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ABSTRACT

Despite the empirical and preliminary successes in computer vision, deep neural
networks often require large-scale annotated training datasets. When applied
to complex visual understanding problems in the real world, their performance

is limited, since both data and annotations can be notoriously costly to collect, or may
exist in various noisy or imperfect forms. Further, data annotating in such applications
is also tedious to scale up, which demands highly skilled professionals, introducing
challenges to use the cost-effective solutions, e.g., crowdsourcing. Even worse, additional
annotated data is always desired when the trained models need to be accordingly adapted
to the dynamically changing environments. Thus, both the academic and industrial
communities are calling for data-efficient deep learning algorithms.

In this thesis, we address the grand challenge of data-efficient and label-efficient
visual understanding in realistic and imperfect real-world environments. To address this
issue, we investigate deep learning approaches to leverage low-quantity training data
and low-quality imperfect annotations. We propose a comprehensive suite of state-of-the-
art approaches to tackle the data-efficient visual understanding from three directions,
including : (1) applying low-shot learning paradigms that are intrinsically data-efficient,
e.g., few-shot learning or zero-shot learning. (2) exploiting imperfect labeled data to enable
learning with noise. (3) transferring prior knowledge from the data-abundant domain into
the data-hungry one. To demonstrate the effectiveness and efficiency in representative
computer vision applications, extensive experiments are conducted on several dense
prediction tasks, e.g., human parsing, scene parsing, semantic segmentation, and face
super-resolution.
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