

Data-efficient Visual Understanding via Deep Neural Networks

by Peike Li

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Dr. Xin Yu

University of Technology Sydney Faculty of Engineering and Information Technology

July 2022

CERTIFICATE OF ORIGINAL AUTHORSHIP

, *Peike Li* declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the *Faculty of Engineering and Information Technology* at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Production Note: SIGNATURE: Signature removed prior to publication.

DATE: 11th July, 2022 PLACE: Sydney, Australia

ACKNOWLEDGMENTS

F irstly, I would like to thank my principal supervisor Dr. Xin Yu, my co-supervisor Dr. Qian Peter Su, with my sincere and heartfelt gratitude and appreciation for the supervision journey that provided me with the guidance and counsel I needed to succeed in my Ph.D. program. They are great mentors in mapping my Ph.D. journey, advising on a research topic, and connecting me with the resources I need.

I would also like to thank my other mentors, collaborators and colleagues at University of Technology Sydney. I would like to thank Porf. Yi Yang, Prof. Yunchao Wei, Dr. Linchao Zhu, Dr. Ping Liu, Dr. Yu Wu, Dr. Jiaoxu Miao, Dr. Yawei Luo, Dr. Xiaohan Wang, Dr.Fan Ma, Dr.Xuanyi Dong, Dr. Yanbin Liu and many others. I was really fortunate to work with them and participate in intellectual conversations with them.

Lastly, I would like to thanks my mother, Qiufen Li, my father, Hongru Li, and my wife, Qianyu Feng, for their support and love throughout my Ph.D. journey.

ABSTRACT

Despite the empirical and preliminary successes in computer vision, deep neural networks often require large-scale annotated training datasets. When applied to complex visual understanding problems in the real world, their performance is limited, since both data and annotations can be notoriously costly to collect, or may exist in various noisy or imperfect forms. Further, data annotating in such applications is also tedious to scale up, which demands highly skilled professionals, introducing challenges to use the cost-effective solutions, *e.g.*, crowdsourcing. Even worse, additional annotated data is always desired when the trained models need to be accordingly adapted to the dynamically changing environments. Thus, both the academic and industrial communities are calling for data-efficient deep learning algorithms.

In this thesis, we address the grand challenge of data-efficient and label-efficient visual understanding in realistic and imperfect real-world environments. To address this issue, we investigate deep learning approaches to leverage low-quantity training data and low-quality imperfect annotations. We propose a comprehensive suite of state-of-the-art approaches to tackle the data-efficient visual understanding from three directions, including : (1) applying *low-shot learning paradigms* that are intrinsically data-efficient, *e.g.*, few-shot learning or zero-shot learning. (2) exploiting imperfect labeled data to enable *learning with noise*. (3) *transferring prior knowledge* from the data-abundant domain into the data-hungry one. To demonstrate the effectiveness and efficiency in representative computer vision applications, extensive experiments are conducted on several dense prediction tasks, e.g., human parsing, scene parsing, semantic segmentation, and face super-resolution.

LIST OF PUBLICATIONS

Related to the Thesis :

- 1. P. Li, Y. Xu, Y. Wei, and Y. Yang, "Self-Correction for Human Parsing," in *IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*, 2020.
- P. Li, Y. Wei, and Y. Yang, "Consistent structural relation learning for zero-shot segmentation," in Advances in Neural Information Processing Systems (NeurIPS), 2020.
- 3. P. Li, Y. Wei, and Y. Yang, "Meta parsing networks: Towards generalized few-shot scene parsing with adaptive metric learning," in ACM International Conference on Multimedia (MM), 2020.
- 4. P. Li, X. Yu, and Y. Yang, "Super-resolving cross-domain face miniatures by peeking at one-shot exemplar," in *IEEE International Conference on Computer Vision (ICCV)*, 2021.

Others:

- 5. P. Li, X. Dong, X. Yu, and Y. Yang, "When Humans Meet Machines: Towards Efficient Segmentation Networks," in *The British Machine Vision Conference (BMVC)*, 2020.
- P. Li, P. Pan, P. Liu, M. Xu, and Y. Yang, "Hierarchical Temporal Modeling with Mutual Distance Matching for Video Based Person Re-Identification," in *IEEE Transactions on Circuits and Systems for Video Technology (TCSVT)*, 2020.
- X. Pan, P. Li, Z. Yang, H. Zhou, C. Zhou, H. Yang, J. Zhou, and Y. Yang, "In-N-Out Generative Learning for Dense Unsupervised Video Segmentation," in ACM International Conference on Multimedia (MM), 2022.

- 8. Z. Yang, P. Li, Q. Feng, Y. Wei, and Y. Yang, "Going deeper into embedding learning for video object segmentation," in *IEEE International Conference on Computer Vision Workshops*, 2019.
- Q. Feng, Z. Yang, P. Li, Y. Wei, and Y. Yang, "Dual embedding learning for video instance segmentation," in *IEEE International Conference on Computer Vision* Workshops, 2019.
- X. Pan, H. Luo, W. Jiang, J. Zhang, J. Gu, and P. Li, "SFGN: Representing the Sequence with One Super Frame for Video Person Re-identification," in *Knowledge-Based Systems*, 2022.

TABLE OF CONTENTS

Li	List of Publications			vii
Li	ist of Figures			
Li	List of Tables			xvi
1	Intr	roduct	ion	1
	1.1	Resea	rch Background	. 1
	1.2	Data-	efficient Visual Understanding	. 2
		1.2.1	Low-shot Learning Paradigms for Data Efficiency	. 2
		1.2.2	Data-efficient Learning from Imperfect Annotations	. 4
		1.2.3	Data Efficiency via Prior Knowledge Transferring	. 4
	1.3	Thesis	s Organization	. 6
2	Lite	erature	e Review	9
	2.1	Existi	ng Data-hungry Visual Understanding Methods	. 9
	2.2	Releva	ant Data-efficient Techniques	. 12
3	Self	f-corre	ction for Human Parsing	15
	3.1	Prefac	ce	. 15
3	3.2	Self-co	orrection for Human Parsing	. 18
		3.2.1	Overview	. 18
		3.2.2	Single-person Human Parsing	. 19
		3.2.3	Extension to Multi-person Human Parsing	. 22
	3.3	Exper	riments: Single-person Human Parsing	. 23
		3.3.1	Experiment Settings	. 24
		3.3.2	Model-agnostic Study	. 25
		3.3.3	Comparison with the State-of-the-art Approaches	. 27
		3.3.4	Ablation Experiments	. 28

		3.3.5	Discussions	30
	3.4	Experi	iments: Multiple-person and Video Human Parsing	32
		3.4.1	Experiment Settings	32
		3.4.2	Quantitative Results	34
		3.4.3	Qualitative Results	35
	3.5	Summ	ary	36
4	Met	a Parsi	ing Networks: Towards Generalized Few-shot Scene Parsing	
	with	n Adap	tive Metric Learning	37
	4.1	Prefac	e	37
	4.2	Task I	Definition	39
	4.3	Meta l	Parsing Networks	41
		4.3.1	Adaptive Deep Metric Learning	41
		4.3.2	Contrastive Inter-class Distraction	44
		4.3.3	Meta-training & Meta-testing	45
	4.4	Experi	iment	46
		4.4.1	Generalized Few-shot Scene Parsing Benchmarks	46
		4.4.2	Generalization Ability of MPNet	48
		4.4.3	Further Analysis of MPNet	50
	4.5	Summ	ary	52
5	Con	sistent	t Structural Relation Learning for Zero-Shot Segmentation	53
	5.1	Prefac	e	53
	5.2	Prelim	ninaries	54
	5.3 Consistent Structural Relation Learning for Zero-Shot Segmentation			
		5.3.1	Semantic-Visual Structural Generator	56
		5.3.2	Consistent Structural Relation Learning	58
		5.3.3	Training and Inference	59
	5.4	Experi	iments	60
		5.4.1	Experiment Settings	60
		5.4.2	Comparisons with State-of-the-art Methods	61
		5.4.3	Ablation Analysis	63
	5.5	Summ	ary	64
~	~	-		

6	Super-Resolving Cross-Domain Face Miniatures by Peeking at One-
	Shot Exemplar

65

TABLE OF CONTENTS

	6.1	Prefac	e	65
	6.2	Task I	Definition: One-shot based FSR	67
	6.3	Propos	sed Method	69
		6.3.1	Domain Aware Pyramid-based FSR	70
		6.3.2	Peeking at One-Shot Exemplar	73
		6.3.3	Training and Inference	74
	6.4	Exper	iments	75
		6.4.1	Datasets and Evaluation Protocols	75
		6.4.2	Implementation Details	75
		6.4.3	Comparisons with the State-of-the-Art	76
		6.4.4	Ablation Analysis	78
	6.5	Summ	ary	80
7	Con	clusio	n	81
				~ ~

Bibliography

83

LIST OF FIGURES

Page

FIGURE

3.1	Different types of label noises in ground-truth annotations. The upper row shows the original images. The lower row shows the original ground-truth labels. Different types of noisy labels are illustrated from left to right, (a) coarse annotation around the boundary area; (b) confused fine-grained categories, where the upper-cloth is mislabeled as the coat; (c) confused mirror categories, where the right leg is mislabeled as the left leg; (d) multiple-person occlusion. Annotation noises are marked in white dashed boxes.	16
3.2	Overview of the SCHP pipeline. Starting from the warm-up initialization by training with inaccurate annotations, we design a cyclically learning scheduler to infer more reliable pseudo masks through iteratively aggregating the current learned model with the former optimal one in an online manner. Besides, those corrected labels can in turn to boost the model performance, simultaneously. In this way, the models and the masks get more robust and accurate during the self-correction cycles. Label noises are specially marked in white boxes.	18
3.3	The pipeline for the multiple-person human parsing and video human parsing task.	22
3.4	Model-agnostic study. The mIoU performance with different state-of-the-art models on LIP val set.	26
3.5	Visualization of SCHP results on LIP val set. The first row shows the original input images. The middle row shows the ground-truth labels. Different human categories are shown in colors in the third row.	27

3.6	Examples from LIP train set during our self-correction process. Label noises	
	like inaccurate boundary, confused fine-grained categories, confused mirror	
	categories, multiple person occlusion are alleviated and resolved during the	
	process. The boundaries of our corrected label are prone to be more smooth	
	than the ground-truth label. Label noises are highlighted by white dotted	
	boxes. Better zoom in to see the details	28
3.7	Robustness of SCHP against (a) different backbones and (b) context encoding	
	modules. Experiments are conducted on LIP val set	29
3.8	Performance curves <i>w.r.t</i> different training cycles. The mIoU, pixel accuracy	
	and mean accuracy are depicted in the left, middle and right parts. All experi-	
	ments are conducted on LIP val set	31
3.9	Performance <i>w.r.t</i> different noise ratios on GTAV dataset.	32
3.10	Visualization results on MHP v2.0, CIHP and VIP val sets. All our results	
	are depicted on the left part of each pair, while corresponding ground-truth	
	labels are shown on the right side	34
4.1	Compared to conventional few-shot segmentation task, the generalized few-	
	shot scene parsing aims to segment complex scene scenario with multiple	
	visual categories, where both seen and unseen categories are simultaneously	
	considered. During meta-training stage, we first train the meta parser with	
	the annotated images only on seen categories (e.g., road and vegetation),	
	as indicated by the green colors. During meta-testing stage, given only one	
	annotation image (one-shot) as guidance, the learned meta parser is then	
	applied to segment both seen categories and unseen ones (e.g., car and person	
	, as indicated by the blue colors.). Our target is to learn a meta parser that	
	can generalize to both <i>seen</i> and <i>unseen</i> categories.	38
4.2	An overview of our MPNet. The ADML module aims to adaptively <i>learn</i> a	
	transferable deep metric for dense comparison between support and query im-	
	ages. The CID module aims to encourage the feature discrepancy of different	10
		40
4.3	Illustration of the Adaptive Prototype Generation.	42
4.4	Dynamic instantiation for multiple categories	44
4.5	Performance <i>w.r.t</i> the number of support images (K-shot)	50
4.6	Visualization results of MPNet. Seen categories are indicated by the green	
	colors while unseen categories by the blue colors.	51

LIST OF FIGURES

4.7	Embedding visualization with t-SNE of (a) w/o CID (b) w/ CID. Different colors indicate different categories.	52
5.1	Illustration of CSRL. To achieve the goal of GZS3, we learn a generator to produce visual features from semantic word embeddings. Compared to (a) node-to-node generator, the proposed (b) structural generator explores the structural relations between seen and unseen categories to constrain the generation of unseen visual features	55
5.2	The framework of the proposed CSRL. Our CSRL incorporates the feature gen- erating and relation learning into a unified architecture. Given the semantic word embedding, CSRL generates visual features by alternately feature and relation aggregation. The proposed CSRL is trained under supervision from point-wise consistency on seen classes, pair-wise and list-wise consistency across seen and unseen classes	57
5.3	Qualitative comparisons on Pascal-VOC dataset under the unseen-2 setting.	63
5.4	Relations between unseen (cow and motorbike) and seen categories	63
6.1	Conventional FSR methods achieve good performance on the source dataset, but are prone to fail on the target dataset due to the domain gap. Our proposed method effectively adapts the model by leveraging only one-shot example	66
6.2	Illustration of our DAP-FSR architecture. (a) The encoder network. Feature maps from different spatial resolution are up-sampled and concatenated as the multi-scale pyramid context. Each Adaptive Latent Encoding (ALE) module dynamically attends the multi-scale context to generate the latent rep- resentation \mathbf{w}_i . (b) The decoder network, where the HR images are generated based on the latent representations. (c) The Instance Spatial Transformer Network (ISTN) learns the style-invariant affine transformation matrix to adjust the unaligned LR images. (d) The detailed Adaptive Latent Encoding module, where the channel-wise feature attention is learned to adaptively capture the multi-scale information of the input images.	68
6.3	Compared to the style-transfer based method ASM [1] (left), given only one-	00
	shot target domain exemplar (ExtendedYaleB), our method (right) efficiently	

6.4	$Comparisons \ with \ state-of-the-art \ methods \ on \ CelebA \rightarrow ExtYaleB, \ CelebA \rightarrow Mult \ Mult \$	iPIE
	and MultiPIE \rightarrow ExtYaleB benchmarks under the OSDA-FSR setting. Our	
	method achieves high-quality, style-consistent HR faces and is also robust	
	against unaligned LR inputs.	76
6.5	Comparisons with state-of-the-art methods on tiny faces in-the-wild [2] under	
	real-world unconstrained conditions	78
6.6	Comparisons with state-of-the-art methods on near-infrared (NIR) sensor	
	captured faces [3].	79

LIST OF TABLES

TABLE

Page

3.1	Comparisons on the LIP validation set. The symbol \dagger marks the single-scale	
	testing result	24
3.2	Comparisons on the PASCAL-Person-Part test set. The symbol \dagger marks the	
	single-scale testing result.	24
3.3	Comparison on the ATR test set. The symbol † marks the single-scale testing	
	result.	25
3.4	The effect of our proposed model aggregation (MA) and label refinement (LR)	
	strategy is evaluated on LIP val set	30
3.5	The SCHP performance on Cityscapes & GTA5 Datasets.	30
3.6	Components analysis on val set of CIHP	33
3.7	Comparison with state-of-the-arts on VIP val set. Our SCHP outperforms the	
	other methods by a large margin. Specially, superior AP^r scores at high IoU	
	thresholds are achieved by our method.	33
3.8	Comparison with state-of-the-arts on CIHP dataset.	35
3.9	Comparison with state-of-the-arts on MHP val set	35
4.1	GFSP-Cityscpaes benchmark splits. We only list the unseen categories, all	
	rest are seen categories.	46
4.2	The comparison on <i>GFSP-Cityscapes</i> benchmark	48
4.3	The comparison on <i>GFSP-Pascal-Context</i> benchmark	49
4.4	The comparison of cross-domain experiments from GFSP-Pascal-Context to	
	GFSP-Cityscapes benchmark.	49
4.5	Ablation analysis for the proposed modules of MPNet.	51
5.1	Generalized zero-shot semantic segmentation performance on Pascal-VOC	
	dataset	60
5.2	Generalized zero-shot semantic segmentation result on Pascal-Context dataset.	62

5.3	Ablation study of CSRL on Pascal-VOC.	63
6.1	Comparison with state-of-the-art methods. Results are reported on three	
	benchmarks noted as source \rightarrow target. 'Source only' denotes the methods	
	only using source dataset for training, while 'one-shot' denotes the methods	
	exploring one-shot exemplar on the target dataset. \uparrow indicates that higher is	
	better, and \downarrow that lower is better.	73
6.2	Ablations on different configurations of the network architecture (A,B,C) and	
	different configurations of the adaptation algorithm (D,E,F). \uparrow indicates the	
	higher the better, and \downarrow indicates the lower the better	80
6.3	Comparisons on one-shot adaptation augmentation strategies. ↑ indicates the	
	higher the better, and \downarrow the lower the better	80