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ABSTRACT

Despite the empirical and preliminary successes in computer vision, deep neural
networks often require large-scale annotated training datasets. When applied
to complex visual understanding problems in the real world, their performance

is limited, since both data and annotations can be notoriously costly to collect, or may
exist in various noisy or imperfect forms. Further, data annotating in such applications
is also tedious to scale up, which demands highly skilled professionals, introducing
challenges to use the cost-effective solutions, e.g., crowdsourcing. Even worse, additional
annotated data is always desired when the trained models need to be accordingly adapted
to the dynamically changing environments. Thus, both the academic and industrial
communities are calling for data-efficient deep learning algorithms.

In this thesis, we address the grand challenge of data-efficient and label-efficient
visual understanding in realistic and imperfect real-world environments. To address this
issue, we investigate deep learning approaches to leverage low-quantity training data
and low-quality imperfect annotations. We propose a comprehensive suite of state-of-the-
art approaches to tackle the data-efficient visual understanding from three directions,
including : (1) applying low-shot learning paradigms that are intrinsically data-efficient,
e.g., few-shot learning or zero-shot learning. (2) exploiting imperfect labeled data to enable
learning with noise. (3) transferring prior knowledge from the data-abundant domain into
the data-hungry one. To demonstrate the effectiveness and efficiency in representative
computer vision applications, extensive experiments are conducted on several dense
prediction tasks, e.g., human parsing, scene parsing, semantic segmentation, and face
super-resolution.
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1
INTRODUCTION

1.1 Research Background

Building machine intelligence that learns, thinks, and behaves like human beings is

one of the main goals of deep learning and artificial intelligence. In recent years, the

emergence of large-scale deep learning methods has resulted in critical breakthroughs

in a wide range of computer vision tasks, including classification [4, 5], detection [6],

segmentation [7, 8], etc.. For instance, the deep neural networks ResNet [4, 5] and ViT [9]

achieve better classification accuracy than humans on ImageNet. While the increased

learning capacities of the novel network architectures are only partly responsible for

the advancements, the massive amount of training data also plays a significant role.

Particularly, the success of these leading deep learning approaches highly relies on the

abundant large-scale labeled datasets, yet their performance may inevitably degrade

with imperfect data annotations or with less training data. In addition, when tackling

more complex and challenging visual understating tasks, e.g., dense prediction tasks, a

massive quantity of high-quality data is required to achieve high-level performance.

However, in the real-world application, the large-quantity data is notoriously cost-

intensive to collect and time-consuming to annotate. Moreover, the labeled data may exist

in a variety of noisy and imperfect forms. Particularly, these kinds of data-inefficiency,

in terms of both data quantity and data quality, usually happen in the complex dense

prediction tasks, where more challenging pixel-level annotations are involved during the

training process. To overcome the data-hungry issues in such vision applications, scaling

1



CHAPTER 1. INTRODUCTION

up the size of the annotated dataset is a painstaking process. The pixel-level image

labeling may demand highly skilled annotators and limit the usage of cost-effective

solutions, e.g., crowdsourcing. Besides, owing to proprietary or confidential reasons, the

crowdsourcing annotation of a large-scale dataset is usually infeasible. Furthermore,

in real-world dynamically changing environments, additional annotated data is always

desired when the trained models need to be accordingly adapted. Including but not

limited to the aforementioned problems, it has sparked a heated debate calling for

data-efficient deep neural networks in both the academic and industrial communities.

1.2 Data-efficient Visual Understanding

Learning toward data-efficient deep neural networks with low-quality data or with a

small quantity of data is highly required. Consequently, this thesis investigates the data

efficiency issue of deep learning approaches especially targeted at the dense prediction

tasks. In this thesis, we mainly present data-efficient visual understanding algorithms

to leverage (i) low-quality imperfect data to enable learning with noise and (ii) low-
quantity labeled data by exploiting few-shot or zero-shot learning.

We show that deep learning methods for dense prediction tasks, e.g., human parsing,

scene parsing, semantic segmentation, and image generation, can still perform well

with limited and imperfect data, which are highly practical and desired in real-world

applications. To achieve better data effectiveness and efficiency, we focus on data-efficient

approaches from three main directions by (i) applying low-shot learning paradigms
that are intrinsically data-efficient, e.g., few-shot learning or zero-shot learning, by (ii)

exploiting imperfect labeled data to enable learning with noise, by (iii) transferring prior
knowledge from the data-abundant domain into data-hungry one.

1.2.1 Low-shot Learning Paradigms for Data Efficiency

Conventional fully-supervised approaches require a large-scale dataset to train the deep

learning models, and the quantity of the training data available has a significant impact

on the performance of these models. However, in real-world applications, data annotation

is a time-consuming and cost-intensive process that demands a significant amount

of effort for each new task of interest. Exploiting other non-fully supervised learning

paradigms would be one straightforward strategy to eliminate this data-dependency

requirement. Such low-shot learning paradigms either require only a limited number

2



1.2. DATA-EFFICIENT VISUAL UNDERSTANDING

of data samples with supervised information (i.e. few-shot learning), or require zero

training samples by transferring the prior knowledge from language modal to vision

modal (i.e. zero-shot learning).

Few-shot learning (FSL) aims to generalize the learned knowledge to novel cate-

gories given only a few labeled training samples. Many meta-learning-based approaches

have been proposed to address the few-shot problems, which can be roughly divided

into gradient-based approaches [10] and metric-based approaches [11–14]. To be specific,

the gradient-based methods search for a model weight configuration, which can be fast

adapted to a novel task with only a few gradient update steps. Despite the competitive

performance, the gradient-based approaches suffer from the need to perform additional

fine-tune steps on a novel task. The metric-based approaches alternatively learn an

embedding that can be used to perform the comparison between the labeled support

samples and the unlabeled query ones. The recent progress on few-shot learning mainly

focuses on addressing the image classification, while the more challenging dense predic-

tion tasks, e.g., semantic segmentation, are actually not well explored. In Chapter 4, we

exploit the few-shot learning paradigm on the challenging scene parsing task. While, in

Chapter 6, we investigate few-shot domain adaptation on the face super-resolution task.

Zero-shot Learning (ZSL) aims to recognize unseen classes with no training exam-

ples by leveraging the semantic label embeddings (e.g., word embeddings or attribute

vectors) as side information [15, 16]. Despite on the traditional image classification

task, ZSL has been applied to predict novel action in videos [17, 18], detect unseen

objects [19, 20], and recently, to segment pixel-wise unseen categories [21, 22]. Learn-

ing the project between semantic space and visual space is the key challenge. Former

practices address ZSL by learning a projection function from visual space to semantic

space [23, 24] or model weight space [25]. However, the intra-class variation in visual

space is neglected by mapping to a deterministic word embedding in semantic space.

Recently, due to the advance of deep generative models [26, 27], one can overcome the

scarcity of unseen visual features by directly generating samples from semantic word

embeddings. Commonly, these generative-based methods [28, 29] train their models

firstly on seen classes and then generate visual features of unseen classes. Although the

issue of data efficiency is partly addressed, the performance of the generative process

solely relies on the generalization ability of the generator. In Chapter 5, we propose a

structural constraint for the generative-based zero-shot learning paradigm to solve the

semantic segmentation task.

3
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1.2.2 Data-efficient Learning from Imperfect Annotations

Besides alleviating the quantity requirements to achieve data efficiency, exploiting low-

quality data examples via learning with noise is one of the most widely considered

directions. When annotating the dataset for deep learning algorithms, some non-expert

methods like crowdsourcing have been widely applied to reduce the high labeling cost.

However, annotating the pixel-level labels for dense prediction tasks could be challenging

even for skilled domain specialists. Thus, unreliable annotations, i.e., noisy or imperfect

labels inevitably exist in real-world collected datasets. Training deep neural networks

with the presence of these noisy labels may lead to poor performance and generalization

ability since DNNs tend to overfit these corrupted labels. Hence, the critical challenge

for data efficiency is achieving strong generalization capability even learning with the

low-quality noise labels.

A line of studies has investigated the problem of learning with noise. Beyond the

traditional machine learning techniques [30, 31], learning with noisy labels in deep

learning has gained broad attention recently. Most recent efforts in learning with noise

via deep neural networks either develop the robust architecture [32, 33] to process

diverse label noises reliably or adjust the noise labels and loss values by sample selection

strategies [34, 35]. For example, [36] averages model weights as self-ensembling and

applies it in the semi-supervised learning task. In [37], they average the model weight

and lead to better generalization. Meanwhile, pseudo-labeling [38, 39] is another typical

technique used to assign pseudo-labels to correct the noise labels. Label smoothing [40]

also addresses the problem of over-fitting and over-confidence by regularizing the one-

hot label. Inspired by above works, in Chapter 3, we propose a general data-efficient

framework to correct the noisy training labels via the model and label mutually promoting

process. To the best of our knowledge, we have made the first attempt to formulate the

label noise problem as a mutual model and label optimization in the fine-grained human

parsing task.

1.2.3 Data Efficiency via Prior Knowledge Transferring

Once there is a large amount of labeled data, deep neural networks thrive at the visual

understanding tasks, yet the performance may degrade severely when only limited

supervision is available. On the other hand, humans and animals can learn about the

novel classes of images in a data-efficient way, with only a few examples. A hypothesis is

that intelligent systems benefit from structured a priori to achieve data efficiency. Among
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several possible promising directions, we can implicitly or explicitly improve the deep

learning models’ performance and data efficiency by transferring the prior knowledge

from the data-abundant domain to the data-hungry domain. Such prior knowledge could

be inductive biases either from another domain of the current task or external world

prior knowledge from a different modal.

Cross-Domain Inductive Biases as Prior Knowledge Domain adaptation is

broadly studied in computer vision which deals with situations when a model trained

on one source distribution is applied to a different but similar target distribution. In

Chapter 6, with the prior knowledge in the data-abundant source domain, we bridge the

domain gap and solve the cross-domain face super-resolution task in an extreme data-

efficient way. To overcome the need of large-scale training data and improve the adaption

ability of models on new domains, many works have been extensively proposed [10, 41–

49]. Early one/few-shot-based classification tasks [50] construct generative models from

shared appearance priors across classes for classification. Recently, a new stream of

works focuses on using meta-learning to quickly adapt models to novel tasks [10, 51, 52].

However, these one/few-shot methods are mainly applied to different classification tasks

without considering domain gaps between image pairs. Pix2Pix [53] and CycleGAN [54]

have been proposed as image-to-image translation networks. However, due to the scarcity

of samples in the target domain, these methods might not be suitable for transferring

from the source domain to the target one with few samples. Motivated by these findings,

in Chapter 6, we present a face super-resolution method that incorporates latent prior

knowledge to smoothly adapt to the new target domain with only a one-shot exemplar.

Cross-Modal Inductive Biases as Prior Knowledge Beyond the prior knowledge

transferring across different scenarios with a domain gap (e.g. domains with different

lighting conditions), we further study the problem of cross-modal knowledge transferring.

In Chapter 5, we present a zero-shot semantic segmentation method to transfer the cross-

modal prior knowledge from language modal to vision modal. Semantic segmentation

under fully supervised paradigm [48, 55–59] and domain adaptation scheme [60–62]

are extensively studied. To extremely reduce the cost of label annotation, previous

works focus on weakly-supervised segmentation [63–65] and few-shot segmentation [66,

67]. Most recent works [21, 22] further extend the zero-shot learning to the semantic

segmentation task. Under such a setting, the semantic word embeddings are projected to

synthetic visual features [22] and classifier weights [21]. In contrast, instead of simple

node-to-node mapping, we tackle the zero-shot segmentation from a new perspective

as structural relation learning from semantic space to visual space. In Chapter 5, the
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semantic segmentation task is addressed in an extreme data-efficient way with zero

training examples.

1.3 Thesis Organization

This thesis is organized as follows,

• Chapter2: This chapter presents the literature review on data-efficient machine

learning techniques and covers related works on several dense prediction tasks

introduced in this thesis, e.g., semantic segmentation, scene/human parsing and

face super-resolution.

• Chapter3: This chapter addresses the data-efficient visual understanding by learn-

ing with noise and investigates the human parsing task with low annotation quality.

We propose a simple yet effective, generic, model-agnostic framework called SCHP

for human parsing tasks. We tackle the problem of human parsing tasks under

learning with noise scenarios, which is never explored before. From this novel

perspective, we unravel the problem by dealing with the pixel-level label noise

during training process by self-correction mechanism. More specifically, we progres-

sively promote the reliability of the supervised labels as well as the learned models.

Our SCHP is model-agnostic and can be applied to any human parsing model to

further enhance its performance. We achieve the new state-of-the-art results on six

benchmarks, including LIP, Pascal-Person-Part, and ATR for single human parsing,

CIHP and MHP for multi-person human parsing, and VIP for video human parsing

tasks. This work was published on IEEE Transactions on Pattern Analysis and

Machine Intelligence [58] and is also the winner solution for CVPR’19 Look Into

Person Challenge (LIP) challenge.

• Chapter4: This chapter studies the data-efficient visual understanding from the few-

shot learning perspective and investigates the few-shot segmentation task with low-

quantity annotated training data. We advance the few-shot segmentation paradigm

towards a more challenging yet general scenario, i.e., Generalized Few-shot Scene

Parsing (GFSP). In this task, we take a fully annotated image as guidance to

segment all pixels in a query image. Our mission is to study a generalizable and

robust segmentation network from the meta-learning perspective so that both

seen and unseen categories can be correctly recognized. Accordingly, we present

Meta Parsing Networks (MPNet) to better exploit the guidance information in
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the support set. We conduct experiments on two newly constructed benchmarks,

i.e., GFSP-Cityscapes and GFSP-Pascal-Context. Extensive ablation studies well

demonstrate the effectiveness and generalization ability of our MPNet. This work

was published on ACM Multimedia Conference [68] as oral presentation.

• Chapter5: In this chapter, we explore the data-efficient visual understanding by

transferring the cross-modal prior knowledge and investigates the zero-shot seman-

tic segmentation task zero-shot training samples. Zero-shot semantic segmentation

aims to recognize the semantics of pixels from unseen categories with zero training

samples. We propose a Consistent Structural Relation Learning (CSRL) approach

to constrain the generation of unseen visual features by exploiting the structural

relations between seen and unseen categories. We observe that different cate-

gories usually have similar relations in either semantic word embedding space or

visual feature space. This observation motivates us to harness the similarity of

category-level relations on the semantic word embedding space to learn a better

visual feature generator. We conduct extensive experiments on Pascal-VOC and

Pascal-Context benchmarks. The proposed CSRL outperforms existing state-of-

the-art methods by a large margin, resulting in ~7-12% on Pascal-VOC and ~2-5%

on Pascal-Context. This work was published on Neural Information Processing

Systems [69] as spotlight presentation.

• Chapter6: In this chapter, we explore the data-efficient visual understanding

by transferring the cross-domain prior knowledge and propose a data-efficient

approach for the face super-resolution (FSR) task under a low-quantity data sce-

nario. Conventional face super-resolution methods usually assume that testing

low-resolution (LR) images lie in the same domain as the training ones. Due to

different lighting conditions and imaging hardware, domain gaps between training

and testing images inevitably occur in many real-world scenarios. Neglecting those

domain gaps would lead to inferior face super-resolution performance. However,

how to transfer a trained FSR model to a target domain efficiently and effectively

has not been investigated. To tackle this problem, we developed a Domain-Aware

Pyramid-based Face Super-Resolution network named DAP-FSR network. Our

DAP-FSR makes the first attempt to super resolve LR faces from a target domain

by exploiting only a pair of high-resolution (HR) and LR exemplars in the target

domain. Extensive experiments on three benchmarks validate the effectiveness and

superior performance of our DAP-FSR compared to the state-of-the-art methods.
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This work was published on The International Conference on Computer Vision [70].

• Chapter7: This chapter summarizes the thesis and shows directions for potential

future improvements.
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2
LITERATURE REVIEW

In this thesis, we propose deep neural networks for several typical dense prediction tasks

in computer vision, aiming to develop data-efficient deep learning algorithms. We try to

answer the following questions, (i) what does it mean for machine intelligence to learn as

quickly as human beings? (ii) what efforts should be made to relieve data hungriness in

deep learning approaches? and (iii) what are the potential research directions to pursue?

In this section, we list open problems and research directions from the most related works

in two main aspects. Firstly, we review the related works for the visual understanding

tasks introduced in this thesis. Then, we discuss several promising machine learning

techniques to achieve data-efficient learning related to the content of this thesis.

2.1 Existing Data-hungry Visual Understanding
Methods

Semantic Segmentation models [55, 71–75] target on performing pixel-wise classi-

fication for a given image, which mainly includes two basic tasks, i.e., object semantic

segmentation [76, 77] and scene parsing [78–82]. In particular, object semantic segmen-

tation [48, 83–85] only considers to recognize the object of interest in the image while

overlook the complex stuff semantics such as person [86, 87], car and road. Compared

to object semantic segmentation, scene parsing [59, 88] poses a much general, practical

yet challenging task, which requires all the pixels belonging to the given image to be
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well classified. Although significant progress has been made due to the development of

deep learning, both two tasks require all categories (seen) should be well defined before

training, leading to the learned knowledge can not being transferred to recognize the new

emerging categories (unseen). Additionally, annotating pixel-level labels is often costly

in terms of both human efforts and finance, making the current state-of-the-art segmen-

tation models not suitable for addressing generalized few-shot semantic segmentation

problems as introduced in Chapter 4.

Human Parsing [89–91], as a fine-grained semantic segmentation task [59, 68, 69], has

received more and more attention due to the potential application in human analysis,

virtual reality, image editing etc. Several different aspects of human parsing tasks have

been studied. Some early works [91–93] utilize pose estimation together with the human

parsing simultaneously as a multi-task learning problem. In [94], they cooperate the

edge prediction with human parsing to accurately predict the boundary area. Moreover,

[95–98] study the human parsing task in a multi-person scenario, where not only to

label the semantic parts but also distinguish human instances. Recent works [99, 100]

further extend the image-based human parsing into a video-based application. Most of

the prior works assume the fact that ground-truth labels are accurate and well-annotated.

However, due to time and cost limitations, there inevitably exists lots of different label

noises (as shown in Fig. 3.1). Meanwhile, it is impracticable to correct the pixel-wise

labels manually. Guided by this intuition, we try to tackle this problem via a simple yet

effective self-correction mechanism in Chapter 3.

Few-shot object segmentation [101–103] has received much attention recently due

to its advantages in learning novel categories [47, 49] without much annotations. Most

previous approaches [104, 105] follow the metric-based few-shot learning scheme and

make great efforts to develop robust feature embedding to measure the pixel-wise

similarity between the object from the support image and the query one. However,

the current few-shot segmentation [66, 106, 107] only considers a simple case, i.e.,
segmenting one or two objects from unseen categories in the given query image, which

usually does not work well for the real scenario where pixels from dozens of unseen

categories appear. Chapter 4 in this thesis takes one step further by extending the

few-shot segmentation to a much more complex yet practical scene parsing problem.

Unlike the object segmentation paradigm, the learned meta parser should be robust to

multiple seen and unseen categories, simultaneously. To this end, we explore multiple

strategies to endow the meta parser with better generalization ability. We compare the

proposed solution with the state-of-the-art few-shot object segmentation approach [66],
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and significant improvement is observed.

Generalized Zero-shot Semantic Segmentation Semantic segmentation under

fully supervised paradigm [48, 55–59] and domain adaptation scheme [60–62] are exten-

sively studied. To extremely reduce the cost of label annotation, previous works focus on

weakly-supervised segmentation [63–65] and few-shot segmentation [66, 67, 108]. Most

recent works [21, 22] further extend the zero-shot learning to the semantic segmentation

task. The semantic word embeddings are projected to synthetic visual features [22]

and classifier weights [21]. However, the structural relations between seen and unseen

classes are not well explored. In Chapter 5, instead of simple node-to-node mapping, we

tackle the zero-shot segmentation from a new perspective as structural relation learning

from semantic space to visual space.

Face Super-Resolution (FSR) also known as face hallucination, aims at establishing

the intensity relationships between input LR and output HR face images from the same

domain. Traditional holistic appearance-based methods firstly leverage a parameter-

ized model to represent faces and then construct the mappings between LR and HR

faces. Some representative models super-resolve HR faces from LR ones by adopting

global linear mapping [109, 110], or optimal transport [111]. However, they require input

LR images aligned to a canonical pose and HR faces in the database to share similar

facial expressions. Later on, part-based approaches have been proposed to relax the

strict requirements in holistic appearance-based methods. Part-based face hallucina-

tion algorithms [112–114] firstly extract local facial regions and then upsample them

separately.

Taking advantage of the powerful feature representation of deep neural networks,

deep learning based face super-resolution methods [115, 115–123] have been proposed

and achieved promising results. Several methods exploit prior knowledge, such as facial

attributes [124], parsing maps [121], facial landmarks [125–127] and identity [128, 129],

to advance the upsampling performance. However, when LR faces are captured from

another domain, such as different imaging conditions, existing methods may fail to super-

resolve them photo-realistically. Moreover, when the new domain data is not abundantly

available, it would be challenging to retrain FSR networks with such a limited number of

samples. Simple fine-tuning FSR networks with few samples does not solve this problem

either. Therefore, previous methods may fail to authentically super-resolve LR faces

existing a domain gap from the training domain when there are only one or few samples

available from the new domain. In Chapter 6, we make the first attempt to address this
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challenging scenario in a data-efficient manner.

2.2 Relevant Data-efficient Techniques

Pseudo-Labeling [38, 39] is a typical technique used in semi-supervised learning. In

the semi-supervised learning setting, they assign pseudo-labels to the unlabeled data.

However, in our task setting in Chapter 3, we are unable to locate the label noise since

all ground truth is treated equally. Besides, from the perspective of distillation, the

generated soft pseudo label contains many so-called dark knowledge [130] which could

serve as the purification signal. And label smoothing [40] also addresses the problem

of over-fitting and over-confidence by regularizing the one-hot label. Inspired by these

findings, we design a cyclically learning scheduler to infer more reliable pseudo-masks

by iteratively aggregating the current learned model with the former optimal one in

an online manner. Furthermore, those corrected labels can, in turn, boost the model

performance simultaneously.

Self-Ensembling There are a line of researches [36, 37, 131] that exploit self-ensembling

methods in various scenarios. For example, [36] averages model weights as self-ensembling

in the semi-supervised learning task. In [37], they average the model weight and lead to

better generalization. Different from them, in Chapter 3, our proposed self-correction

approach is to correct the noisy training label via a model and label mutually promoting

process. In an online manner, we average both model weights and predictions simulta-

neously. To the best of our knowledge, we have made the first attempt to formulate the

label noise problem as a mutual model and label optimization in fine-grained seman-

tic segmenting to boost the performance. Furthermore, our proposed method is online

learning with a cyclical scheduler and only exhaust little extra computation.

Few-shot learning aims to generalize the learned knowledge to novel categories

with only a few labeled training samples. Many meta-learning-based approaches have

been proposed to address the few-shot problems, which can be roughly divided into

gradient-based approaches [10] and metric-based approaches [11–14, 132]. Specifically,

the gradient-based methods search for a model weight configuration, which can be fast

adapted to a novel task with only a few gradient update steps. Despite the competitive

performance, the gradient-based approaches suffer from the need to perform additional

fine-tune steps on a novel task. The metric-based approaches alternatively learn an

embedding that can be used to compare the labeled support samples and the unlabeled

query ones. The recent progress on few-shot learning mainly addresses the image classi-
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fication task, while the much more challenging semantic segmentation task is not well

explored. In Chapter 4 and Chapter 6, we investigate the generalized few-shot seman-

tic segmentation and face super-resolution tasks from a few-shot learning perspective,

respectively.

Zero-Shot Learning aims to recognize unseen classes with no training examples by

leveraging the semantic label embeddings (e.g., word embeddings or attribute vectors) as

side information [15, 16]. Despite on the traditional image classification task, ZSL has

been applied to predict novel actions in videos [17, 18, 133], detect unseen objects [19, 20],

and recently, to segment pixel-wise unseen categories [21, 22]. Former practices address

ZSL by learning a projection function from visual space to semantic space [23, 24] or

model weight space [25]. However, the intra-class variation in visual space is neglected

by mapping to a deterministic word embedding in semantic space. Recently, due to the

advance of deep generative models [26, 27], one can overcome the scarcity of unseen visual

features by directly generating samples from semantic word embeddings. Commonly,

these generative-based methods [28, 29] train their models firstly on seen classes and

then generate visual features for unseen classes. However, the quality of the generated

unseen features solely relies on the generalization ability of the generator. Differently, in

Chapter 5, we apply structural relation consistency as constraints to guide the learning

process.

One-shot Domain Adaptation To overcome the need of large-scale training data and

improve the adaption ability of models on new domains, many works have been exten-

sively proposed [10, 41–49]. Early one/few-shot-based classification tasks [50] construct

generative models from shared appearance priors across classes for classification. Re-

cently, a new stream of works focuses on using meta-learning to quickly adapt models

to novel tasks [10, 51, 52]. However, these one/few-shot methods are mainly applied to

different classification tasks without considering domain gaps between image pairs.

Pix2Pix [53] and CycleGAN [54] have been proposed as image-to-image translation

networks. However, due to the scarcity of samples in the target domain, these methods

might not be suitable for transferring from the source domain to the target one with few

samples. To mitigate the data hungry problem of deep neural networks, several works

employ shared [41] or partially shared [134] latent space assumption to conduct image-

to-image translation tasks, such as style transfer [41, 135] and face generation [136].

Since these methods only address the domain gap without learning the mapping between

LR and HR images, they are unsuitable for face super-resolution. Instead, we investigate
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the data-efficient one-shot domain adaptation problem in Chapter 6.
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3
SELF-CORRECTION FOR HUMAN PARSING

3.1 Preface

Human parsing, as a fine-grained semantic segmentation task, aims to assign each

image pixel from the human body to a semantic category, e.g. arm, leg, dress, skirt.

Understanding the detailed semantic parts of humans is crucial in several potential

application scenarios, including image editing, human analysis, virtual try-on and virtual

reality. Recent advances on fully convolutional neural networks [137, 138] have achieved

various of well-performing methods for the human parsing tasks [91, 94].

To learn reliable models for human parsing, a large amount of pixel-level masks are

required as supervision. However, labeling pixel-level annotations for human parsing

is much harder than the traditional pixel-level understanding tasks. In particular,

in the traditional semantic segmentation tasks [137, 138], all the pixels belonging to

one instance share the same semantic label, which is usually easy to be identified

by annotators. Differently, the human parsing task requires annotators to carefully

distinguish detailed semantic parts of one person. Moreover, the situation will become

even more challenging when the annotator got confused by the ambiguous boundaries

between different semantic parts. Due to the aforementioned factors, there inevitably

exist different types of label noises (as illustrated in Fig. 3.1) caused by the careless

observations by annotators. This incomplete and low quality of the annotation labels

will set a significant obstacle, which prevents the performance of human parsing from

increasing to a higher level.
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Figure 3.1: Different types of label noises in ground-truth annotations. The upper row
shows the original images. The lower row shows the original ground-truth labels. Differ-
ent types of noisy labels are illustrated from left to right, (a) coarse annotation around the
boundary area; (b) confused fine-grained categories, where the upper-cloth is mislabeled
as the coat; (c) confused mirror categories, where the right leg is mislabeled as the left
leg; (d) multiple-person occlusion. Annotation noises are marked in white dashed boxes.

Previous efforts [90, 139–141] are all dedicated to design various frameworks to

segment human parts and based on the assumption that all the annotated ground-truth

masks are accurate. In this work, we tackle the human parsing task from a totally

new perspective and investigate the problem of learning with inaccurate ground-truth

masks. Our target is to improve the model performance and generalization ability by

progressively refining the noisy labels during the training stage.

To this end, we introduce a noise-tolerant approach named Self-Correction for Human

Parsing (SCHP), which can progressively promote the reliability of the supervised

labels, as well as the learned models during the training process. Concretely, the whole

SCHP pipeline can be divided into two sub-procedures, i.e., model aggregation and label

refinement. Starting from a model trained on inaccurate annotations as initialization, we

design a cyclically learning scheduler to infer more reliable pseudo masks by iteratively

aggregating the current learned model with the former sub-optimal one in an online

manner. Besides, those corrected labels can in turn to boost the model performance,

simultaneously. In this way, the self-correction mechanism will enable the learned

models and the refined labels to mutually promote their counterpart, leading the future
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models and labels to be more robust and accurate as the training goes on.

Our SCHP is a model-agnostic noise-tolerant strategy, which can be easily applied

to different human parsing frameworks for further improving their performance. To

validate the generalization ability of our SCHP, we conduct extensive experiments

with four popular human parsing frameworks, including Deeplab V3+ [71], CE2P [94],

OCR [56] and CE2P+ (a upgraded version CE2P), and consistent improvements can

be observed on popular human parsing benchmarks, i.e., LIP [91], PASCAL-Person-

Part [142] and ART [139]. Particularly, we achieve the mIoU score of 59.36% on LIP,

which outperforms the state of the art performance by more than 1.62%. Besides, our

SCHP can be easily extended to address multiple human parsing and video human

parsing problems. With the help of SCHP, we achieve the state-of-the-art performance

of 45.25 (mAP p), 51.08 (mAPr), and 51.41 (mAPr) on MHP v2.0 [96], CIHP [141], and

VIP [100], respectively, outperforming other approaches by more than 2.55, 7.49, and

27.31. Moreover, together with advanced techniques and tricks, e.g., multi-scale training

and model ensembling, we rank the 1st place of all human parsing tracks (i.e., 65.18%

(mIoU) for single human parsing, 55.01% (mAPr) for multiple human parsing and 52.97

(mAPr)% for video human parsing) in the 3rd Look Into Person Challenge (in conjunction

with CVPR 2019), which are 1.05%, 0.96% and 4.25% higher than the runner-up teams,

respectively.

On the whole, our major contributions can be summarized as follows,

• We propose to tackle the challenging human parsing task by considering the label

noises existing in the ground-truth masks. To the best of our knowledge, this is a

new perspective in this research area, which is not well explored before.

• We propose a simple yet effective noise-tolerant approach named SCHP for alle-

viating the existing label noises, accordingly. By alternatively performing model

aggregating and label refining in an online manner, SCHP could mutually promote

the model performance and label accuracy.

• Our SCHP is model-agnostic, and thus can be applied to various human parsing

frameworks. Extensive ablation experiments well demonstrate the generalization

ability and the superiority of the proposed SCHP.

• Benefiting from the proposed SCHP, this work achieves new state of the art per-

formance on six single/multiple human parsing benchmarks, and won the winner

prize of all three human parsing tracks in the 3rd Look Into Person Challenge.
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Figure 3.2: Overview of the SCHP pipeline. Starting from the warm-up initialization by
training with inaccurate annotations, we design a cyclically learning scheduler to infer
more reliable pseudo masks through iteratively aggregating the current learned model
with the former optimal one in an online manner. Besides, those corrected labels can in
turn to boost the model performance, simultaneously. In this way, the models and the
masks get more robust and accurate during the self-correction cycles. Label noises are
specially marked in white boxes.

3.2 Self-correction for Human Parsing

3.2.1 Overview

Given a training dataset with images X and inaccurate mask annotations Y with

label noise, our method aims to train a noise-robust human parser, by simultaneously

benefiting from model aggregation, label refinement and their interaction. We first warm-

up the human parser by training the model using the original inaccurate annotations.

After the warm-up initialization, we carry out an alternating optimization between

models and mask annotations. We cyclically aggregate the learned model and refine

the mask annotations Y in a moving average manner to build a noise-robust human

parser. Concretely, within one self-correction cycle, we first learn the segmentation model

using the mask annotations Y refined in the previous cycle. Then, a parameter-wise

moving average operation is conducted to aggregate the learned model weights in the

current cycle with the sub-optimal model from the previous cycle. Finally, we leverage the

aggregated model to infer the mask predictions of all training images, which are further

employed to correct the noise in annotations via a pixel-wise moving average operation.

The refined mask annotations will serve as ground-truth to supervise the training for
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the next cycle. Fig. 3.2 shows an overview of the proposed self-correction mechanism for

human parsing. In the following, we give more details about our self-correction human

parsing (SCHP) with model aggregation and label refinement procedure.

3.2.2 Single-person Human Parsing

Intuitively, when training a human parser model with the noisy annotations, the pre-

dictions for those falsely annotated regions often tend to be uncertain. For instance, if a

region of dress is wrongly labeled as skirt, the learned knowledge from other correctly

labeled dress regions will make the model produce inconsistent semantic prediction

(dress) compared to its false ground-truth (skirt) during the training stage. Therefore, if

we can successfully take advantage of the model predictions, the existing noises from

ground-truth annotations will be partially surpassed, resulting in a better human parser

accordingly. To this end, we propose a simple yet effective self-correction training ap-

proach, which includes three basic steps, i.e., warm-up internalization, online model

aggregation and online label refinement. As far as we know, it is the first attempt to

tackle the human parsing task from the label noise perspective.

Warm-up Initialization The potential performance promotion relies on the initial

performance of the model. In other words, if the intermediate results generated by the

network are not accurate enough, they may potentially harm the following self-correction

process. Therefore, we start to run our proposed self-correction algorithm after a good

initialization, i.e., when the training loss starts to flatten with the original ground-truth

annotations. To avoid introducing an extra training cost, we shorten the initial warm-up

stage and keep the same total training epochs to make a fair comparison with other

methods.

Online Model Aggregation We aim to discover all the potential information from the

past sub-optimal models to improve the performance of the future model. Intuitively, the

learned models will converge to different local-minimums based on different initialized

parameters at the beginning of training. There exists great model disparity among these

sub-optimal models and assembling their complementary knowledge tends to produce

a better model state. Motivated by this, we propose to successively perform multiple

training cycles and progressively aggregate the learned model from each cycle in an

online manner to generate the final one. Formally, we denote the set of the models

obtained in different self-correction cycles as {θi}N
i=1 and N is the total number of self-

correction cycles. Suppose θ be the model learned at the end of current cycle i. We then

aggregate θ with the former sub-optimal one θi−1 to output an updated model weight θi
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as the initial model weight for the next self-correction cycle via a parameter-wise moving

average operation,

θi = i
i+1

θi−1 + 1
i+1

θ. (3.1)

However, we experimentally find that simply performing the parameter-wise moving

average operation would lead to even worse performance, which is caused by the in-

accurate parameter estimation (mean: µ, variance: σ2) after model aggregation for

BatchNorm [143] layers. To tackle this issue, we forward all the training samples for

one epoch to exactly re-estimate the BatchNorm statistics in all BatchNorm layers as

follows,
m = (t−1)/t

µt = mµt−1 + (1−m)E [xB]
σ2

t = mσ2
t−1 + (1−m)V ar [xB] ,

(3.2)

where t is the iteration number in one epoch and xB is the input features to the batch

norm layer. Therefore, we need to apply additional computation overhead to perform

model aggregation and re-estimate Batchnorm parameters at the end of each self-

correction training cycle. However, since the model aggregation contains only simple

average operation and the Batchnorm re-estimation can also be completed with one

network forwarding epoch, the additional computation overhead from both memory and

time can be totally negligible compared to the self-correction training. As a result of the

proposed model aggregation, with the self-correction process goes on, the network leads

to wider model optima as well as improves the model’s generalization ability.

Online Label Refinement It is known that soft, multi-class labels contain more dark

information [130] compared with the one-hot labels. We aim to additionally explore all

this dark information to improve the model performance and alleviate the label noises

beyond the online model aggregation. After updating the model weight as mentioned in

Eq. equation 3.1, we also update the ground-truth of training labels. These generated

pseudo-masks are more unambiguous, smooth and have the relational information

among the fine-grain categories, which are taken as the supervised signal for the next

cycle’s optimization. During successive self-correction cycles, the learned knowledge

from correct annotations will potentially alleviate or eliminate the incorrect ones in the

original ground-truth. The amended information within the pseudo-masks will then help

improve the robustness of the learned model.

Here we denote the predicted label set obtained in different training cycles as {Yi}N
i=1

and N is the total number of self-correction cycles. Same as the model aggregation

process, we refine the ground-truth label Y generated by current optimal model θi with
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Algorithm 1: Self-Correction for Human Parsing
Input: Warm-up initialized model weight θ, original ground-truth mask

annotations Y , epoch number of each self-correctin cycle T, number of
self-correction cycles N

Output: Human parser model θN
Initialize the model weight θ0 ← θ ;
Initialize the pseudo-mask Y0 ←Y ;
for i ← 1,2, ..., N do

for Tcur ← 1,2, ..T do
Update the learning rate η by Eq. equation 3.4;
for each batch in training set do

Calculate loss L using refined Yi−1;
Gradient descending θ← θ−η∇L ;

end
end
Model aggregation by equation 3.1 to update θi;
Update model weight θ← θi ;
Re-calculate the BN layer parameters by equation 3.2 ;
Re-calculate the pseudo-mask Y using θi;
Label refinement by equation 3.3 to update Yi;

end

the former sub-optimal one Yi−1 to output an updated pseudo-mask Yi as the initial

mask annotations for the next self-correction cycle via a pixel-wise moving average

operation as follows,

Yi = i
i+1

Yi−1 + 1
i+1

Y . (3.3)

Cyclical Training Strategy We design the self-correction training with two main

principles. First, at the end of each self-correction cycle, the network should converge to

an acceptable sub-optimal state, which implies having a small learning rate. Second, in

order to ensure the network jumping out of the former local optima and having sufficient

model disparity between two self-correction cycles, we need to have a large learning

rate at the beginning of each self-correction cycle. Therefore, during the self-correction

cycles, we apply the learning scheduler to a cyclically annealing one [144]. Suppose each

cycle totally contains T training epochs, in practice, we use a cosine annealing learning

rate scheduler with cyclical restart [145]. Formally, ηmax and ηmin are set to the initial

learning rate and final learning rate, while Tcur is the number of epochs since the last

restart. Thus, the overall learning rate can be formulated as,

η= ηmin + 1
2

(ηmax −ηmin)(1+cos(
Tcur

T
π)). (3.4)
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Figure 3.3: The pipeline for the multiple-person human parsing and video human parsing
task.

Equipping with the cyclical annealing learning rate scheduler, the model aggregation

and label refinement processes are mutually improving each other step-by-step after each

cyclical training process. The proposed SCHP is training in an end-to-end online manner.

The details of our proposed self-correction procedure are summarized in Algorithm 1.

3.2.3 Extension to Multi-person Human Parsing

Our SCHP is a general solution, which can be easily extended to tackle much more

challenging multiple human parsing tasks. In this section, we give the details of two

advanced applications of our SCHP, i.e., multi-person human parsing and video multi-

person human parsing.

Multi-person Human Parsing As a more challenging task, multiple-person human

parsing aims to semantically categorize every pixel, as well as identify every human

instance in the images. The main difference between the multiple-person parsing and

the single-person parsing lies in distinguishing the human instances from each other.

To maintain simplicity, a stage-wise training procedure is adopted to decouple this

challenging task into human detection and single-person human parsing. Our framework

is a top-down based pipeline, which is illustrated in Fig. 3.3.

An off-the-shelf advanced human detector (i.e., Mask R-CNN [6]) is instantiated

to served as a base detector to find human instances from the input images. We first
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fine-tune this human detector to better predict human instances and keep it fixed during

the training process of human parsing. Consequently, some candidate instances with

their extended local contexts can be cropped from the original images. Then, based on the

proposed SCHP model for single human parsing, a two-branch structure is constructed

and trained from a general global view to a local view. The global SCHP branch is trained

using the whole original images, which leverages most context information of images

and learns the spatial relation information between several instances under the crowded

scenario. The local SCHP branch focuses on more precisely parsing with a local context of

an instance, which captures more detailed information. Both the global and local SCHP

models have the same identical architecture but do not share the model weight.

The instance-agnostic parsing results (upper right of Fig. 3.3) can be obtained from

the global branch. These instance-agnostic parsing results are further transformed

into instance-aware parsing results, by fusing the human instance masks produced

by the human detector with results from both global and local branches. To deal with

the miss-matching issues between human instance masks and the instance-agnostic

parsing results during the assignment, a breadth-first searching (BFS) label refinement

post-processing is adopted following [94].

Video Multiple-person Human Parsing Video human parsing is the task for simul-

taneously identifying instances and recognizing multiple semantic parts of humans from

video frames. We consider this task as the frame-based multiple human parsing task,

which not only needs to recognize every human instance in one single frame but also

identifies the human instance between different frames. First, we feed each frame from

the video sequences into the above mentioned multiple-person human parsing framework

to acquire human instance and parsing results. Then, we identify and link the human

instances along the temporal dimension following DeepSORT algorithm [146].

3.3 Experiments: Single-person Human Parsing

Our SCHP is a model-agnostic mechanism and can be applied to any human parsing

models for further enhancing their performance by alleviating the label noise under

complex scenarios. In this section, we perform a comprehensive comparison of our SCHP

with other single-person human parsing state-of-the-art methods, along with thorough

ablation experiments to demonstrate the effectiveness of each component in SCHP.
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Table 3.1: Comparisons on the LIP validation set. The symbol † marks the single-scale
testing result.

Method hat hair glove s-glass u-clot dress coat sock pant j-suit scarf skirt face l-arm r-arm l-leg r-leg l-shoe r-shoe bkg mIoU

Attention [147] 58.87 66.78 23.32 19.48 63.20 29.63 49.70 35.23 66.04 24.73 12.84 20.41 70.58 50.17 54.03 38.35 37.70 26.20 27.09 84.00 42.92
DeepLab [138] 59.76 66.22 28.76 23.91 64.95 33.68 52.86 37.67 68.05 26.15 17.44 25.23 70.00 50.42 53.89 39.36 38.27 26.95 28.36 84.09 44.80

SSL [90] 58.21 67.17 31.20 23.65 63.66 28.31 52.35 39.58 69.40 28.61 13.70 22.52 74.84 52.83 55.67 48.22 47.49 31.80 29.97 84.64 46.19
MMAN [148] 57.66 65.63 30.07 20.02 64.15 28.39 51.98 41.46 71.03 23.61 9.65 23.20 69.54 55.30 58.13 51.90 52.17 38.58 39.05 84.75 46.81

MuLA [93] - - - - - - - - - - - - - - - - - - - - 49.30
JPPNet [91] 63.55 70.20 36.16 23.48 68.15 31.42 55.65 44.56 72.19 28.39 18.76 25.14 73.36 61.97 63.88 58.21 57.99 44.02 44.09 86.26 51.37

Deeplabv3+† [71] 65.02 71.06 37.98 31.37 68.33 28.25 54.14 47.67 73.99 27.12 17.92 25.00 73.99 63.64 65.69 57.35 56.99 43.97 44.74 87.51 52.09
CE2P† [94] 65.29 72.54 39.09 32.73 69.46 32.52 56.28 49.67 74.11 27.23 14.19 22.51 75.50 65.14 66.59 60.10 58.59 46.63 46.12 87.67 53.10

BraidNet [149] 88.0 66.8 72.0 42.5 32.1 69.8 33.7 57.4 49.0 74.9 32.4 19.3 27.2 74.9 65.5 67.9 60.2 59.6 47.4 47.9 54.4
OCR†[56] 67.42 73.16 44.01 36.31 69.90 35.53 57.03 51.87 75.09 29.85 19.16 26.63 75.95 66.81 68.65 63.23 62.12 50.60 50.68 87.96 55.60

CNIF [150] 69.55 73.45 45.17 41.45 70.57 38.52 57.94 54.02 75.07 28.00 31.92 30.20 76.38 68.28 69.49 65.52 65.51 52.67 53.38 87.99 57.74
SCHP(Ours)† 69.96 73.55 50.46 40.72 69.93 39.02 57.45 54.27 76.01 32.88 26.29 31.68 76.19 68.65 70.92 67.28 66.56 55.76 56.50 88.36 58.62
SCHP(Ours) 70.63 74.09 51.40 41.70 70.56 40.06 58.17 55.17 76.57 33.78 26.63 32.83 76.63 69.33 71.76 67.93 67.42 56.56 57.55 88.40 59.36

Table 3.2: Comparisons on the PASCAL-Person-Part test set. The symbol † marks the
single-scale testing result.

Method head torso u-arm l-arm u-leg l-leg bkg mIoU

Attention [147] 81.47 59.06 44.15 42.50 38.28 35.62 93.65 56.39
HAZN [151] 80.76 60.50 45.65 43.11 41.21 37.74 93.78 57.54

LG-LSTM [89] 82.72 60.99 45.40 47.76 42.33 37.96 88.63 57.97
SS-JPPNet [91] 83.26 62.40 47.80 45.58 42.32 39.48 94.68 59.36

MMAN [148] 82.58 62.83 48.49 47.37 42.80 40.40 94.92 59.91
G-LSTM [140] 82.69 62.68 46.88 47.71 45.66 40.93 94.59 60.16
Part FCN [92] 85.50 67.87 54.72 54.30 48.25 44.76 95.32 64.39

PCNet [152] 86.81 69.06 55.35 55.27 50.21 48.54 96.07 65.90
Deeplab [138] - - - - - - - 64.94

WSHP [153] 87.15 72.28 57.07 56.21 52.43 50.36 97.72 67.60
PGN [141] 90.89 75.12 55.83 64.61 55.42 41.57 95.33 68.40

CNIF [150] 88.02 72.91 64.31 63.52 55.61 54.96 96.02 70.76
SCHP(Ours)† 87.00 72.27 64.10 63.44 56.57 55.00 96.07 70.63
SCHP(Ours) 87.41 73.80 64.98 64.70 57.43 55.62 96.26 71.46

3.3.1 Experiment Settings

Datasets We evaluate our proposed method on three single-person human parsing

benchmarks, including LIP [91], PASCAL-Person-Part [142] and ATR [139]. LIP [91] is

the largest human parsing dataset, which contains 50,462 images with elaborated pixel-

wise annotations with 19 semantic human part labels. The images collected from the

real-world scenarios contain human appearing with challenging poses and views, heavily

occlusions, various appearances and low-resolutions. LIP is divided into 30,462 images

for train set, 10,000 images for validation set and 10,000 for test set. PASCAL-Person-

Part [142] is a relatively small dataset annotated from PASCAL VOC 2010, including six

semantic parts, i.e., head, torso, upper/lower arms, upper/lower legs and one background

class. It contains 1,716 and 1,817 images for train and validation sets, respectively.

ATR [139] is another large-scale dataset that targets on fashion AI, which includes 18
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Table 3.3: Comparison on the ATR test set.The symbol † marks the single-scale testing
result.

Methods pixel Acc. F.G. Acc. Precision Recall F1

ATR [154] 91.11 71.04 71.69 60.25 64.38
DeepLab [138] 94.42 82.93 78.48 69.24 73.53

PSPNet [7] 95.20 80.23 79.66 73.79 75.84
Attention [147] 95.41 85.71 81.30 73.55 77.23

DeepLabV3+† [71] 95.96 83.04 80.41 78.79 79.49
Co-CNN [139] 96.02 83.57 84.95 77.66 80.14
TGPNet [155] 96.45 87.91 83.36 80.22 81.76

CNIF [150] 96.26 87.91 84.62 86.41 85.51
SCHP(Ours)† 96.14 87.82 84.28 85.78 85.02
SCHP(Ours) 96.25 87.97 84.99 86.13 85.55

fine-grained semantic labels similar to LIP. The dataset contains 17,700 images which

are split into 16,000 for training, 700 for validation and 1,000 for testing.

Evaluation Protocols Following common practice, we mainly report three standard

metrics, including pixel accuracy (pixel acc), mean accuracy (mean acc), mean intersection

over union (mIoU). The mIoU is the main metric to generally judge the overall parsing

performance of the method. For ATR dataset, we report the average precision, recall and

F1-score in order to make a fair comparison with previous works.

Implementation Details We choose the ResNet-101 [5] as the backbone of the feature

extractor and use an ImageNet [156] pre-trained weights. And all compared methods

adopt the same backbone model for fair comparisons. Specifically, we fix the first three

residual layers and set the stride of the last residual layer to 1 with a dilation rate

of 2. In this way, the final output is enlarged to 1/16 resolution size w.r.t the original

image. We use 473×473 as the input resolution. Training is done with a total batch

size of 32. The initial learning rate is set as 7e-3. We train our network for 150 epochs

in total for a fair comparison, the first 100 epochs as initialization following 5 cycles

each contains 10 epochs of the self-correction process. During testing, unless otherwise

motioned, following general protocol [94, 150], we average the per-pixel classification

scores at multiple scales with flipping, i.e., the scale is 0.5 to 1.5 (in increments of 0.25)

times the original size.

3.3.2 Model-agnostic Study

We first validate the model-agnostic characteristic of our SCHP in collaborating with any

single person human-parsing frameworks. To this end, we choose four state-of-the-art

frameworks as strong baselines to illustrate the effectiveness of our SCHP, which are

briefly described below.
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Figure 3.4: Model-agnostic study. The mIoU performance with different state-of-the-art
models on LIP val set.

• DeepLabV3+ [71] is one of the most popular state-of-the-art models for the seman-

tic segmentation, which adopts an effective decoder module with atrous separable

convolution to refine the segmentation results. It contains rich semantic infor-

mation from the encoder module by applying spatial pyramid pooling, while the

detailed semantic segmentation results are recovered by the simple yet effective

decoder module.

• CE2P [94] is the winner solution for the human parsing tasks of the 2nd LIP

challenge, which cooperates the edge prediction with human parsing to accurately

predict the boundary area. CE2P employs an edge prediction branch to gener-

ate boundary-aware feature embedding, which is further concatenated with the

semantic-aware feature embedding to produce a refined human parsing prediction.

• OCR [56] is a competitive semantic segmentation model that focuses on the context

aggregation strategy. It utilizes the object-contextual representations, character-

izing a pixel by exploiting the representation of the corresponding object class,

achieving better performance than CE2P.

• CE2P+ is an extension of CE2P, which is firstly proposed in this work. Based

on CE2P, we make the following modifications. First, we additionally introduce

a tractable surrogate loss function for optimizing the mIoU directly followed by

[157]. Second, we introduce a regularization term by explicitly maintaining the

consistency between the parsing prediction and the boundary prediction.

We show the comparisons of ’w/’ and ’w/o’ self-correction mechanism in Fig. 3.4. It can be

observed that our SCHP is indeed a generic and model-agnostic approach, which brings
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Figure 3.5: Visualization of SCHP results on LIP val set. The first row shows the original
input images. The middle row shows the ground-truth labels. Different human categories
are shown in colors in the third row.

consistent performance gain regardless of the model itself. Particularly, by incorporating

with SCHP, DeeplabV3+, CE2P, OCR and CE2P+ have a mIoU performance improvement

of +3.16, + 2.97, +2.43 and +2.48, respectively. In the following, we denote the term SCHP

as the framework based on our CE2P+ model for comparison, and conducting all ablation

experiments using CE2P+ to verify the effectiveness of each proposed component of

SCHP.

3.3.3 Comparison with the State-of-the-art Approaches

We first compare the performance of our SCHP with other state-of-the-art methods

on LIP in Table 3.1. It can be observed that the proposed SCHP outperforms all the

other state-of-the-art methods, which well demonstrates its effectiveness. Particularly,

our SCHP outperforms the current state-of-the-art model [150] by a large margin of

1.62%, which is a significant improvement considering the performance at this level.

In addition, our SCHP achieves large gains especially for some categories with less

pixel-level annotations like scarf, sunglasses and some confusing categories such as dress,
skirt and left-right confusion. The gains are mainly from using both model aggregation

and label refinement during the self-correction process. Furthermore, the qualitative

comparison between the predicted results of SCHP and ground-truth annotations is

shown in Fig. 3.5. We can observe that our SCHP can achieve even better parsing results

than the original ground-truth ones for some images.

To validate the generalization ability of our method, we further report the compar-

isons on PASCAL-Person-Part dataset in Table 3.2 and on ATR dataset in Table 3.3.
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Figure 3.6: Examples from LIP train set during our self-correction process. Label noises
like inaccurate boundary, confused fine-grained categories, confused mirror categories,
multiple person occlusion are alleviated and resolved during the process. The boundaries
of our corrected label are prone to be more smooth than the ground-truth label. Label
noises are highlighted by white dotted boxes. Better zoom in to see the details.

It can be observed that our SCHP outperforms all the previous approaches. All these

results well demonstrate the superiority and generalization of the proposed SCHP.

3.3.4 Ablation Experiments

We perform extensive ablation experiments to analyze the robustness of SCHP against

different modules and the effect of each component in our SCHP. All experiments are

conducted on LIP benchmark.

The Robustness against Different Modules Except for alternating entire models,

we could also plug-and-play with various backbones and context encoding modules

using the CE2P+ framework. Fig. 3.7a shows SHCP with different backbones from

lightweight model MobileNet-V2 [158] to relatively heavy backbone HRNetV2-W48 [159].

It is noteworthy that the lightweight MobileNet-V2 achieves the mIoU score of 52.1,

which can be further enhanced to 54.1 benefiting from SCHP. This result is even better

than some previous results [94] achieved by ResNet-101. We note that deeper network

(18 vs. 50 vs. 101) tends to perform better. Regardless of different backbones, our SCHP

brings consistent gains of 2.1, 1.7 and 2.5 in terms of mIoU, respectively. Besides, we

further examine the robustness of our SCHP by varying the context encoding module,

as shown in Fig. 3.7b. We choose three different types of modules, including multi-

level global average pooling based module pyramid scene parsing network (PSP) [7],
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Figure 3.7: Robustness of SCHP against (a) different backbones and (b) context encoding
modules. Experiments are conducted on LIP val set.

multi-level atrous convolutional pooling based module atrous spatial pyramid pooling

(ASPP) [8] and attention-mechanism based module OCNet [55]. Despite the similar

basic performance of these three modules, our SCHP obtains mIoU gains of 2.5, 2.1, 1.7

for PSP, ASPP and OCNet, respectively. This further highlights the robustness of the

self-correction mechanism against different advanced segmentation modules.

Effect of Self-Correction In Table 3.4, we validate the effect of each component

in our SCHP, including the model aggregation (MA) process and the label refinement

(LR) process. When there are no MA and LR involved, our method degenerates to the

conventional training process. We can observe that the model aggregation and label

refinement mutually promote each other during the self-correction process. Concretely,

by only employing the MA process, the result shows a gain of 1.74 in terms of mIoU.

Meanwhile, the LR process can bring 1.26 improvement. We achieve the best performance

by simultaneously introducing these two processes and make an improvement of 2.48

over the baseline result. To better qualitatively understand the effect of our SCHP,

Fig. 3.6 shows the visualization of the generated pseudo-masks during the self-correction

cycles. Note that all these pseudo-masks are up-sampled to the original size and applied

argmax operation for better illustration. Label noises like inaccurate boundary, confused

fine-grained categories, confused mirror categories, multi-person occlusion are well

alleviated or partly resolved during the self-correction cycles. Unsurprisingly, some of the

boundaries of our corrected labels are restored to be more smooth than the ground-truth

labels. Therefore, the success of our SCHP can attribute to both model aggregation and
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Table 3.4: The effect of our proposed model aggregation (MA) and label refinement (LR)
strategy is evaluated on LIP val set.

Component
MA LR Pixel Acc. Mean Acc. mIoU

- - 87.68 68.79 56.88
✓ - 88.20 71.94 58.62
- ✓ 88.14 71.53 58.14
✓ ✓ 88.42 73.41 59.36

Table 3.5: The SCHP performance on Cityscapes & GTA5 Datasets.
Cityscapes GTA VComponent

mIoU ∆ mIoU ∆

w/o SCHP 77.82 - 72.73 -
w/ MA 78.75 +0.93 74.09 +1.36
w/ LR 78.01 +0.19 72.84 +0.11

w/ SCHP 78.91 +1.09 74.74 +2.01

label refinement. During the self-correction cycles, the model gets increasingly more

robust. Meanwhile, by exploring the dark information from pseudo-masks produced by

the enhanced model, the label noises are in turn corrected in an implicit manner.

Influence of Self-Correction Cycles We achieve the goal of self-correction by a

cyclically learning scheduler. The number of cycles is thus a virtual hyper-parameter for

this process. To make a fair comparison, we maintain the entire training cost unchanged,

i.e., the number of total training epochs within self-correction cycles is the same as that

of other methods [94, 150]. The performance curves are shown in Fig. 3.8. It is evident

that the performance consistently improves during the self-correction process, with the

largest improvement after the first cycle and tendency saturates in the end. It should

be noted that our SCHP can achieve slightly higher performance when applying more

training epochs. Here we train SCHP with 10 self-correction cycles, the performance

slightly boosts to 59.58 in terms of mIoU. However, we keep the cycle number as 5

to achieve better a trade-off between computational cost and performance. From the

performance curve, we also intelligibly demonstrate the mutual benefit of the model

aggregation and the label refinement process.

3.3.5 Discussions

How important is the label noise reduction? To verify the importance of reduction of

label noise, we directly train the model with the final refined annotations (one-hot label

after argmax) derived from the last self-correction cycle. Compared to model training with

the original label, the model achieves 58.13 in terms of mIoU, leading to 1.25 performance

boost. This result directly validates the importance of the label noise reduction in our

30



3.3. EXPERIMENTS: SINGLE-PERSON HUMAN PARSING

0 1 2 3 4 5
Cycle

57.0

57.4

57.8

58.2

58.6

59.0

59.4

59.8

60.2
m
Io
U(
%
)

SCHP
MA
LR

0 1 2 3 4 5
Cycle

87.6

87.8

88.0

88.2

88.4

88.6

88.8

Pi
xe
l A

cc
ur
ac
y(
%
)

SCHP
MA
LR

0 1 2 3 4 5
Cycle

68.5

69.5

70.5

71.5

72.5

73.5

74.5

75.5

M
ea

n 
Ac

cu
ra
cy
(%

)

SCHP
MA
LR

Figure 3.8: Performance curves w.r.t different training cycles. The mIoU, pixel accuracy
and mean accuracy are depicted in the left, middle and right parts. All experiments are
conducted on LIP val set.

SCHP.

Can SCHP generalize to clean data? Although SCHP could achieve promising perfor-

mance improvement by applying the self-correction process to noisy datasets, we reveal

that it still works when the ground-truth is relatively clean. To validate our argument,

we conduct additional experiments on Cityscapes [79] (high quality annotations) and

synthetic dataset GTAV [160] (perfect clean) using Deeplabv3+. We divide the original

GTAV dataset into 5 splits, 4 as the training set and 1 as the validation set. As shown

in Table 3.5, consistent improvement can be observed. We consider the reasons are as

follows. First, the online model aggregation process could serve as a self-generation

ensembling, which could lead to better performance and generalization. Second, the

online label refinement process benefits from discovering the dark knowledge using

pseudo-mask instead of the one-hot ground-truth pixel-level label.

How is the effect of SCHP with different noise ratios? To better understanding

the effect of SCHP against different noise ratios, we randomly flip total p% pixels to

other classes as artificial label noise on the synthetic dataset, i.e., GTAV, which is with

perfect ground-truth labels. In Fig. 3.9, we illustrate the performance corresponding to

0%, 10%, 20% label noise. From the experiments, we observe that the SCHP leads to

more performance gains under the scenarios of more label noise. This observation can

further prove the effectiveness of our SCHP in coping with noisy data.
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Figure 3.9: Performance w.r.t different noise ratios on GTAV dataset.

3.4 Experiments: Multiple-person and Video Human
Parsing

Our SCHP is a generic mechanism for tackling human parsing, which can be easily

extended for more challenging scenarios. Here we demonstrate the performance of SCHP

in addressing multiple-person human parsing tasks and video human parsing tasks.

Following the framework described in § 3.2.3, we conduct extensive experiments to

evaluate the benefit of SCHP on multiple-person and video human parsing benchmarks.

3.4.1 Experiment Settings

Datasets For the multiple-person human parsing task, we conduct experiments on

two popular large-scale benchmarks, i.e., Multi-Human Parsing v2 (MHP) dataset [96]

and Crowd Instance-level Human Parsing (CIHP) dataset [141]. MHP dataset contains

25,403 manually annotated multiple-person images with 58 fine-grained semantic labels,

dividing into 15,403 images for train set, 5,000 images for val and 5,000 images for test

set. CIHP dataset contains 38,280 diverse multiple-person images with 19 fine-grained

semantic categories, splitting into 28,280 images for train set, 5,000 for val set and

5,000 images for test set.

For the video human parsing task, we employ the Video Instance-level Parsing (VIP)

dataset [100]. VIP is a large-scale video-based multi-person human parsing benchmark

with 404 videos in total. The category types of the semantic part labels in VIP are

identical to those in CIHP. The dataset is divide into 304 sequences for train, 50
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Table 3.6: Components analysis on val set of CIHP.
Components

mIoU APr
0.5 mAPr AP p

0.5 mAP p PCP0.5 mPCP

Global Branch Only 62.41 44.34 39.58 48.89 44.55 47.74 40.82
+Local Branch 65.09 50.29 44.74 58.67 49.29 55.38 45.89

+ finetuning 65.47 54.71 48.08 62.76 51.05 58.71 48.04
+ SCHP 67.47 58.94 52.00 65.59 52.74 61.28 50.12

Table 3.7: Comparison with state-of-the-arts on VIP val set. Our SCHP outperforms the
other methods by a large margin. Specially, superior APr scores at high IoU thresholds
are achieved by our method.

APr
h APr

Method mIoU
0.5 0.6 0.7 0.8 0.9 mean 0.5 0.6 0.7 0.8 0.9 mean

DFF [163] 35.30 89.90 86.40 74.10 - - 53.20 20.30 15.00 9.80 - - 20.30
FGFA [99] 37.50 90.60 88.50 81.00 - - 57.90 24.00 17.80 12.20 - - 23.00

ATEN [100] 37.90 90.80 86.70 81.60 - - 59.90 25.10 18.90 12.80 - - 24.10
SCHP 63.19 88.98 86.23 82.31 71.21 33.90 67.57 57.77 52.93 46.31 34.14 12.40 51.41

sequences for val set and 50 sequences for test set, respectively.

Evaluation Protocols We choose the mean Intersection over Union (mIoU) for mea-

suring instance-agnostic semantic-level human parsing performance. We adopt average

precision based on region (APr) [161], average precision based on part (AP p) [95] and

percentage of correctly parsed semantic parts (PCP) [96] for evaluating instance-level

human parsing performance. We report the mean value (denote with a prefix m) of APr,

AP p and PCP at IoU threshold varying from 0.1 to 0.9 with a step size of 0.1, and the

value at 0.5 IoU threshold (denote with subscript 0.5) is also reported. For video human

parsing, beyond the above metrics, the mean value of average precision is additionally

utilized to measure the whole human instance mask, denoted as APr
h [100].

Implementation Details For the human detector, we adopt the implementation

of Mask R-CNN [162]. In our experiments, the human detector is further fine-tuned

on the corresponding datasets by transforming the human masks into bounding box

annotations. During testing, bounding boxes with confidence scores greater than 0.7 are

considered as candidates. Then, a spatial area threshold of 0.01 is utilized to filter out

some tiny candidate boxes that usually could be considered as background noise. For

the local and global human parsing branches, we adopt the same network architecture

and configuration as SCHP used in the single-person human parsing task. All input

images or video frames are resized to 473×473 before feeding into the branches. In all

experiments, we train all three single human parsing branches for 150 epochs with a

total batch size of 32.
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Figure 3.10: Visualization results on MHP v2.0, CIHP and VIP val sets. All our results
are depicted on the left part of each pair, while corresponding ground-truth labels are
shown on the right side.

3.4.2 Quantitative Results

Multiple-person human parsing In Table 3.9, we report SCHP performance on MHP

val set comparing with competing state-of-the-art methods. It can be observed that the

mIoU of our SCHP significantly outperforms the state-of-the-art approaches by more

than 4.1, which can well validate the effectiveness of our SCHP for multiple-person

human parsing. Besides, our proposed method also achieved superior results on the

instance-aware metric, outperforming NAN-CRF [97] and Parsing R-CNN [164] in terms

of mAP p and PCP0.5, respectively. In Table 3.8, following previous practice, we report

the performance of mIoU , APr
0.5 and mAPr results on CIHP dataset. Our SCHP reaps

quite promising results and outperforms all other methods. Comparing with the former

state-of-the-art, our SCHP defeats BraidNet [149] in terms of mIoU(66.29 vs. 60.62) and

mAPr(51.08 vs. 43.59) by a large margin.

To further analyze the effect of each component in our multiple-person human parsing

framework, ablation experiments are conducted on CIHP benchmark, as illustrated in

Table 3.6. We can observe that when combining both global and local branches, the

model gets the best performance comparing to the one with only global or local branches.

This could be considered as a kind of intra-model ensembling with the same network

architecture but different input sources. The global branch takes the whole image as the

input and copes with the instance-agnostic parsing under the complex scenes. Meanwhile,

the local branches take the cropped images from the human detector as input and thus

distinguish the human instances from each other. By fine-tuning the human detector, a

great performance boost from instance-aware metrics, i.e., APr, AP p and PCP can be
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Table 3.8: Comparison with state-of-the-arts on CIHP dataset.
Method subset mIoU APr

0.5 mAPr

Parsing R-CNN [164] val 61.10 - -
PGN [141] test 55.80 35.80 33.60

Graphonomy [98] test 58.58 - -
CE2P [94] test 59.50 48.69 42.83

BraidNet [149] test 60.62 48.99 43.59
SCHP val 67.47 58.94 52.00
SCHP test 66.29 57.58 51.08

Table 3.9: Comparison with state-of-the-arts on MHP val set.

Method mIoU AP p
0.5 mAP p PCP0.5 mPCP

Mask R-CNN [6] - 14.50 33.51 25.12 -
NAN [96] - 24.83 42.77 34.37 -

NAN-CRF [97] - 27.92 44.95 36.63 -
Parsing R-CNN [164] 41.80 32.50 42.70 47.90 -

Graphonomy [98] 34.05 - - - -
CE2P [94] 41.11 34.47 42.70 43.77 41.06

SCHP 45.21 35.10 45.25 48.02 42.30

observed. Most importantly, with the benefit of SCHP, great improvements are achieved.

Video human parsing To further validate the generalization ability of our solution, we

extend the framework from image multiple human parsing to video human parsing tasks.

In Table 3.7, we report the results on VIP val set comparing with other state-of-the-art

methods. Our proposed SCHP maintains a large-margin leading edge on all main metrics.

Comparing with state-of-the-art video human parsing method ATEN [100], superior

improvements of +25.29, +7.67 and +30.31 in terms of mIoU, mAPr
h and mAPr are

achieved, respectively. Specially, to better demonstrate the superiority of our proposed

method, we also report the results on APr
h and APr at high IoU thresholds 0.8 and 0.9.

It can be observed that our proposed method gets 12.40 APr at IoU threshold of 0.9. This

reflects a promising performance and higher parsing accuracy of ours, considering that

FGFA [99] and ATEN [100] only get 12.20 and 12.80 APr at IoU threshold of 0.7.

3.4.3 Qualitative Results

Several challenging images or frames from MHP, CIHP and VIP datasets are depicted

in Fig. 3.10. Additionally, we visualize the results and corresponding annotations on

the same row, including the human instance masks, instance-agnostic parsing results

and instance parsing results. In the first row of Fig. 3.10 (c), noisy annotations are

provided, i.e., four of five models’ hair (colored in blue) are incorrectly annotated as

cap/hat category (colored in red). Nevertheless, based on the high robustness of our

proposed method, parsing results with higher quality can be provided. Not only the
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semantic categories of each pixel can be identified correctly, but more smoothly edges are

maintained. Similar results can be observed from many other images on both multiple

human parsing and video human parsing datasets. This reveals our proposed method

has the superiority of self-correction and training with some noisy data. Results from

Fig. 3.10 also demonstrate the effectiveness of coping with many challenging conditions,

such as crowed senses, appearance variability, occlusions and etc.

3.5 Summary

In this section, we tackle the problem of human parsing task under learning with label

noise scenario, which is never explored before. From a new perspective, we unravel

the problem by exploring the effect of model aggregation, label refinement and their

interaction. Based on our investigation, we present a simple yet effective, generic, model-

agnostic mechanism called SCHP for human parsing task to deal with the label noise

during training process by self-correction. We validate the effectiveness and generaliza-

tion ability of our method for all human parsing tasks, including single-person human

parsing, multi-person human parsing and video human parsing. Benefiting from our

SCHP, a consistent performance boost is observed for all three tasks, leading to the new

state-of-the-art performance for all large-scale human parsing benchmarks. Incorporat-

ing advanced techniques, our overall system ranks 1st for all human parsing tracks for

the LIP challenge at CVPR2019. We hope our work could serve as a start point and

facilitate future research.
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META PARSING NETWORKS: TOWARDS GENERALIZED

FEW-SHOT SCENE PARSING WITH ADAPTIVE METRIC

LEARNING

4.1 Preface

Semantic segmentation [8, 137] aims at assigning a unique semantic label to each pixel

in the given image. Recently, deep learning [5, 156] has significantly advanced the

development of the semantic segmentation. Many promising architectures based on

fully convolutional networks are proposed to tackle such a challenging task, including

FCN [137], PSPNet [7] and DeepLab series [8, 71]. However, the success of advanced

architectures heavily relies on a large number of training images with pixel-level an-

notations, which are often expensive to be obtained. Moreover, the current semantic

segmentation scheme is usually close-set based, i.e., all categories are pre-defined before

training, leading to the learned segmentation models cannot be generalized to the novel

(unseen) categories.

To tackle the aforementioned issues and enable the segmentation models to equip

with good generalization ability to unseen categories, meta-learning provides promising

solutions. In general, meta-learning, also known as learning to learn, targets on learning

new concepts or skills fast with only a few training samples. Some few-shot segmentation

approaches [66, 101, 106] have been proposed to expand semantic segmentation with
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Figure 4.1: Compared to conventional few-shot segmentation task, the generalized
few-shot scene parsing aims to segment complex scene scenario with multiple visual
categories, where both seen and unseen categories are simultaneously considered. During
meta-training stage, we first train the meta parser with the annotated images only on
seen categories (e.g., road and vegetation), as indicated by the green colors. During
meta-testing stage, given only one annotation image (one-shot) as guidance, the learned
meta parser is then applied to segment both seen categories and unseen ones (e.g., car
and person , as indicated by the blue colors.). Our target is to learn a meta parser that
can generalize to both seen and unseen categories.

the ability to segment unseen categories with few annotation samples. A standard

setting of the current few-shot segmentation usually follows: feed one support image and

one query image into the network simultaneously and segment the query image using

the support image as the guidance. Although impressive progress has been made, the

current explorations are only solving segmentation with simple objects (usually one or

two categories) instead of scene parsing with a complex fully annotated image, which is

actually a more realistic yet challenging task.

In this work, we advance the few-shot segmentation paradigm towards a more chal-

lenging yet general scenario, i.e., generalized few-shot scene parsing. Under such a

setting, we take a fully annotated image as guidance and perform the segmentation to

all pixels in a query image (as illustrated in Fig. 4.1). Our mission is to study a robust

segmentation network from the meta-learning perspective so that pixels from both seen

and unseen categories could be well recognized. Compared with object-based few-shot

segmentation, our setting raises two additional challenges. First, we need to explore more

effective metric learning solutions to generate discriminative prototypes for dozens of

categories in the given support image, rather than only one or two categories considered
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by the object segmentation setting. Second, the segmentation model is expected to pro-

duce class-aware feature representations, making the model have a strong generalization

ability to multiple unseen categories, simultaneously.

To tackle these problems, in this work, we present a generic framework, named Meta

Parsing Networks (MPNet). Our MPNet mainly contains two simple yet effective modules,

i.e., Adaptive Deep Metric Learning (ADML) module and the Contrastive Inter-class

Distraction (CID) module. To be specific, the ADML module is responsible for modeling

the relationship between the pixels in the query image and the annotated ones in the

support image. We adaptively leverage non-local operations to generate discriminative

prototypes of each category within the support image, which is then employed to learn a

deep metric comparison with the query image. Moreover, we introduce a CID module,

which can be considered as a regularization item to encourage the feature discrepancy of

different categories to be as larger as possible. In this way, our MPNet will be imposed to

produce class-sensitive feature representations, resulting in better generalization ability

to both seen and unseen categories, accordingly.

Our MPNet is a generic framework for performing the generalized few-shot scene

parsing task. We conduct experiments on two newly constructed generalized few-shot

scene parsing benchmarks, called GFSP-Cityscapes and GFSP-Pascal-Context. Extensive

ablation studies and comparisons well demonstrate the effectiveness and generalization

ability of our proposed MPNet. Even though this work takes one step closer to the

generalized few-shot scene parsing task, there is actually still a long way to go. We hope

our efforts can motivate more researchers to design more robust meta-learning-based

algorithms and benefit the research of few-shot scene parsing in the future.

4.2 Task Definition

Few-shot learning splits the input data into an annotated support set, which provides

supervised signal to guide the learning process, and an unannotated query set on which

to do the task. Former works [10, 14] tend to address the few-shot learning problem

by re-casting it into a meta-learning paradigm. The meta-learning paradigm includes

meta-train and meta-test as two phases. Meanwhile, the class sets are disjoint between

Cseen and Cunseen. In the meta-train phase, to simulate and encourage a fast adaptation

and task generalization ability, the episodic training scheme [10] is adopted. For each

episode, the model is trained only using a sampled subset of Cseen. In the meta-test phase,

the generalization ability of the learned model is examined on samples from Cunseen.
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Figure 4.2: An overview of our MPNet. The ADML module aims to adaptively learn a
transferable deep metric for dense comparison between support and query images. The
CID module aims to encourage the feature discrepancy of different categories.

Inspired by the conventional setting of few-shot learning, we introduce and formalize

the protocols of generalized few-shot scene parsing as illustrated in Fig. 4.1. Similar

to few-shot object segmentation [66, 165], the training set Dtrain is only constructed

from Cseen. Differently, the testing set Dtest is constructed from both Cseen and Cunseen

rather than Cunseen as adopted by few-shot object segmentation. We aim to leverage

the Dtrain to learn a meta parser, which can be well generalized to perform open-set

evaluation. We follow the common practice of few-shot learning, and conduct episodic

training/testing on Dtrain and Dtest. Specifically, every episode is constructed by a set

of support images S and a set of query images Q. In general, the support set S has 1

to K 〈image,mask〉 pairs, which provides guidance to segment the unlabeled image in

Q. Different from the few-shot object segmentation that each support image represents

one unique semantic class, several classes often appear within one support image in our

setting. Additionally, dozens of classes may span on multiple support images. Therefore,

given the Dtrain = {(S i,Qi)}Ntrain , our mission is to apply the learned knowledge from

Dtrain to perform scene parsing on Dtest = {(S i,Qi)}Ntest , where Ntrain and Ntest are

the number training/testing episodes, respectively. Based on the number of pairs given

in the support set, the few-shot open-set scene parsing can be instantiated as K-shot

segmentation learning task, accordingly.
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4.3. META PARSING NETWORKS

4.3 Meta Parsing Networks

Overview We propose the Meta Parsing Networks (MPNet) to tackle the generalized

few-shot scene parsing in this work, as shown in Fig. 4.2. The key idea of our MPNet is

to parse the scene by exploring the dense feature comparison from the metric learning

perspective without the need for performing further fine-tuning steps. Without loss of

generality, we begin with the illustration of our model in a one-shot setting. Our MPNet

consists of two basic modules: the Adaptive Deep Metric Learning module (ADML) and

the Contrastive Inter-class Distraction (CID) module. The ADML module aims to learn
a transferable deep metric for dense comparison between support and query images.

Instead of comparing the feature based on a human pre-defined metric (e.g., as cosine or

euclidean), we make the network adaptively learn a generalizable deep metric which

adapts fast to novel unseen class. In addition, to better impose the feature discrepancy

of different categories to be as larger as possible, we further introduce the CID module

to conduct the contrastive learning inspired by Maximum Mean Discrepancy [166].

Moreover, our MPNet can be easily extended from one-shot learning to K-shot learning

without much computation overhead.

4.3.1 Adaptive Deep Metric Learning

Support and Query Embedding In one-shot setting, one support image and its

corresponding mask are leveraged to guide the segmentation of the query image in each

training episode. Both the support and the query images are first encoded into feature

embeddings through a dedicated deep encoder as shown in Fig. 4.2. The deep encoder

aims to harvest comprehensive representations from convolutional neural networks for

further deep metric learning. Denote the output 2D embedding maps for the support

image and the query image are FS ∈RH×W×C and FQ ∈RH×W×C, where H, W and C are

the height, the width and the channel numbers, respectively. In our implementation,

we take the DeeplabV3 [8] as the basic segmentation framework of our MPNet and the

ResNet101 [5] is employed as the backbone.

Adaptive Prototype Generation (APG) As a full image, it usually contains complex

categories from both stuff (e.g., sky, road, building, etc.) and things(e.g., person, car, bus,

etc.) with different appearances from scales, shapes or locations. We need to firstly

acquire the class-specific feature embeddings from the support image for performing

the following deep metric comparison. Previous practices [66, 165] adopt class-aware

average pooling to obtain the representative class-specific embedding as the prototype of
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Figure 4.3: Illustration of the Adaptive Prototype Generation.

a class. However, we argue that simply pooling all the pixel-wise features into one single

vector for a specific category will eliminate the rich diversity information among different

pixels, which is harmful for those categories with similar appearances. This situation

will get even worse in the scene parsing scenario where all the pixels from multiple

categories require to be joint considered. To fully exploit the rich diversity information

embedded in the class-specific pixels, we propose the APG to measure the similarities

between the embedding maps FS and FQ, using pixel-to-pixel comparison. Our APG

is motivated from the non-local operations adopted by current advanced self-attention

techniques [167, 168]. Concretely, given a support image embedding maps FS and its

ground-truth mask MS . The corresponding embedding collection of category c is selected

via

pS
c = {FS

(x,y)|1[MS
(x,y) = c]}, (4.1)

where (x, y) indicates the location and 1(·) is an indicator function to select its correspond-

ing features. The selected features are pS
c ∈Rnc×C where nc =∑

(x,y) 1[MS
(x,y) = c] indicates

the number of pixels. During the adaptive feature prototype generation process as shown

in Fig. 4.3, to save computation cost and memory usage, we first project the selected

support embeddings pS
c into key maps kS and value maps vS by 1×1 convolutions

Wφ,Wg. Also the query features FQ are also mapped into the key maps kQ by 1×1

convolutions Wθ

kS =Wφ(pS
c ), vS =Wg(pS

c ), kQ =Wθ(FQ), (4.2)
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where the channel number is all reduced from C to the C′. Then, adaptive soft attentions

are first computed by the matrix multiplication between all query key in kQ and the

selected embeddings key kS . Finally, the adaptive prototype for class c is retrieved by

applying the softmax normalized weighted summation

vQ
i = 1

Z

nc∑
j=1

f
(
kQ

i ,kS
j

)
vS

j , (4.3)

where i, j are the location index of embedding in query maps and the selected support em-

bedding collection, respectively. The normalizing factor is defined as Z =∑nc
j=1 f

(
kQ

i ,kS
j

)
.

The similarity calculation is implemented by dot product as

f
(
kQ

i ,kS
j

)
= 1p

C′ exp
(
kQ

i ·kS
j

)
. (4.4)

The query value vQ is further mapped back to the original channel number by 1×1

convolution Wh, obtaining the adaptive generated prototype embedding Ac, accordingly.

Adaptive Feature Comparison After the adaptive prototype generation, we concate-

nate the generated prototype embedding maps Ac with the query embedding maps FQ .

Then, the concatenated feature maps go through several convolutional blocks to learn a

deep metric for comparing whether the query features belong to the specific category or

not. Such a feature comparison mechanism makes the meta-parser equipped with the

function of distinguishing the pixels related to the selected category from all pixels in

the query image. To further enhance the comparison process and make the produced fea-

tures adapted to class-specific parsing, we additionally introduce the Adaptive Instance

Normalization (AdaIN) layer motivated by the recent progress in style transfer [135],

as shown in the ADML module in Fig. 4.2. To be specific, we parameterize the deep

metric comparison by the guidance from the mean category prototype pS
c . We forward

the pS
c by fully connected layers to learn a set of affine parameters γ,β in the instance

normalization layer, where γ,β ∈ RC. In this way, the meta-parser will be encouraged

to learn class-sensitive feature embeddings for conducting the comparison, leading to a

better parsing result for the selected category.

Different from the few-shot object segmentation that only considers one or two cate-

gories, the scene parsing task requires the meta-parser to process dozens of categories,

simultaneously. To efficiently and systematically deal with a variable number of cate-

gories, we dynamically instantiate once for each category with our adaptive deep metric

learning module as shown in Fig. 4.4. Concretely, the inputs to the ADML module for

each category are i) the query image embedding maps FQ and ii) the selected embedding
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Figure 4.4: Dynamic instantiation for multiple categories .

collection pS
c . We cyclically conduct the adaptive feature comparison for each category

until all the categories in the given support image are considered. The feature maps

calculated by each comparison are concatenated together to conduct the final segmen-

tation prediction for all categories. Although the ADML module needs to run multiple

times, the major computation cost actually occurs in extracting the features from the

backbone which allows our MPNet scale well to complex scene scenarios. Formally, a

one-dimensional feature map of logits is extracted for each category. We stack them

together as M̃Q ∈RH×W×C, feeding to the classifier and apply the cross-entropy loss for

the optimization

Lseg =− 1
HW

∑
x,y

∑
c
1
[
MQ

(x,y) = c
]

log M̃Q
(x,y),c. (4.5)

4.3.2 Contrastive Inter-class Distraction

Different from the few-shot object segmentation, there exist dozens of complex visual

categories with different shapes and location in the support image. The feature ambiguity

for those categories with similar appearances will bring additional negative effects to

the adaptive deep metric learning. Intuitively, if the feature discrepancy of different

categories from the support image could be enlarged, the subsequent adaptive deep

metric learning will be implicitly benefited. To this end, we further propose a Contrastive

Inter-class Distraction (CID) module to augment the ADML for leaning a better meta

parser. Our CID is partly inspired by the Maximum Mean Discrepancy [166], which

models the difference between two distributions in the Reproducing Hilbert Kernel Space.

Without the need of knowing the concrete semantic meaning of two visual categories

cm and cn, we select their corresponding feature collections from the support feature

embeddings by Eq (4.1), i.e., pS
cm

and pS
cn

. Then we calculate the difference between
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these two feature distribution by

L mmd
(cm,cn) =

1
n2

cm

ncm∑
i=1

ncm∑
j=1

k
(
pS

cm,i, pS
cm, j

)
+ 1

n2
cn

ncn∑
i=1

ncn∑
j=1

k
(
pS

cn,i, pS
cn, j

)
− 2

ncm ncn

ncm∑
i=1

ncn∑
j=1

k
(
pS

cm,i, pS
cn, j

)
,

(4.6)

where we choose the radial basis function kernel with bandwidth σ as the kernel function

k, defined as

k
(
x,x′)= exp

(
−

∥∥x−x′∥∥2
2

2σ2

)
. (4.7)

Suppose there totally exists N classes in the support image set, we calculate the distri-

bution difference pair-wisely and sum all these item together to get our CID loss

Lcid =− 1
N(N −1)

N∑
c=1

N∑
c′=1
c ̸=c

L mmd
(c,c′) . (4.8)

By optimizing the CID loss, we explicitly model the inter-class separability. Our CID

loss is non-parametric and has no assumption in knowing the semantic meaning of each

class. These characteristics make the CID be general in tackling the generalized few-shot

scene parsing task.

4.3.3 Meta-training & Meta-testing

Meta-training Our MPNet is joint trained in an end-to-end manner by considering two

loss functions for the optimization, i.e.,

L (θ)=Lseg +λLcid, (4.9)

where Lseg and Lcid are the loss functions for performing the adaptive deep metric

learning (as defined in Eq (4.5)) and contrastive inter-class distraction (as defined in

Eq (4.8)), respectively. λ is the weight of the discrepancy regularization term, which is

experimentally set as 0.1 in this work. θ indicates the learned parameters of our MPNet.

As shown in the left of Fig. 4.1, only classes from the seen categories (as indicated by

the green colors) are selected during the training and other classes (as indicated by the

black color) that play as the unseen categories are masked, thus do not participate in

optimization. For each training episode, we construct pairs of images as the inputs, one

of which serves as the support image and the other one is the query image accordingly.
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Meta-testing As shown in the right of Fig. 4.1, both the seen and the unseen (as

indicated by the blue colors) categories are considered during the meta-testing stage.

For each query image from the testing set, we choose the image that includes the same

categories as its support counterpart. Based on the number of support images, we report

the results of both 1-shot and 5-shot settings. In addition, to verify the generalization

ability of our MPNet, we also report the results on both seen and unseen categories.

4.4 Experiment

In this section, we conduct extensive experiments to evaluate our Meta Parsing Networks,

trying to answer one central question – how is the generalization ability of the Meta
Parsing Networks?

4.4.1 Generalized Few-shot Scene Parsing Benchmarks

As currently there are no datasets targeting at the Generalized Few-shot Scene Parsing

(GFSP) task, we propose two benchmarks, namely GFSP-Cityscapes and GFSP-Pascal-
Context to evaluate the performance of MPNet. The two benchmarks are built upon

the Cityscapes Dataset [79] which focuses on the urban scene parsing scenario and

Pascal-Context Dataset [82] which focuses on the realistic scenes.

Table 4.1: GFSP-Cityscpaes benchmark splits. We only list the unseen categories, all rest
are seen categories.

GFSP-Cityscapes Unseen Categories
split1 road,wall, traf f ic sign, sky, rider,bus,motorcycle
split2 sidewalk, f ence, pole, terrain, car,bicycle
split3 building, traf f ic l ight,vegetation, person, truck, train

GFSP-Cityscapes Benchmark The Cityscapes dataset consists of images covering

19 urban scene categories. To simulate an generalized few-shot scene parsing setup,

we cyclically divide all categories into three different {seen/unseen} split as listed in

Table 4.1. During the meta-training, both the support and query images are sampled

from the training set. We mask all the unseen categories in the original annotation thus

only the seen categories are considered for training. During the meta-testing, we take

images from the original validation set as queries and both seen and unseen are required

to be predicted. Previous practice [66] demonstrates that it easily leads to relative large

variance by randomly sampling only few episodes for the meta-testing. To alleviate the
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unstable evaluation as much as possible, in our experiments, we report 5 runs using 5

different fixed support images sets. Note that the support images during meta-testing

are never seen during meta-training.

GFSP-Pascal-Context Benchmark The Pascal-Context dataset is a challenging scene

parsing dataset that contains 59 semantic classes. The training set and validation set

consist of 4,998 and 5,105 images, respectively. Upon this dataset, we set the co-existing

14 categories in cityscapes dataset as the unseen categories, the rest classes as the seen

categories. By this seen/unseen split, we can evaluate the our generalized few-shot scene

parsing performance not only on the GFSP-Pascal-Context Benchmark itself, but also

give possibility for evaluating the cross-benchmark transfer setup from GFSP-Pascal-

Context to GFSP-Cityscapes.

Evaluation Metric Some former few-shot object segmentation practices [169, 170],

they ignore the image categories and only calculate the class-agnostic mean of foreground

IoU and background IoU over all test images. However, in the generalized few-shot scene

parsing task, there may have different classes in the support image, the number of

pixels in different classes is not balanced. Ignoring the class categories will lead to a

biased performance for class with more pixels. Thus, in all of our experiments, we choose

the mean intersection-over-union (mIoU) metric over seen/unseen categories to better

evaluate the performance. Results are reported by averaging over 5 runs.

Extension from one-shot to few-shot To maintain simplicity, we describe our MPNet

only for one-shot setting. However, one can easily extend MPNet from one-shot to K-shot

setting. Comparing with one-shot learning which has only one support image, K-shot

learning contains K images in the support set which contains more abundant guidance

information. For the K-shot testing, previous method [101] applies one-shot method

independently to each support example and fuse individual predicted results at the

image level. In contrast, we can effectively fuse the information from multiple support

examples with only once forward thanks to our adaptive prototype generation mechanism.

Particularly, we merge the selective embedding collection pS
c in Eq 4.1 together to enlarge

the feature samples.

Baseline Methods. Since the generalized few-shot scene parsing is a new task, we

construct the following baselines to examine the effectiveness of our proposed MPNet.

• Mask Siamese. Siamese Network [11] predicts whether two inputs belong to the

same class or not, showing good performance on few-shot image classification.

Followed by [101], we adapt this method using the extracted dense features to

train the network for pairwisely dense pixel verification.
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Table 4.2: The comparison on GFSP-Cityscapes benchmark.

Method
1-shot 5-shot

∆
split1 split2 split3 mean split1 split2 split3 mean

Se
en

Mask Siamese [11] 51.6 52.3 49.7 51.2 51.3 53.0 50.1 51.5 0.3
Mask Prototype [13] 57.3 56.3 50.1 54.6 59.0 57.5 51.5 56.0 1.4
MPNet Init 29.8 28.4 27.2 28.5 32.6 31.8 30.9 31.8 3.3
PANet [66] 59.1 57.8 51.1 56.0 60.2 59.1 52.6 57.3 1.3
MPNet(Ours) 61.8 57.6 53.5 57.6 65.0 60.4 55.1 60.2 2.6

U
nS

ee
n

Mask Siamese [11] 18.4 18.1 20.3 18.9 19.7 18.0 20.9 19.5 0.6
Mask Prototype [13] 24.3 19.8 21.7 21.9 27.8 23.0 25.1 25.3 3.4
MPNet Init 22.9 19.8 20.3 21.0 27.1 23.3 24.2 24.9 3.9
PANet [66] 25.9 20.5 21.0 22.5 28.1 23.5 24.2 25.3 2.8
MPNet(Ours) 28.7 20.7 25.7 25.0 32.8 27.7 29.2 29.9 4.9

• Mask Prototype. Prototypical Networks [13] computes the mean embedding of

support images for each class. Followed by [66, 165], we adapt this method to

few-shot segmentation by masked average pooling the corresponding class features

as the prototype. The query mask is calculated by a cosine metric from each pixel

in the query image to every prototype in the support set.

• MPNet-Init. In our MPNet implementation, we adopt the pre-trained model on

ImageNet [156]. Although all images in our meta-testing phase are never seen

during the meta-training phase, some unseen categories may have partial relation

or overlap with some ImageNet visual concepts. To better disentangle this effect,

we fixed the pre-trained model and only the parameters from the ADML module

are updated during the meta-training phase.

• PANet. PANet [66] is one of the state-of-the-art approaches in few-shot object

segmentation with publicly available code. We directly extend this method for our

generalized few-shot scene parsing setting. Compared with our MPNet, this work

adopts a fixed cosine metric and the relation among all categories are not explored.

Note that all methods adopt the same encoder as MPNet to make a fair comparison.

4.4.2 Generalization Ability of MPNet

We conduct extensive experiments to make a comparison between our MPNet and other

baseline methods. For all the referred Tables in this subsection, the performance is

reported as the mean mIoU with five runs and ∆ denotes the performance gain between

1-shot and 5-shot learning.
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Table 4.3: The comparison on GFSP-Pascal-
Context benchmark.

Seen Categories Unseen Categories
Method 1-shot 5-shot ∆ 1-shot 5-shot ∆

Mask Siamese [11] 24.4 24.6 0.2 17.1 17.4 0.3
Mask Prototype [13] 30.8 32.6 1.8 24.2 26.4 2.2
MPNet Init 28.1 30.1 2.0 23.4 25.7 2.3
PANet [66] 32.1 33.8 1.7 25.2 27.7 2.5
MPNet (ours) 35.3 37.9 2.6 28.7 32.2 3.5

Table 4.4: The comparison of cross-
domain experiments from GFSP-
Pascal-Context to GFSP-Cityscapes
benchmark.

Unseen Categories
Method 1-shot 5-shot ∆

Mask Siamese [11] 13.1 13.4 0.3
Mask Prototype [13] 17.9 20.7 2.8
MPNet Init 16.4 19.3 2.9
PANet [66] 18.7 21.3 2.6
MPNet (ours) 20.3 23.6 3.3

Does the MPNet generalize on unseen categories? We show the qualitative results

of our MPNet both under 1-shot and 5-shot settings on GFSP-Cityscapes benchmark in

Table 4.2. As can be observed, MPNet consistently outperforms the other models by a

large margin across different seen/unseen splits, especially on the unseen categories.

Concretely, for one-shot setting, MPNet outperforms the previous state-of-the-art model

PANet by 1.6% on seen categories and 2.5% on unseen categories, respectively. Our

MPNet achieves better generalization ability by exploring, 1) an adaptively learned deep

metric for dense pixel comparison and 2) discovering the inter-class relation simulta-

neously. In comparison, we argue that a learned deep metric generalizes better than

a fixed metric. This finding is also consistent with [14]. By endowing a learned metric,

MPNet outperforms the Mask Siamese with L1 metric (57.6 vs. 51.2), Mask Prototype

(57.6 vs. 54.6) and PANet (57.6 vs. 56.0) with cosine metric for dense pixel comparison.

Besides, other methods only target on object segmentation by applying class-agnostic

segmentation separately. MPNet overcomes this weakness by discovering the inter-class

relationship simultaneously. Table 4.3 shows the comparison on the GFSP-Pascal-Context
benchmark. We can observe that MPNet still outperforms the other baseline models

and PANet (3.2% on seen categories and 3.5% on unseen categories). Note that, on both

benchmarks the performance gain on unseen categories is higher than that on seen

categories, which reveals the superiority on discovering novel classes.

Does multiple support images benefit? In the real-world scenario, users may provide

multiple annotated images (K-shot) as a more abundant query set. As shown in Table 4.2,

the performance gain between 1-shot and 5-shot is larger than other methods (4.9 vs.
2.8 on unseen categories). This comparison well demonstrates the advantage of our

MPNet in gathering useful guidance information when more support information is

available. The trend is also consistent as shown in Table 4.3. We further investigate the

performance of MPNet on GFSP-Cityscapes benchmark with more support images as
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illustrated in Fig. 4.5. It is evident that the performance consistently improves with more

support images, with the large gain at the beginning while tendency saturates at the

end. Note that all images in the support set are only used as the guidance information

rather than fine-tuning on these images.
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Figure 4.5: Performance w.r.t the number of support images (K-shot).

Generic Embedding vs. Learned Embedding We evaluate two kinds of embedding

for our adaptive deep metric learning, i.e., 1) we freeze the ImageNet pre-trained model

during training as the generic embedding. 2) end-to-end learning the embedding on our

benchmarks. As shown in Table 4.2, the learned embedding outperforms the generic

embedding (57.6 vs. 28.5 on seen categories and 25.0 vs. 21.0 on unseen categories). Thus

we conclude that although the MPNet parses the unseen categories by a deep-metric

based comparison, the end-to-end learned embedding is still necessary.

Does the MPNet generalize across domain? Further, distinct from the previous

experiments that focus on evaluating in-domain model generalization, we estimate the

MPNet to reveal the cross-domain generalization ability in Table 4.4. The model is

trained on seen categories on GFSP-Pascal-Context and tested on unseen categories on

GFSP-Cityscapes. Still the MPNet achieves better performance compared with other

methods, which verifies the generalization ability of the proposed MPNet.

4.4.3 Further Analysis of MPNet

Here we conduct comprehensive ablation analysis in Table 4.5 to uncover the effective-

ness of the proposed modules of MPNet. All ablations are based on 1/5-shot generalized

few-shot scene parsing performances on GFSP-Cityscapes in the first seen/unseen split

setup.

Adaptive Prototype Generation Instead of merely performing class-aware average

pooling, the APG module is proposed to better maintain the rich diversity information
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Support Set Query Set MPNet Output

Figure 4.6: Visualization results of MPNet. Seen categories are indicated by the green
colors while unseen categories by the blue colors.

Table 4.5: Ablation analysis for the proposed modules of MPNet.

Exp APG AdaIN CID
Seen Categories Unseen Categories
1-shot 5-shot 1-shot 5-shot

a - - - 58.5 60.6 25.4 28.3
b ✓ - - 60.3 63.1 27.2 30.5
c ✓ ✓ - 60.7 63.6 27.7 30.8
d ✓ - ✓ 61.5 64.6 28.5 31.8
e ✓ ✓ ✓ 61.8 65.0 28.7 32.1

among different pixel-level embedding feature. As shown in Table 4.5, we compare the

class-aware average pooling (exp a) with our proposed APG (exp b). Our APG significantly

promotes the performance by clear large margins on both seen categories (60.3 vs.58.5)

and unseen ones (27.2 vs. 25.4). By introducing the AdaIN, the performance can be

further enhanced to 60.7 and 27.7, respectively.

Contrastive Inter-Class Distraction In Table 4.5, we compare MPNet trained w/o

CID (exp b) and w/ CID (exp d), to verify the effectiveness of the introducing inter-class

discrepancy regularization. It can be seen that the CID makes consistent improvements

on both seen categories (61.5 vs. 60.3) and unseen categories (28.5 vs. 27.2). To further

verify the effectiveness of the CID in alleviating embedding ambiguity, we visualize the

distribution of learned embedding features by t-SNE [171] as depicted in Fig 4.7. The

feature embedding of w/ CID clearly shows a larger inter-category margin and higher

intra-category compactness over that of w/o CID.

Visualization For additional qualitative evaluation, we illustrate results by our MPNet

on GFSP-Cityscapes benchmark in Fig 4.6. We observe that even with only one annotated

image as the guidance, MPNet outputs satisfactory parsing results. Due to the fact

that our MPNet is never trained on the unseen categories, the parsing results of seen
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(a) (b)

Figure 4.7: Embedding visualization with t-SNE of (a) w/o CID (b) w/ CID. Different
colors indicate different categories.

categories are understandably better than the unseen ones.

4.5 Summary

Standing on the shoulders of former practice in object few-shot segmentation, this work

steps further towards a more challenging yet general scenario, i.e., generalized few-

shot scene parsing. The success of this task will make the segmentation models well

generalize to newly-emerging open visual concepts with little annotation labor. To this

end, we present MPNet accordingly, in which the adaptive deep metric learning module

and the contrastive inter-class distraction module are proposed to endow the learned

meta parser with good generalization ability for complex scenarios. Although the MPNet

achieves a preliminary success for the generalized few-shot scene parsing task, there is

still a long way to go. We can observe that there is still a large performance gap between

the seen and the unseen categories on the two benchmarks. Thus, more effective meta

learning based algorithms are still required to alleviate this gap. We hope that our efforts

will motivate more researchers and ease the future research on the generalized few-shot

scene parsing task.
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5
CONSISTENT STRUCTURAL RELATION LEARNING FOR

ZERO-SHOT SEGMENTATION

5.1 Preface

Semantic segmentation [137, 172] is a fundamental computer vision task that aims to

assign a semantic label to each pixel in the given image. Although the development of

FCN-based models [71, 138, 173] has significantly advanced semantic segmentation,

the success of these approaches highly relies on cost-intensive and time-consuming

dense mask annotations to train the network. To relieve the human effort in annotating

accurate pixel-wise masks, there is an increasing interest in weakly-supervised segmen-

tation and few-shot segmentation methods. Weakly supervised segmentation [63, 64]

targets on learning segmentation models using lower-quality annotations such as image-

level labels [174, 175], bounding boxes [176, 177] and scribbles [178, 179], which can be

obtained more efficiently compared to pixel-wise masks. Meanwhile, few-shot segmen-

tation [66, 68, 102, 169, 180] tackles the semantic segmentation from a meta-learning

perspective and aims to perform segmentation with only a few annotated samples. Even

significant progress has been made, these works are hard to completely liberate the

request for mask annotations.

Most recently, Bucher et al. [22] took a step further to investigate how to effortlessly

recognize those never-seen categories with zero training examples, and proposed a new

learning paradigm, named Generalized Zero-Shot Semantic Segmentation (GZS3). Specif-
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ically, during the training phase, in addition to the annotated images of seen categories,

we are also provided with the semantic word embeddings of both seen and unseen labels.

At test time, GZS3 aims to segment images containing pixels of all categories. As zero

training examples of unseen categories are available, the key challenge of GZS3 lies in

how to correctly recognize the pixels from these unseen categories. To tackle this, Bucher

et al. [22] proposed a generative method by exploiting semantic word embeddings to

generate unseen visual features, which are further employed to learn the classifiers for

conducting segmentation. However, when training the generator from semantic space to

visual space, they take each category independently with merely node-to-node knowl-

edge transfer of seen categories. As shown in Figure 5.1a, no constraint is applied to

guarantee the quality of generated visual features of unseen categories, resulting in poor

generalization ability.

Hence, we seek to harness the inter-class relationship between seen and unseen

categories to learn a better generator. We observe that different categories are roughly

with similar relations in either semantic word embedding space or visual feature space.

Therefore, we assume the relational structure embedded in the semantic space can be

conveniently transferred to constrain the generated visual features of unseen categories.

To this end, we propose Consistent Structural Relation Learning (CSRL) framework to

tackle the challenging GZS3 task. Particularly, we propose a semantic-visual structural

generator by integrating both feature generating and relation learning in a unified

network architecture. Instead of taking each category independently, our CSRL generates

the visual features from both seen and unseen categories, simultaneously. We additionally

introduce the relational constraints from different structure granularities, including

point-wise, pair-wise, and list-wise consistency, to facilitate the generalization of unseen

categories. In this way, the learned visual features will be imposed to keep a consistent

relational structure to their semantic-based counterparts, making the generator better

adapt to unseen categories. Following [22], we conduct extensive experiments on two

GZS3 benchmarks based on Pascal-VOC and Pascal-Context datasets. The proposed

CSRL outperforms existing state-of-the-art methods by a large margin, resulting in

~7-12% on Pascal-VOC and ~2-5% on Pascal-Context.

5.2 Preliminaries

We denote a set of seen classes as S and a disjoint set of unseen classes as U , where

S ∩U = ;. Let Ds = {(x, y|x ∈X , y ∈Y s} represents the set of labeled training data
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Semantic Space Visual Space

Seen Class

Unseen Class

(a) Node-to-node generator

Semantic Space Visual Space

No Constraint

Constraint

(b) Structural generator

Figure 5.1: Illustration of CSRL. To achieve the goal of GZS3, we learn a generator to
produce visual features from semantic word embeddings. Compared to (a) node-to-node
generator, the proposed (b) structural generator explores the structural relations between
seen and unseen categories to constrain the generation of unseen visual features.

on seen classes, where x is the pixel-wise feature embeddings from the visual space

X ∈ Rdv , y is the corresponding label in the label space Y s of seen classes. Similar

to the generalized zero-shot learning setting, in the task of GZS3, we aim to learn a

model that takes an image as input and predicts the label of each pixel among both seen

and unseen classes S ∪U . Clearly, without any side information, zero-shot learning is

infeasible as there are no training samples of unseen classes. Thus, to achieve the goal of

zero-shot learning, except the training set Ds, we are also provided with the semantic

word embeddings
{
a j|a j ∈A

}|S ∪U |
j=1 for both seen and unseen classes, where the semantic

space A ∈Rdw . The dw-dimensional semantic embeddings could be word representations

(e.g., word2vec [181] or GloVe embeddings [182]) or class attribute vectors [183]. In

order to overcome the absence of unseen visual features, recent works [28, 29] adopt the

generative model to produce unseen visual features. Specially, a generator G : A →X

is learned to generate visual features using corresponding word embeddings as input.

Another benefit of these generative-based methods is that one can achieve the goal of

zero-shot learning by directly adopting the existing CNN model (e.g., Deeplab) without

complex architecture modification. Concretely, the generator G is learned on seen classes

and then generate visual features for unseen classes. A new classifier (usually the last

layer of CNN) is retrained on real seen visual features and generated unseen visual

features. At test time, the label of each pixel is predicted by selecting the category with

the largest probability.
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5.3 Consistent Structural Relation Learning for
Zero-Shot Segmentation

As shown in Figure 5.2, we illustrate the details of the proposed CSRL framework. The

goal of CSRL is to learn a better generator to produce visual features using seman-

tic word embeddings as input. To achieve this goal, we introduce a semantic-visual

structural generator to alternately update the node features of each category and the

inter-category relations. We further exploit the structural relation consistency between

seen and unseen categories to constrain the generating of unseen visual features. These

structural relations include the point-wise, pair-wise and list-wise relations between seen

and unseen categories. The generalized zero-shot semantic segmentation is achieved by

learning on real seen visual features and the generated unseen visual features.

5.3.1 Semantic-Visual Structural Generator

Given a set of semantic word embeddings including samples from both seen and unseen

categories, we aim to generate the corresponding set of synthetic visual features consid-

ering the relationships among categories. Such semantic-to-visual generation is achieved

by a node-edge graph G = (V ,E ), called semantic-visual structural generator in this work.

The nodes V := {vi,n|∀i ∈ [1, |S ∪U |],n ∈ [1, N]} in the graph denote the pixel-level feature

embeddings with total N samples for category i. The edges E := {e i j|∀i, j ∈ [1, |S ∪U |]}
are constructed based on the relationships between prototypes of category i and j.

The structural generator consists of L layers, where each layer contains a feature

aggregation step to update the node feature and a relation aggregation step to update

the edge feature. We denote vℓ
i and eℓ

i j as the node feature and the edge feature of layer

ℓ ∈ [1,L], respectively.

As the semantic word embedding ai is a deterministic value, we enhance the feature

diversity by concatenating a random variable z with a Gaussian distribution. Thus,

node features are initialized by the semantic word embeddings v0
i,n = [ai ⊕zi,n], where ⊕

denotes the concatenation operation. Edge features e0
i j = ai ·aj/∥ai∥2∥aj∥2 are initialized

by the cosine similarity between semantic word embeddings.

Feature Aggregation To alleviate the issue introduced by abnormal samples, espe-

cially only a limited number of samples in one categories, we aggregate the feature

representation based on the category prototypes instead of raw samples. Specially, the
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Figure 5.2: The framework of the proposed CSRL. Our CSRL incorporates the feature
generating and relation learning into a unified architecture. Given the semantic word
embedding, CSRL generates visual features by alternately feature and relation aggrega-
tion. The proposed CSRL is trained under supervision from point-wise consistency on
seen classes, pair-wise and list-wise consistency across seen and unseen classes.

category prototype pi is defined as,

pℓ−1
i = 1

N

N∑
n=1

vℓ−1
i,n . (5.1)

After calculating all prototype representations {pi|∀i ∈ [1, |S ∪U |]}, we are able to

propagate the relevant knowledge from other categories based on the edge features. The

node feature aggregation of the l-th layer follows,

vℓ
i,n = f ℓ

v ([vℓ−1
i,n ⊕

|S ∪U |∑
j=1, j ̸=i

eℓ−1
i j pℓ−1

i ];φℓ
v). (5.2)

where fv is a transformation network with parameters φℓ
v.

Relation Aggregation After aggregate the node features, the edge feature aggrega-

tion is processed based on the newly updated node features, The edge feature aggregation

of the l-th layer follows,

eℓ
i j = f ℓ

e (|pℓ
i −pℓ

j |;φℓ
e)eℓ−1

i j , (5.3)

where fe is a transformation network with parameters φℓ
e .

By alternately feature aggregation and the relation aggregation steps, we simulta-

neous achieve the feature generating and relation learning. At ℓ= L, the output nodes

are the generated visual features x̂ including both seen and unseen categories, while the

edge features are the learned relations between categories.
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5.3.2 Consistent Structural Relation Learning

The key to generalized zero-shot segmentation is the ability to generate visual features

x̂ ∈ X̂ conditioned on the semantic word embedding a, even without access to any image

pixels of this category. In order to learn a better generator, we explore the relation

constraints from different structure granularities as supervision signals to train the

generator G .

Point-wise consistency At training time, only the real visual features from seen

categories are available to access. Thus, on these seen categories, we optimize the

distribution divergence between real visual features and generated visual features as

supervision signals. As this divergence reflects the consistency of every single category

between real and generated visual feature distributions, here we note it as point-wise
consistency. Here, we minimize distribution divergence on seen categories by optimizing

the maximum mean discrepancy as,

Lpoint =
1

|S |
|S |∑
c=1

[Ex,x′∼X c K(x,x′)+Ex̂,x̂′∼X̂ c K(x̂, x̂′)−2Ex∼X c,x̂∼X̂ c K(x, x̂)], (5.4)

where K is the Gaussian kernel with bandwidth parameter σ defined as K(x,x′) =
exp(− 1

2σ2 ∥x−x′∥2).

By optimizing the point-wise consistency on seen categories, there is no explicit

constraint on the generation of unseen categories. Thus the quality of produced unseen

features purely relies on the generalization ability of the generator. To enhance and

constrain the visual feature generation especially on unseen categories, we transfer the

structural relations on semantic word embedding space to the generator visual features

space. In this section, we consider the pair-wise consistency and list-wise consistency.

The pair-wise relations reflect that the feature similarity between two categories, i.e.,
one seen category and one unseen one, should be consistent on both semantic space and

visual space. The list-wise relations require that the relation ranking permutation order

should also be consistent on semantic space and visual space.

Pair-wise consistency We extract the relation matrix between unseen and seen

categories from the edge features in structural generator G as M= {eℓ
i j|∀i ∈ [1, |U |], j ∈

[1, |S |]} ∈R|U |×|S |. For each unseen category, the relation values is further normalized

by applying softmax function as follows,

ẽℓ
i j =

exp(e i j/γ)∑|S |
j′=1 exp(e i j′ /γ)

, (5.5)
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where γ is a scaling factor to soften the relation distribution. Thus, in the semantic word

embedding space (i.e., the input layer ℓ= 0), we have the relation matrix as MA . In the

generated visual feature space (i.e., the output layer ℓ= L), the relation matrix is denote

as MX̂ .

To maintain the pair-wise relation consistency between semantic space and visual

feature space, we adopt the Kullback-Leibler divergence as the learning objective. Con-

cretely, the pair-wise consistency is defined as,

Lpair(MA ,MX̂ )= 1
|U |

|U |∑
i=1

DKL[MA
i ||MX̂

i ]. (5.6)

List-wise consistency Instead of only focus on the relationship from a pair of cat-

egories at a time, inspired by [184, 185], we further investigate the entire ranking

permutation of the relation list as complementary supervision. The core idea is that we

take the relation ranking as a distribution rather than a deterministic order. We aim

to associate the probability with every rank permutation between semantic space and

visual space. Given one permutation π of the relation list, where π(i) denotes the i-th list

index of this permeation. We calculate the probability of this ranking permutation as,

P(π|Mi)=
|S |∏
j=1

exp(e iπ( j)/γ)∑|S |
k= j exp(e iπ(k)/γ)

(5.7)

where γ is a scaling factor.

We aim to maintain all possible relation ranking permutations π ∈P as consistent

as possible both on semantic space and visual features space. Similar to pair-wise

consistency, the list-wise consistency is defined as,

Llist(MA ,MX̂ )= 1
|U |

|U |∑
i=1

DKL[P(π ∈P |MA
i )∥P(π ∈P |MX̂

i )] (5.8)

5.3.3 Training and Inference

In this subsection, we introduce the whole procedures to achieve GZS3. During the train-

ing stage, we start from training an off-the-shelf segmentation model (e.g., DeepLabv3+)

on all annotated data from seen categories. After training on seen categories, we remove

the last classification layer and the remaining network serves as a visual features ex-

tractor to get the training set of seen categories Ds. Then, we train our semantic-visual

structural generator G under the supervision of consistent structural relation learning

losses,

L (φ)=Lpoint +Lpair +Llist. (5.9)
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Table 5.1: Generalized zero-shot semantic segmentation performance on Pascal-VOC
dataset.

Settings Methods Seen mIoU Unseen mIoU Overall mIoU Overall hIoU

unseen-2
SegDevis 68.1% 3.2% 44.1% 6.1%
SPNet 71.8% 34.7% 68.2% 46.8%
ZS3Net 72.0% 35.4% 68.5% 47.5%
CSRL 73.4% 45.7% 70.7% 56.3%

unseen-4
SegDevis 64.3% 2.9% 38.9% 5.5%
SPNet 67.3% 21.8% 58.6% 32.9%
ZS3Net 66.4% 23.2% 58.2% 34.4%
CSRL 69.8% 31.7% 62.5% 43.6%

unseen-6
SegDevis 39.8% 2.7% 33.4% 5.1%
SPNet 64.5% 20.1% 51.8% 30.6%
ZS3Net 47.3% 24.2% 40.7% 32.0%
CSRL 66.2% 29.4% 55.6% 40.7%

unseen-8
SegDevis 35.7% 2.0% 24.3% 3.8%
SPNet 61.2% 19.9% 45.5% 30.0%
ZS3Net 29.2% 22.9% 26.8% 25.7%
CSRL 62.4% 26.9% 48.8% 37.6%

unseen-10
SegDevis 31.7% 1.9% 16.9% 3.6%
SPNet 59.0% 18.1% 39.5% 27.7%
ZS3Net 33.9% 18.1% 26.3% 23.6%
CSRL 59.2% 21.0% 50.0% 31.0%

To maintain simplicity, here we directly add these three terms. Once the generator

G is trained, arbitrarily many visual features can be generated from semantic word

embeddings, especially for unseen categories. In this way, we build a generated unseen

training set denote as D̂u = {x̂, y|x̂ ∈ X̂ , y ∈ Y u}. A new pixel-level classifier is trained

on the combined training set including real seen visual features from Ds and generated

unseen visual features from D̂u. In this way, the new model can be used to conduct

generalized zero-shot semantic segmentation of a given image that exhibit categories

from both seen and unseen classes.

5.4 Experiments

5.4.1 Experiment Settings

Datasets We conduct experiments on two datasets including Pascal-VOC [76] and

Pascal-Context [82]. Pascal-VOC focuses on object semantic segmentation scenario,

which contains 10,582 training and 1,449 validation images from 20 classes. Pascal-

Context targets on the scene parsing scenario, which comprises 4,998 training and 5,105

validation images from 59 classes. Following [22], we construct zero-shot segmentation
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setups with different number of unseen classes, including 2, 4, 6, 8 and 10 unseen

classes, and all the rest ones are the seen classes. Concretely, the unseen class set is

extended in an incremental manner, i.e., the 4-unseen set contains the 2-unseen set. The

unseen class splits are 2-cow/motorbike, 4-airplane/sofa, 6-cat/tv, 8-train/bottle, 10-
chair/potted-plant for Pascal-VOC dataset and 2-cow/motorbike, 4-sofa/cat, 6-boat/fence,
8-bird/tvmonitor, 10-keyboard/aeroplane for Pascal-Context dataset.

Evaluation Metrics In our experiments, similar to the standard semantic segmenta-

tion task, we adopt mean intersection-over-union (mIoU) as the principal metric. The

generalized zero-shot semantic segmentation focuses on the overall performance in-

cluding both seen and unseen categories. To avoid the performance on seen categories

dominates, we also report the harmonic mean (hIoU) of seen mIoU and unseen mIoU

suggested by [186],

hIoU = 2∗mIoUs ∗mIoUu

mIoUs +mIoUu
. (5.10)

Implementation Details We choose the DeeplabV3+ [71] with ResNet-101 [5] as our

segmentation network. The ImageNet [156] covers a wide range of categories, where

most unseen categories are actually included. Therefore, directly adopting the publicly

ImageNet pre-trained model may break the setting of zero-shot learning. To avoid the

supervision leakage from unseen classes, we employ the model provided by [22], which

is solely pre-trained using seen categories. For the aggregation network fe and fv in

Sec 5.3.1, we use the multi-layer perception network proposed by [187]. We implemented

our method both by the Pytorch platform and the PaddlePaddle platform, both achieving

similar performance.

5.4.2 Comparisons with State-of-the-art Methods

We compare our proposed CSRL with SegDeViSe [188], SPNet [21], ZS3Net [22]. SegDe-

ViSe regresses semantic word features from pixel-level visual features, which is learned

by maximizing the cosine similarity between the output and the target word embeddings.

SPNet encodes images in the word embedding space and uses a semantic projection layer

to produce class probabilities. ZS3Net is the current state-of-the-art method, which gen-

erates unseen visual features from word embeddings to achieve zero-shot segmentation.

All these methods adopt the same segmentation network, i.e., DeepLabV3+, for a fair

comparison. The key commonality shared by these methods is: they take each category

as an independent point without considering its relations to other categories. Differently,
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Table 5.2: Generalized zero-shot semantic segmentation result on Pascal-Context dataset.

Settings Methods Seen mIoU Unseen mIoU Overall mIoU Overall hIoU

unseen-2
SegDevis 35.8% 2.7% 33.1% 5.0%
SPNet 38.2% 16.7% 37.5% 23.2%
ZS3Net 41.6% 21.6% 41.0% 28.4%
CSRL 41.9% 27.8% 41.4% 33.4%

unseen-4
SegDevis 33.4% 2.5% 30.7% 4.7%
SPNet 36.3% 18.1% 35.1% 24.2%
ZS3Net 37.2% 24.9% 36.4% 29.8%
CSRL 39.8% 23.9% 38.7% 29.9%

unseen-6
SegDevis 31.9% 2.1% 28.8% 3.9%
SPNet 31.9% 19.9% 30.7% 24.5%
ZS3Net 32.1% 20.7% 30.9% 25.2%
CSRL 35.5% 22.0% 34.1% 27.2%

unseen-8
SegDevis 22.0% 1.7% 19.2% 3.2%
SPNet 28.6% 14.3% 26.7% 19.1%
ZS3Net 20.9% 16.0% 20.3% 18.1%
CSRL 31.7% 18.1% 29.9% 23.0%

unseen-10
SegDevis 17.5% 1.3% 14.3% 2.4%
SPNet 27.1% 9.8% 24.3% 14.4%
ZS3Net 20.8% 12.7% 19.4% 15.8%
CSRL 29.4% 14.6% 27.0% 19.5%

we generate the unseen visual features by exploring the structural relations between

categories.

We report the performance of generalized zero-shot semantic segmentation on Pascal-

VOC dataset in Table 5.1 and Pascal-Contex dataset in Table 5.2. Results of SPNet are

based on our implementation, and other results of ZS3Net and SegDeVis are directly

taken from paper [22]. In these two tables, first, we observe that the generative methods

(i.e., ZS3Net, CSRL) significantly outperforms semantic embedding-based methods (i.e.,
SegDeViSe, SPNet). The semantic embedding-based methods, although perform well

on seen categories, achieve a large performance drop for unseen ones. By leveraging

structural relation consistency to better guide the generation of unseen visual features,

our CSRL provides significant gains particularly on the unseen classes (e.g., +10.3% for

the 2-unseen split in terms of unseen mIoU). Second, our CSRL significantly outperforms

others by large margins for various splits (~7-12% for hIoU), which can well demon-

strate the effectiveness of the consistent structural relation learning framework. Third,

our CSRL also achieves large performance gains on the more challenging benchmark

Pascal-Context, which requires densely predictions for the full images. The qualitative

comparison between ZS3Net and CSRL is shown in Figure 5.3. We can observe that our

CSRL achieves much better segmentation results and successfully recognize the unseen
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Input	image GT ZS3Net CSRL

Figure 5.3: Qualitative comparisons on Pascal-VOC dataset under the unseen-2 setting.

objects (e.g.cow and motorbike) where the ZS3Net mostly fails.

Table 5.3: Ablation study of CSRL on
Pascal-VOC.

Exp Point Pair List
Seen
mIoU

Unseen
mIoU

Overall
mIoU

Overall
hIoU

I ✓ - -
II ✓ ✓ -
III ✓ - ✓

73.0% 40.3% 69.8% 51.9%
73.4% 43.3% 70.5% 54.5%
73.0% 42.7% 70.1% 53.9%

CSRL ✓ ✓ ✓ 73.4% 45.7% 70.7% 56.3%Figure 5.4: Relations between unseen (cow
and motorbike) and seen categories.

5.4.3 Ablation Analysis

Quantitative analysis for structural relations We conduct extensive quantitative

analysis for those key components in CSRL. In Table 5.3, we compare the effects of differ-

ent structural relations with the unseen-2 split on Pascal-VOC. First, simply performing

node-to-note generation results in the hIoU score of 51.9% (I). Second, by introducing

the pair-wise relation for optimization, the hIoU will be significantly enhanced by 3.6%

(II). Third, by replacing pair-wise relation with list-wise relation, the improvement is

still notable, i.e., 2.0% (III). Finally, simultaneously considering all the components will

lead to the best hIoU score of 56.3% (CSRL).
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Qualitative analysis for inter-category relations In Figure 5.4, we visualize the

inter-category relations between unseen categories (i.e., cow and motorbike) and seen

categories based on different feature embeddings. The relations are normalized for better

visualization. The darker the colors, the stronger the relations. “Semantic Space Relation"

and “Visual Space Relation" indicate cosine similarities of using word2vec features and

CNN features with supervised training, respectively. First, we can observe that semantic

relations between unseen and seen categories keep consistent across different feature

spaces. Second, by introducing the CSRL, the relations of generated visual features will

be more consistent compared to those without CSRL, leading to better discriminative

ability.

5.5 Summary

In this section, to tackle the challenging generalized zero-shot semantic segmentation

task, we proposed a simple yet effective framework called Consistent Structural Relation

Learning (CSRL). We propose a semantic-visual structural generator by integrating

both feature generating and relation learning in a unified network architecture. We

effectively explore relation consistency from multiple structure granularities to better

guide the generation of unseen visual features. The proposed CSRL achieves the new

state-of-the-art on two zero-shot segmentation benchmarks, which outperforming the

former practices by a large margin. Although CSRL achieves a large improvement

for the generalized zero-shot semantic segmentation, there is still a long way to go.

We can observe that there is still a large performance gap between the seen and the

unseen categories on the two benchmarks. Thus, more effective GZS3 algorithms are still

required to alleviate this gap. We hope that our efforts will motivate more researchers

and ease future research.
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SUPER-RESOLVING CROSS-DOMAIN FACE MINIATURES

BY PEEKING AT ONE-SHOT EXEMPLAR

6.1 Preface

Face Super-Resolution (FSR), also known as face hallucination, aims at reconstructing

high-resolution (HR) face images from input low-resolution (LR) ones. FSR provides

critical information for the downstream computer vision and machine learning tasks,

such as face detection [2], recognition [189] and photo-editing [190–192]. Thanks to the

advance of generative adversarial networks [26], FSR has achieved great success in

recent years [116, 117, 121, 124, 125, 127, 193–196].

Previous FSR methods usually presume training and testing LR faces are captured

from the same domain. When testing LR faces resemble the training ones, previous works

achieve authentic upsampled HR faces. However, in practice, the domain gap between

testing images and training ones is inevitable due to different imaging equipment,

illumination conditions, etc. As shown in the upper right of Figure 6.1, previous state-

of-the-art FSR methods fail to upsample HR authentically due to the large domain gap

between the target domain (testing) and source domain (training). Considering FSR

models would be deployed in different scenarios, it is very inefficient to re-train every

deployed FSR model by collecting large-scale data from the corresponding target domain.

Therefore, only using a few samples, ideally one example, to efficiently update an FSR

model is highly desirable.
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Figure 6.1: Conventional FSR methods achieve good performance on the source dataset,
but are prone to fail on the target dataset due to the domain gap. Our proposed method
effectively adapts the model by leveraging only one-shot example.

In this work, we aim to super-resolve LR faces that exhibit an obvious domain gap

by only leveraging one-shot exemplar from the target domain. We name this task as

One-Shot Domain Adaption for Face Super-Resolution (OSDA-FSR). Different from

conventional FSR methods [116, 121, 122], two challenges are naturally raised: (i) how to

design a FSR network architecture that is intrinsically suitable for efficient adaptation;

and (ii) how to explore one example to bridge the domain gap since simply fine-tuning an

FSR network with one example is ineffective.

To address these challenges, we present a novel Domain-Aware Pyramid based Face

Super-Resolution network, namely DAP-FSR network. Our DAP-FSR contains two

parts: a domain-aware pyramid encoder and an upsampling decoder. Our DAP-FSR

encoder is designed to extract the latent representations by leveraging the multi-scale

features from the input LR faces. Considering LR faces may be unaligned, we propose an

Instance Spatial Transformer Networks (ISTN) to align LR faces inspired by [197]. In

this way, we facilitate the latent representation learning and face upsampling processes

by aligning the LR faces into the canonical view. Motivated by the powerful architecture

of StyleGAN [198, 199], an image generation network, we construct our upsampling

decoder. Once we obtain the latent representations, we feed those representations to our

DAP-FSR decoder to hallucinate high-quality HR face images.

To tackle the problem of super-resolving LR faces in a new domain without the

need for tremendous data collection, we propose a Domain-Aware latent Mixing and
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Model Adaptation algorithm (DAMMA). In a nutshell, our DAMMA algorithm is able to

adapt the model trained on the source domain to the target domain by exploring only

the one-shot example. As illustrated in Figure 6.1, when a target domain example is

given, DAP-FSR network first extracts its latent representations. Then, supervised by

the given one-shot example, we learn a soft mixture weight to mix the target latent

representations with random-sampled source latent ones. In this fashion, the newly

generated faces will resemble the target domain faces and we significantly augment the

target-style data. By constrained fine-tuning our decoder with the augmented images,

our network is gradually adapted from the source domain to the target domain. After

iteratively updating the soft mixing weight and adapting our decoder, our DAP-FSR

attains authentic target domain HR faces.

Our main contributions are summarized as follows,

• We propose a novel domain-aware pyramid-based face super-resolution network,

named DAP-FSR network, to efficiently upsample cross-domain LR face images by

peeking at one-shot target domain example.

• We present a simple yet effective domain-aware latent mixing and model adaptation

algorithm (DAMMA) to adapt our DAP-FSR to the target domain. Our DAMMA

generates target-style alike faces to adapt the upsampling decoder in DAP-FSR by

fully exploiting the one-shot example.

• To the best of our knowledge, our method is the first attempt to super-resolve

cross-domain LR face images, making our method more practical.

• Our proposed DAP-FSR can be adapted to a target domain effectively and is also

robust to unaligned LR faces. Experiments on three constructed cross-domain face

super-resolution benchmarks validate the superior performance of our proposed

approach compared to the state-of-the-art methods.

6.2 Task Definition: One-shot based FSR

Conventional Face Super-Resolution (FSR) methods aim to learn a face super-resolution

model M that generates a high-resolution super-resolved face image ISR ∈RH×W from a

low-resolution one ILR ∈Rh×w, as follows:

ISR = M (ILR) . (6.1)
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Figure 6.2: Illustration of our DAP-FSR architecture. (a) The encoder network. Fea-
ture maps from different spatial resolution are up-sampled and concatenated as the
multi-scale pyramid context. Each Adaptive Latent Encoding (ALE) module dynamically
attends the multi-scale context to generate the latent representation wi. (b) The decoder
network, where the HR images are generated based on the latent representations. (c) The
Instance Spatial Transformer Network (ISTN) learns the style-invariant affine trans-
formation matrix to adjust the unaligned LR images. (d) The detailed Adaptive Latent
Encoding module, where the channel-wise feature attention is learned to adaptively
capture the multi-scale information of the input images.

The goal of the FSR task is to make the reconstructed image ISR best recover its

corresponding high-resolution version IHR. In the conventional face hallucination set-

ting [110, 112, 116], an FSR model M is trained and evaluated on the {(ILR , IHR)} pairs

from the same source domain. However, as illustrated in Figure 6.1, when LR images

come from another target domain, a pre-trained model M might fail to generalize well to

the new domain data and the quality of super-resolved HR images will degrade severely.

Inspired by previous domain adaptation works [200], we formulate our task as One-

Shot Domain Adaptation for Face Super-Resolution (OSDA-FSR). In general, OSDA-FSR

can be divided into two stages, i.e., a procurement stage and a deployment stage, based

on the real-world application scenario. In the procurement stage, an FSR model is

trained on the large-scale source dataset with Ns HR and LR image pairs, denoted as

Ds = {(Is
LR , Is

HR)i}
Ns
i=1. In this stage, image reconstruction objectives will be employed

to optimize the model parameters. However, in the deployment stage, a trained model

might encounter an unknown data distribution shift in a target domain. In this case, a

deep model may fail to super-resolve LR faces in a target domain without knowing any
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information about the new domain.

Although collecting data and re-training a network can solve this issue, it might

be inefficient and time-consuming when deploying deep models in many different real-

world scenarios. Therefore, we aim to use only a few examples, e.g., K LR-HR pairs

Dt = {(I t
LR , I t

HR)i}K
i=1, to effectively adapt the pre-trained model M. Without the loss of

generality, we focus on the most challenging case where K = 1. In other words, we will

exploit the one-shot exemplar to minimize the domain gap and then hallucinate the

target domain LR faces.

6.3 Proposed Method

Overview The general goal of OSDA-FSR task is to transfer the model from the trained

source domain to the target domain by fully exploiting the given one-shot example. To

achieve this goal, the key idea of our approach is to adapt the model towards the target

domain by enriching the target-style samples beyond the solely given one-shot exemplar.

We present a Domain-Aware Pyramid-based Face Super-Resolution (DAP-FSR) network

to super-resolve input LR images to output HR images, as shown in Figure 6.2. Our

DAP-FSR firstly obtains the semantic latent representations from an unaligned LR face

image by the encoder network and then generates the high-quality HR images from

these latent representations by the upsampling decoder network.

Given an LR image in the target domain, our DAP-FSR network first extracts the

latent representations. However, due to the existing large domain gap, the latent repre-

sentations of target domain LR images may not lie on the manifold of the source domain

ones, thus causing inferior upsampled results. To address this problem, we propose to

project the latent representations of the target one-shot exemplar to the closest one in

the source domain. We then synthesize random images sharing similar styles with the

target domain by mixing randomly sampled source and the extracted target domain

latent representations. These generated samples will be in turn used to optimize our

upsampling network. In this fashion, the latent representation manifold will gradually

shift to the target domain and we can super-resolve target domain LR images even with

only one exemplar.
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6.3.1 Domain Aware Pyramid-based FSR

Choice of decoder and latent space Due to the advanced network architecture, Style-

GAN [198, 199] obtains phenomenal high-resolution and photo-realistic images. Recent

work [122] also demonstrates the possibility that employing a pre-trained StyleGAN, HR

faces can be found from the given LR inputs. More importantly, decouple the training of

an encoder and a decoder would allow us to achieve larger upscaling factors while being

less restricted by GPU memory. Therefore, we choose the StyleGAN architecture as the

upsampling decoder in our DAP-FSR.

Former work [122] demonstrates that the multi-layer disentangled latent space W +
in StyleGAN is more representative to depict an image than the normalized Gaussian

distribution space Z . Furthermore, the layer-wise corresponding AdaIN modules in

StyleGAN can also facilitate us to transfer domain-specific characteristics when we

adapt our trained upsampling decoder to a target domain. Hence, to fully utilize the

power of StyleGAN, we adopt the w ∈ Rl×dw as our latent representations to better

encode the LR images, where l is the layer number and dw is the latent representation

dimension.

Latent representation learning Unlike PLUSE [122] that optimizes a latent repre-

sentation w ∈W + by minimizing the pixel-wise reconstruction loss between the down-

sampled version of upsampled HR image and the input image, we introduce an encoder

to extract latent representations of the input LR faces. Doing so allows us to address

unaligned LR faces and handle the domain gap by fine-tuning our upsampling decoder,

while PLUSE cannot handle the domain gap and face misalignments as its decoder (i.e.,
pre-trained StyleGAN) is fixed and only w is updated during iterations.

Recall that in the StyleGAN, each latent representation controls a certain level of

image details. Hence, our encoder aims to adaptively predict latent representations

from an enhanced multi-scale context feature. Toward this goal, we develop an adaptive

latent encoding (ALE) module that is able to generate latent representations for the

upsampling decoder at different scales adaptively. Here, we employ ResNet50 as our

encoder to extract multi-scale feature maps at the conv3, conv4, conv5 and average

pooling layers, denoted as C3,C4,C5,Cglobal, as shown in Figure 6.2. Then, each ALE

generates multi-scale latent representations wi for the decoder by attending the multi-

scale features adaptively. Then, the latent representations are fed to our upsampling

decoder for face hallucination.

Robust against unaligned LR faces Previous face hallucination methods [112,

122, 189] often assume LR faces are precisely aligned beforehand. However, such an
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Algorithm 2: Domain-Aware Latent Mixing and Model Adaptation
Input: Initialized DAP-FSR model M = (E,G) trained on source dataset Ds,

one-shot exemplar {I t
LR , I t

HR} ∈Dt, initialized latent code mixing weight
α0, AdaIN parameter φ in G ,learning rate ξ,η

Output: Adapted model Mφ∗

while do not converge do
Generate wt by manifold preserving projection as equation 6.2;
Sample a batch of source latent codes: ws =µw+σwϵ,ϵ∼N (0,1);
Initialize latent code mixing weight: α←α0;
for i=1,2,3,...,n do

Update mixing weight by equation 6.7: α←α−ξ∇αL (α);
Generate mixing latent codes wm by equation 6.6;
Update model parameters by equation 6.5: φ←φ−η∇φL (φ);

end
end
Return final model weight φ as φ∗;

assumption hardly holds in real application scenarios. Inspired by the works [193, 196],

we estimate the transformation of LR images and warp them to the canonical position

by the spatial transformation network (STN) [197]. Therefore, our network is robust

against unaligned LR faces with in-plane rotations, translations and scale changes. The

detailed architecture of spatial transformation layers are illustrated in Figure 6.2(c).

More importantly, unlike previous FSR models [193, 196] that use STNs, we apply an

instance normalization layer to the feature maps before computing the transformation

parameters in our instance spatial transformer network (ISTN) module. This allows us

to obtain style-invariant feature maps. Therefore, even when target-domain LR faces are

provided, our ISTN layers are still able to align them to the up-right position, potentially

facilitating the following domain adaptation process. Thus, our decoder can focus on

super-resolving high-quality HR faces while preserving the latent representations from

being affected by misaligned input LR faces.

Manifold preserving encoding Previous work [201] shows that it is possible to invert

an arbitrary image, even not a face image, into style latent space W +. However, such

deduced latent codes are not aligned with the semantic knowledge prior learned by G(·)
and lose the versatile image editing capability. In our OSDA-FSR task, the situation will

become even worse where a domain gap between the source and target domains exists.

To overcome these drawbacks, we explicitly constrain the output of the encoder

E(·) in the feature space of G. Particularly, instead of directly predicting the style

latent codes, we predict the offset scale w.r.t. the mean µw and variance σw of the
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Figure 6.3: Compared to the style-transfer based method ASM [1] (left), given only one-
shot target domain exemplar (ExtendedYaleB), our method (right) efficiently generates
authentic target-style images from the source domain (CelebA).

latent representations of G. To be specific, our DAP-FSR model maps the encoded

representations of LR images to the latent representations w of the decoder, as follows:

w=µw+E(ILR)σw, (6.2)

where µw and σw are fixed during the encoder training process. Therefore, using equa-

tion 6.2, we can explicitly constrain the latent representation output by our encoder to

lie in the latent representation space W + of our decoder G.

Network optimization Our encoder E is trained using two losses. We employ the

pixel-wise reconstruction loss Lmse to enforce reconstructed HR images to be close to

their HR ground-truth IHR ,

Lmse = ∥IHR −G(w))∥2. (6.3)

In addition, we also introduce the perceptual loss to enforce the feature-wise similarity,

Lpercept = ∥F(IHR)−F(G(w))∥2, (6.4)

where F denotes the perceptual feature extractor. In our experiments, we extract features

from relu1_1, relu2_1, relu3_1, relu4_1 layers in VGG-19 with equal weights. In our

final objective, we also treat the image intensity similarity and feature similarity equally,

and the objective is defined as,

L (θ)=Lmse +Lpercept, (6.5)

where θ is the trainable parameters of our network. Note that our upsampling decoder

and encoder are trained individually and thus our decoder is fixed during training our

encoder.

72



6.3. PROPOSED METHOD

Table 6.1: Comparison with state-of-the-art methods. Results are reported on three
benchmarks noted as source → target. ‘Source only’ denotes the methods only using
source dataset for training, while ‘one-shot’ denotes the methods exploring one-shot
exemplar on the target dataset. ↑ indicates that higher is better, and ↓ that lower is
better.

CelebA → ExtYaleB CelebA → MultiPIE MultiPIE → ExtYaleBMethod
LPIPS ↓FIQ ↑PSNR ↑SSIM ↑ LPIPS ↓FIQ ↑PSNR ↑SSIM ↑ LPIPS ↓FIQ ↑PSNR ↑SSIM ↑

so
ur

ce
on

ly Bicubic 0.52 0.31 19.94 0.46 0.55 0.27 17.11 0.39 0.54 0.31 17.70 0.43
PUSLE [122] 0.40 0.38 20.18 0.46 0.46 0.36 14.63 0.37 0.42 0.27 17.02 0.46
MTDN [202] 0.39 0.32 17.74 0.45 0.38 0.38 18.00 0.52 0.47 0.20 18.67 0.43
CPGAN [196] 0.40 0.28 17.03 0.47 0.40 0.31 18.61 0.52 0.45 0.24 18.80 0.44
DAP-FSR (Ours) 0.38 0.41 20.39 0.49 0.38 0.40 19.15 0.54 0.41 0.34 19.28 0.46

on
e-

sh
ot PULSE+ASM [1] 0.44 0.32 20.47 0.47 0.49 0.32 17.87 0.41 0.44 0.23 17.89 0.43

MTDN+ASM 0.42 0.27 19.01 0.48 0.44 0.33 19.38 0.53 0.52 0.25 19.11 0.47
CPGAN+ASM 0.49 0.26 18.42 0.42 0.49 0.29 19.29 0.55 0.51 0.23 19.19 0.49
DAP-FSR (Ours) 0.36 0.46 22.32 0.55 0.36 0.44 21.00 0.61 0.39 0.40 20.43 0.51

6.3.2 Peeking at One-Shot Exemplar

Towards target-domain image generation Benefiting from the encoder design in

our DAP-FSR network, we can encode the given one-shot target domain HR image I t
HR

into a latent representation wt. However, using only one-shot exemplar does not suffice

to transfer our decoder to the target domain, and will lead to an over-fitting problem.

As explained in [198], the latent codes of the StyleGAN control the coarse, medium,

fine attributes of generated images at different style layers. Thus, we also regard the

latent code wt as an interpretable representation of a target domain face. Moreover, we

can generate a large number of domain-specific (i.e., style-consistent) face images with

I t
HR . Specifically, for a latent code ws randomly sampled from the latent representation

manifold of the source domain, we mix it with wt in a layer-wise manner so that a

generated image Im inherits the the target domain style from I t. The mixing procedure

is defined as:
wm

i = (1−αi)wt
i +αiws

i , (6.6)

where α ∈Rl is a layer-wise soft weight for mixing latent representations. In this manner,

we effectively enlarge the number of target domain examples from the given one-shot

exemplar by G(wm). In Figure 6.3, compared with a style transfer based method (i.e.,
ASM [1]), our method is able to generate more natural style-consistent images while

preserving the identity.

Learning soft mixing weight When mixing the latent representations of random

sampled ws and the target sample wt, we preserve the image content information by

applying a feature-wise intensity consistent loss Lc and enforce the domain information

73



CHAPTER 6. SUPER-RESOLVING CROSS-DOMAIN FACE MINIATURES BY
PEEKING AT ONE-SHOT EXEMPLAR

to be transferred by employing a style similarity loss Ls. Here, we learn a soft weight α

to mix the latent codes of the source and target domain instead of manually selecting a

certain layer, and the optimization process is formulated as,

L (α)=Lc +Ls, (6.7)

Lc = ∥F(G(wm))−F(G(ws))∥2, (6.8)

Ls =∥µ(F(I t)−µ(F(G(wm)))∥2+
∥σ(F(I t))−σ(F(G(wm)))∥2.

(6.9)

where µ and σ denote the mean and variance of the extracted features respectively, and

F is the same perceptual extractor in Eq. equation 6.4.

Model updating by constrained adaptation After we generate a batch of random

images exhibiting the same target domain style, our next step is to adapt our model

towards the target domain. The most straightforward way is to fine-tune the entire

decoder G directly on our generated target-domain alike samples. However, when the

number of training examples is limited, especially in our case, fine-tuning the whole

network weights often leads to over-fitting and may potentially destroy the learned

knowledge prior in G. Instead of fine-tuning the entire decoder weights, we constrain the

fine-tuning on a subset of the decoder parameters. To be specific, we only adapt the affine

transform parameters in the AdaIN module. By restricting the trainable parameters,

our model can be effectively adapted to the target domain while preserving the semantic

knowledge, i.e., natural face structure. The overall pipeline of our algorithm is illustrated

in Algorithm 2.

6.3.3 Training and Inference

Our training process consists of two main stages, the procurement stage and devel-

opment stage. In the procurement stage, we first train our decoder G following the

protocols of StyleGAN and then only train the encoder model E on the source dataset

by Eq. equation 6.5 while fixing the parameters of G. After training, our DAP-FSR is

able to super-resolve HR faces from LR faces with an upscaling factor up to ×64. In the

development stage, we peek at the one-shot exemplar from the target domain and adapt

our model to the target domain by employing our proposed Algorithm 2. During inference,

we test our adapted model on the whole target dataset and report the super-resolution

performance. Note that, we only see one-shot image from the target domain and all other

testing images are never seen during training.
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6.4 Experiments

In this section, we conduct extensive experiments to evaluate our DAP-FSR framework.

Since we focus on the OSDA-FSR task, we mainly compare with the state-of-the-art in

this scenario.

6.4.1 Datasets and Evaluation Protocols

Benchmarks Current FSR benchmarks conduct training and testing within the same

domain, and do not support the setting of the cross-domain OSDA-FSR task. There-

fore, We propose three benchmarks to evaluate the performance of our DAP-FSR, i.e.,
CelebA [203] → Multi-PIE [204], CelebA → ExtendedYaleB [205], and Multi-PIE →
ExtendedYaleB. In particular, CelebA dataset contains large-scale in-the-wild face im-

ages, Multi-PIE and ExtendedYaleB datasets comprise indoor face images captured in

different poses and illumination conditions. We select 10 different illumination and pose

condition data splits in Multi-PIE and ExtendedYaleB, respectively. The adaptation

performance is evaluated with a given exemplar in each split and then the final reported

performance is averaged over all the splits.

Evaluation metrics We report the quantitative results using the average Peak Single-

to-Noise Ratio (PSNR), Structural SIMilarity scores (SSIM) following the common FSR

practice [193, 196]. Furthermore, we also employ the Learned Perceptual Image Patch

Similarity (LPIPS) [206] and Face Image Quality (FIQ) [207] to evaluate the quality and

authenticity of super-resolved faces. The PSNR, SSIM, LPIPS metrics are calculated

between the reconstructed HR images ISR and the ground-truth HR images IHR. The

FIQ is a non-reference metric for face quality assessment, which is calculated only on

ISR .

6.4.2 Implementation Details

In our experiments, we crop the aligned faces and resize them to 128×128 pixels to

achieve ground-truth HR images. In real-world applications, we do not assume that the

input LR faces are perfectly aligned. Following [202], we apply affine transformations,

including rotations, translations and scaling, to HR faces and then downsample them to

16×16 pixels as our LR face images. We use the author-provided codes of PULSE [122],

MTDN [202] and CPGAN [196]. For comparison fairness, we adopt the same training

protocols for all the methods. To alleviate the influence of the selected one-shot exemplar,
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Figure 6.4: Comparisons with state-of-the-art methods on CelebA→ExtYaleB,
CelebA→MultiPIE and MultiPIE→ExtYaleB benchmarks under the OSDA-FSR set-
ting. Our method achieves high-quality, style-consistent HR faces and is also robust
against unaligned LR inputs.

we run the proposed method for ten times with different randomly selected one-shot

exemplars in each task and report the averaged results.

6.4.3 Comparisons with the State-of-the-Art

Qualitative comparisons We first conduct qualitative comparisons with the state-of-

the-art methods on three OSDA-FSR benchmarks in Figure 6.4.

CPGAN [196] and MTDN [202] can super-resolve LR images well and deal with

unaligned LR input faces successfully in the source domain. However, these methods

do not take the domain gap into account, and lack an efficient mechanism to address
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LR images from a new domain. Therefore, their final reconstructed HR images from

target domain LR faces suffer from severe artifacts. Although collecting a large number

of target domain data and then re-training the networks can solve the above issue, doing

so is time-consuming and does not provide a data-efficient solution to OSDA-FSR.

PULSE [122] traverses the high-resolution face image manifold and searches images

whose downsampled versions are close to the given LR images. Although realistic images

are achieved, this method requires input LR images to be perfectly pre-aligned. When LR

images are unaligned, the reconstructed HR images are enforced to match the intensities

of LR faces. This will lead to severe changes of face identities, as seen in Figure 6.4.

Moreover, PULSE does not consider the domain gap. Due to the data distribution shift

between the source and target domains, PULSE fails to super-resolve HR faces sharing

the same style as the target domain images.

In contrast, as seen in Figure 6.4, our method achieves superior performance com-

pared to the other competing methods. Although input LR images are unaligned, our

DAP-FSR still produces visually appealing HR faces which are close to their HR ground-

truth. Notably, our upsampled faces also exhibit style-consistency with respect to the

given one-shot target domain exemplar. This demonstrates the transfer ability of our

method. Note that our method is actually able to super-resolve LR faces with an upscal-

ing factor up to 64×, and for fair comparisons with the state-of-the-art methods, we only

show HR faces in the same resolution as other methods. To the best of our knowledge,

our DAP-FSR network is the first attempt to super-resolve cross-domain LR images with
only one target-domain exemplar, and achieves superior super-resolution results.

To further validate the generalization ability, in Figure 6.5, we show the FSR results

of tiny faces in-the-wild [2] under real-world unconstrained conditions, where the ground-

truth HRs are unavailable. Here, LR faces may undergo different poses, blurs, noises,

etc. All the models are trained on the CelebA source dataset and adapted to the target

domain using the given one-shot HR example. Moreover, in Figure 6.6, we also conduct

cross-domain FSR experiments on near infrared (NIR) face images [3] as a target

domain. Our DAP-FSR still outperforms the other competing methods, demonstrating

the generalization ability of our method.

Quantitative comparisons As indicated in Table 6.1, we report the LPIPS, FIQ, PSNR

and SSIM metrics on three OSDA-FSR benchmarks, respectively. Our proposed DAP-FSR

outperforms the state-of-the-art methods significantly, especially on the perceptually-

driven metrics, i.e., LPIPS and FIQ. This indicates that our super-resolved target domain

HR faces not only resemble their ground-truth but also are photo-realistic. More impor-
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Figure 6.5: Comparisons with state-of-the-art methods on tiny faces in-the-wild [2] under
real-world unconstrained conditions.

tantly, our DAP-FSR consistently performs better than other methods on all the bench-

marks. Thanks to our dedicated network design, we are able to align and upsample target

domain LR faces, simultaneously. In particular, DAP-FSR reconstructs high-quality face

images and outperforms the second best method PULSE on unaligned images by a

margin of +43% (0.32→ 0.46 ) in FIQ on the benchmark CelebA→ExtendedYaleB.

To address the domain gap, a straightforward idea is fine-tuning the source-trained

FSR model with the augmented target samples. Thus, we employ a style-transfer-based

method ASM [1] to augment new training samples from the one-shot target domain

exemplar, and then fine-tune the FSR models. We name these the combination as +ASM

in Table 6.1. As indicated by Table 6.1, applying style transfer cannot fully establish the

facial detail correspondences between the source and target domains, thus leading to

performance degradation.

Furthermore, benefiting from our designed one-shot adaptation algorithm, we trans-

fer our network to the target domain effectively. Therefore, our quantitative results are

better than the results of MTDN+ASM and PULSE+ASM. Owing to our encoder-decoder

design, our method is also more efficient and effective compared to the decoder-only based

method PULSE. After training, our DAP-FSR hallucinates LR faces in a feed-forward

manner and runs ×150 faster than PULSE, which provides a high application potential

in the real-world scenario.

6.4.4 Ablation Analysis

In our ablation analysis, we conduct all the experiments on the CelebA→ExtendedYaleB

benchmark.

Effectiveness of network design We analyze the effect of each component in our
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Figure 6.6: Comparisons with state-of-the-art methods on near-infrared (NIR) sensor
captured faces [3].

network design in Table 6.2. Compared to a straightforward approach that predicts the

latent representations at the end of the backbone, our network adaptively explores the

abundant multi-scale features (Config A). It is a long-standing shortcoming that CNN is

sensitive to rotations. Our multiple ISTN design effectively handle this problem (Config

B), thus being robust against unaligned LR images. We also illustrate that it is vital to

explicitly constrain the predicted latent representations on the manifold (Config C).

Effectiveness of one-shot domain adaptation Table 6.2 indicates the impact of each

component in Algorithm 2 on the OSDA-FSR performance. In our method, we effectively

enrich the training samples by mixing the latent representations between the source

and target domain faces (Config D). Compared to the configuration without exploring the

one-shot exemplar (Config C), we observe that Config D achieves better super-resolution

performance. This implies our method fully exploits the one-shot target exemplar to

bridge the domain gap.

By applying the soft mixing weight (Config E), we further improve the super-resolution

performance. This indicates that our soft mixing strategy is more effective than simply

replacing the last three final layers of the latent representations between the source and

target domain images as done in Config D. As fine-tuning the whole decoder network may

lead to over-fitting and destroy the learned face priors, we constrain the optimization

space and only modify the AdaIN parameters to improve performance (Config F).

We also compare with other target domain augmentation methods, including Style

Transfer and ASM. Specifically, these are employed to enlarge the target domain ex-

amples and then we constrained fine-tune our model using the augmented data. As

indicated in Table 6.3, our method significantly facilitates the model adapting to the

target domain, thus achieve better super-resolution performance.
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Table 6.2: Ablations on different configurations of the network architecture (A,B,C) and
different configurations of the adaptation algorithm (D,E,F). ↑ indicates the higher the
better, and ↓ indicates the lower the better.

CelebA → ExtendedYaleBConfiguration
LPIPS ↓ FIQ ↑ PSNR ↑ SSIM ↑

Baseline network 0.48 0.28 17.64 0.44
A + Multi-scale features 0.46 0.30 17.82 0.44
B + Multi-STN modules 0.43 0.34 18.41 0.45
C + Predict offset scale 0.38 0.41 20.39 0.49
D + Style mixing examples 0.38 0.41 21.97 0.52
E + Soft mixing weight 0.38 0.42 22.10 0.54
F + Constrained adaptation 0.36 0.46 22.32 0.55

Table 6.3: Comparisons on one-shot adaptation augmentation strategies. ↑ indicates the
higher the better, and ↓ the lower the better.

CelebA → ExtendedYaleBMethods
LPIPS ↓ FIQ ↑ PSNR ↑ SSIM ↑

Direct fine-tuning 0.44 0.30 20.11 0.45
Style Transfer [135] 0.42 0.37 20.16 0.46
ASM [1] 0.40 0.38 20.71 0.50
DAP-FSR (Ours) 0.36 0.46 22.32 0.55

6.5 Summary

In this section, we addressed a more challenging and practical face super-resolution task,

where a domain gap between the training and testing data exists. To tackle this problem,

we proposed a new Domain-Aware Pyramid-based Face Super-Resolution network (DAP-

FSR) that is able to super-resolve unaligned low-resolution ones from a target domain

effectively by leveraging only one target domain exemplar. Our approach bridges the

domain gap by fully exploiting the given exemplar from the target domain as well as our

designed soft mixing strategy which significantly enlarges the number of the training

samples. Extensive experiments demonstrate our method is able to super-resolve cross-

domain LR faces and outperforms the state-of-the-art methods significantly. We hope

that our work will also motivate future research on the low-shot FSR task.
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CONCLUSION

In this thesis, we propose data-efficient algorithms to alleviate the data requirements

for deep learning networks in terms of data quantity and quality. More specifically,

we present data-efficient algorithms for visual understanding tasks that exploit (1)

learning with noise, (2) few-shot learning and zero-shot learning, and (3) transferring

prior knowledge. Our major contributions can be summarized as followings,

Human Parsing from Learning with Noise Perspective We propose to tackle

the challenging human parsing task by considering the label noises existing in the

ground-truth masks. To the best of our knowledge, this is a new perspective in this

research area, which is not well explored before. We propose a simple yet effective noise-

tolerant approach named SCHP for alleviating the existing label noises accordingly.

By alternatively performing model aggregating and label refining in an online manner,

SCHP could mutually promote the model performance and label accuracy. Our SCHP is

model-agnostic and thus can be applied to various human parsing frameworks. Extensive

ablation experiments demonstrate the generalization ability and the superiority of the

proposed SCHP. Benefiting from the proposed SCHP, this work achieved a new state-

of-the-art performance on six single/multiple human parsing benchmarks and won the

winner prize of all three human parsing tracks in the 3rd Look Into Person Challenge.

Generalized Few-shot Scene Parsing from Meta-Learning Perspective We

advance the few-shot segmentation paradigm towards a more challenging yet general

scenario, i.e., generalized few-shot scene parsing. We present a generic framework named

Meta Parsing Networks (MPNet). Our MPNet is a generic framework for performing
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the generalized few-shot scene parsing task. We conduct experiments on two newly

constructed generalized few-shot scene parsing benchmarks, called GFSP-Cityscapes
and GFSP-Pascal-Context. Extensive ablation studies and comparisons well demonstrate

the effectiveness and generalization ability of our proposed MPNet.

Zero-shot Semantic Segmentation by Cross-modal Knowledge Transfer-
ring We propose Consistent Structural Relation Learning (CSRL) framework to tackle

the challenging generalized zero-shot semantic segmentation task. We propose a semantic-

visual structural generator by integrating both feature generating and relation learning

in a unified network architecture. We conduct extensive experiments on two GZS3

benchmarks based on Pascal-VOC and Pascal-Context datasets. The proposed CSRL

outperforms existing state-of-the-art methods by a large margin, resulting in ~7-12% on

Pascal-VOC and ~2-5% on Pascal-Context.

Cross-domain Face Super-resolution via One-shot Exemplar We propose a

novel domain-aware pyramid-based face super-resolution network, named DAP-FSR

network, to efficiently upsample cross-domain LR face images by peeking at one-shot

target domain example. We present a simple yet effective domain-aware latent mixing

and model adaptation algorithm (DAMMA) to adapt our DAP-FSR to the target domain.

Our DAMMA generates target-style alike faces to adapt the upsampling decoder in

DAP-FSR by fully exploiting the one-shot example. To the best of our knowledge, our

method is the first attempt to super-resolve cross-domain LR face images, making our

method more practical. Our proposed DAP-FSR can effectively adapt to a target domain

and is also robust to unaligned LR faces. Experiments on three constructed cross-domain

face super-resolution benchmarks validate the superior performance of our proposed

approach compared to the state-of-the-art methods.

In summary, standing on the shoulders of former practices, we have taken multiple

stages in this thesis to investigate deep learning approaches for data-efficient visual

understanding. The successful application of data-efficient machine learning techniques

into computer vision tasks will make the deep learning models perform well and general-

ize with limited annotated data examples. Although the works introduced in this thesis

achieve an initial success for the data-efficient visual understanding tasks, there is still

a long way. We can observe that there is still a significant performance gap between the

results of the fully-supervised paradigm and the data-efficient paradigm. Thus, more

effective data-efficient learning-based algorithms are still required to alleviate this gap.

We hope that our efforts will motivate more researchers and ease future research on

data-efficient visual understanding.
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