optimise the extraction efficiency of he                                                                                                             |            |
| sampling                                                                                                                                                                                 | 222        |
| 5.4.1 Selected fibres                                                                                                                                                                    | 222        |
| 5.4.2 Extraction as a function of time                                                                                                                                                   | 223        |
| 5.4.3 The influence of sodium chloride on aqueous solutions                                                                                                                              | 224        |
| 5.4.4 Solvent choice                                                                                                                                                                     | 226        |
| 5.5 Application to other matrices                                                                                                                                                        | 229        |
| 5.5.1.a No-solvent and solvent-assisted headspace sampling of a water matrix contains                                                                                                    | ining 0.05 |
| ppm discretionary aromatic mixture                                                                                                                                                       | 230        |
| 5.5.1.b No-solvent and solvent-assisted headspace sampling of a milk matrix contains                                                                                                     | ining 0.05 |
| ppm discretionary aromatic mixture                                                                                                                                                       | 233        |
| 5.5.1.c No-solvent and solvent-assisted headspace sampling of Orange juic                                                                                                                | e matrix   |
| containing 0.05 ppm discretionary aromatic mixture                                                                                                                                       | 237        |
| 5.5.1.d No-solvent and solvent-assisted headspace sampling of stream matrix contains                                                                                                     | ning 0.05  |
| ppm discretionary aromatic mixture                                                                                                                                                       | 239        |
| 5.5.2.a No-solvent and solvent-assisted headspace sampling of water matrix containing                                                                                                    | ng 0.0005  |
| ppm discretionary aromatic mixture                                                                                                                                                       | 241        |
| 5.5.2.b No-solvent and solvent-assisted headspace sampling of milk matrix containing                                                                                                     | ng 0.0005  |
| ppm discretionary aromatic mixture                                                                                                                                                       | 245        |
| $5.5.2.c$ No-solvent and solvent-assisted headspace sampling of orange juice matrix $\alpha$                                                                                             | containing |
| 0.0005 ppm discretionary aromatic mixture                                                                                                                                                | 248        |
| $5.5.2. {\tt d}\ {\tt No\text{-}solvent}\ {\tt and}\ {\tt solvent\text{-}assisted}\ {\tt headspace}\ {\tt sampling}\ {\tt of}\ {\tt stream}\ {\tt water}\ {\tt matrix}\ {\tt otherwise}$ | containing |
| 0.0005 ppm discretionary aromatic mixture                                                                                                                                                | 250        |
| 5.6 Statistical data and other relevant data processing                                                                                                                                  | 253        |
| 5.6.1 Headspace sampling of pesticide compounds containing (0.2-0.0005) ppm                                                                                                              |            |
| discretionary mixture in water                                                                                                                                                           | 253        |
| 5.6.2 Solvent-assisted headspace sampling of discretionary compounds containing                                                                                                          | (0.2-      |
| 0.0005) ppm pesticide mixture in water with diethyl ether                                                                                                                                | 257        |
| 5.7 General conclusion                                                                                                                                                                   | 260        |
| Chapter 6: Physical properties of fibres                                                                                                                                                 | 261        |

| 6.1 Introduction to physical properties                   | 281 |
|-----------------------------------------------------------|-----|
| 6.2 TGA analysis                                          | 288 |
| Chapter 7: Thesis Conclusions and Possible Future Studies | 291 |
| 7.1 Thesis Conclusions                                    | 291 |
| 7.2 Recommendations for future research                   | 293 |
| References                                                | 295 |

# **List of Figures**

| Figure 1.1: Steps involved in SPE                                                                        | 9    |
|----------------------------------------------------------------------------------------------------------|------|
| Figure 1.2: Hollow fibre-based liquid phase microextraction                                              | 15   |
| Figure 2.1: Headspace Solid-Phase Microextraction                                                        | 33   |
| Figure 2.2: Diagram of analysis with solid-phase microextraction-gas chromatog spectrometry (SPME-GC-MS) |      |
| Figure 2.3: GC chromatogram of PAH standard compounds after extraction                                   |      |
| Figure 2.4: GC chromatogram of PAH standard compounds after extraction                                   |      |
| Figure 2.5: Oven program temperature starts with 75 °C, inlet 280 °C, flow rate 29                       |      |
| Figure 2.6: Oven program temperature starts with 70 °C inlet 280 °C, flow rate 29                        |      |
| Figure 2.7: Hold time 4 min                                                                              | 39   |
| Figure 2.8: Hold time 0 min                                                                              | 39   |
| Figure 2.9: Ramp temperature to 150 °C                                                                   | 40   |
| Figure 2.10: Ramp temperature to 200 °C                                                                  | 40   |
| Figure 2.11: Ramp temperature to 250 °C                                                                  | 41   |
| Figure 2.12: Split                                                                                       | 42   |
| Figure 2.13: Splitless                                                                                   | 42   |
| Figure 2.14: Splitless - 250 °C                                                                          | 43   |
| Figure 2.15: Splitless – 280 °C                                                                          | 43   |
| Figure 2.16: Ion chromatogram of standard PAHs - Splitless 300 °C                                        | 44   |
| Figure 2.17: Fibres type comparison in an aqueous solution of PAHs compound                              | ls48 |
| Figure 2.18: The extraction – time profile for PAH compounds                                             | 49   |
| Figure 2.19: The extraction –time profile for PAH compounds                                              | 49   |

| Figure 2.20:         | Effect of NaCl for PAH compounds in aqueous solution51                           |
|----------------------|----------------------------------------------------------------------------------|
| Figure 2.21:         | Effect of NaCl for PAH compounds in aqueous solution51                           |
| <b>Figure 2.22</b> : | 0.05 ppm PAH in water with diethyl ether (a) and without diethyl ether (b) and   |
| Polyacrylate f       | 53 fibre53                                                                       |
| Figure 2.23:         | 0.05 ppm PAH in water with DCM (a) and without DCM (b) and Polyacrylate          |
| fibre                | 53                                                                               |
| <b>Figure 2.24</b> : | The comparison of different solvents on the extraction of some PAH compounds     |
| in aqueous sa        | amples55                                                                         |
| <b>Figure 2.25</b> : | 0.05 ppm PAH in water with polyacrylate fibre57                                  |
| Figure 2.26:         | 0.05 ppm PAH in water with PEG fibre58                                           |
| <b>Figure 2.27</b> : | 0.05 ppm PAH in water with Carboxen/PDMS fibre58                                 |
| Figure 2.28:         | The effect of diethyl ether on the extraction efficiency of 0.05 ppm PAH with    |
| different matr       | rices in aqueous samples and Polyacrylate60                                      |
| Figure 2.29:         | The effect of DCM on the extraction efficiency 0.05 ppm PAH with different       |
| matrices in ac       | queous samples and Polyacrylate60                                                |
| Figures 2.30         | : Comparsion of 0.05 ppm PAH spiked in milk with and without solvents and NaCI   |
|                      | 62                                                                               |
| Figure 2.31:         | The extraction efficiency of 0.05 ppm PAH spiked in milk63                       |
| Figures 2.32         | : Comparsion of 0.05 ppm PAH and polyacrylate fibre spiked in Orange juicie      |
| with and with        | out solvents and NaCl65                                                          |
| Figure 2 33:         | Comparsion of 0.05 ppm PAH and Carboxen/PDMS fibre spiked in Orange              |
|                      | d without solvents and NaCl66                                                    |
| •                    |                                                                                  |
| •                    | The effect of different solvents on the extraction efficiency with stream matrix |
|                      | 67                                                                               |
| Figures 2.35         | Comparsion of 0.05 ppm PAH and polyacrylate fibre spiked in stream water with    |
| and without s        | olvents and NaCI68                                                               |
| Figure 2.36:         | 0.0005 ppm of PAHs in water with polyacrylate fibre69                            |
| Figure 2.37:         | 0.0005 ppm of PAHs in water with diethyl ether70                                 |
| Figure 2.38:         | 0.0005 ppm of PAHs in water with DCM                                             |
| Figure 2.39:         | The effect of DCM on the extraction efficiency 0.0005 ppm PAH with different     |
| matrices             | 71                                                                               |

| Figure 2.40: The effect of diethyl ether on the extraction efficiency 0.0005 ppm PAH with different matrices                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 2.41: Comparsion of 0.0005 ppm PAH and polyacrylate fibre spiked in milk with and without solvents and NaCl                                                                                                                                      |
| Figure 2.42: Comparsion of 0.0005 ppm PAH and polyacrylate fibre spiked in Orange juicie with and without solvents and NaCl                                                                                                                             |
| Figure 2.43: Comparsion of 0.0005 ppm PAH and Carboxen/PDMS fibre spiked in Orange juicie with and without solvents and NaCl                                                                                                                            |
| Figure 2.44: Comparsion of 0.0005 ppm PAH and polyacrylate fibre spiked in stream water with and without solvents and NaCl                                                                                                                              |
| Figure 2.45: Standard curves for different concentrations of PAH compounds with the internal standard                                                                                                                                                   |
| Figure 2.46: Standard curves for different concentrations of PAH compounds with the internal standard                                                                                                                                                   |
| Figure 2.48: Standard curves for different concentrations of PAH compounds in water with diethyl ether                                                                                                                                                  |
| Figure 3.1: Headspace microextraction                                                                                                                                                                                                                   |
| Figure 3.4: Oven program temperature starts with 50 °C, inlet 280 °C, flow rate 29.07 L.min- 96  Figure 3.5: Oven program temperature starts with 80 °C, inlet 280 °C, flow rate 29.07 L.min- 96  Figure 3.6: GC result with Ramp rate 20 °C per minute |
| <b>Figure 3.7:</b> GC result with Ramp rate 10 °C per minute                                                                                                                                                                                            |
| Figure 3.8: GC result with split mode                                                                                                                                                                                                                   |
| Figure 3.9: GC result with splitless mode                                                                                                                                                                                                               |
| <b>Figure 3.10:</b> Splitless – inlet temperature 250 °C                                                                                                                                                                                                |
| Figure 3.11: Ion Chromatogram of standard Pesticide-Splitless 280 °C                                                                                                                                                                                    |

| pesticide compounds                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 3.13: The effect of extraction - time profile for pesticide compounds                                                                          |
| Figure 3.14: The effect of extraction - time profile for pesticide compounds106                                                                       |
| Figure 3.15: Effect of NaCl on the extraction of Pesticide compounds in aqueous solution.1.07                                                         |
| Figure 3.16: Effect of NaCl on the extraction of Pesticide compounds in aqueous solution108                                                           |
| Figure 3.17: Effect of solvent on extraction efficiency for 0.2 ppm pesticide compounds in aqueous solution       109                                 |
| Figure 3.18:       Effect of solvent on extraction efficiency for 0.2 ppm pesticide compounds in aqueous solution                                     |
| Figure 3.20: GC result for 0.05 ppm pesticides in water with PEG fibre111                                                                             |
| Figure 3.21: GC result for 0.05 ppm pesticides in water with Carboxen/PDMS fibre112                                                                   |
| <b>Figure 3.22:</b> The effect of diethyl ether on the extraction efficiency of 0.05 ppm pesticide with different matrices using a polyacrylate fibre |
| <b>Figure 3.23:</b> The effect of DCM on the extraction efficiency of 0.05 ppm pesticide with different matrices using a polyacrylate fibre           |
| Figure 3.24: Comparsion of 0.05 ppm pesticide and polyacrylate fibre spiked in milk with and without solvents and NaCl                                |
| <b>Figure 3.25:</b> The efficiency of extraction of 0.05 ppm pesticide spiked in milk117                                                              |
| Figure 3.26: Comparsion of 0.05 ppm Pesticide and polyacrylate fibre spiked in Orange juice with and without solvents and NaCl                        |
| Figure 3.27: The effect of different solvents on the extraction efficiency with stream matrix                                                         |
| <b>Figure 3.28:</b> Comparsion of 0.05 ppm Pesticide and polyacrylate fibre spiked in Stream water with and without solvents and NaCl                 |
| <b>Figure 3.29:</b> GC result for 0.0005 ppm of pesticide in water with polyacrylate fibre123                                                         |
| Figure 3.30: GC result for 0.0005 ppm of pesticide in water with PEG fibre124                                                                         |
| <b>Figure 3.31</b> : GC result for 0.0005 ppm of pesticide in water with Carboxen/PDMS fibre.1.24                                                     |

| Figure 3.32: GC result for 0.0005 ppm of pesticide in water with diethyl ether and         polyacrylate fibre       126                 |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| Figure 3.33: GC result for 0.0005 ppm of pesticide in water with DCM and polyacrylate fibre                                             |
| Figure 3.34: Diethyl ether effect on the extraction efficiency of 0.0005 ppm pesticide with various matrices                            |
| <b>Figure 3.35:</b> DCM effect on the extraction efficiency of 0.0005 ppm pesticide with various matrices                               |
| Figure 3.36: Comparsion of 0.0005 ppm Pesticide and polyacrylate fibre spiked in milk with and without solvents and NaCl                |
| Figure 3.37: Comparsion of 0.0005 ppm pesticide and polyacrylate fibre spiked in Orange juicie with and without solvents and NaCl       |
| Figure 3.38: Comparsion of 0.0005 ppm pesticide and Carboxen/PDMS fibre spiked in Orange juicie with and without solvents and NaCl      |
| <b>Figure 3.39:</b> Comparsion of 0.0005 ppm pesticide and polyacrylate fibre spiked in stream water with and without solvents and NaCl |
| water with and without solvents and NaCl                                                                                                |
| and without solvents and NaCl136                                                                                                        |
| Figure 3.42: Standard curves for different concentrations of pesticide compounds with the internal standard                             |
| internal standard                                                                                                                       |
| Figure 3.44: Standard curves for different concentrations of pesticide compounds in water with diethyl ether                            |
| <b>Figure 3.45:</b> Standard curves for different concentrations of pesticide compounds with diethyl ether                              |
| Figure 4.1: Autosampler GC system                                                                                                       |
| <b>Figure 4.2:</b> GC result for standard TPH compounds detected by using an Inlet temperature of 200°C                                 |

| Figure 4.3: GC result for standard TPH compounds detected by using an Inlet temperature of 280°C                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Figure 4.4:</b> Oven initial temperature start with 50°C, inlet 280 °C, flow rate 29.07 mL.min <sup>-1</sup>                                                                     |
| <b>Figure 4.5:</b> Oven initial temperature start with 80°C, inlet 280 °C, flow rate 29.07 mL.min <sup>-1</sup>                                                                     |
| Figure 4.6: Hold time 3 min                                                                                                                                                         |
| <b>Figure 4.7:</b> Hold time 20 min                                                                                                                                                 |
| <b>Figure 4.8:</b> GC result with ramp temperature to 200 °C                                                                                                                        |
| Figure 4.9: GC result with ramp temperature to 250 °C                                                                                                                               |
| Figure 4.10: GC result when using the split mode       161         Figure 4.11: GC result when using the splitless mode       161                                                   |
| <b>Figure 4.12:</b> Splitless – inlet temperature 250 °C                                                                                                                            |
| Figure 4.13: Ion Chromatogram of standard TPH-Splitless 280 °C -Agilent GC162                                                                                                       |
| <b>Figure 4.14:</b> Fibres type comparison in an aqueous solution of TPH compounds164 <b>Figure 4.15:</b> The effect of extraction – time on solvent assisted headspace sampling165 |
| Figure 4.16: The effect of extraction – time on solvent assisted headspace sampling165                                                                                              |
| Figure 4.17: Effect of NaCl on the extraction of TPH compounds in aqueous solution166                                                                                               |
| Figure 4.18: Effect of NaCl on the extraction of TPH compounds in aqueous solution167                                                                                               |
| <b>Figure 4.19:</b> Effect of solvent on extraction efficiency of 0.2 ppm TPH compounds in aqueous solution                                                                         |
| Figure 4.20: Effect of solvent on extraction efficiency 0.2 ppm TPH compounds in aqueous solution                                                                                   |
| <b>Figure 4.21:</b> GC result for 0.05 ppm TPH in water with 85 μm polyacrylate fibre170                                                                                            |
| Figure 4.22: SPME GC/MS response peak areas for 0.05 ppm TPH mixtures and polyacrylate fibre with and without solvents                                                              |
| Figures 4.24: The extraction efficiency of 0.05 ppm TPH spiked in milk173                                                                                                           |

| Figure 4.25: Comparsion of 0.05 ppm TPH and polyacrylate fibre spiked in Orange juicie with and without solvents and NaCl                 |
|-------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 4.26: Comparsion of 0.05 ppm TPH and Carbon/PDMS fibre spiked in Orange juicie with and without solvents and NaCl                  |
| Figure 4.27: GCMS Measurements showing the effect of different solvents on the extraction efficiency of TPHs from a stream water matrix   |
| Figure 4.29: GC result for 0.0005 ppm TPH in water with polyacrylate fibre181                                                             |
| Figure 4.30: GC result for 0.0005 ppm of TPH in water with diethyl ether182                                                               |
| Figure 4.31: GC result for 0.0005 ppm of TPH in water with DCM                                                                            |
| <b>Figure 4.32</b> : SPME GC/MS peak areas of 0.0005 ppm TPH mixture and polyacrylate fibre with and without solvents                     |
| Figure 4.33: Comparsion of 0.0005 ppm TPH and polyacrylate fibre spiked in milk with and without solvents and NaCl                        |
| Figure 4.34: Comparsion of 0.0005 ppm TPH and polyacrylate fibre spiked in Orange juicie with and without solvents and NaCl               |
| <b>Figure 4.35:</b> Comparsion of 0.0005 ppm TPH and Carbon /PDMS fibre spiked in Orange juicie with and without solvents and NaCl        |
| Figure 4.36: Comparsion of 0.0005 ppm TPH and polyacrylate fibre spiked in Stream water with and without solvents and NaCl                |
| <b>Figure 4.37:</b> Standard SPME GC/MS response curves for different concentrations of TPH compounds with internal standards included    |
| <b>Figure 4.38:</b> Standard SPME GC/MS response curves for different concentrations of TPH compounds with the internal standard included |
| <b>Figure 4.39</b> : Standard SPME GC/MS response curves for different concentrations of TPH compounds in water with diethyl ether        |
| <b>Figure 4.40:</b> Standard SPME GC/MS response curves for different concentrations of TPH compounds in water with diethyl ether         |
| Figure 5.1: Autosampler GC system                                                                                                         |

| Figure 5.2: GC result of the standard discretionary aromatic compounds at 75 °C                                   |
|-------------------------------------------------------------------------------------------------------------------|
| extraction temperature207                                                                                         |
| Figure 5.3: GC result of the standard discretionary aromatic compounds at 70 °C extraction                        |
| temperature207                                                                                                    |
| Figure 5.4: Oven program temperature starts with 50 °C, inlet 280 °C, flow rate 29.07 mL.min                      |
| 1209                                                                                                              |
| <b>Figure 5.5:</b> Oven program temperature starts with 70 °C, inlet 280 °C, flow rate 29.07 mL.min <sup>-</sup>  |
| 1210                                                                                                              |
| <b>Figure</b> 5.6: Oven program temperature starts with 100 °C, inlet 280 °C, flow rate 29.07 mL.min <sup>-</sup> |
| 1210                                                                                                              |
| <b>Figure 5.7:</b> GC result with Ramp rate 15 °C per minute                                                      |
| <b>Figure 5.8:</b> GC result with Ramp rate 10 °C per minute                                                      |
| <b>Figure 5.9:</b> Split                                                                                          |
| <b>Figure 5.10:</b> Splitless                                                                                     |
|                                                                                                                   |
| Figure 5.11: Splitless – inlet temperature 250 °C                                                                 |
| Figure 5.12 Ion chromatogram of standard discretionary VOC sample using Splitless mode                            |
| at 280 °C Inlet Temperature215                                                                                    |
| Figure 5.13: Fibres type comparison in an aqueous solution of discretionary aromatic                              |
| compounds216                                                                                                      |
| <b>Figure 5.14:</b> The extraction – time profile for discretionary aromatic components217                        |
| Figure 5.15: The extraction – time profile for discretionary aromatic components218                               |
| Figure 5.16: Effect of NaCl on the extraction of discretionary VOC compounds in aqueous                           |
| solution                                                                                                          |
| Figure 5.17: Effect of NaCl on the extraction of discretionary VOC compounds in aqueous                           |
| solution219                                                                                                       |
| Figure 5.18: GC Signal Levels for 0.05 ppm discretionary VOCs on polyacrylate fibre in                            |
| water with and without diethyl ether220                                                                           |
| Figure 5.19: GC Signal Levels for 0.05 ppm discretionary VOCs on a Polyacrylate fibre in                          |
| water with and without DCM fibre220                                                                               |
| Figure 5.20: Effect of solvent on extraction efficiency of 0.2 ppm discretionary compounds                        |
| in aqueous solution222                                                                                            |

| Figure 5.21: Effect of solvent on extraction efficiency of 0.2 ppm discretionary compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| in aqueous solution222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Figure 5.22: GC result for 0.05 ppm discretionary aromatic compounds in water with 85 $\mu m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| polyacrylate fibre224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Figure 5.23: The effect of diethyl ether on the extraction efficiency of 0.05 ppm discretionary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| aromatic with different matrices and Polyacrylate226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Figure 5.24: The effect of DCM on the extraction efficiency 0.05 ppm discretionary aromatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| with different matrices and Polyacrylate226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Figure 5.25: Comparsion of 0.05 ppm discretionary and polyacrylate fibre spiked in milk with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| and without solvents and NaCl228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Figure 5.26: Comparsion of 0.05 ppm discretionary and Carbon/PDMS fibre spiked in milk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| with and without solvents and NaCl229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Figure 5.27: The efficiency of extraction of 0.05 ppm discretionary aromatic compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| spiked in milk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Figure 5.28: Comparsion of 0.05 ppm discretionary and polyacrylate fibre spiked in Orange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| juicie with and without solvents and NaCl232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Figure 5.29: GC results showing the effect of different additional solvents and NaCl solute on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| the HS-SPME extraction efficiency of discretionary aromatic compounds from a stream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| matrix234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Figure 5.30: Comparsion of 0.05 ppm discretionary and polyacrylate fibre spiked in stream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| water with and without solvents and NaCl235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Figure 5.31: GC result for 0.0005 ppm of discretionary aromatics in water with polyacrylate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| fibre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>F</b> igure <b>F 20</b> , 00 manufactor of an 0,000 manufactor of all and the continuous of t |
| <b>Figure 5.32:</b> GC measured peak areas for 0.0005 ppm of discretionary aromatic in water with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| diethyl ether238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Figure 5.33: GC measured peak areas for 0.0005 ppm of discretionary aromatic in water with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DCM238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Figure 5.34: The effect of diethyl ether on the extraction efficiency of 0.0005 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| discretionary aromatic volatiles from different matrices using a Polyacrylate sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| fibre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Figure 5.35: The effect of DCM on the extraction efficiency of 0.0005 ppm discretionary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| aromatic volatiles from different matrices using a polyacrylate sampling fibre240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| - · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Figure 5.36: Comparsion of 0.0005 ppm discretionary and polyacrylate fibre spiked in milk with and without solvents and NaCl                   |
|------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Figure 5.37:</b> Comparsion of 0.0005 ppm discretionary and polyacrylate fibre spiked in Orange juicie with and without solvents and NaCl   |
| <b>Figure 5.38:</b> Comparsion of 0.0005 ppm discretionary and polyacrylate fibre spiked in stream water with and without solvents and NaCl245 |
| <b>Figure 5.39:</b> Comparsion of 0.0005 ppm discretionary and Carbon/PDMS fibre spiked in stream water with and without solvents and NaCl     |
| <b>Figure 5.40:</b> Standard curves for different concentrations of discretionary aromatic compounds and the internal standard                 |
| <b>Figure 5.41:</b> Standard curves for different concentrations of discretionary compounds with the internal standard                         |
| <b>Figure 5.42:</b> Standard SPME GC/MS response curves for different concentrations of discretionary compounds in water with diethyl ether    |
| <b>Figure 5.43:</b> Standard SPME GC/MS response curves for different concentrations of discretionary compounds in water with diethyl ether    |
| <b>Figure 6.1.a :</b> Micrograph of the new 85 μm polyacrylate" tip of the fibre"259                                                           |
| <b>Figure 6.1.b :</b> Micrograph of the new 85 μm polyacrylate" shaft of the fibre"259                                                         |
| <b>Figure 6.3.a:</b> Micrograph of the 85 μm polyacrylate "tip of the fibre" -100 samples over an aqueous matrix                               |
| <b>Figure 6.3.b:</b> Micrograph of the 85 μm polyacrylate "shaft of the fibre" -200 samples over an aqueous matrix                             |
| <b>Figure 6.4.a:</b> Micrograph of the 85 μm polyacrylate "tip of the fibre" - 200 samples with solvents                                       |
| <b>Figure 6.4.b:</b> Micrograph of the 85 µm polyacrylate "shaft of the fibre" - 200 samples with solvents                                     |
| <b>Figure 6.5:</b> Micrograph of the PEG 60 μm- new "tip of the fibre"262                                                                      |
| <b>Figure 6.6.a:</b> Micrograph of the PEG 60 μm – over 200 samples used with solvents "tip of the fibre"                                      |
| <b>Figure 6.6.b:</b> Micrograph of the PEG 60 μm- over 200 samples used with solvents "shaft of the fibre"                                     |
|                                                                                                                                                |

| <b>Figure 6.7:</b> Micrograph of the 75 μm Carboxen/PDMS new fibre                                      | 263  |
|---------------------------------------------------------------------------------------------------------|------|
| Figure 6.8: Micrograph of the 75 μm Carboxen/PDMS fibre over 200 samples used solvents                  |      |
| Figure 6.9: Micrograph of the Polyacrylate 100 μm arrow fibre-Shimadzu GC new                           | .264 |
| Figure 6.10: Micrograph of the Carbon WR 120 μm arrow fibre-Shimadzu GC new                             | .265 |
| Figure 6.11: Micrograph of the Carbon WR 120 µm arrow fibre Shimadzu GC used over samples with solvents |      |
| Figure 6.12: TGA for Carboxen/PDMS fibre                                                                | .267 |
| Figure 6.13: TGA for PEG fibre                                                                          | .267 |
| Figure 6.14: TGA for Polyacrylate fibre                                                                 | .268 |

**List of abbreviations** 

DCM Methylene chloride

GC-FID Gas chromatography/flame ionisation detection

GC-MS Gas chromatography/mass spectrometry

HSME Headspace microextraction

ILs Ionic liquids

LLE Liquid-liquid extraction

LPME Liquid phase micro-extraction

LOD Limit of detection

LOQ Limit of quantification

OCPs Organochlorine pesticide

PDMS Polydimethylsiloxane

PDMS/DVB Polydimethylsiloxane / divinylbenzene

PDMS Polydimethylsiloxane

PPM Parts-per-million

POPs Persistent organic pollutants

RS-HPLC Reversed-phase high-performance liquid chromatography

RTIL Room temperature ionic liquid

SDME Single drop microextraction

SPE Solid-phase extraction

SPME Solid-phase micro-extraction

VOCs Volatile organic compounds

PT-GC/MS purge and trap (PT) gas chromatography-mass spectrometry

DSC differential scanning calorimetry

TGA Thermogravimetry

# **List of Tables**

| Table 1.1:    SPME fibres currently available commercially                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------|
| Table 2.1: Advantages and disadvantages extraction techniques used to determine PAHs29                                             |
| Table 2.2: Temperature and conditioning guidelines for SPME Fibre coating34                                                        |
| Table 2.3: Oven initial temperature   38                                                                                           |
| Table 2.4: Oven program- hold time                                                                                                 |
| Table 2.5: Oven program – Ramp temperature41                                                                                       |
| Table 2.6:    Comparison of GC injection port type                                                                                 |
| Table 2.7: Inlet temperature – splitless                                                                                           |
| Table 2.8: Chemical structure of PAHs compounds                                                                                    |
| Table 2.9:       Statistic parameter of 0.05 ppm PAH compounds spiked in water with polyacrylate         fibre                     |
| Table 2.10: Statistic parameter of 0.05 ppm PAH compounds spiked in water with PEG                                                 |
| fibre59                                                                                                                            |
| Table 2.11: Statistic parameter of 0.05 ppm PAH compounds spiked in water with                                                     |
| Carboxen/PDMS fibre59                                                                                                              |
| Table 2.12:    Statistical parameter 0.05 ppm PAH spiked in milk                                                                   |
| Table 2.13:    Statistical parameter 0.05 ppm PAH spiked in milk with DCM64                                                        |
| Table 2.14: Statistical parameter 0.05 ppm PAH spiked in milk with diethyl ether64                                                 |
| Table 2.15: Statistical parameter of 0.0005 ppm PAH compounds spiked in water with polyacrylate fibre         69                   |
| <b>Table 2.16:</b> Data analysis from the calibration curves (0.2-0.0005 μg.mL <sup>-1</sup> ) spiked in water78                   |
| Table 2.17: Data analysis from the calibration curves (0.2-0.0005 ppm) spiked in water79                                           |
| Table 2.18: Data analysis from the calibration curves (0.2 - 0.0005 μg.mL <sup>-1</sup> ) spiked in water with diethyl ether       |
| Table 2.19:       Data analysis from the calibration curves (0.2 - 0.0005 μg.mL <sup>-1</sup> ) spiked in water with diethyl ether |
| Table 2.20: Limit of detections for PAH in sediment                                                                                |
| Table 2.21: Advantages and disadvantages of some SPME techniques85                                                                 |
| Table Lie II / availages and disadvantages of some of the techniques                                                               |

| Table 3.1: Chemical structure of the pesticide compounds    90                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------|
| Table 3.2:    Temperature and conditioning guidelines for SPME Fibre coating94                                                               |
| Table 3.3:    Comparing oven programmes – initial temperature                                                                                |
| Table 3.4:   Ramp rate °C per minute comparison   99                                                                                         |
| Table 3.5:   GC injection port type   101                                                                                                    |
| Table 3.6    GC inlet temperature and the best developed method details103                                                                   |
| <b>Table 3.7:</b> Polyacrylate SPME fibre in headspace sampling in 0.05 ppm pesticide compounds         spiked in water.       112           |
| Table 3.8: PEG SPME fibre in headspace sampling in 0.05 ppm pesticide compounds spiked         in water       113                            |
| Table 3.9: Carbon/PDMS SPME fibre in headspace sampling in 0.05 ppm pesticidecompounds spiked in water                                       |
| Table 3.11: Statistical parameters of 0.05 ppm pesticide spiked in milk with DCM117                                                          |
| Table 3.12: Statistical parameters of 0.05 ppm pesticide spiked in milk with diethylether                                                    |
| Table 3.13:       Polyacrylate SPME fibre in headspace sampling in 0.05 ppm pesticide         compounds spiked in Orange       119           |
| Table 3.14:       Polyacrylate SPME fibre in headspace sampling in 0.05 ppm pesticide         compounds spiked in Orange with DCM            |
| Table 3.15:       Polyacrylate SPME fibre in headspace sampling in 0.05 ppm pesticide         compounds spiked in Orange with diethyl ether  |
| Table 3.16:       Polyacrylate SPME fibre in headspace sampling in 0.05 ppm pesticide         compounds spiked in Orange       122           |
| Table 3.17:       Polyacrylate SPME fibre in headspace sampling in 0.05 ppm pesticide         compounds spiked in Orange with DCM            |
| <b>Table 3.18:</b> Polyacrylate SPME fibre in headspace sampling in 0.05 ppm pesticide         compounds spiked in Orange with diethyl ether |
| Table 3.19:       Polyacrylate SPME fibre in headspace sampling in 0.0005 ppm pesticide         compounds spiked in water                    |

| Table 3.20:         Polyacrylate SPME fibre in headspace sampling in 0.0005 ppm pesticide                          |
|--------------------------------------------------------------------------------------------------------------------|
| compounds spiked in water with DCM                                                                                 |
| Table 3.21: Polyacrylate SPME fibre in headspace sampling in 0.0005 ppm pesticide                                  |
| compounds spiked in water with diethyl ether125                                                                    |
| Table 3.22: Polyacrylate SPME fibre in headspace sampling in 0.0005 ppm pesticide                                  |
| compounds spiked in milk                                                                                           |
| Table 3.23: Polyacrylate SPME fibre in headspace sampling in 0.0005 ppm pesticide                                  |
| compounds spiked in milk with DCM129                                                                               |
| Table 3.24: Polyacrylate SPME fibre in headspace sampling in 0.0005 ppm pesticide                                  |
| compounds spiked in milk with diethyl ether129                                                                     |
| Table 3.25:         Polyacrylate SPME fibre in headspace sampling in 0.0005 ppm pesticide                          |
| compounds spiked in Orange                                                                                         |
| Table 3.26:         Polyacrylate         SPME fibre in headspace sampling in 0.0005 ppm pesticide                  |
| compounds spiked in Orange with DCM132                                                                             |
| Table 3.27: Polyacrylate SPME fibre in headspace sampling in 0.0005 ppm pesticide                                  |
| compounds spiked in Orange with diethyl ether132                                                                   |
| Table 3.28: Polyacrylate SPME fibre in headspace sampling in 0.0005 ppm pesticide                                  |
| compounds spiked in stream water                                                                                   |
| Table 3.29: Polyacrylate SPME fibre in headspace sampling in 0.0005 ppm pesticide                                  |
| compounds spiked in stream water with DCM134                                                                       |
| Table 3.30: Polyacrylate SPME fibre in headspace sampling in 0.0005 ppm pesticide                                  |
| compounds spiked in stream water with diethyl ether134                                                             |
| <b>Table 3.31:</b> Data analysis from the calibration curves (0.2-0.0005 μg.mL <sup>-1</sup> ) spiked in water.138 |
| Table 3.32: Data analysis from the calibration curves (0.2 - 0.0005 μg.mL <sup>-1</sup> ) spiked in water          |
| 140                                                                                                                |
| Table 3.33: Data analysis from the calibration curves (0.2 - 0.0005 μg.mL`-¹) spiked in water                      |
| with diethyl ether141                                                                                              |
| <b>Table 3.34:</b> Data analysis from the calibration curves (0.2 - 0.0005 μg.mL <sup>-1</sup> ) spiked in water   |
| with diethyl ether                                                                                                 |
| Table 4.1: Chemical structure of TPH compounds                                                                     |
| Table 4.2: Temperature and conditioning guidelines for SPME Fibre coating                                          |
|                                                                                                                    |
| Table 4.3: Comparing oven programmes – initial temperature    157                                                  |
| Table 4.4:Oven program- hold time158                                                                               |

| Table 4.5: Oven program – ramp temperature                                             | 160       |
|----------------------------------------------------------------------------------------|-----------|
| Table 4.6: GC injection port type.                                                     | 161       |
| <b>Table 4.7:</b> GC Inlet temperature and the best-developed method details           | 163       |
| Table 4.10: Statistic parameter of 0.05 ppm TPH compounds spiked in water with poly    | acrylate  |
| fibre                                                                                  | 170       |
| Table 4.11: Statistical parameters for GCMS peak areas of 0.05 ppm TPH spiked in m     | ոilk173   |
| Table 4.12: Statistic parameter for GCMS peak areas of 0.05 ppm TPH spiked in r        | nilk with |
| DCM                                                                                    | 173       |
| Table 4.13: Statistic parameter for GCMS peak areas of 0.05 ppm TPH spiked in r        | nilk with |
| diethyl ether                                                                          | 173       |
| Table 4.14: Statistic parameter of 0.05 ppm TPH compounds spiked in Orange ju          | ice with  |
| polyacrylate fibre                                                                     | 176       |
| Table 4.15: Polyacrylate SPME fibre in headspace sampling in 0.05 ppm TPH com          | npounds   |
| spiked in stream water                                                                 | 180       |
| Table 4.16: Polyacrylate SPME fibre in headspace sampling in 0.0005 ppm TPH com        | npounds   |
| spiked in water                                                                        | 181       |
| Table 4.17: Polyacrylate SPME fibre in headspace sampling in 0.0005 ppm TPH com        | npounds   |
| spiked in milk                                                                         | 185       |
| Table 4.18: Polyacrylate SPME fibre in headspace sampling in 0.0005 ppm TPH com        | npounds   |
| spiked in Orange juice                                                                 | 187       |
| Table 4.19: Polyacrylate SPME fibre in headspace sampling in 0.0005 ppm TPH com-       | npounds   |
| spiked in stream water                                                                 | 190       |
| Table 4.20: Data analysis from the calibration curves (0.2-0.0005 ppm) spiked in water | er192     |
| Table 4.21: Data analysis from the calibration curves (0.2-0.0005 ppm) spiked in water | ∍r193     |
| Table 4.22: Data analysis from the calibration curves (0.2-0.0005 ppm) spiked in wa    | ater with |
| diethyl ether                                                                          | 196       |
| Table 4.23: Data analysis from the calibration curves (0.2-0.0005 ppm) spiked in wa    | ater with |
| diethyl ether                                                                          | 197       |
| <b>Table 4.24:</b> Analytical performance characteristics of HS-SPME–GC–MS             | 197       |
| Table 5.1: Chemical structure of discretionary aromatic compounds                      | 202       |
| <b>Table 5.2:</b> Temperature and conditioning guidelines for SPME Fibre coating       | 205       |
| Table 5.3: Complete oven parameters for 3 choices of initial temperature               | 211       |
| Table 5.4: Ramp rate °C per minute comparison                                          | 212       |
| Table 5.5: Settings for the two GC injection port types used                           | 214       |
| Table 5.6: GC inlet temperature and the best-developed method details                  | 215       |

| Table 5.7: Polyacrylate SPME fibre in headspace sampling in 0.05 ppm discretionary aromatic  |
|----------------------------------------------------------------------------------------------|
| compounds spiked in water                                                                    |
| Table 5.8: Statistical parameters of 0.05 ppm discretionary aromatic spiked in milk230       |
| Table 5.9: Statistical parameters of 0.05 ppm discretionary aromatic spiked in milk with     |
| DCM                                                                                          |
| Table 5.10: Statistical parameters of 0.05 ppm discretionary aromatic spiked in milk with    |
| diethyl ether230                                                                             |
| Table 5.11: Polyacrylate SPME fibre in headspace sampling in 0.05 ppm discretionary          |
| aromatic compounds spiked in Orange juice233                                                 |
| Table 5.12: Polyacrylate SPME fibre in headspace sampling in 0.05 ppm discretionary          |
| aromatic compounds spiked in-stream water                                                    |
| Table 5.13: Polyacrylate SPME fibre in headspace sampling in 0.0005 ppm discretionary        |
| aromatic compounds spiked in water                                                           |
| Table 5.14: GC signal peak areas of a Polyacrylate SPME fibre in headspace sampling of       |
| 0.0005 ppm discretionary aromatic compounds spiked into milk242                              |
| Table 5.15: GC signal peak areas when using Polyacrylate SPME fibre for headspace sampling   |
| of 0.0005 ppm discretionary aromatic compounds spiked in Orange juice244                     |
| Table 5.16: Polyacrylate SPME fibre in headspace sampling in 0.0005 ppm discretionary        |
| aromatic compounds spiked in-stream water246                                                 |
| Table 5.17: Data analysis of the calibration curves (0.2-0.0005 µg.mL-1 ) spiked in water249 |
| Table 5.18: Data analysis of the calibration curves (0.2-0.0005 μg.mL-1 ) spiked in water250 |
| Table 5.19: Data analysis from the calibration curves (0.2-0.0005 ppm) spiked in water with  |
| diethyl ether252                                                                             |
| Table 5.20: Data analysis from the calibration curves (0.2-0.0005 ppm) spiked in water with  |
| diethyl ether253                                                                             |
| Table 5.21: Linearity, LODs, LOQs, and accuracy study of VOCs254                             |