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Abstract. The most popular building material, concrete, is intrinsically linked to the 
advancement of humanity. Due to the ever-increasing complexity of cementitious 
systems, concrete formulation for desired qualities remains a difficult undertaking 
despite conceptual and methodological advancement in the field of concrete 
science. Recognising the significant pollution caused by the traditional cement 
industry, construction of civil engineering structures has been carried out 
successfully using Geopolymer Concrete (GPC), also known as High Performance 
Concrete (HPC). These are concretes formed by the reaction of inorganic materials 
with a high content of Silicon and Aluminium (Pozzolans) with alkalis to achieve 
cementitious properties. These supplementary cementitious materials include Blast 
Furnace Slag, a waste material generated in the steel manufacturing industry; Fly 
Ash, which is a fine waste product produced by coal-fired power stations and Silica 
Fume, a by-product of producing silicon metal or ferrosilicon alloys. This result 
demonstrated that GPC/HPC can be utilised as a substitute for traditional Portland 
cement-based concrete, resulting in improvements in concrete properties in 
addition to environmental and economic benefits. This study explores utilising 
experimental data to train artificial neural networks, which are then used to 
determine the effect of supplementary cementitious material replacement, namely 
fly ash, granulated blast furnace slag and silica fume, on the compressive strength, 
tensile strength, and modulus of elasticity of concrete and to predict these values 
accordingly.  † 
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1. INTRODUCTION 

Concretes incorporating Supplementary Cementitious Materials are referred to in the literature as 
Geopolymers (Davidovits 1991). Utilising SCMs correspondingly reduces the energy requirement 
of manufacturing cement and concrete, thus incurring further cost savings. Moreover, 
Supplementary Cementitious Materials are typically industrial waste materials which, if not utilised, 
would end up in landfills or man-made ponds where their contents are liable to leach into surface 
and ground water, causing extensive pollution and health hazards.  

Geoploymer Concrete (GPC) has been found to have higher compressive strength than 
comparable concretes utilising ordinary Portland cement (Deb, Nath & Sarker 2015). Highlighting 
these enhanced properties, the phrase "high-performance concrete" (HPC) has emerged as 
synonym for GPC in the construction sector. In addition to the Portland cement, fine and coarse 
aggregates, and water that make up traditional concrete, additional cementitious elements 
including fly ash and blast furnace slag as well as chemical admixtures like superplasticizer are 
required for the production of HPC. Modelling the behaviour of high-performance concrete is a 
challenging endeavour due to the material's extreme complexity (Yeh 1998). 

Concrete mix design is a complex and important subject that necessitates expert knowledge of the 
consistent materials and challenges related to their use. Constructing a useful end-product, a 
building or bridge for example, is contingent on availability of concrete with the necessary strength 
and other utility qualities. Concrete hardening and hydration are irreversible processes. Therefore, 
any mistakes in the concrete mix design are quite expensive for the investor, both during 
construction and after the structure has been used due to reduced durability (Ziolkowski & 
Niedostatkiewicz 2019). 
 
Facing these challenges, artificial intelligence (AI) is increasingly utilised in concrete research as a 
complementary approach, and is providing new perspectives and useful solutions for accelerating 
innovations in the design and development of cementitious materials. The intrinsic complexity of 
concrete mixtures and their attributes can be taken into account by (AI) by utilising current datasets 
with data-driven models, which can automatically learn implicit patterns. An experiment series 
employing that material is used to train a neural network, which is the fundamental approach to 
creating a brain-based model for material behavior. The trained neural network will have enough 
knowledge of the material's behaviour to qualify as a material model if the experimental findings 
contain the pertinent information about the material's behavior. Such a trained neural network 
should be able to approximate the outcomes of other trials in addition to being able to replicate the 
experimental findings it was trained on (Ghaboussi, Garrett & Wu 1991). 
 
Machine learning and Artificial Neural Networks (ANN) have been employed in numerous studies 
to determine and predict the mechanical properties of concrete. Yeh (1998) prepared several 
batches of high performance concrete which showed satisfactory experimental results, and 
subsequently utilised the data to train an artificial neural network, concluding “The strength model 
based on the artificial neural network is more accurate than the model based on regression 
analysis”. Chou et al. (2014) used advanced machine learning (ML) techniques to predict concrete 
compressive strength, concluding that their results confirm the suitability of ML methods for quick 
and effective concrete compressive strength computations. Boğa, Öztürk & Topçu (2013) 
developed a four-layered artificial neural network method (ANN) and determined that the ANN 
model can estimate experimental data to a remarkably close degree. 
 
This study investigates the potential of utilising artificial neural networks (ANN) to determine the 
effect of replacement of ordinary Portland cement with supplementary cementitious materials 
(HPC), notable fly ash, granulated blast furnace slag and silica fume, on the mechanical properties 
of hardened concrete, including compressive strength and modulus of elasticity. The main 
advantages of using a neural network approach are that all of a material's behaviour can be 
represented in a single, cohesive environment provided by a neural network, and the neural 
network-based model is created directly from experimental data using the neural network's learning 
capabilities. This paper will not discuss in detail the artificial neural network methodology because 
it has been covered in numerous papers and books. Section 2 of the following sections provides 
an explanation of the artificial neural network. The network used to predict the compressive strength 
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of concrete is examined in Section 3. The model is examined in Section 4 along with a number of 
proportioning factors in order to track the HPC's strength behaviour. To validate the suggested 
strategy, experiments are used in Section 5. Section 6 provides results and conclusions. 
 

2. ARCHITECTURE OF ARTIFICIAL NEURAL NETWORKS 
Artificial neural networks are a class of massively parallel architecture that function in conjunction 
with highly networked artificial neurons to tackle complex problems. The vast majority of research 
utilises back-propagation neural networks (McClelland, Rumelhart & Group 1987). The network is 
trained by altering the link weights in accordance with the knowledge it has gained through training. 
By comparing each input pattern's goal output with the network's output for that pattern, the network 
learns by computing the error and propagating an error function backward through the network. 
After the network has been trained, it is given values for the project's input parameters in order to 
run. Following that, the network computes the node outputs using the weight values and thresholds 
already in place from the training phase. Because the system only needs to generate the network 
node values once, executing the network happens very quickly (Zupan 1994). 
 
To test the accuracy of a trained network, the Root Mean Square Error (RMSE) is adopted, which 
commonly used method for comparing values predicted by a model or estimate to values observed 
in a sample or population. It gauges how well the proposed model can predict and replicate patterns 
in the experimental data in order to forecast the outcome (Hyndman & Koehler 2006). 

3. MODELLING OF STRENGTH OF HIGH-PERFORMANCE CONCRETE 
Learning Algorithm 
 
The Levenberg-Marquardt method has been used as the learning algorithm to train the ANN model. 
The Gauss-Newton and Gradient Descent functions are both used by this approach to access the 
best run-by-run performance. While gradient descent uses the idea of absolute minima and 
absolute maxima, Gauss-Newton uses MSE as the cost function; the criterion which quantifies how 
good a model is (Sheskin 2004). The absolute maximum is the highest value on a cost function 
graph, whereas absolute minimum is the lowest point on the graph. Because it makes use of both 
the Gradient Decent and the cost function, the Levenberg-Marquardt algorithm performs better than 
other algorithms (Bafitlhile, Li & Li 2018). Since this algorithm gets the optimal value more quickly 
than other algorithms, it requires less training time. Many software programs employ this approach 
for curve fitting or regression. 
 
The number of neurons in the Hidden Layer is deterimed as follows. The number of hidden layer 
neurons are 2/3 (or 70% to 90%) of the size of the input layer. If this is insufficient then number of 
output layer neurons can be added later on (Boger & Guterman 1997). The number of hidden layer 
neurons should be less than twice of the number of neurons in input layer (Berry & Linoff 2011). 
With these considerations in mind, the cost function was optimised to determine the number of 
neurons in the hidden layer. The performance of the cost function was recorded for each iteration 
of the program, which was repeated a number of times. It was decided to choose the number of 
neurons that predicted the output with the highest correlation. 
 
With these considerations in mind, the cost function was optimized to determine the number of 
neurons in the hidden layer. The performance of the cost function was recorded for each iteration 
of the program, which was repeated a number of times. It was decided to choose the number of 
neurons that predicted the output with the highest correlation. 
 
How the ANN code functions 
 
The first step is Importing the data set from the directory. Subsequently, pre-processing of the data 
(Correlation, Null Values, filling Missing) is carried out, followed by distinguishing of input and 
output variables. Once this has been completed, data is split for training, validation, and testing in 
proportions of 80%, 10%, and 10%, respectively. Model construction is then carried out utilising 10 
neurons. RMSE is then calculated for every output, and the actual and anticipated values are used 
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to produce the regression plot. This is followed by optimizing the quantity of neurons to produce 
the best correlation between experimental and predicted values. Optimisation allows for selecting 
the ideal number of neurons and reinforcing the model. Finally, the regression plots are replotted 
and the RMSE recalculated. The steps above are illustrated in the following flow chart. 
 

 
Figure 1 Modelling methodology flowchart for this study 
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4. DATA SETS AND EXPERIMENTAL DATA (TRAINING ANN) 
 
This study uses date obtained from the National Research and Development Project, known as 
New RC Project, supported by the Ministry of Construction and the Research Committee on High-
strength Concrete of the Architectural Institute of Japan (Tomosawa & Noguchi 1995). More than 
3,000 data points on the correlation between compressive strengths and modulus of elasticity were 
gathered and statistically analysed (Tomosawa & Noguchi 1995). These data points were gathered 
by numerous researchers using a variety of materials. The examined concretes' compressive 
strengths ranged from 20 to 160 MPa. This data is used to train the developed artificial neural 
network developed for this study, such that by varying the factors of fly ash content, GGBS content 
and silica fume content, predictions for the value of compressive strength, modulus of elasticity and 
tensile strength can be obtained. 
 

5. TRAINING RESULTS 
 
As stated in the earlier explanation of the ANN code and shown in Figure 1, splitting for training, 
validation, and testing in proportions of 80%, 10%, and 10%, respectively had been carried out. 
The training results can be summarised as follows 

Compressive Strength  

Initially the model was trained with 10 number of neurons in the hidden layer, and the predications 
for compressive strength obtained and compared to experimental results. The performance of the 
model can be observed in the following regression plots.  

 
Figure 2: Predicted strength values of neural network compared with values actually observed in 

the laboratory for the testing examples. 
 
Figure 2 shows the comparison between the predicted compressive strength and the actual values 
reported in the experimental results in (Tomosawa & Noguchi 1995). The sample correlation 
coefficient (r) measures how closely the points on a scatter plot are related to a linear regression 
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line constructed using those points, with a value close to 1 indicating a strong correlation. 
Performance of the model is acceptable for training but may be improved in the case of testing, 
therefore an attempt is made to optimise the number of neurons. Figure 3 shows the optimisation 
process.  

 
Figure 3: Optimisation of the no of neurons adopted in the ANN for prediction of compressive 

strength 
 
Based upon the optimisation process shown in Figure 3, the number of neurons adopted in the 
ANN is modified to 19, in order to minimise the RMSE. Subsequently, the observed Predicted 
strength values were as follows. 

 
Figure 4: Predicted strength values of neural network compared with values actually observed in 

the laboratory for the testing examples using optimized number of neurons. 
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The results are summarised in Table 1. These results show reduced root-mean-square error 
(RMSE) upon using the optimised number of neurons.  
 

Table 1: Performance Comparison of RMSE for prediction Compressive Strength 

State RMSE (10) RMSE Optimised  

Training 12.367 8.969 

Validation 11.213 11.177 

Testing 13.730 9.816 

 

Modulus of Elasticity  

Initially the model was trained with 10 number of neurons in the hidden layer, the performance of 
the model can be observed in the following regression plot.  

 
Figure 5: Predicted strength values of neural network compared with values actually observed in 

the laboratory for the testing examples using number of neurons (10). 
 
The performance shown in Figure 5 has been improved using the following optimisation process. 
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Figure 6: Optimisation of the number of neurons adopted in the ANN for prediction of modulus of 

elasticity 
 
Based upon the optimisation process shown in Figure 6, the number of neurons adopted in the 
ANN is modified to 24, in order to minimise the RMSE. Subsequently, the linear regression for the 
observed predicted modulus of elasticity values were as follows. 

 
Figure 7: Predicted strength values of neural network compared with values actually observed in 

the laboratory for the testing examples using optimized number of neurons (24). 
 
Significant improvement in the performance can be observed after adjusting the numbers of 
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neurons in the hidden layer from 10 to 24. The results are summarised in table 2. 

Table 2: Performance Comparison of RMSE for prediction Modulus of Elasticity 

State RMSE (10) RMSE Optimised (24) 

Training 4.465 3.037 

Validation 4.492 3.44 

Testing 4.871 3.41 

 

Tensile Strength 

Initially the model was trained with 10 number of neurons in the hidden layer, the performance of 
the model can be observed in the following regression plot.  

 
Figure 8: Predicted strength values of neural network compared with values actually observed in 

the laboratory for the testing examples using number of neurons (10). 
 
Performance of the model in case of tensile strength is not good enough, exhibiting a sample 
correlation coefficient (r) close to 0.8. Therefore, as for the training of the ANN for compressive 
strength and modulus of elasticity training, the optimisation technique was adopted to calculate the 
optimum number of neurons. Results of the optimization process is shown as follows. 
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Figure 9: Optimisation of the number of neurons adopted in the ANN for prediction of tensile 

strength 
 
Based upon the optimisation process shown in Figure 6, the number of neurons adopted in the 
ANN is modified to 15, in order the to minimise the RMSE. Subsequently, the linear regression for 
the observed predicted modulus of elasticity values were as follows. 

 
Figure 10: Predicted strength values of neural network compared with values actually observed in 

the laboratory for the testing examples using optimised number of neurons (24). 
 
The results are summarised in table 3. The sample correlation coefficient (r) is observed to remain 
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below 0.9, even after optimisation. While this result is lower than the previous predications of 
compressive strength and modulus of elasticity, it is still considered to signify a very strong 
correlation (Sheskin 2004). 
 

Table 3: Performance Comparison of RMSE for prediction Tensile Strength 

State RMSE (10 neurons) RMSE Optimised (15 neurons) 

Training 0.750 0.62 

Validation 0.735 0.732 

Testing 0.732 0.717 

 

6. RESULTS 
 
Upon validation of the ANN model, the model is utilised to evaluate the influence of different 
parameters, namely the percentage content of fly ash, Ground granulated blast-furnace slag, and 
silica fume on the compressive strength, modulus of elasticity and tensile strength of high 
performance concrete (HPC). 
 
Figure 11 presents the results of the predicted values for compressive strength by the ANN model, 
for admixture contents increasing in increments of 5% by mass.  
 

 

Figure 11 Predicted compressive strength of concrete at 28 days  

  
The results show that the compressive strength increases initially with increasing content of mineral 
admixtures, namely microsilica, ground-granulated blast-furnace slag (GGBGS) and fly ash. 
However compressive strength is predicted to peak at percentage replacements ranging from 15-
30% and begins to decrease beyond that. These results agree well with previous experimental 
studies (Bendapudi & Saha 2011; Duval & Kadri 1998; Sharma & Puvvadi 2012).  
 
Figure 12 presents the results of the predicted values for modulus of elasticity by the ANN model, 
for admixture contents increasing in increments of 5% by mass.  
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Figure 12 Predicted Modulus of elasticity of concrete at 28 days 

 
The results show a decrease in predicted modulus of elasticity of concrete with increasing fly ash 
content, which is agreeable with previous research (Atchley 1959; Mohammed Ali, Zidan & Al-Eliwi 
2020). For the remaining additives (Microsilica and GGBFS), the results show minimal effect of 
increasing the percentage of additive by weight. The influence of these additives requires further 
research.   
 
 Figure 13 presents the results of the predicted values for tensile strength by the ANN model, for 
admixture contents increasing in increments of 5% by mass.  
 

 

Figure 13 Predicted tensile strength of concrete at 28 days 

 
The results show that the tensile strength increases initially with increasing content of mineral 
admixtures, namely microsilica, ground-granulated blast-furnace slag (GGBGS) and fly ash. 
However, this trend only extends until about 15% replacement by mass, beyond which the tensile 
strength generally decreases as admixture content increases. These results are in good agreement 
with results of experimental procedures reported in the literature (Mohammed Ali, Zidan & Al-Eliwi 
2020; Smarzewski 2019). 
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7. CONCLUSION 
 
Overall, the above results show that the ANN model is capable of predicting the mechanical 
properties of mineral additive enhanced high performance concretes. The results are generally in 
good agreement with previous experimental research. However, further research is required to 
enhance the accuracy of the model, and to predict mechanical properties with various percentages 
of multiple additives simultaneously. The results of this research may then be utilised to achieve 
higher utilisation of additives which would otherwise constitute hazardous waste materials in 
producing superior concretes for use in the construction industry, entailing both environmental and 
economic benefits.  
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