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Abstract

Dynamic pricing is a pricing strategy that adapts and optimizes prices based on informa-
tion about demand. The optimization models interactions between price and demand.
Uncertain demand poses a challenge in the modeling. In addressing the uncertainty,
stochastic demand is widely assumed. From dynamical systems’ perspective, nonlin-
ear interactions between variables yield a rational route that can exhibit uncertainty.

However, uncertain demand because of nonlinear interactions remains to be elucidated.

This thesis analyzes uncertain demand from theoretical and empirical perspectives.
A theoretical model addresses a hypothetically rational route to uncertain demand. The
rational route has discontinuities in demand functions and optimizations. By a bifurca-
tion analysis, the theoretical impacts of discontinuous interactions are investigated. A
reconstruction of real-life on-demand attractor addresses a data-driven identification of
uncertain demand. Recurrence-based attractor reconstruction is proposed and applied
on empirical data from RideAustin, a company providing ride share service in the city
of Austin, Texas, the United States. Recurrence plots and Pareto optimality are applied
to find optimal embedding and time delay dimensions. The ones under which recur-
rence plots yield optimal recurrence quantification measures, the determinism and the

trapping time, are chosen for an attractor reconstruction.

Border collision bifurcations are observed from the theoretical mode, justifying dy-

namic pricing from dynamical systems’ perspective. A period-7 limit cycle is recon-
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structed from empirical data. Results suggest that nonlinear interactions could cause
uncertain demand of which a rational route is a constituent part. The findings empha-

size data-driven modeling of uncertain demand. For optimal revenue, demand dynamics

should be identified.

Finally, uncertainty in deterministic chaos or dynamic pricing is increasingly ana-
lyzed by machine learning methods. However, for an artificial system, a system that
employs machine learning methods for mimicking deterministic chaos, the role of initial
conditions remains unclear. This thesis analyzes the sensitive dependence of an artifi-
cial system on initial conditions. Nonlinear time series analysis is introduced to study
machine behavior, the behavior of an artificial system under varying initial conditions.
We observe that machine behaviors coincide chaotic trajectories, however, alter original
basins. Garbled symbolic dynamics is observed, further indicating that a coincidence of
a single chaotic trajectory could mislead conclusions. The results highlight that when
machine learning meets complex dynamics, an artificial system should be performed
under varying initial conditions, instead of a single chaotic trajectory. Machine behav-
iors would help showing and comparing the sensitive dependence on initial conditions

between a mimicked chaotic and an artificial systems.
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