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Abstract

Dynamic pricing is a pricing strategy that adapts and optimizes prices based on informa-

tion about demand. The optimization models interactions between price and demand.

Uncertain demand poses a challenge in the modeling. In addressing the uncertainty,

stochastic demand is widely assumed. From dynamical systems’ perspective, nonlin-

ear interactions between variables yield a rational route that can exhibit uncertainty.

However, uncertain demand because of nonlinear interactions remains to be elucidated.

This thesis analyzes uncertain demand from theoretical and empirical perspectives.

A theoretical model addresses a hypothetically rational route to uncertain demand. The

rational route has discontinuities in demand functions and optimizations. By a bifurca-

tion analysis, the theoretical impacts of discontinuous interactions are investigated. A

reconstruction of real-life on-demand attractor addresses a data-driven identification of

uncertain demand. Recurrence-based attractor reconstruction is proposed and applied

on empirical data from RideAustin, a company providing ride share service in the city

of Austin, Texas, the United States. Recurrence plots and Pareto optimality are applied

to find optimal embedding and time delay dimensions. The ones under which recur-

rence plots yield optimal recurrence quantification measures, the determinism and the

trapping time, are chosen for an attractor reconstruction.

Border collision bifurcations are observed from the theoretical mode, justifying dy-

namic pricing from dynamical systems’ perspective. A period-7 limit cycle is recon-
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structed from empirical data. Results suggest that nonlinear interactions could cause

uncertain demand of which a rational route is a constituent part. The findings empha-

size data-driven modeling of uncertain demand. For optimal revenue, demand dynamics

should be identified.

Finally, uncertainty in deterministic chaos or dynamic pricing is increasingly ana-

lyzed by machine learning methods. However, for an artificial system, a system that

employs machine learning methods for mimicking deterministic chaos, the role of initial

conditions remains unclear. This thesis analyzes the sensitive dependence of an artifi-

cial system on initial conditions. Nonlinear time series analysis is introduced to study

machine behavior, the behavior of an artificial system under varying initial conditions.

We observe that machine behaviors coincide chaotic trajectories, however, alter original

basins. Garbled symbolic dynamics is observed, further indicating that a coincidence of

a single chaotic trajectory could mislead conclusions. The results highlight that when

machine learning meets complex dynamics, an artificial system should be performed

under varying initial conditions, instead of a single chaotic trajectory. Machine behav-

iors would help showing and comparing the sensitive dependence on initial conditions

between a mimicked chaotic and an artificial systems.
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Chapter 1

Introduction

Recurrence is a fundamental property of many real-life dynamical systems. Uncer-

tainty is an inherent problem to the dynamical system. The subject of this thesis

is deterministic chaos and nonlinear time series analysis in the application of dy-

namic pricing problems. A theoretical model is provided to justify dynamic pricing

from nonlinear dynamical systems’ perspective and to fresh knowledge about un-

certain demand. Recurrence-based attractor reconstruction is then proposed to

identify demand dynamics for data-driven dynamic pricing. Finally, the behavior

of an artificial intelligence system in mimicking deterministic chaos is studied.

1.1 Dynamic pricing

Price, demand, and supply are the three variables that affect social behaviors of eco-

nomically acting human individuals [297, 361]. The buying and the selling decisions, for

example, are affected. While demand is related to consumers’ buying behavior, supply

is related to sellers’ selling behavior. Price is the critical variable that connects and

interacts with both demand and supply. In a transaction, consumers are a price-taker,

and sellers are a price-maker. A seller makes a pricing decision and sets the price of

goods or services [297, 361].

1
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Dynamic pricing is concerned with the price that a seller sets for optimal revenue [70,

297, 361]. Different from an equilibrium price, dynamic pricing utilizes a demand-based

pricing strategy. An equilibrium price is the price where the quantity demanded equals

the quantity supplied. Dynamic pricing adjusts a price of an individual unit of supply

based on real-time information of demand [232]. Increasing availability in data improves

revenue that a seller realizes from dynamic pricing [45, 119, 297, 361]. Airline industry

of the United States initialized dynamic pricing in the late 1970s [73, 297, 361]. Since

then many businesses of our daily routes have implemented dynamic pricing, including

energy providers [114, 182], retailers [209], and the hospitality industry [2].

For a seller, improving revenue is one of the strongest motivations for an implemen-

tation of dynamic pricing. As shown by Cohen et al. [85], an increase of 3% profit can

be achieved from dynamic pricing for a grocery retailer in the United States. Kemper

and Breuer [190] show that dynamic pricing could eÿcien tly improve the revenue of

FC Bayern Munich, the famous soccer club in Bavaria, Germany. The empirical studies

highlight that consumers’ willingness to pay is at least 75% higher than the current price

for some game [190]. Implementing dynamic pricing is thus economically inspired. From

empirical evidence Fisher et al. [130] demonstrate that an 11% increase of revenue can

be achieved when a Chinese online retailer who sells baby-feeding bottles implements

dynamic pricing.

For a policy maker of governments, flattening the demand curve is the main reason

for accepting dynamic pricing. Zheng and Geroliminis [418] conduct a case study on

public parking facilities. The study suggests that dynamic pricing can effectively reduce

parking congestion and the time delay in cruising. Eliasson et al. [118] report that

dynamic pricing enables a reduction of 20% traÿc flows, in particular, the traÿc jam,

in Stockholm, Sweden. As Cramton et al. [92] emphasize, “dynamic pricing is the only

way forward for roads”.

For consumers, dynamic pricing is a benefit as well [73]. Chen and Sheldon [72] show

that dynamic pricing enables a significant increase of supply in a ride-sharing market,
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contributing to an improvement of consumers’ welfare. Garbarino and Lee [137] show

that because of dynamic pricing online consumers’ trust levels towards a seller’s behavior

increase. Stamatopoulos et al. [348] demonstrate that the cost savings from dynamic

pricing can be passed on to consumers, thus improving consumers’ welfare.

Machine learning methods further enable updating information about demand in a

timely manner. Amazon [69], Lyft and Uber [160], and Airbnb [141] are well-known

companies that conduct dynamic pricing.

However, demand fluctuations are driven by human behavior. A fundamental prob-

lem of a human-driven system is uncertainty [262, 368]. The main source of uncertainty

comes from our lack of knowledge about how a human-driven system works [368]. For ex-

ample, mathematical equations that universally describe the interactions between price,

demand, and supply remain unknown.

Uncertain demand affects each market participant, including the consumers, the

sellers, and the policy makers of government [84, 232]. Facing a purchase decision, con-

sumers often anticipate the price at which they are willing to pay [129, 175, 205, 232, 270,

300]. That price represents consumers’ price expectations. Lu et al. [232] show that un-

certainty in initial conditions causes demand exhibiting different dynamics. Consumers’

price expectations are thus easily manipulated by a change of initial conditions. Chen,

Mislove, and Wilson [68] indicate that without audits uncertainty in demand imposes a

concern to consumers’ welfare, such as the fairness and the transparency. For a seller,

coping with uncertainty in demand is the essence of dynamic pricing [70, 297, 361]. For

policy makers, ignoring uncertainty makes them fail a target level of public welfare [84].

Existing approaches often rely on assuming stochastic demand to cope with uncertain

demand [40, 44, 111, 191, 261]. Under the assumption, an external force behaves like

noise, and drives the interactions between price, demand, and supply. In this thesis,

noise is a stochastic variable of a high-dimensional system. From the assumption, the

uncertainty is because of a force in a complex high-dimensional system [262, 368]. A low-

dimensional system is incapable of quantifying the force by known and limited variables.
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On the other hand, contemporary statistics can be applied to analyze and quantify the

uncertainty of randomness. For example, statistics provides an effective tool to model

and predict the state of stochastic demand [70, 104, 105].

1.2 Equilibrium price

Another mechanism, equilibrium price, exists in addressing a pricing problem. Dynamic

pricing is different from an equilibrium price from three perspectives. Firstly, the role

that price, demand, and supply plays in dynamic pricing is different from that in equi-

librium price models. Dynamic pricing aims for maximal revenue as a seller has a fixed

amount of supply [45, 70, 119]. An equilibrium price occurs when a balance is achieved

between demand and supply as they are both adjustable.

Secondly, dynamic pricing is an operational issue of the seller [297, 361]. Facing

a given amount of supply, the seller utilizes optimizations to harvest optimal revenue

that is realized from the quantity supplied. From the perspective of day-to-day business

operations, a seller has a multiple-objective problem. At time t, one objective of the

seller could be to maximize the revenue that is realized from one inventory by increasing

price. The other one could be to minimize the risk of a non-zero inventory at the end of

the selling period by decreasing price. An inventory is one unit of supply that holds for

a future satisfaction of one unit of demand. Dynamic pricing is thus applied to address

the multiple-objective problem related to daily operations [297, 361].

Thirdly, as non-equilibrium prices occur, it becomes profitable to adopt dynamic

pricing strategy. Dynamic pricing is to find the price where optimal revenue can be

achieved. Nevertheless, an equilibrium is a situation deviating from which there does

not exists any profitable strategy [240, 269]. At the situation where supply is unable

to be adjusted as easy as demand, dynamic pricing, however, provides a strategy that

harvests an optimal revenue from the delay of interactions between demand and supply

[232]. Here, deviating from a previous equilibrium price can be profitable until a new

equilibrium price is reached. For example, Schröder et al. [332] show that dynamic
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pricing can be used to improve revenue when a ride-sharing market goes through a

shortage of supply (drivers) where non-equilibrium prices occur.

An equilibrium price can be an optimal solution to a dynamic pricing problem. At

the situation where supply is adjustable as easy as demand, an equilibrium price is the

optimal price that dynamic pricing aims for. A seller thus can implement a dynamic

pricing strategy to approach the equilibrium price for daily operations.

In the study of equilibrium prices, studies find that a rational route with uncertainty

can be an alternative source to apparent randomness. Brock and Hommes [51] show

that nonlinear interactions between demand and supply cause a deterministic route to

apparent randomness. Corcos et al. [89] demonstrate that intermittency emerges from

two contradicted human behaviors, imitation and contrarian. Intermittency is an irreg-

ular alternation of different deterministic routes [333]. The intermittency phenomenon

also explains bubbles and crashes of a stock market [89]. Anufriev et al. [11] show that

a deterministic model with discontinuity fits fluctuations of real markets.

1.3 Motivation for dynamic pricing

When it comes to the modeling of dynamic pricing problems, a rational route to irregular

demand fluctuations remains rare. Rump and Stidham [319] show that consumers’

adaptive price expectations lead to irregular arrivals as dynamic pricing aims for an

equilibrium price. The irregularity is attributed to a rational way that consumers adapts

price expectations. As dynamic pricing is unrelated to equilibrium prices, Hu et al. [175]

illustrate that a discontinuity in consumers’ adaption of price expectations leads to a

rational route to uncertain demand.

A rational route to irregular demand remains to be elucidated for four reasons. Dy-

namic pricing problems are held by human behavior-driven systems [322]. However,

a universal equation has not been identified to describe the behavior of human beings

responding to a change of prices or market environments [368]. Facing dynamic pric-

ing problems, a seller needs to have a current action (pricing decision), but expects an
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optimal future revenue. Nevertheless, in the absence of deterministic equations, “...who

knows what the future might hold?” [361]. Also, empirical studies that identify the

underlying equations of the interactions between price, demand, and supply are lim-

ited to contemporary regression methods. The idea of a regression is that hypothetical

equations fit the fluctuations of data. For example, Kopalle and Lindsey-Mullikin [203]

use a linear, a quadratic, an inverted U-shaped (e.g., the logarithmic function), and

an S-shaped (e.g., the logistic model) functions to model the interactions between price,

demand and supply. Li et al. [223] introduce a time delay term to a linear function

for modeling the interactions. Regressions rely on our contemporary knowledge about

mathematical equations. However, that knowledge remains elusive [53]. Another two

reasons are related to the modeling and the identification of a rational route in the re-

search field that is concerned with deterministic chaos and nonlinear time series analysis.

We will discuss the remaining two reasons in section 1.5 after introducing mathematical

definitions of deterministic chaos and nonlinear time series analysis.

1.4 Complex dynamics

A rational route to apparent randomness is fundamentally different from the route to

randomness that noise takes. Randomness of noise results from the incapacity to model

a high dimensional system by means of known variables of a low dimensional system

[262, 368]. Randomness is driven by an external force and quantified by noise [262, 368].

However, apparent randomness of a rational route results from nonlinearity that connects

known variables of a low dimensional system [51, 277]. The nonlinearity can be described

by deterministic equations. Apparent randomness is thus driven by an internal force and

quantified by deterministic equations [51, 175, 319].

1.4.1 Deterministic and stochastic dynamics

If fixing a system’s present state can lead to a deterministic future state, then the

system underlies deterministic dynamics [333] and exhibits a rational route to apparent

randomness. The rationality can be quantified by deterministic equations that describe
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the relationship between the system’s present and future states. However, the equations

may be unknown. We take a natural system as an example. Deterministic dynamics

has been identified from the climate system in some intervals of the last 66 million years

[397]. Nevertheless, explicitly mathematical formulas that describe the climate system

are yet to be addressed.

Stochastic dynamics is the dynamics of randomness as a result of noise. Deterministic

dynamics and stochastic dynamics have similarities in (1) irregular fluctuations of the

time series [277, 315]; and, (2) a broadband power spectrum in the frequency domain

[234, 315]. The topic, an identification of nonlinear dynamics, is to distinguish between

deterministic and stochastic dynamics. The identification is based on deterministic

patterns, such as recurrent properties [246, 277, 397] or symbolic patterns [7, 234, 317],

which can be seen in a system underlying deterministic dynamics.

1.4.2 Deterministic and artificial chaos

Chaos theory is a theory to understand apparent randomness arisen from a rational

route and to analyze the behavior of a dynamical system. The following concepts have

been introduced in chaos theory. Let φ(t,x) denote a flow generated from a vector field
dx
dt = f(x) where f is the governing equation, t denotes time, x represents a state of the

system, and x0 is an initial point. Phase space [398] is a phase of dependent variables

that define f . Given an initial point in phase space, a trajectory [398] is a solution to
dx
dt = f(x). An invariant set [398] is a set of points in phase space satisfying that a

trajectory taking the point in the set as initial points remains in an identical set forever.

An attracting set [398] is a closed invariant set A, and there exists some neighborhood

U of A satisfying ∀t ≥ 0, φ(t,U) ⊂ U and ⋂
t>0

φ(t,U) = A. A closed invariant set A

satisfies topological transitivity [398] if for any two open sets, U,V ⊂ A, ∃t ∈ R such

that φ(t,U)∪V 6= ∅. An attractor [398] is an attracting set that satisfies topological

transitivity.

We assume that Λ is a compact set, and for all t ∈ R, φ(t,Λ) ⊂ Λ. A flow φ(t,x)

exhibits sensitive dependence on initial conditions [398] on Λ if there exists an ε > 0
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holding the following property. For any x ∈ Λ and any neighborhood U of x, there

exists y ∈ U and t > 0 satisfying |φ(t,x)−φ(t,y)| > ε. Sensitive dependence on initial

conditions is related to a diverging behavior. For any point x ∈ Λ and an arbitrarily

small neighborhood U of x, there exists at least one point y ∈ U satisfying a diverging

behavior, that is, under φ the passing of finite time t > 0 makes y diverge from x by

a fixed distance ε. An attractor with φ(t,x) exhibits sensitive dependence on initial

condition is called chaotic, and the corresponding system is a chaotic system.

Deterministic chaos represents a phenomenon that takes place in a chaotic system

[333]. The system is (1) governed by deterministic equations and (2) bounded in phase

space. Also, the system (3) has aperiodic long-term fluctuations and (4) sensitive de-

pendence on initial conditions [116, 143, 150, 333, 353, 360, 398]. Deterministic chaos

has been observed in natural systems [25, 158, 284, 286, 294] as well as in engineered

[93, 107, 216, 281] systems.

Machine learning methods are increasingly employed to mimic deterministic chaos

[64, 179, 237, 293, 303, 318, 383, 423]. Related to machine learning methods, we intro-

duce the terms, artificial system, mimetic trajectory, ML-mimetic attractor, and artificial

chaos. An artificial system is an exclusive term for an artificial intelligence system that

is designed to mimic deterministic chaos. It is a system equipped with machine learning

methods and often takes an input/output framework. Mimetic trajectory is a trajectory

that an artificial system synthesizes. An ML-mimetic attractor is an attractor that a

mimetic trajectory approach. In section 5.1.1, we will give the mathematical definitions

of above-mentioned new terms.

Artificial chaos represents a phenomenon that takes place in an artificial system as

it mimics deterministic chaos. The system (1) takes an input/out framework, and (2)

has the supposed and the actual behaviors. Supposed behavior is the behavior that an

artificial system is designed to mimic, thus being chaotic. Actual behavior is the behavior

that an artificial system actually exhibits under given initial conditions. The dynamics

of actual behavior can be chaotic or non-chaotic. If an artificial system satisfies the
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sensitive dependence on the initial conditions to which the input is sensitive, then the

system exhibits deterministic chaos. Artificial chaos is related to the actual dynamics

of an artificial system, which is not necessarily chaotic.

We introduce machine behavior to study the supposed and actual behaviors of an

artificial system. In computer science, machine behavior is the behavior of an artificial

intelligence system as it is integrated into an environment for a fulfillment of a designed

task [304]. A study of machine behavior is to mitigate unfavorable effects or maximize

the benefit of the artificial intelligence system [304]. Here, machine behavior represents

the behavior of an artificial system under varying initial conditions. We study machine

behavior for an analysis of the sensitive dependence of an artificial system on initial

conditions.

Theoretical analysis of machine behavior is diÿcult. Machine learning methods be-

have like a black box [145, 218, 410]. For an artificial system, optimizations are involved

in mimicking the behavior of an input in a training process [145, 218]. Explicit solutions

to optimizations are often diÿcult to be obtained [145, 218], which holding back explicit

formulas that describe machine behavior.

However, nonlinear time series analysis can be applied to an output for the study of

machine behavior. An output can be regarded as the time series of an artificial system for

two reasons. An output is collected from an artificial system that takes an input/output

framework. In a sense, we place a sensor at the output layer and measure the oscillation

of the system by an output. In addition, as a mimetic trajectory is delivered, an output

is characterized by the supposed and the actual dynamics. Supposed dynamics is what

the artificial system targets for, which is consistent with the fulfillment of the system.

Actual dynamics represents the dynamics what the output actually displays, which is

consistent with our observation. An output thus represents an observable of the system

by the supposed and the actual behaviors.
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1.4.3 Nonlinear time series analysis

Takens’ embedding theorem [360] provides a theoretical foundation for nonlinear time

series analysis. Consistent with Kantz and Schreiber [188], the method that analyzes

the dynamics of phase space based on a time delay embedding is called nonlinear time

series analysis. A time series is an observable that can be taken from measurements or

collected via real-life sensors. We assume that a time series
{
x1,x2, · · · ,xt, · · ·

}
underlies

deterministic dynamics. Here, xt is a scalar that represents the t−th state of a system.

Takens’ embedding theorem ensures the existence of an embedding dimension m and a

time delay dimension τ . From m and τ , we can reconstruct a time delay vector ssst via

ssst = (xt, xt+τ , · · · , xt+(m−1)τ ) (1.1)

Also,
{
sss1,sss2, · · · ,ssst, · · ·

}
is equivalent to the system that yields

{
x1,x2, · · · ,xt, · · ·

}
. Here,

xt is a scalar state of an original attractor, ssst is a vectorial state of a reconstructed

attractor. In this thesis, an original attractor is the attractor that
{
x1,x2, · · · ,xt, · · ·

}
approaches. A reconstructed attractor is an attractor that

{
sss1,sss2, · · · ,ssst, · · ·

}
approaches.

Eq. (1.1) describes an attractor reconstruction from a univariate time series [188, 295].

However, attractor reconstruction is applicable for a multivariable time series [188].

As instructed by nonlinear time series [49, 60, 188, 208, 278, 295], m and τ can be

found in following sequential steps. The idea is to firstly find τ , and then to find m by

fixing τ .

(1) Find τ . As τ increases, we plot how mutual information or auto correlation changes.

A practical criterion is to choose the first τ under which mutual information reaches

the first local minimum [188]. Multiple local minima should be observed for avoiding

pitfalls of nonlinear time series analysis.

(2) Find m under τ . Here τ is derived from (1). As m increases, we plot how the fraction

of false nearest neighbors changes under the given τ [60]. A practical criterion is to

define a threshold such as 10% and then choose m whose corresponding fraction of

false nearest neighbors goes under the given threshold for the first time.
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1.4.4 Symbolic dynamics

Symbolic analysis provides an alternative way to analyze deterministic chaos [143, 312].

The idea is to study the dynamics in symbolic space instead of phase space. A shift

map decomposes an original phase space to non-overlapping blocks [143]. Different

symbols are then used to label individual blocks. All used symbols constitute a new

space (symbolic space) [110]. Symbolic dynamics is concerned with the dynamics of

those symbols under the time evolution [110, 143, 312].

A shift map δ is the key for symbolic analysis [143]. A symbolic sequence can be

calculated from a time series via

{
x1, x2, · · · , xt, · · ·

}
δ ↓ δ ↓ · · · , δ ↓ (1.2)

{
δ(x1), δ(x2), · · · , δ(xt), · · ·

}

where δ(xt) is a symbol to which xt is encoded under δ. Eq. (1.2) translates individual

states to their corresponding symbols.

We introduce terms related to symbolic dynamics. A finite setA of symbols are called

alphabet [110]. An element ofA is called a letter [110] . A k-word is a sequence containing

k letters over A [110]. For example, the alphabet of binary number is A= {0,1}, 0 and 1

are letters, and “1100” is a 4-word. For a set A with q different letters, it has qq different

permutations. A forbidden word [110] of length k is the permutation that is not allowed

in the k-words of
{
δ(xt)

}∞
t=1

. The existence of forbidden words is determined by the

underlying dynamics of deterministic chaos [143].

Symbolic dynamics can be applied to examine an equivalence between two chaotic

systems [143]. If δ satisfies one-to-one correspondence, then a symbolic dynamical rep-

resentation
{
δ(xt)

}∞
t=1

preserves the nonlinear dynamics of
{
xt

}∞
t=1

, thus being faithful

[143]. In addition, the presence or the absence of a forbidden word is related to the

topological invariants of deterministic chaos [143]. Symbolic dynamics is thus used to

distinguish two dynamical systems [143].
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1.5 Motivation for nonlinear dynamics

The modeling and the identification of uncertain demand remain to be elucidated for

four reasons. In section 1.3, we have shown the two reasons, the absence of universal

equations of human behavior and limit knowledge as a result of contemporary regres-

sions. The remaining two reasons are related to deterministic chaos and nonlinear time

series analysis for real-life applications.

Nonlinear time series analysis methods remain understudied when a dynamical sys-

tem is contaminated by noise or with non-stationarity [188]. However, it is often the

case that real-life data are contaminated by noise. For dynamic pricing problems, the

interactions between price, demand, and supply are made in a social system. It is dif-

ficult to collect data in a social system without noise. A stochastic demand is thus

widely assumed to model uncertainty. Moreover, an attractor reconstruction relies on

the choices of m and τ (Eq. 1.1). However, there is no unique choice for m and τ [188].

In particular, a diÿcult y occurs in finding appropriate choices when no obvious ups or

downs can be seen from the plot of mutual information or that of auto correlation in a

deterministic system. This will be shown in chapter 4.

The last but not least reason comes from chaos predictions and optimizations in

the context of deterministic chaos. Dynamic pricing models and predicts demand for

optimal revenue. If demand was deterministic or chaotic, then demand predictions

belonged to chaos predictions. Besides, machine learning methods have been applied for

chaos predictions [293, 421] and data-driven dynamic pricing models [59, 157]. However,

(1) chaos prediction is a challenging problem. (2) It remains unclear for the behavior of

an artificial system as initial conditions are varied. In particular, the problem remains

unaddressed that whether a coincidence between an original and a mimetic trajectories is

a conclusive evidence of an equivalent sensitive dependence on initial conditions between

an original and an artificial systems. (3) If a gap exists between an original and an

artificial systems under the coincidence, then its impact should be identified.

Those four reasons include the equations-based thinking to model and fit demand,
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noise contaminating real-life data, and issues related to the supposed and actual dy-

namics of an artificial system. They motivate us to develop attractor-based models.

The models justify dynamic pricing and explain uncertain demand from nonlinear dy-

namical systems’ perspective (Chapter 3). Also, we are motivated to reconstruct an

attractor from a real-life dynamic pricing scenario (Chapter 4). Finally, the sensitive

dependence on initial conditions between deterministic and artificial chaos is motivated

to be compared (Chapter 5).

Chapter 2: Literature review

Chapter 3: Attractor-based model Chapter 4: On-demand attractor

Chapter 1: Hypothesis A and hypothesis B

Chapter 5: Signatures of machine behavior for chaos predictions

Chapter 6: Conclusions and research opportunities

Theoretical perspective Practical perspective

SupportManagement implications Quality improvements

Figure 1.1 : An organization of this thesis. Chapter 1 proposes two hypotheses. Chapter 2 makes
a literature review and identifies research problems. Chapters 3 and 4 base on nonlinear dynamical

systems and support the hypotheses from theoretical and practical perspectives. Chapter 5 examines

the sensitive dependence on initial conditions as an artificial system mimics deterministic chaos. Chapter

6 concludes the observations and the findings. Also, managerial implications are provided.

1.6 Objectives and hypotheses

1.6.1 Objectives

In this thesis we analyze uncertainty in dynamic pricing problems from the perspective

of deterministic chaos. We aim to improve pricing decisions and to improve nonlinear
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time series analysis. With a focus on nonlinear time series analysis being applied to a

social system, three objectives are included.

(1) Nonlinear interactions between price and demand will be studied under a fixed

amount of supply (Chapter 3). We will justify dynamic pricing using a hypothetical

model that considers the influence of consumers’ behavior on demand. The mode

will quantify consumers’ price expectations. Bifurcation analysis will be conducted

by modeling a change in the intensity of nonlinear interactions.

(2) The underlying dynamics of real-life demand from a ride-sharing market will be iden-

tified (Chapter 4). The dataset records a timestamp of arrivals of each transaction of

a ride-sharing company who provided a ride sharing service in greater Austin, Texas,

the United States. We will propose a recurrence-based attractor reconstruction, and

use the proposed approach to reconstruct an on-demand attractor.

(3) Signatures of machine behaviors will be analyzed (Chapter 5). We will apply non-

linear time series analysis to study machine behaviors and compare the sensitive

dependence on initial conditions between mimicked chaotic systems and artificial

systems.

1.6.2 Hypotheses

This thesis introduces deterministic chaos, nonlinear time series, symbolic dynamics,

and machine learning for testing two hypotheses:

Hypothesis A: Nonlinear interactions between price, demand, and supply can result

in a rational route to uncertain demand in dynamic pricing problems.

Hypothesis B: A coincidence between a chaotic trajectory that an original system

yields and a mimetic trajectory that an artificial system synthesizes is incapable of

leading to an equivalent sensitive dependence on initial conditions between the original

and the artificial systems.

Hypothesis A is concerned with the root of uncertainty in dynamic pricing problems.

We provide a theoretical and a practical perspectives to study Hypothesis A (Fig. 1.1).
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A hypothetical model justifies dynamic pricing from dynamical systems’ perspective. It

aims to address a hypothetically rational route to apparent randomness (Chapter 3).

In addition, attractor reconstruction identifies a practically rational route to uncertain

demand from a real-life dynamic pricing setting (Chapter 4).

Hypothesis B is concerned with the learnability of machine learning methods in

mimicking deterministic chaos. It remains a debate when it comes to the learnability

of machine learning methods in computer science [31]. We therefore focus on a ques-

tion related to the sensitive dependence on initial conditions between deterministic and

artificial chaos. Let assume that a mimetic trajectory coincides a chaotic trajectory.

The question is that under the coincidence can we conclude the learnability of artificial

systems in the sense of an equivalence in the sensitive dependence on initial conditions.

Hypothesis A will be confirmed in Chapters 3 and 4 (Fig. 1.1). The confirmation

opens a new door for a data-driven dynamic pricing modeling by means of deterministic

chaos. Along the direction, we take a small step towards a gap between the supposed

and the actual dynamics that an artificial system exhibits in mimicking deterministic

chaos. This motivates Hypothesis B (Fig. 1.1). The confirmation of Hypothesis B will

gives implications for the data-driven dynamic pricing modeling (Chapter 6).

1.7 Thesis outlines

In this thesis, we propose an attractor-based model to justify dynamic pricing strategy

(Chapter 3) and an attractor-based thinking to identify uncertain demand (Chapter 4).

Deterministic chaos, nonlinear time series analysis and machine learning methods are

introduced. Three main chapters are used to achieve the goals and deliver the objectives.

Fig. 1.1 outlines this thesis. Each chapter discusses the following topics, respectively.

Chapter 1: A general introduction of the research topics are covered; hypotheses are

developed; and, motivations and objectives are presented.

Chapter 2: A literature review identifies research problems that are needed to be

solved in the modeling of uncertain demand.
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Chapter 3: An attractor-based model is proposed to justify dynamic pricing strat-

egy from nonlinear dynamical systems’ perspective. The focus is on how uncertainty

emerges from the nonlinear interactions between price and demand. Bifurcation anal-

ysis is conducted by changing the intensity of the interactions. In this chapter we

build a theoretical model for a support of Hypothesis A (Fig. 1.1).

Chapter 4: Nonlinear time series analysis is conducted on demand of a real-life ride-

sharing market. Recurrence-based attractor reconstruction is developed. A statistics

of two different recurrence quantifications are applied for Pareto optimality. The

optimization aims to find the Pareto optimal parameters of recurrence plots. A range

of parameters of recurrence plots are searched for an optimal attractor reconstruction.

In this chapter we reconstruct a real-life attractor for a support of Hypothesis A

(Fig. 1.1).

Chapter 5: Initial conditions of an artificial system are identified. By varying initial

conditions, basins of an ML-mimetic attractor are calculated and compared with the

basins of an original attractor. Symbolic dynamics is conducted. The supposed and

the actual behaviors of artificial systems are analyzed. In this chapter we identify the

gap between the supposed and the actual behaviors of artificial systems for a support

of Hypothesis B (Fig. 1.1).

Chapter 6: Managerial implications for the data-driving dynamic pricing modeling

are discussed. Research opportunities are proposed as well.



Chapter 2

Literature survey

All models are wrong, but some are useful.

— George E. P. Box

2.1 Introduction

As discussed in Chapter 1, the modeling of demand is essential for solving a dynamic

pricing problem. The booming of online marketplaces further increases the availabil-

ity of demand information [69, 144]. This chapter reviews uncertainty that has been

considered to capture “the abstractions of reality” [40] for dynamic pricing problems.

The emphasis is putted on two perspectives. The first one is on the dispute, stochastic

versus deterministic demand, to uncertainty. The second one is on the force that induces

uncertainty. Finally, research problems are identified.

Two different ways exist in the modeling of demand for dynamic pricing. The one

proposes a hypothetical model for obtaining managerial implications from analytical

solutions to optimizations [36, 46, 133, 133, 144, 271, 300, 354, 416]. The other one

proposes a practical model that fits real-life data, such as sales transactions [180], for

improving the accuracy of demand predictions [130, 180, 190, 203, 223]. This thesis pro-

poses a hypothetical model (Chapter 3) and bridges a gap (Chapter 4) between a fitting

17
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Figure 2.1 : An organization of Chapter 2. In sections 2.2 to 2.4, the modeling of uncertain demand
is reviewed. In section 2.2, uncertain demand is assumed to be a stochastic variable being either

discrete or continuous. In section 2.3, uncertain demand is quantified by stochastic human behavior

that follows some economic theory. In section 2.4, rational routes to apparent randomness are reviewed

in equilibrium price models. In section 2.5 research problems are stated

of data and a practical model for improving data-driven predictions (Chapter 5). Many

books and papers have reviewed the modeling of demand and the optimization methods

for addressing dynamic pricing problems. Classical books for revenue management are

written by Phillips [297] and Talluri and Van Ryzin [361]. Papers, including Bitran and

Caldentey [45], Elmaghraby and Keskinocak [119], van Ryzin [380], Shen and Su [334],

Chen and Chen [70], and den Boer [100], provide detailed reviews of the modeling of

demand. Also, literature reviews exist for dynamic pricing with a focus on some special

industry. For example, Dutta and Mitra [114] provide an overview of dynamic pricing in

electricity markets. Limmer [227] reviews dynamic pricing for electric vehicle charging.
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Fig. 2.1 outlines the structure of this chapter. In section 2.2, we review the modeling

of uncertain demand in the form of stochastic demand. Interactions between price and

demand are modeled by deterministic equations and an involvement of a stochastic

term. The equations model the interactions from a hypothetical perspective by allowing

a deviation from economic theory. For example, a dynamic pricing problem can be

modeled by a linear equation that allows deviations from actual human behaviors [40].

In section 2.3, we review the modeling of uncertain demand in the form of uncertain

human behavior. The modeling is supported by an economy theory that quantifies how

human beings behave as a price fluctuates. Stochastic human behaviors are considered

in the modeling. In section 2.4, we review deterministic chaos with an application in the

modeling of equilibrium prices. In section 2.5, we identify research problems.

2.2 Stochastic demand

Three main models exist in the modeling of stochastic demand [297, 361, 380]. They

are (a) additive noise D(p,ε) = d(p) + ε; (b) multiplicative noise D(p,ε) = εd(p); and,

(c) Poisson or Bernoulli process. Here, d(p) is a hypothetical equation that directly

quantifies the relationship between price and demand. The equation is allowed to deviate

from the governing equation that actually describes the interactions between price and

demand. Also, ε represents noise, which is an external force to model uncertain demand.

In (a) and (b), demand is assumed to be a stochastic continuous variable. However, in

(c) the arrival of consumers is assumed to be a random and discrete variable.

The modeling of stochastic demand can be categorized into conventional parametric,

Bayesian parametric, and nonparametric approaches [104]. The categorization is based

on how to model uncertainty. Conventional parametric approaches assume that demand

function is chosen from a parametrized family of distributions [104]. Classic statistical

approaches such as maximum likelihood or least square regressions can be applied to

obtain a demand function. Bayesian parametric approaches apply Bayesian estimation

to update the knowledge of demand function [104]. Nonparametric approaches do not

assume a known parametric equation of a demand. Instead of maximizing expected
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revenue, nonparametric approaches often maximize revenue in the worst cases [104].

We narrate the modeling of stochastic demand in an alternative way by the passage

of time. The reason is that the availability of data is improved by the passage of time.

The data, however, change the way that researchers model and tackle uncertain demand.

We put the emphasis on the root and the meaning of uncertainty that the modeling of

uncertain demand involves. Three stages are recognized, including uncertain arrivals,

uncertain arrival functions, and uncertain demand functions. The former two stages

model a discrete demand by consumers’ arrivals (Fig. 2.1 ). The latter one models a

continuous demand (Fig. 2.1 ).

2.2.1 Uncertain arrivals in known functions

At the first stage the uncertainty is examined from the perspective of the arrivals of

consumers. The uncertainty comes from the time when consumers arrive. Dynamic

programming is a common tool to solve an optimization of expected revenues. Dynamic

programming is a recursive algorithmic technique to solve optimization problems [28,

29, 99]. The recursive equation is called a Bellman equation.

The initial study on dynamic pricing with stochasticity is credited to Gallego and

Van Ryzin [133]. A Poisson process is assumed to model the realization of consumers’

arrivals. Under the assumption a one-to-one correspondence between a unit of inventory

and a price exists, that is, λ = λ(p). Here λ is the number of arrivals in a unit time,

and p represents a price. A Bellman equation is used to solve dynamic programming

involved in the optimization of expected revenues. In a similar manner, Gallego and

Van Ryzin [134] extend their model to a dynamic pricing problem of multiple products.

Arrivals thus become a vector, λλλ= λλλ(ppp), where λλλ and ppp are vectorial arrivals and prices

of individual products. Zhao and Zheng [416] use a nonhomogeneous Poisson process to

study hetergeneous arrivals, thus λ= λ(p, t). Here, the arrival λ is a function of the price

p and the time t together. Zhao and Zheng [416] address uncertainty through a known

cumulative probability distribution and a backward dynamic programming algorithm.
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A Bernoulli process and a relative entropy can also be introduced for dynamic pric-

ing problems. Maglaras and Meissner [239] use a Bernoulli process to model consumers’

arrivals as a discrete process. The uncertainty is in the form of heterogeneous arrivals.

Dynamic programming is then applied to address optimal arrival rates. Feng and Xiao

[125], Subramanian et al. [355], Feng and Xiao [124], and Chatwin [65] apply a similar

method to model the uncertain arrivals of consumers. Lim and Shanthikumar [226] in-

troduce relative entropy to mitigate a revenue loss due to deviations that the modeling of

uncertain consumers’ arrivals induces. The entropy measures the distance of consumers’

arrival rates between a model-based calculation and a real-life realization.

A stochastic arriving process transforms a dynamic pricing problem to a dynamic

optimization problem [39], such as dynamic programming. However, the arrivals of

consumers are assumed to be in a form of known equations. Those equations can be

described either by a known probability distribution [416] and or by known mathematical

formulas [239]. In practice, the probability distribution and mathematical formula are

both diÿcult to be understood when a seller faces a pricing decision [39, 226].

2.2.2 Uncertain arrival equations

At the second stage the uncertainty is studied from the perspective of arrival equations.

The uncertainty comes either from unknown parameters or from unknown equations

that quantify when consumers arrive. Optimizations have two objectives: exploration

and exploitation, in addressing the uncertainty [39]. An exploration aims to learn the

underlying arrival equations for future revenues. An exploration aims to harvest current

revenues from current pricing decisions.

In this chapter, the learning is not about machine learning methods but about the

identification of either parameters or equations that quantify a relationship between

demand and price. The learning of parameters is related to identify the parameters of a

given equation. The learning of equations is related to identify the underlying equations

of a realized demand.
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2.2.2.1 Unknown parameters of probability distributions

Two different approaches exist in modeling and addressing unknown parameters of a

given equation. In the first category an optimization is still solved by dynamic pro-

gramming. However, the parameter of the Bellman equation is updated by a Bayesian

scheme based on a realization of demand.

Aviv and Pazgal [16] consider the uncertainty of consumers’ arrivals in a chang-

ing environment. Their model considers the influence of unknown external forces on

demand realizations. A Markov process is introduced in the modeling of uncertain de-

mand realizations [16]. The parameter of Bellman equation is updated by a series of

posterior probabilities. Aviv and Pazgal [15], Lin [228], and Farias and Van Roy [120]

use a Gamma distribution to describe uncertain beliefs of a seller about its consumers

or uncertain arrivals. The Gamma distribution has unknown parameters. Real-time

posterior distributions of demand are used to update the unknown parameters. Araman

and Caldentey [12] introduce two types of uncertainty: the arrival of consumers λ and a

scaling factor θ. Here, θ captures the influence of an unknown market size on consumers’

purchase decisions, and λ is a known function. Both θ and the Bellman equations are

updated by posterior distributions [12].

2.2.2.2 Unknown underlying equations

In the second category a different thinking is developed to model the uncertainty in the

arrivals of consumers. The idea is to learn the underlying equations of arrivals λ= λ(p(t))

[39, 389]. The unknown equations elucidate the relationship between the arrival (λ) and

the price (p).

Besbes and Zeevi [39] introduce the exploration and the exploitation, which changes

previous studies that apply the Bellman equations to solve optimal revenue. The un-

certainty is assumed to remain in the arrivals of consumers and their underlying arrival

equations. Let assume that the arrivals follow a Poisson process, then a dynamic pricing

problem is split into two sequential problems [39]. The first problem aims to learn the
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underlying equations that describe the arriving of consumers (exploration). The second

problem intends to compute optimal prices based on the learned equations (exploitation).

Besbes and Maglaras [37] follows the same idea, exploration first and then exploitation.

However, a constraint is added into dynamic pricing problems with financial milestones

[37]. The constraint approximates a sequence of financial milestones imposed on a seller,

such as the sales targets and the revenue targets. Wang et al. [389] focus on the dynamic

pricing problem studied in [39]. A learning-while-doing algorithm is proposed to improve

revenue [389] by a shrinking mechanism [389]. The mechanism iteratively decreases the

price interval that accommodates the optimal prices while learning about the uncertain

arrival functions.

In section 2.2.1, the uncertainty is modeled by consumers’ arrivals that satisfy a

stochastic process with known properties. In section 2.2.2, the uncertainty is modeled by

explicit equations that describe consumers’ arrivals in the form of unknown parameters

or unknown formulas. Consumers’ arrivals address the uncertainty of discrete demand.

However, an alternative perspective is to address the uncertainty of continuous demand.

2.2.3 Uncertain demand functions

At the third stage a demand is regarded as a variable that describes the quantity de-

manded. Uncertain demand is due to a lack of information about the underlying equa-

tions that elucidate the interactions among price, demand, and supply. We classify

existing studies by an involvement of noise (Fig. 2.1).

2.2.3.1 Demand equations without noise

In the first category the uncertainty is addressed is a similar way as unknown arrival

equations shown in section 2.2.2. An equation is used to describes the relationship

between the mean E[D(p)] of demand D(p) and the price p [83]. Here, E is the first

moment of the distribution of a random variable. It is calculated by the mean of demand

D. Also, E[D(p)] represents the uncertainty of a demand realization, and d(p) =E[D(p)]

stands for a demand equation.
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The learning of parameters of a known equation. Apart from E[D(p)], den

Boer and Zwart [104] utilize the variation Var[D(p)] of demand distribution to model

the uncertainty of a demand realization. Here, “Var” is the second moment of a distri-

bution of a random variable. It is calculated by the variance of demand. The underlying

equations of E[D(p)] and Var[D(p)] are assumed to be known. Nevertheless, the values

of their parameters are unknown. den Boer and Zwart [105] further impose a lower and

an upper bounds on uncertain parameters for containing d(p). The bounds represent

the influence of finite inventories on demand. For example, stockout affects a demand

realization [105]. Broder and Rusmevichientong [52] assume that the unknown parame-

ters are in a compact and convex set to ensure the boundness of demand. den Boer and

Keskin [102] allow discontinuity in demand functions, and consider the uncertainty in

the location where a jump occurs. Demand becomes a known function of two random

vectors, d(p,κκκ,θθθ). Here, κκκ stands for the uncertainty in the location of jumps, and θθθ

stands for unknown parameters. Maximum likelihood estimations are used to calculate

the unknown parameters [102].

The learning of equations. Cheung et al. [83] relax the assumption that d(p) is

quantified by a known equation. In [83], demand equation is learned from a library of

basis functions. Exploration first and then exploitation [39] is introduced to learn the

true d(p) from the given library. Chen and Gallego [74] further relax the knowledge of

d(p), and consider the uncertainty in demand due to personalized information (covari-

ates) of online marketplaces. In [74], an adaptive binning and exploration algorithm is

proposed. The algorithm splits the covariate space, clusters consumers, simultaneously

learns demand (clustering rules), and earns current revenues.

2.2.3.2 Demand equations with noise

A natural idea is to involve noise in the equations that describe the relationship between

price and demand. Additive and multiplicative noise and a combination of the both

can be used to model the effect of noise on demand [297, 361, 380]. Here, we mainly

review models that take additive noise to exemplify the modeling of a stochastic demand.
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However, a choice between additive and multiplicative noise relies on the existence and

uniqueness of an optimal solution when a hypothetical model aims for an analytical

solution to dynamic pricing problems [380]. For real-life applications the choice should

agree with the process from which demand realizes [361, 380].

Noise can be used to represent either demand shocks or stochastic forces. Both para-

metric and non-parametric approaches are applied for a solution to a dynamic pricing

problem. Besbes and Zeevi [40] assume that demand satisfies d(pt) = E[D(pt)] + εt.

Here, two types of uncertainties are modeled, where E[D(pt)] addresses unknown de-

mand equations, and εt captures random demand shocks. Simultaneous explorations

and exploitations are utilized to address the learning of demand functions and the earn-

ing of immediate revenues. Examples in Besbes and Zeevi [40] show that a mismatch

between the true and the learned demand functions changes the optimal price from a

fixed point to period-2 oscillations. However, their results leave an open question to the

bifurcating phenomenon. Den Boer [101] uses additive noise to represent a stochastic

market process. Keskin and Zeevi [192] introduce another two types of uncertainty in

a model with additive noise. The one is related to additive Gaussian noise. The other

one is related to unknown parameters of a known function. The values of unknown

parameters are selected from a sequence of demand parameter vector. A variation in

demand parameter vectors reflects the uncertainty of market environment. Chen et al.

[75] relax the assumption of a prior knowledge of demand function, use a spline func-

tion to approximate real demand function, and learn unknown parameters of the spline

approximation.

An advanced study is to consider uncertainty over multiple time periods. Cohen

et al. [86] provide a sample-based optimization to address uncertainty over multiple

time periods. The data are divided into N samples. At time t, for a sample i, a random

scaler εit stands for the errors between the realized and the estimated demand. The

uncertainty lies in the disparity εεε= (ε1t , · · · , εNt ) between a realization and an estimation

of demand across N samples [86].
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Furthermore, stochastic dynamic programming, least square regression, and Bayesian

inferences have advanced considerably thanks to contemporary optimizations. It is easier

than ever to identify underlying equations that describe the interactions between demand

and price. On the one hand, the uncertainty either in the arrivals of consumers or in the

equations that describe price and demand entails a learn-and-earn tradeoff in dynamic

pricing problems [102]. The tradeoff is made between the learning of the underlying

equations for future revenues and the earning of immediate revenues [102].

On the other hand, the availability of data leverages the learning of the underlying

equations of demand and consumers’ arrivals. Transactions of realistic (offline) super-

market retailers [88] and consumers’ online product reviews [123] are examples. The data

are closely related to human behaviors. Economic theory can be applied to describe hu-

man behaviors when it comes to a response of human beings to a change of price. The

modeling of uncertain demand, therefore, borrows economic theory for solving dynamic

pricing problems.

2.3 Uncertain consumers’ behavior

Consumers’ behavior is entailed in a seller’s pricing decision. Mead and Hardesty [255]

show that a display of disfluent fonts can affect consumers’ price expectations. Xu

et al. [401] provide empirical evidence that online product reviews significantly affect

consumers’ choices for physicians. Ajorlou et al. [4] shows that word-of-mouth marketing

has a similar effect on consumers in the smartphone APP market [4]. Xu et al. [400]

indicate that consumers’ characteristics, such as the arriving time, considerably affect

different choices for Major League Baseball tickets.

2.3.1 Consumers’ utility

Data, including transaction information [18, 88] and online product reviewers [123, 401],

improve the data-driven modeling and the calibration of consumers’ behavior for many

businesses [400]. Above-mentioned dynamic pricing models capture homogeneous con-

sumers’ behavior by a unified equation. Homogeneous behavior assumes that a group
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exhibits a collective behavior, so a unified equation represents all consumers in that

group. Human behavior, however, can exhibit heterogeneities. Above-mentioned dy-

namic pricing models are unable to model a heterogeneity. Consumers’ utility is thus

borrowed from economics for a modeling of demand.

Consumers’ utility is an economic concept related to a measure of consumers’ per-

sonal preference [361]. It captures heterogeneities in consumers’ behavior by two basic

models [70, 135], the nested logit (NL) model and the multinomial logit (MNL) model.

An MNL model is a special case of an NL model [236]. The similarities and the differ-

ences between an NL and an MNL models have been identified by Gallego and Wang

[135]. An individual consumer’s utility (Ui) is described by random noise εi and the

mean utility of all consumers Vi via

Ui = Vi+ εi (2.1)

Here, εi represents heterogenous behaviors of individual consumers. A heterogeneity

among different groups is represented by different equations that quantify Vi or different

parameters of a unified function.

The modeling of uncertain demand is often in the form of Eq. (2.1) or its extensions

as heterogeneous consumers’ behavior is considered. Chen et al. [81] consider uncertainty

in contextual information that features the heterogenous buying behavior of individual

consumers. Eq. (2.1) is assumed to have a known formula, however, its parameters

are unknown due to insuÿcien t data. Maximum likelihood estimation is applied for a

learning of unknown parameters. Valogianni et al. [379] apply dynamic pricing to smooth

peaking demand of electricity. The study employs an MNL model for a consideration of

heterogeneous electric vehicle owners. A cost function and constraints are incorporated

in the modeling of consumers’ utility [379]. The uncertainty is modeled by stochasticity

in total demand, unknown parameters of some given formulas of Eq. (2.1). A learning

of unknown parameters is introduced to approximate an optimal price.

Consumers’ utility is also applicable in the modeling of multiple products. Sauré

and Zeevi [325] use an MNL model to address optimal prices of multiple products. Two
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types of uncertainties exist in consumers’ behavior. The one is related to unknown

consumers’ preference over multiple products. The other one is related to unknown for-

mula of Eq. (2.1). Algorithms that simultaneously trade off the learning of Eq. (2.1)

and the earning of immediate revenue are proposed to address those two types of un-

certainties [325]. Du et al. [111], Besbes and Sauré [38], Rusmevichientong et al. [321],

Rusmevichientong et al. [320], Li and Huh [222], and Wang [385] are selections of studies

that utilize an MNL or an NL models for dynamic pricing of multiple products. Chen

and Chen [70] provide an overview of recent advances in dynamic pricing with multiple

products.

The concept of utility captures consumers’ heterogeneous preference behavior when

facing multiple choices. A premise is that individual consumers maximize their utilities

when making purchase decisions [70, 297, 361]. However, consumers do not always

maximize utilities for a buying choice [70]. They may use an alternative rule to make a

purchase decision [70, 203, 205]. The rule is related to an observation of historical prices.

Price expectations are thus assumed in the modeling of consumers who make purchase

decisions via an observation of historical prices.

2.3.2 Reference prices

Consumers’ availability to data has been increased as well [88]. Consumers have data-

driven behaviors, which is supported from four perspectives. Firstly, for individual

consumers, accesses to online communities and social networks become easy owning to

a rapid growth of digital technology. Empirical study shows that consumers learn from

past buying experiences and utilize social information for a future purchase decision [98].

The second perspective is related to a reduction of search frictions in online market-

places. A search friction is an impediment that imperfect information between sellers

and consumers induces [108]. In a dynamical market, a set of information changes reg-

ularly and irregularly. The changes occur in a high dimensional system that consumers

can neither access nor be aware of [108]. The inaccessibility or the unawareness induces a

search friction. More details can be found at the Prize in Economic Sciences in Memory
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of Alfred Nobel [365, 366]. The prize was awarded jointly to Peter A. Diamond, Dale T.

Mortensen and Christopher A. Pissarides “for their analysis of markets with search fric-

tions” [365]. Dinerstein et al. [108] point out that the design of an online platform, which

makes a tradeoff between reducing search frictions and intensifying price information,

considerably affects consumers’ buying behavior. The accuracy of demand predictions

thus relies on the ability to capture consumers’ data-driven behavior.

Thirdly, price expectations are unignorable for consumers to make a purchase deci-

sion. As consumers repeatedly buy goods or services, “consumers’ purchase decisions

are also determined by past observed prices” [300]. Consumers can develop a price

expectation from historical prices [300]. The price expectation, also termed reference

price, becomes a benchmark against current sales prices. The benchmarking behaviors

are supported by prospect theory [183, 377] in economics and empirically observed by

Kopalle and Lindsey-Mullikin [203] and Tereyagoglu et al. [364].

Finally, many online platforms have records of historical prices of a product or a

service, which enables consumers’ benchmarking behaviors. For example, a proliferation

of web tools help consumers’ purchase decisions for airline tickets [223]. Those web tools

include Expedia, Booking, Kayak, and so on.

Those four reasons motivate the modeling of reference prices for dynamic pricing

problems. Two ways exist in the modeling of reference prices: an exponential decaying

memory of historical prices and a learning of underlying equations that describe con-

sumers’ reference price (Fig. 2.1). The former way utilizes a given function to quantify

the relationship between a price and a reference price (reference function). The latter

way learns the underlying equations of reference prices from data.

2.3.2.1 Exponential decaying memory

The first way is based on the assumption that consumers’ reference prices satisfy

rt+1 = αrt+(1−α)pt (2.2)
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where at time t, rt represents consumers’ reference price, pt represents the sales price,

and α is a memory rate representing consumers’ adaptions to historical prices. Eq. (2.2)

describes how human beings’ memory fades [300], which likes an exponential function.

Deterministic scenario. A use of Eq. (2.2) is for obtaining managerial implications

by an analytical solution to a hypothetical model. Some phenomena that are observed

in practical dynamic pricing problems are captured by the hypothetical model. Popescu

and Wu [300] utilize the exponential smoothing (Eq. 2.2) to model reference price mech-

anism. The authors propose a deterministic demand equation and develop a Bellman

equation to address optimizations. The focus is on analytical solutions for managerial

implications under different dynamic pricing settings. Fibich et al. [129] develop a hy-

pothetical model by a continuous version of the exponential smoothing (Eq. 2.2), that

is, r′ = α(p− r). Similar to Eq. (2.2), r represents the reference price, p represents the

sales price, and α represents the memory rate. The attentions are on methods that lead

to an explicitly analytical solutions to the hypothetical model.

Eq. (2.2) can also be used to capture consumers’ asymmetric behaviors when sales

prices and reference prices are compared. Fibich et al. [129] utilize a discontinuous

demand function to reflect asymmetric responses of consumers to a perceived gain, p≤ r,

and to a perceived loss, p > r. Nasiry and Popescu [270] consider the discrete version

(exponential smoothing) of optimization models of Fibich et al. [129]. The focus is on

the so-called loss-averse consumers [270] . If consumers are more sensitive to a perceived

loss, pt > rt, than to a perceived gain, pt ≤ rt, then consumers are loss averse. Analytical

solutions are addressed by a Bellman equation [270]. Hu et al. [175] consider gain-seeking

consumers. If consumers are more sensitive to a perceived gain than to a perceived

loss, then consumers are gain-seeking. Border collision bifurcations are observed in

[175], however, a bifurcation analysis of the discontinuity in demand functions is absent.

Hsieh and Dye [173] extend the study of reference prices to perishable products where

consumers can be gain seeking, loss averse, or neutral. The optimization problem is

transformed to a differential equation with known boundary conditions. Wang [388]

introduces heterogeneity in consumers’ arrival periods, thus consumers have been divided
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into different groups and assigned to different time periods. The assumption that the

arrivals of consumers are periodic allows to directly obtain analytical solutions. However,

the assumption is made without an identification of demand dynamics

Stochastic scenario. Noise can be involved in the modeling of reference prices.

Güler et al. [161] introduce additive noise to the model that Popescu and Wu [300]

develop. Maximizing expected revenue becomes the object of the hypothetical model.

The optimization is then solved by dynamic programming [161]. Chen et al. [78] consider

additive noise in the model developed by Hu et al. [175]. The focus is on loss-averse

consumers. Bellman equations are proposed to solve maximal expected revenue of the

hypothetical model [78]. Wu et al. [399] consider multiplicative noise for the analysis of

maximal revenue by dynamic programming.

Optimization algorithms. An analytical solution is diÿcult to be obtained from

a hypothetical model with discontinuity. However, asymmetric behaviors of consumers

induce a discontinuity. One stream of studies therefore focus on algorithms that lead

to an analytical solution in the modeling of reference prices. Chen et al. [77] provide a

dynamic programming algorithm. The algorithm costs a polynomial time for a solution

to discontinuous optimization problems. Cohen et al. [87] extend the hypothetical model

of Popescu and Wu [300] to multiple products (reference price model). Maximizing

revenue is translated into the longest path problem in a weighted graph. The results

show that a hypothetical model considering reference prices and multiple products is

an NP-hard problem [87]. Indeed, “maximizing a submodular function is generally NP-

hard” [85]. Discontinuity in demand function often leads to budget-additive demand

functions, for example, in terms of multiple products or intertemporal pricing decisions.

A budget-additive function is a function in the form of f(S) = min
{
B,
∑
i∈S ωi

}
[55]

where S and B are a set.

Equilibrium price. Eq. (2.2) can also be used to model equilibrium prices. Game

theory is then applied to model interactions between agents. Zhang et al. [411] utilize

the continuous version of the exponential smoothing for the modeling of consumers’ sen-
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sitivity to reference prices. An equilibrium price between a manufacture (a Stackelberg

leader) and a retailer (a follower) is derived from Stackelberg differential game. Chen

et al. [67] extend the hypothetical model of Zhang et al. [411]. Two sequential events are

considered related to consumers’ purchase decisions. Consumers firstly develop reference

prices, and then choose a purchasing time. A two-period Stackelberg game is introduced

to obtain an equilibrium price [67]. Coulter and Krishnamoorthy [91] consider reference

prices in a competitive market with multiple sellers. Consumers show different sensi-

tivity to reference prices for different products. Nash equilibrium gives a solution to

competitive demand [91].

2.3.2.2 A learning of reference functions

Another stream of studies do not use a fixed equation such as Eq. (2.2) in the hypothet-

ical model. The underlying equation of reference prices is learned from data (Fig. 2.1).

The modeling is similar to the modeling of unknown arrivals (section 2.2.2) or unknown

demand equations (section 2.2.3). Cao et al. [61] extend the hypothetical model of Ara-

man and Caldentey [12] where the market size is assumed to be a proxy of arrivals.

Consumers are assumed to have the exponential smoothing of reference prices (Eq. 2.2)

and be neutral to losses. The knowledge of the market size is updated by a Bayesian

inference. The learning of equations that describe reference prices is addressed by dy-

namic programming [61]. den Boer and Keskin [103] consider two types of uncertainty.

The one is in the form of demand shocks. The other one remains in unknown parameters

of some known equations. Consistent with the modeling in [40, 191], a demand shock is

represented by additive noise. The parameters defining the equation of reference prices

are relaxed to be unknown vectors with known bounds. The algorithm, simultaneous

explorations and exploitations, is applied to learn the unknown parameters [103].

2.3.3 Machine learning methods

Digital technology has changed the behavior of individual agents in a market. Con-

sumers have changed the way to search for information on products and services [142].
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Sellers are turning to data-centric analytics of businesses, such as the use of individual-

level consumer data for a business [142]. Regulators of governments urge for data-drive

methods to make a decision and take actions. Data-drive methods are needed to decide

whether a colluding behavior occurs as a dynamic pricing policy is implemented [59].

Once a colluding behavior is identified, data-driven methods are needed to intervene

the colluding [59]. Data-driven methods, particularly machine learning methods, have

been applied to improve a pricing decision. Machine learning methods have improved

the price predictions for Bitcoin [253] and crude oil [224, 417], the price formation of

financial markets [338], and empirical asset pricing [157].

Similar to the narrative in previous sections, we review the models that apply machine

learning methods for dynamic pricing problems from two perspectives. The first one is

what kinds of uncertainty machine learning models consider. The second one is how to

solve the uncertainty in the modeling.

Two basic categories existing in the modeling of uncertain demand by means of

machine learning methods (Fig. 2.1): hypothetical models and practical applications.

hypothetical models mainly focus on developing a data-driven method to approximate

demand. The idea is to obtain either parameters of a given equation or to learn the un-

derlying equations for the modeling of demand. Practical applications, however, mainly

focus on solving a real-life pricing problem. The application proposes a date-driven al-

gorithm either for implementing or for detecting dynamic pricing policies of a business.

2.3.3.1 Hypothetical models

In this category, machine learning methods address the uncertainty that remains in

unknown parameters of a known equation or that in unknown equations. Ban and

Keskin [19] propose demand equations with additive noise. Unknown parameters are

learned by the LASSO (Least Absolute Shrinkage and Selection Operator) regression,

a widely used regression algorithm for machine learning [369]. The LASSO regression

provides a reasonable performance bound for a selection of a true model from high-

dimensional sparse data [30]. Ban and Keskin [19] consider demand shock and high-
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dimensional consumers’ features. A known equation with unknown parameters and

additive noise describes demand shocks [19]. A solution to the hypothetical model is

addressed by the LASSO regression as well [19]. Rana and Oliveira [309] assume that the

arrivals of consumers follow a Markov process. The uncertainty is modeled by unknown

parameters of known equations. Those unknown parameters are selected from a given

set. A solution is derived from reinforcement learning [309]. Similarly, Kim et al. [196]

introduce a Markov decision process to model stochastic arrivals of energy consumption.

Reinforcement learning gives a solution for an update of the unknown parameters [196].

den Boer and Zwart [105] review studies that apply machine learning methods for a

solution to a hypothetical model of dynamic pricing problems.

2.3.3.2 Practical applications

Machine learning methods in a hypothetical model mainly focus on an analytical solution

for managerial implications. However, one advantage of machine learning methods is

their ability to approximate real-life scenarios by a model-free framework. In the second

category, machine learning methods are designed for the data-driven modeling that

improves a practical pricing decision. An attention is on algorithms that approximate

real-life phenomena without any prior knowledge or sophisticated hypothetical models.

Amazon marketplace, the airline industry, and online retails are businesses that have

been attracted to machine learning methods for solving dynamic pricing problems.

Amazon marketplace. Chen et al. [69] consider the uncertainty that remains in a

lack of transparency in a total number of demand for a product on Amazon marketplace.

The opacity results in consumers and regulators without comprehensive knowledge about

dynamic pricing algorithms that a seller implements [69]. Chen et al. [69] thus propose

an algorithm to crawl the website of Amazon at a given frequency [69]. A dataset with

information about sellers, prices, and products is created, contributing to many time

series of prices [69]. A correlation analysis among those prices is conducted for identi-

fying the dynamic pricing algorithms of sellers under a lack of price transparency [69].

Schlosser and Boissier [330] study optimal pricing strategies that optimize expected rev-
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enue of some seller on Amazon. The uncertainty is assumed to be (1) stochastic arrivals

of consumers [330], and (2) stochastic inventory of the seller and that of its competi-

tors [330]. Schlosser and Boissier [330] provide data-driven algorithms to calibrate the

unknown parameters.

Airline industry. Shukla et al. [336] propose machine learning algorithms to price

airline ancillaries based on consumers features. Departure time, market size, and the

length of a stay together constitute consumers features. The uncertainty comes from

stochastic arrivals of consumers and their features. By deep neural network, Shukla et al.

[336] provide an evaluation metric to classify consumers and harvest expected revenue.

Online retails. Ferreira et al. [126] use machine learning algorithms, regression

trees, to predict demand of an online fashion retailer. Three types of uncertainty are

considered [126]: (1) stochastic demand, (2) unknown parameters of given demand equa-

tions, and (3) limited data for some products. Ferreira et al. [126] apply regression trees

to predict expected demand and learn the parameters. Limited data are addressed by

transferring knowledge from products with suÿcien t data [126].

We have reviewed the modeling of demand in dynamic pricing problems. The un-

certainty is represented by stochastic demand (section 2.2) or by stochastic consumers

behavior supported by an economic theory (section 2.3). Apart from the modeling of

demand, there are studies that empirically analyze the welfare and the influence of dy-

namic pricing on agents. Just to mention a few, Cui et al. [94] conduct empirical studies

that analyze the influence of dynamic pricing on a seller’s revenue and consumer wel-

fare. The attention is on the upgrading in the airline industry [94]. Phillips et al. [296]

compare the benefits of static and dynamic pricing strategies for an automotive lender.

Abrate et al. [2] analyze the impact of dynamic pricing strategies for hoteliers. Schlereth

et al. [329] explain a phenomenon that consumers prefer to refuse an adoption of dy-

namic pricing in an electricity market. A common feature of empirical studies is that

they are equation-centric [94, 296, 329]. The studies rely on a prior knowledge of the

underlying equations, since the knowledge affects the accuracy of regressions. Empirical
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studies therefore face another type of uncertainty, which remains in the prior knowledge

about the underlying equations.

2.4 Deterministic chaos in equilibrium price

According to deterministic chaos [143, 333, 345, 353, 398], nonlinear interactions among

variables are a critical source of uncertainty. As shown in the above-mentioned demand

models, dynamic pricing problems rely almost entirely on the assumption of stochasticity.

Nevertheless, studies exist in equilibrium prices when it comes to a rational route to

apparent randomness. The route is attributed to nonlinear interactions between price,

demand, and supply. Since this thesis does not focus on equilibrium prices, we just

mention a few of studies. Anufriev et al. [10] provide a comprehensive overview of the

modeling of equilibrium prices by deterministic chaos in economics and finance.

Uncertainty in demand is the topic. We thus narrate the modeling of equilibrium

prices by a rational route from two perspective. The one is what contributes to un-

certain demand. The other one is a difference in the modeling of uncertainty between

randomness of stochasticity and apparent randomness of deterministic chaos.

A rational route is the focus of the modeling. Brock and Hommes [51] consider the

interactions between price, demand, and supply. The interactions are described by het-

erogeneous beliefs (utility functions), contributing to a rational route [51]. Consumers

are allowed to switch among different predicting models. The intensity of the switching

behavior is regarded as a bifurcation parameter [51]. A change of the intensity leads to

uncertain and even chaotic price fluctuations. Since a nonlinear equation quantifies the

switching, apparent randomness occurs due to an internal force, the rational switching

behavior [51]. Corcos et al. [89] consider two typical contradict attitudes in stock mar-

kets: imitative and contrarian. In [89], the rational route is described by the switching

behavior between those two contradicted attitudes. An intermittency of a chaotic system

well explains the bubbles and the crashes of stock markets [89]. The uncertainty that

circulates stock markets is as a result of the deterministic interactions between imitative
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and contrarian consumers[89]. The uncertainty is of internal and belongs to determinis-

tic chaos [89]. Anufriev et al. [11] provide a discontinuous model to fit an asset pricing

problem. Two types of traders are placed in a market, both of which have discontinuity

in demand [11]. Equilibrium price connects the selling and the buying behaviors of dif-

ferent types of traders [11], constituting a rational route. Internal discontinuities instead

of external random forces explain the uncertain fluctuations [11].

2.5 Problem statements

We have shown two different mechanisms in the modeling of uncertainty. The one ap-

plies an external force to approximate uncertainty by randomness in a dynamic pricing

problem. The other one applies a rational route to approximate uncertainty by appar-

ent randomness in an equilibrium price model. However, a rational route to apparent

randomness in the modeling of dynamic pricing problems remains to be elucidated.

2.5.1 Nonlinear interactions

A few studies apply deterministic chaos in the modeling of a dynamic pricing problem.

Rump and Stidham [319] introduce an adaption of consumers’ price expectations to an

equilibrium price model. In the model, an equilibrium price is a solution to a dynamic

pricing problem. The adaption represents a rational route to chaos as consumers respond

to a queueing congestion. Aperiodic and seemingly random behaviors are observed in

the modeling of demand fluctuations [319]. Hu et al. [175] introduce a discontinuous

demand function to the modeling of reference prices. Irregular changes in the periodicity

of optimal pricing solutions are observed from the hypothetical model [175]. Besbes and

Zeevi [40] consider a misspecification of true demand function and observe periodic-2

oscillations. However, the following problems have yet to be fully elucidated.

1. A rational route to apparent randomness. Randomness is widely assumed

in the modeling of dynamic pricing problems. Demand can be in the form of a

random discrete variable [40, 44, 104, 105, 111, 127, 191, 261] or a random continuous

variable[18, 35, 140, 287, 389]. As shown in equilibrium price models, a rational
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route is able to approximate uncertainty that occurs in real-life financial markets

[10, 11, 51, 89]. However, in the modeling of dynamic pricing problems, a rational

route still remains to be studied from dynamical systems’ perspective.

2. A mutual influence between a rational route and an optimization. For

existing studies [40, 175, 319] that exemplify a rational route, an observation of de-

terministic chaos is a byproduct of simplifying the hypothetical models. The focus

is on an analytical solution to the hypothetical model with a purpose for manage-

rial implications. The occurrence of a rational route is due to nonlinearity in the

analytical solutions [40, 175, 319]. However, two issues remain unsolved. (1) How

does a rational route affect optimal pricing solutions in the absence of an analytical

solution to optimizations? (2) How does an optimization affect a rational route? The

former issue examines the influence of apparent randomness on optimizations in the

modeling of demand. The later issue examines the influence of optimizations on the

occurrence of apparent randomness.

3. Bifurcation analysis. For a mathematical curiosity, bifurcation analysis has

not been conducted in terms of demand as a continuous variable that quantifies a

rational route. Both Hu et al. [175] and Besbes and Zeevi [40] model demand as a

continuous variable, the quantity demanded. However, bifurcation analysis has yet

been conducted. Rump and Stidham [319] conduct a bifurcation analysis, however,

demand is modeled by a discrete variable, an arrival of consumers. Many studies exist

in a learning of unknown parameters to address uncertainty in demand equations

[16, 19, 52, 102, 103, 120, 228, 268]. Bifurcation analysis provides an alternative

method to examine the uncertainty that remains in parameters of a hypothetical

model for managerial implications.

4. Discontinuity in optimizations. The algorithms, such as dynamic program-

ming [12, 61, 133, 175, 270, 399], explorations first and then exploitations [37, 39, 83],

and simultaneous explorations and exploitations [40, 74, 103, 268, 389], navigate a

critical way to an optimal solution for a dynamic pricing problem. Those algorithms
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aim either for an analytical solution [40, 115, 129, 133, 175, 270, 319] or for the ap-

proaching of a solution [39, 83, 103, 268, 389], yielding a function that describes a

relationship between price and demand. The smoothness of the function is not nec-

essarily assured. A discontinuity thus can occur in an optimization that a dynamic

pricing problem involves. However, it remains unclear the influence of a discontinuity

in an optimization on demand.

2.5.2 Demand dynamics

The modeling of uncertain demand can be based on the assumed randomness of noise

(stochastic) [18, 35, 44, 105, 111, 127, 140, 261, 287, 389] and the assumed apparent

randomness of a rational route (deterministic) [10, 11, 40, 51, 89, 175, 319]. However,

most of hypothetical models directly assume a stochastic demand for dynamic pricing

problems [18, 35, 44, 105, 111, 127, 140, 261, 287, 389]. Identifying the dynamics that

is responsible for the uncertainty becomes critical in a dynamic pricing problem for two

reasons.

An assumption is useful only when it reflects reality. Identifying demand dynamics

is to confirm which assumption is suitable in the modeling of uncertainty related to the

randomness of noise and the apparent randomness. If one could not observe apparent

randomness of a rational route in a real-life dynamic pricing settings, then doubts can be

casted to a hypothetical model of the rational route. Similarly, if one could not confirm

that the randomness of noise is responsible for the dynamics of a real-life dataset, then

a direct assumption of a stochastic demand is always open to a suspicion. For bridging

the gap between an assumption and reality, demand dynamics is thus needed to be

identified.

The second reason is related to data-driven dynamic pricing for improving revenue.

Dynamic pricing relies on optimizations and algorithms that lead to an optimal solution.

Dynamic programming [133], explorations first and then exploitations [37, 39, 83], and

simultaneous explorations and exploitations [40, 74, 103, 268, 389] are algorithms that

are proposed to improve revenue. Those algorithms are mainly for harvesting expected
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revenue from the assumed randomness [37, 39, 40, 74, 83, 103, 133, 268, 389]. However,

a rational route exists in the apparent randomness [10, 11, 51, 89, 175, 319], which is

fundamentally different from the randomness of noise. An identification of deterministic

dynamics in real-life dynamic pricing settings is needed to open a new door for data-

driven algorithms. The algorithm could exploit the rational route, thus potentially

improving revenue.

Nonlinear time series analysis is employed to identify demand dynamics. A time

series is the data that are collected in a real-life dynamic pricing setting. Empirical

studies focus on the data as well. However, nonlinear time series analysis looks at the

data from dynamical systems’ perspective. Empirical studies primarily fit the data with

known equations [2, 94, 296, 329]. The fitting neglects the points that have no obvious

statistical meanings. Nevertheless, every part of a nonlinear system counts, including

those points without a statistical significance. Nonlinear time series analysis takes the

data as a whole [188]. The dynamics is then studied in a phase space [188].

Identifying demand dynamics covers dynamic pricing and nonlinear time series anal-

ysis, thus closing the gap between the two research fields. On the one hand, the applica-

tion of nonlinear time series analysis is extended to a real-life dynamic pricing setting.

On the other hand, nonlinear time series analysis gives fresh knowledge of the data that

are widely assumed to be stochastic.

2.5.3 Attractor-based demand predictions

Once deterministic dynamics is identified from a real-life dynamic pricing setting, a fu-

ture study is to use the rational route for data-driven demand predictions. The prediction

is then placed into chaos prediction, which is a problem to be solved in deterministic

chaos. On the one hand, machine learning methods seemingly promise chaos predictions

[293]. The methods show the ability to approximate maximal Lyapunov exponent [292]

and to calculate other invariant measures, such as correlation dimension [248]. On the

other hand, machine learning methods are transforming the way to model and solve

dynamic pricing problems [19, 30, 69, 105, 126, 142, 196, 309, 330, 336, 369]. A question
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is raised, how can we apply machine learning methods that mimic deterministic chaos

for demand predictions?

The following two problems are needed to be addressed to pave the way for an answer

to the question. (1) Can an artificial system that mimics deterministic chaos in the sense

of a coincidence in chaotic trajectories be applied for high-fidelity predictions, such as

demand predictions? (2) What property does an artificial system have could lead to a

good performance in mimicking deterministic chaos for high-fidelity predictions?

2.5.4 Challenges

We have identified three research gaps in the modeling of dynamic pricing problems.

Those gaps are a hypothetical model with a rational route to apparent randomness,

an identification of demand dynamics from dynamical systems’ perspective, and the

learnability of an artificial system. Hypothesis A (cf. Chapter 1 section 1.6.2) is con-

cerned with the first and the second gaps. Hypothesis B (cf. Chapter 1 section 1.6.2) is

concerned with the third gap. Three challenges exist in bridging the gaps

1. A hypothetical model that describes reality. As May indicates [249], a simple

logistic map (xn+1 = rxn(1−xn)) with one nonlinear term is enough to exhibit uncer-

tainty in its fluctuations. However, a challenge comes from the type of nonlinearity

that explains demand fluctuations and that approximates reality.

2. Reconstructed attractors from real-life demand. For real-life demand, its

nonlinear dynamics should be identified prior to assumptions. To make an assumption

that approximates reality, nonlinear time series analysis should be further conducted.

However, a challenge comes from signals in real-life scenarios, which are inevitably

contaminated by noise [188]. A novel method being consistent with the dynamics that

the data underlies should be proposed. Also, an attractors should be reconstructed

from real-life demand signals.

3. Artificial systems’ sensitive dependence on initial conditions. Machine

learning methods are increasingly applied for chaos predictions. The sensitive depen-
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dence on initial conditions remains unclear and to be compared between a mimicked

chaotic system (input) and an artificial system (output). The challenge comes from

machine learning methods, which work in a black box without analytical formulas

that describe the dynamics. Experiments should be conducted to compare between

the supposed and the actual behaviors of an artificial system under varying initial

conditions for high-fidelity chaos predictions.

This thesis is to bridge the above-mentioned three gaps. Chapter 3 resolves the four

problems related to a hypothetical mode that applies a rational route to approximate

uncertain demand. Chapter 4 provides a new recurrence-based paradigm to reconstruct

an attractor from real-life demand signals. Finally, chapter 5 applies nonlinear time series

analysis on artificial systems. The focus is on the supposed and the actual behaviors

under varying initial conditions.



Chapter 3

Bifurcation analysis of dynamic pricing processes

with nonlinear external reference effects

Abstract

Dynamic pricing has been widely implemented to hedge against volatile demand.

One challenging problem is the study of optimal price choices under the influence

of this volatility. Stochastic demand is a prevalent assumption when it comes to

modeling the volatility on pricing decisions. However, demand volatility might

also be produced by deterministic chaos, which has rarely been studied in this

field of research to-date. We propose deterministic dynamic pricing processes that

aim to maximize revenue and to mimic a real pricing decision. Our model includes

nonlinear consumer expectations that explain the effects of external information

on consumers and discrete optimizations. A non-smooth demand function models

asymmetries in the perceptions of gains or losses of consumers, and finite price

choices of companies are considered in the optimizations. Volatility can show

up because of non-periodic consumer expectations, period adding bifurcations,

codimension-2 points, and coexisting solutions.

Our results highlight that optimal pricing strategies should agree with the dy-

43
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namics of consumer expectations. Disregarding deterministic dynamics may not

only cause revenue losses in practice but might also mislead regulators about the

underlying mechanisms that consumers and companies respond. We introduce an

irregular pricing strategy: a company can make the first return iteration of each

sales price non-periodic to follow non-periodic consumer expectations when hav-

ing finite price choices. The results may justify implementing irregular pricing

strategies in the case of practical pricing decisions. Here, the existence of coex-

isting solutions can assist in identifying potential market manipulations within a

monopoly market. This contributes to a fresh look in volatile markets and empha-

sizes the importance of initial conditions to pricing decisions and price regulations.

3.1 Introduction

Pricing decisions always involve a dilemma. A high price may lead to losses in numbers

of potential consumers. A low price, however, may lead to losses in potential revenue

[297, 361]. Therefore, many businesses, including the airline, the hospitality industry,

also energy providers, and retailers, have already implemented dynamic pricing models

for harvesting optimal revenue [70, 297, 361].

Dynamic pricing works as a pricing tool in a seller’s decision. While implementing

a dynamic pricing strategy, companies (sellers) monitor and update their knowledge of

demand [41, 71, 297, 361]. This demand-based knowledge enables companies to optimize

their revenue by setting the sales price as the optimal one [41, 71, 297, 361], turning a

price into a useful hedge against volatile markets. An optimal price choice is different

from an equilibrium price. An equilibrium price results from demand quantity equalling

supply quantity. An optimal price choice is derived from an optimization process that

satisfies the objectives of a company. An equilibrium price is widely used to model a mar-

ket in which an equilibrium can be reached infinitely fast [51, 162, 265, 407]. However,

dynamic pricing addresses an optimal price during a transition to the equilibrium.

The transition can be either instantaneous or delayed, depending on market struc-
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ture. In a competitive market, demand and supply quickly respond to each other. A

transition to an equilibrium is negligible. An equilibrium price is thus reached almost

instantaneously. However, there exists a market in which the supply of goods is of-

ten scarce or diÿcult to be adjusted within a short time frame [297], for example, a

monopoly market. An extended duration of a transition occurs.

Prolonged transition time, however, is advantageous both for pricing decisions and

price regulations, since market participants can learn from the evolution of demand.

Prolonged transition time allows a seller to benefit from a dynamic pricing strategy. The

strategy utilizes engineered revenue management tools and fixed distribution systems

for optimal revenue [297, 361]. On the other hand, prolonged transition time allows a

policy-maker or a regulator to understand how companies react to demand by observing

a change of prices. Based on the understanding, the policy-maker or the regulator

can counteract and re-establish market mechanisms in line with competition laws or

discourage abusive pricing strategies [186].

A diÿcult y in implementing a dynamic pricing strategy comes from obtaining an

optimal price choice in strong market volatility [297]. To achieve it, hypothetical models

exist to model the volatility [4, 41, 71, 90, 165, 175, 220, 319]. The idea is to obtain

a solution from a hypothetical model that approximates some phenomena in reality, so

one can derive managerial implications for guiding actions as a similar situation occurs

in practice. A stochastic demand and probabilistic approaches are prevalent in the

modeling of a volatile market [4, 41, 71, 90, 165, 220]. Ajorlou et al.[4] model the arrival

of consumers using a Poisson process. Cosguner et al. [90] and Harsha and Dahleh [165]

assume that demand follows a Markov process. Chen and Chen [71] take the bound of

demand as a stochastic variable with known expected value.

Deterministic chaos provides an alternative way to model the volatility [1, 22, 188,

277]. In the modeling of an equilibrium price, a rational route is used to approximate

volatile markets. [51, 162, 220, 407]. Brock and Hommes [51] allow a rational adaption

of price predictions in a demand-supply model that quantifies the relationship between
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equilibrium prices, demand, and supply. The rational adaption results in apparent

randomness that explains the volatility of equilibrium prices. Similarly, a rational route

with aperiodic dynamics explains the dynamic behavior in advertising decisions [162],

the market collapses [220], or the volatile behavior within a market that contains social

interactions [407]. As indicated by Abrams et al. [1], a dynamical system that underlies

deterministic dynamics is able to explain social group competition. The system can

evolve in a nearly identical way as that of a discrete stochastic model [1].

A rational route that explains uncertain demand remains rare in operation research

that focuses on a hypothetical model of dynamic pricing problems for managerial impli-

cations. Rump and Stidham [319] allows a rational adaption of price expectations. The

rational route that follows equilibrium prices explains irregular arrivals of consumers

[319]. Hu et al. [175] build a hypothetical model to obtain an analytical solution that

quantifies the relationship between an optimal price and demand. The analytical solu-

tion contributes to a rational route, which explains irregular dynamics in the periodicity

of periodic solutions. Rump and Stidham [319] look at explicit solutions and analyze

the volatility of consumers’ arrivals from dynamical systems’ perspective. Hu et al.

[175] consider the quantity demanded and focus only on periodic solutions for manage-

rial implications. Demand, as the quantity demanded, remains to be elucidated from

dynamical systems’ perspective in the modeling of a dynamic pricing problem.

This chapter extends the hypothetical model of Hu et al. [175] by allowing adaptive

and aperiodic consumers’ price expectations. The focus is on a dynamic pricing problem

where optimizations are involved. We aim to explain volatile demand from dynamical

systems’ perspective. A hypothetical dynamic pricing model is proposed merely to

justify the alternative and rational route to volatile demand. This chapter does not aim

for a practical model that fits a real-life dynamic pricing dataset. However, we aim for

the strategies and the actions of market participants under the volatility that a rational

route induces.
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3.2 Background

This chapter analyzes the volatility according to the theory of deterministic chaos. Three

types of knowledge will help understanding the hypothetical model and the analysis.

They are the reference effect, the logistic map as a canonical model in deterministic

chaos, and the border collision bifurcations.

3.2.1 Reference effects

Expectations are indispensable to influence individual decision making processes [356],

including consumers’ purchase decision. When consumers are trying to make purchase

decisions, their price expectations act as a reference [129, 175, 205, 270, 300]. If a

price expectation is higher than the current sales price, then consumers may perceive

a discount in the price of a product. The transaction thus appears as a potential gain

for a consumer. By contrast, if a price expectation is lower than the current sales price,

then consumers may perceive a price surcharge. The transaction is thus perceived as a

potential loss. A gain is more likely to initiate a purchase. However, a loss is less likely

to achieve the same effect [78]. The effect of a perceived gain or loss on the quantity

demanded is called reference effect.

In pricing decisions, a consideration of consumer expectations may allow companies to

take countermeasures avoiding revenue losses [300]. However, the modeling of a volatile

market rarely considers consumer expectations [70]. The main reason to the rareness

is a lack of universal equations to model a reference effect. Our hypothetical model

considers consumer expectations. We shall need to formulate consumer expectations.

In a purchase decision, an estimation of consumer expectation is often based on

historical prices [175, 206, 250, 270]. Our hypothetical model will consider consumer

expectations. The expectations are developed from two sources. The one is solely

based on historical prices. The other one is based on information that is unrestricted to

historical prices. We introduce internal reference price (IRP) and external reference price

(ERP) to model those two types of consumer expectations, respectively. Expectations,
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which are solely developed from historical prices, are here referred to as an IRP [250].

Optimal price choices have been studied when demand fluctuates according to the IRP

[129, 175, 205, 206, 270, 300]. A constant pricing strategy is optimal when consumers

are more sensitive to a loss than to a gain [129, 205, 206, 300]. A cyclic pricing strategy

becomes optimal when consumers are more gain sensitive [175, 205, 300]. Since the

both, constant and cyclic pricing strategies follow regular patterns, they are referred to

as regular pricing strategies in the following.

Yet the IRP fails to model information other than historical prices on optimal price

choices. This other information, which will be called in the following external infor-

mation, is shown to be measurable on consumer expectations. Examples include the

inventory availability [364], the text font in printing a price tag [255], the list price [203]

or the prices of competitors [130].

External information may also account for nonlinearity in consumer expectations. On

the one hand, external information can lead to opposing effects on consumer expectations

[167, 265]. Imitation and distinction both play an important role in purchase decisions

such as in the case of fashion products [265]. Here, external information is represented

by the number of individuals who choose an identical product. The greater that number

is, the more likely consumers become satisfied due to a so-called imitation effect. Yet,

consumers can also get more dissatisfied expectations due to a so-called distinction

effect. As a result, consumers can get contradicted expectations out of identical external

information [265]. The contradiction thus results in nonlinear consumer expectations.

On the other hand, consumer expectations interact with external information [407].

The observation of consumer expectations is influential in individual purchase decisions,

contributing to a realization of external information. Nonlinear interactions between

external information and consumer expectations can thus be observed [407]. To overcome

the limitation of the IRP, we incorporate nonlinearity and allow consumers to develop

two levels of price expectations: an IRP and an ERP. Here, an ERP represents consumer

expectations that are nonlinear and developed via external information. Consistent
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with the IRP-induced reference effects [129, 175, 205, 206, 270, 300], we assume that

comparisons between the ERP and the sales price also can lead to the perception of

either a gain or a loss. In the following, reference effects that an IRP induces are named

internal reference effects, and those an ERP induces are named external reference effect.

3.2.2 Logistic map

Logistic map is a toy model that exemplifies complicated behavior emerging from a

rational route in deterministic chaos [106, 143, 170, 249, 333, 353]. Its mathematical

formula is xn = F (xn−1) = rxn−1(1−xn−1) where r is a parameter that determines the

system’s behaviors. The map is a canonical form of the logistic equation that models the

population growth in an ecosystem [249]. Varying the parameter r allows the logistic

map to exhibit “an extraordinarily rich spectrum of dynamical behavior, from stable

points, through cascades of stable cycles, to a regime in which the behavior (although

fully deterministic) is in many respects “chaotic”, or indistinguishable from the sample

function of a random process” [249].

The complicated behavior depends on the stability of fixed points [249, 346]. A fixed

point x∗ is a solution to x∗ = rx∗(1−x∗). Two solutions exist, x∗ = 0 and x∗ = 1− 1
r .

The stability is characterized by the Jacobian at the point x∗, that is, J = |dF (x)
dx | =

| dxndxn−1
|= |r(1−2xn−1)| [392]. If J(x∗)< 1, then x∗ is a stable solution; otherwise, x∗ an

unstable solution. For 0 < r < 1, the map converges to the stable solution x∗ = 0, and

x∗ = 1− 1
r is unstable [346, 392]. At r = 1, a bifurcation occurs where x∗ = 0 becomes

unstable, however, x∗ = 1− 1
r becomes stable [346]. For 1 < r < 3, the map converges

to the stable solution x∗ = 1− 1
r [346]. For r = 3, both x∗ = 0 and x∗ = 1− 1

r become

unstable [346].

We then focus on successive two iterations in the map, that is, xn+2 = F (F (xn)),

a quartic equation. By letting x∗ = F (F (x∗)), four solutions are derived. They are

x∗ = 0, x∗ = 1− 1
r , and another two solutions x∗± = r+1±

√
(r−3)(r+1)
2r [346]. At r = 3,

x∗ = 1− 1
r = x∗±. Only for r ≥ 3, x∗± are real numbers [346]. So for r > 3, the map

exhibits oscillations on successive iterations. As before, the stability of x∗± depends on
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the Jacobian, J = |dF (F (x))
dx |. For 3< r < 1 +

√
6, xn oscillates between x∗±. The map is

a period-2 orbit. This process continuous as r increases. A period-2k−1 cycle with k =

1,2, · · · becomes unstable, simultaneously bifurcating to a period-2k orbit. This is called

period doubling routine [346]. The doubling routine is quantified by a universal number

[170, 346], known as the Feigenbaum constant, δ = lim
k→∞

rk− rk−1
rk+1− rk

= 4.669201 . . . [121,

122]. Here, rk is the parameter where the period-2k orbit appears. For the logistic map,

the Feigenbaum sequence is r1 = 3 (period-2), r2 = 1+
√

6 = 3.449490 . . . (period-4), r3 =

3.544090 . . . (period-8), r4 = 3.564407 . . . (period-16), r5 = 3.568759 . . . (period-32), r6 =

3.569692 . . . (period-32), r7 = 3.569891 . . . (period-128), r8 = 3.569934 . . . (period-256),

r9 = 3.569943 . . . (period-512), r10 = 3.569945 . . . (period-1024), · · · , r∞ = 3.569945 . . .

[346, 392]. The Feigenbaum number δ = 4.669201 . . . is universal for arbitrary unimodal

maps with quadratic maximum. The bifurcating behavior is called a period doubling

bifurcation.

Beyond some critical value r∞, the logistic map can become aperiodic and never re-

visit previously exact states [249, 346], although it visits arbitrarily small neighborhoods

of previous states. The period doublings give way to chaos [249, 346]. Those complex

behaviors can be visualized from a bifurcation diagram (Appendix C, Fig. C.3A). The

diagram plots all possible steady states (transients has been disposed) of xn as a function

of the parameter r [346, 374].

3.2.3 Border collision bifurcation

As shown in empirical studies [153, 185, 206, 339], a positive effect of a perceived gain

on demand can be unequal to a negative effect of a perceived loss on demand. A smooth

demand function is incapable of reflecting that asymmetrical phenomenon. Conversely,

a non-smooth function can reflect the asymmetrical phenomenon. One can let a point

fail to be differentiable at those points where an asymmetrical phenomenon occurs. For

example, Hu et al. [175] use a demand function that does not have a differential at the

point where the price equals an IRP. We will discuss the modeling of an asymmetrical

phenomenon by a non-smooth function in section 3.4.
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However, a non-smooth demand function can cause border collision bifurcations

(BCB) in dynamic pricing processes [175, 233]. The BCB or grazing bifurcations are

widely observed in non-smooth or piece-wise smooth systems. Impact or friction oscilla-

tors, aeroelastic systems, or mathematical models with economic applications are known

to exhibit complex dynamic changes [148, 225, 372, 382, 404]. BCB is a discontinuity-

induced bifurcation [274, 275]. Its mathematical definition can be summarized as follows.

Assume a map fm is defined over two non-overlapping regions S1 and S2. The definition

satisfies [34]

fm(x,r) =


F1(x,r), if x ∈ S1

F2(x,r), if x ∈ S2

where Fi with i = 1,2 is a smooth function defined in Si, and r is a parameter that

determines the dynamical behavior of the system. Assume that a smooth boundary ∂S

exists between S1 and S2, and fm is continuous across the boundary, then a smooth

function E(x,r) exists such that [34]

F2(x,r) = F1(x,r)+E(x,r)

where E(x,r) is defined in S1∪S2∪∂S. At a given parameter r = r∗, a fixed point x∗,

a solution to x∗ = fm(x∗), undergoes a BCB, if x∗ ∈ ∂S satisfies F1(x∗, r∗) = F2(x∗, r∗),

however, the Jacobian calculated in S1 is unequal to that in S2 [34, 422], that is,
∂F1
∂x

(x∗, r)
∣∣∣∣∣
r=r∗
6= ∂F2

∂x
(x∗, r)

∣∣∣∣∣
r=r∗

The definition can be extended to a period-k point undergoing BCB by the kth-iteration

map fkm and the Jacobian at the point.

Period incrementing and adding bifurcations are essential elements of systems that

exhibit border collisions [139, 149, 265, 289]. Period incrementing bifurcations corre-

spond to an increase or decrease in the period by a positive integer [289, 372]. Pe-

riod adding bifurcations can be observed when the period follows the Farey sequence

[139, 148, 265, 289] and have been recently shown by Lu et al. [233] in a dynamic pricing

model with asymmetrical reference effects. The Farey sequence is a sequence with some

fixed order [391]. In Appendix B Figs. B.3 and B.4 exemplify a Farey sequence.
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3.3 Model

Dynamic pricing processes involve consumers that make a purchase decision and com-

panies that make a pricing decision. In the period n ∈ N, consumers have an internal

(I) reference (r) price (IRP) rIn and an external (E) reference price (ERP) rEn . Observ-

ing an IRP and an ERP, a company maximizes the revenue by a sales price pn. Yet,

the IRP and the ERP evolve from that sales price [203, 250]. The following map ex-

presses the interdependence among the IRP rIn [129, 175, 205, 270, 300], the ERP rEn

[167, 202, 203, 250, 265, 407], and the sales price pn [129, 175, 205, 270, 300]

rIn =αrIn−1 +(1−α)pn−1

rEn =h(rEn−1, r
I
n−1,pn−1)

pn =f(rEn , rIn)

(3.1a)

(3.1b)

(3.1c)

where α is a memory rate, and the function h models an ERP. Importantly, the function

f describes a solution to an optimal revenue. Also, f represents an optimal pricing

strategy that companies should follow for avoiding potential revenue losses. The fol-

lowing subsections will define each function and explain the IRP and the ERP, and the

optimal choices of a sales price. Appendix A, section A.1, provides a pseudo-algorithm

(cf. Algorithm A.1) to iterate Eq. (3.1).

3.3.1 Internal reference price

Eq. (3.1a) represents a memory-based process that models an IRP based on historical

sales prices [129, 175, 205, 270, 300]. Given an initial IRP rI0, Eq. (3.1a) is equivalent to

rIn = αnrI0 +(1−α)(αn−1p0 +αn−2p1 + · · ·+α0pn−1)

The memory rate α ∈ [0,1] weighs consumer adaptations to historical prices pk with

k = 0, · · · ,n− 1. When α = 0, an IRP is retrieved from the last sales price pn−1. The

larger α is, the slower consumers adapt to historical prices. When α= 1, no adaptation

exists, and an IRP becomes a constant being equal to rI0. Here, rI0 is intrinsically related

to the value of products, and it reflects the price evaluation of consumers on their first
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purchase. Following Hu et al. [175], we let rI0 ∈ [0,U ] and pn ∈ [0,U ]. Here, U is the

maximal price representing a price celling or a price that renders demand to be zero.

3.3.2 External reference price

Eq. (3.1b) represents the evolution of an ERP. Three empirical observations are consid-

ered in the modeling of an ERP.

A. Based on empirical evidence [202, 203], a nonlinear model especially a quadratic

model should be better suited than a linear model to evaluate the ERP.

B. Interactions between external information and consumer expectations are common

in reality [167, 265, 407].

C. Historical prices are an important determinant on consumer expectations [250].

The key idea behind observations A and B is that consumers often use external informa-

tion to develop contradicted expectations in a purchase decision [167, 265]. Observation

C originates from the importance of price stimuli that consumers absorb in their expec-

tations [250].

Based on those observations, we assume that an ERP comprises two components:

evaluating external information and absorbing an ERP into an IRP. The model is ex-

pressed by

(3.2a)

(3.2b)

(3.2c)

In Eq. (3.2a) Vn ∈ [0,1] represents consumer evaluations of external information, and

β ∈ [0,1] weights the effect of absorption. The larger β is, the less effective the absorption

is. For β = 0, any external information is excluded, which results in an ERP being

absorbed by an IRP. In this setting, the model degenerates into that of Hu et al. [175].

At β = 1, an ERP is free from the influence of an IRP. Eq. (3.2a) models the observation

C and describes the dependence of an ERP on historical price by an IRP.

rE
n

τE
=βVn +(1−β)rI

n

τI

Vn =AFn

τF
(1− Fn

τF
)

Fn

τF
=B sin πrn

E−1
τE
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τE

nonlinear interactions with unimodality such as a quadratic effect. Generally, a sine

function can be used to model a seasonal force [167], so Eq. (3.2c) can approximate a

seasonal force with unimodality. Our model does not consider seasonal forces. The use

of a sine term is for mathematical curiosity. Fresh knowledge can be derived from dy-

namical systems’ perspective, in case a similar season force is involved in a hypothetical

model.

Finally, h in Eq. (3.1b) has an explicit formula. Plugging Eqs. (3.1a), (3.2b) and

(3.2c) to Eq. (3.2a) yields an explicit definition of h

rEn
τE

= h(rEn−1, r
I
n−1,pn−1)

(3.3)
= βAB sin πrn

E
−1

τE
(1−B sin πrn

E
−1

τE
)+(1−β)αrI

n−1+(1−α)pn−1
τI

In Eq. (3.2b) Fn represents the value of external information that produces opposite

effects on consumer expectations. Here A ∈ [0,4] is the coefficient of consumer evalua-

tions of external information. Eq. (3.2b) models the observation A. It exemplifies the

opposite effects of external information on consumers’ evaluation of ERP by means of

a quadratic term. Although many types of nonlinearity exist, we use a quadratic term

in the hypothetical model to be consistent with the empirical observations [202, 203].

For real-life dynamic pricing models, the choice of the type of nonlinearity should be

consistent with the dynamics of data.

In Eq. (3.2c) B ∈ [0,1] represents the amplitude of the interactions between ex-

ternal information and an ERP. We simplify the evolution of an ERP for obtaining

managerial implications, and thus introduce the parameters τE , τF , and τI that non-

dimensionalize an ERP, external information and an IRP, respectively. Also we let

τE = max{rE}, τF = max{Fn}, and τI = U . Here, r0
E ∈ [0, τE ] is an initial ERP, which

represents an expectation that consumers hold on the first purchase. Eq. (3.2c) models

the observation B and describes the interactions between external information and an

∈ [0,1] (Eq. 3.2c), we use a sine term only for an approximation ofERP. Since rn
E

−1



Bifurcation analysis of dynamic pricing processes 55

3.3.3 Demand

Eq. (3.1c) models the evolution of an optimal price as a company aims for a maximal

revenue based on demand knowledge d(pn). In general, d(pn) is defined by a base demand

and internal reference effects [129, 175, 205, 270, 300]. We incorporate external reference

price effects into the definition of d(pn) by

d(pn) = b−apn︸ ︷︷ ︸
base demand

+ λIγ(rIn−pn)︸ ︷︷ ︸
internal reference effects

+ λEγ(rEn −pn)︸ ︷︷ ︸
external reference effects

(3.4)

In Eq. (3.4), the base demand describes the influence of the sales price on demand, and

the internal and external reference effects describe demand fluctuations that an IRP and

an ERP induce, respectively. Here, λI and λE represent the intensity of internal and

external reference effects on demand, respectively. Further, γ represents the consumer

sensitivity to a gain or a loss, defined by

γ =



γg, rjn > pn, with j ∈ {E,I}

0, rjn = pn, with j ∈ {E,I}

γl, rjn < pn, with j ∈ {E,I}

(3.5)

where γg and γl are the consumer sensitivity to a gain and a loss, respectively. Plugging

Eq. (3.5) into Eq. (3.4) and substituting these three terms, cn = b−apn, ∆I
n = rIn− pn

and ∆E
n = rEn −pn, provide a full piece-wise demand function,

d(pn) =



cn+λIγg∆I
n+λEγg∆E

n , rIn, r
E
n ≥ pn

cn+λIγg∆I
n+λEγl∆E

n , rEn < pn < rIn

cn+λIγl∆I
n+λEγg∆E

n , rIn < pn < rEn

cn+λIγl∆I
n+λEγl∆E

n , rIn, r
E
n ≤ pn

(3.6)

In Eq. (3.6) if rjn = pn (j ∈ {E,I}), then ∆j
n = 0, so the corresponding reference effects

(cf. Eq. 3.4) disappear. In this setting, the value of γ has no influence on d(pn).
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3.4 Optimization solutions and bifurcation analysis

The function f (cf. Eq. 3.1c) depends on the solutions to an optimization problem.

In this section we will present an optimization method, use a symbolic representation

to visualize f , and introduce new pricing strategies. Numerical bifurcation analysis is

introduced as well.

3.4.1 Optimal price choices

We focus on a short-term dynamic pricing problem. A company maximizes revenue Π

in the period n. Here, Π satisfies

Π = pnd(pn) (3.7)

where d(pn) follows Eq. (3.6). Maximizing Eq. (3.7) leads to an optimal price p∗n via

p∗(rEn , rIn) = arg max
pn∈[0,U ]

Π = arg max
pn∈[0,U ]

pnd(pn) (3.8)

A solution to Eq. (3.8) exists since p ∈ [0,U ] is compact and Π is continuous [129, 175,

270, 300]. If multiple solutions are derived from Eq. (3.8), then the smallest among

them is selected for the uniqueness of an optimal price. It is straightforward to get an

analytical solution if γg = γl (symmetric case). However, if γg 6= γl (asymmetric case),

the optimization becomes non-smooth, and only numerical approximations of an optimal

price can be extracted [77, 129, 204].

However, many promotion-driven consumers exhibit asymmetric sensitivity. Those

consumers are more sensitive to a perceived gain than a perceived loss [153, 175], that

is, γg > γl. The phenomenon can be understood in this way. For a promotion where

rjn>pn those consumers perceive a gain. According to Eq. (3.6), rjn−pn is the amount of

perceived gain, and γg(rjn−pn) represents an increased amount of demand due to a gain.

For a situation where rjn < pn those consumers perceive a loss. According to Eq. (3.6),

pn−rjn is the amount of perceived loss, and γl(pn−rjn) represents a decreased amount of

demand due to a loss. Promotion-driven consumers have a following feature. Let assume

that a perceived gain is equal to a perceived loss, then the effect of a perceived gain on
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demand is larger than that of a perceived loss [153], since γg(rjn−pn)> γl(pn− rjn). In

line with [175], we focus on those promotion-driven consumers where γg > γl, although

the model is applicable when γg < γl.

3.4.2 Asymptotically optimal price

We introduce an asymptotical algorithm proposed by Chen et al. [77] for a solution

to Eq. (3.8). The asymptotically optimal price p∗∗ (a solution) is chosen from a finite

set Pε = {κε : κ = 0,1,2, . . . ,Nε} rather than from [0,U ]. Here Nε is the number of the

divisions of the interval [0,U ], with ε = U
Nε

. The distance between Pε and any feasible

solution in [0,U ] is smaller or equal to ε. The accuracy of the approximation is thus of

the order O(ε). The calculation follows

p∗∗(rEn , rIn) = f = arg max
pn∈Pε

Π = arg max
pn∈Pε

pnd(pn) (3.9)

Eq. (3.9) is incapable of yielding an explicitly analytical solution. However, Eq. (3.9)

approximates a real-life pricing decision in which an optimal price is chosen from a set

of finite choices. For example, in practice, prices are more attractive when taken from

a discrete set, e.g., ending with 99 such as $9.99 or $99 [70, 327, 361]. In the following,

we refer to “asymptotically optimal price” simply as the optimal price.

3.4.3 Irregular pricing strategies

A pricing path is an orbit of optimal prices [175, 300]. If the steady states of optimal

prices (Eq. 3.9) are a constant or periodic, then the pricing path is regular. In this setting,

the corresponding optimal pricing strategy is defined as a regular one. However, a regular

pricing strategy has limitations. The market is highly complex and full of irregularities

such as demand spikes [184]. A regular pricing strategy precludes a pricing strategy

that follows irregularities of markets. Also, a regular pricing strategy is vulnerable in

that consumers can learn the pricing pattern and defer their purchase decisions until the

occurrence of lower prices [300]. To overcome these limitations, we introduce the terms

irregular and chaotic pricing strategies.
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1. If the steady states of optimal prices (Eq. 3.9) are aperiodic, then the pricing path

exhibits irregularities. In this setting, we define the optimal pricing strategy as an

irregular pricing strategy.

2. If the steady states of optimal prices (Eq. 3.9) are chaotic, then we define the

optimal pricing strategy as a chaotic pricing strategy.

In the absence of an analytical model, two ways exist in identifying irregularities of

a dynamical system. They are to examine the time series and to look at time intervals

between successive states. The former is applicable to systems that include infinite

steady-state solutions such as the logistic map running into a chaotic window [277, 349].

The latter is applicable when systems include finite steady-state solutions, or when it is

diÿcult to measure steady-state solutions such as the dripping faucet [242, 284]. Facing

finite price choices, we investigate the time intervals between successive states and define

a first return iteration [284]. A minimal iteration k ∈ N of a steady-state solution si is

the minimal integer that satisfies si = si+k. The first return iteration is the time series

of the minimal iteration of a pricing path. Let assume a pricing path as follows, then

we can calculate its first return iteration via

Pricing path: 0.276 0.276 0.337 0.276 0.337

First return iteration: 1 2 2 2 3
repeat 4 times

repeat 4 times
(3.10)

where the pricing path starts with the state 0.276, and returns to 0.276 after five rep-

etitions of the low-high pattern, 0.276→ 0.337. In Eq. (3.10) the state 0.276 sitting in

the first position reoccurs in the next iteration, so its minimal iteration is 1. The state

0.276 sitting in the second position reoccurs after two iterations, so its minimal iteration

is 2, and so on.

3.4.4 Symbolic representations

We have defined a dynamic pricing model (Eq. 3.1), where h and f follow Eqs. (3.3) and

(3.9), respectively. Despite three variables shown in Eq. (3.1), the underlying system
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is a two-dimensional map. For a given set of parameters, the system has a correlation

dimension estimation D2 = 1.26∈CI = [1.11,1.41], cf. Appendix A Fig. A1. In addition,

the map (Eq. 3.1) is plotted in the (rEn , rIn,p∗∗n )−plane for a further visualization of the

system, cf. Appendix A, Fig. A2.

The dynamic pricing map (Eq. 3.1) considers discrete price choices (Eq. 3.9) and the

asymmetrical effect between a gain and a loss (Eq. 3.6). Those two considerations are to

approximate reality. However, Eqs. (3.6) and (3.9) together prevent an explicit formula

of f . It thus becomes diÿcult to mathematically analyze the map.

Eq. (3.6) defines a non-smooth system of which the derivative contains discontinuity

at pn = rIn or pn = rEn . Symbolic representations are widely used to visualize dynamic

manifolds and to study a switch behavior among manifolds within non-smooth systems

[139, 148, 289, 357]. We, therefore, use symbolic representations to visualize and analyze

f . The symbolic representation satisfies

I1 ={p∗∗n : p∗∗n < rIn and p∗∗n < rEn };

I2 ={p∗∗n : p∗∗n > rIn and p∗∗n > rEn };

I3 ={p∗∗n : rEn < p∗∗n < rIn};

I4 ={p∗∗n : rIn < p∗∗n < rEn }; and

I5 ={p∗∗n : rIn = p∗∗n or rEn = p∗∗n }

(3.11a)

(3.11b)

(3.11c)

(3.11d)

(3.11e)

0.213< 0.3 = rIn and p∗∗n = 0.213< 0.3 = rEn .

Two sources of nonlinearity are noticeable in the map (Eqs. 3.1, 3.3 and 3.9). They

are related to the definition of h (Eqs 3.2 and 3.3) and f (Eq. 3.9), respectively. For

h, Eq. (3.2) contains two nonlinear equations. A quadratic equation (Eq. 3.2b) mod-

els nonlinear evaluations of external information and considers contradicted consumer

Eq. (3.11) symbolizes p∗∗
n by comparingp∗∗

n , rI
n and rE

n . We use the symbols L, R, MI ,

n = 0.3, and p∗∗
ME , and M to denote the results of comparisons I1 (Eq. 3.11a), · · · , I5 (Eq. 3.11e),

respectively. Let assume, for example, that rI
n = 0.3, rE = 0.213 where

pn
∗∗ is derived from Eq. (3.9), then p∗∗

n gets an assigned symbol L (p∗∗
n

n

∈ I1) since p∗∗
n =
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n

Figure 3.1 : Visualization of the function f (Eq. 3.1c) by symbolic representations (Eq. 3.11). The

symbol L indicates that consumers perceive gains from both the internal and external reference effects.

The symbol R that losses from the both. The symbolMI that gains from the internal reference effects

but losses from external reference effects. The symbol ME that gains from external reference effects

but losses from the internal reference effects. (Zoomed plot): Visualization of stepwise changes of the

borders where rE ∈ [0.18,0.24] (x-axis) and rI
n ∈ [0.24,0.3] (y-axis).

expectations. A sine function (Eq. 3.2c) models nonlinear interactions between price

expectations (ERP) and external information. For f , Eq. (3.9) contains a new source

of nonlinearity, the discontinuity in optimizations, cf. Fig. 3.1. The two sources of non-

linearity describe the interdependence between consumers and companies, thus being

entailed and difficult to be disentangled.

This chapter aims to explain volatile demand by a rational route from dynami-

cal systems’ perspective. The rational route is described by the dynamic pricing map

(Eqs. 3.1, 3.3 and 3.9) with those two sources of nonlinearity. We let the amplitude of the

interactions between external information and price expectations B be the changeable

parameter and fix the following parameters to be consistent with Hu et al. [175]

b = 582, a = 569.4, α = 0.95, β = 0.95, γg = 1335.6, γl = 267.1,and

A = 4, U = λI = λE = τE = τF = τI = 1

We will show nonlinear dynamics of steady-state solutions of the ERP as B changes.
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Three reasons exist for the choose of an ERP over other variables such as an IRP,

an optimal price, and demand. An ERP is formulated by two nonlinear functions, cf.

Eqs. (3.2b) and (3.2c). It is expected that an ERP will exhibit complex dynamics.

In addition, an ERP is firstly modeled in pricing decisions. The analysis of the ERP

will provide a fresh impetus to our knowledge of possible acting mechanisms of volatile

markets. Finally, according to Takens’ embedding theorem [333, 360], the dynamics

of one variable is consistent with the whole system. Therefore, the dynamics of ERP

represents that of other variables.

3.4.5 Numerical bifurcation and period diagrams

An absence of an analytical solution to Eq. (3.9) causes a lack of an analytical formula

of the map f . It becomes difficult to analyze the bifurcations by the fixed points, the

kth−iteration, or the corresponding Jacobian as shown for the logistic map (sections

3.2.2 and 3.2.3). We therefore conduct bifurcation analysis using a time series, instead

of analytics or associated eigenvalues.

Numerical bifurcation diagram. Two sets of initial conditions are employed for a

numerical bifurcation diagram. They are (r0
E , r0

I) = (0.3,0.3) and (r0
E , r0

I) = (0.3,0.6). For

a given set of initial conditions, we plot all possible steady-state solutions of the dynamic

pricing map (Eq. 3.1) against an increase of B ∈ {0.0001∗k : k = 0,1, · · · ,10000} (Eq. 3.3).

BCB is expected due to the discontinuity of demand function (Eq. 3.6). For identifying

a BCB, the parameter should be close enough to the point where BCB appears [34].

When an evident jump is observed in the bifurcation diagram, we then zoom into the

interval where the jump is observed. In a zoomed plot, initial conditions are randomized,

and a bootstrapping [279] is introduced. For a given B ∈ {BL +k(BU −BL)/10000 : k =

0,1, · · · ,10000} both r0
E and r0

I are uniformly distributed over [0,1]. Here, BL and BU

are the lower and the upper bounds of the interval where the jump is observed.
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Numerical identification of doublings. We iterate the dynamic pricing map and

shrink the interval that accommodates the parameter at which a doubling occurs. The

idea is to sequentially approximate the decimals from the tenths until the millionths. To

locate B1
F at which a period-2 solution occurs, we look at the bifurcation diagram, let

B2
U = {0.1,0.2, · · · ,1}, and identify the interval B1

F ∈ [B2
L,B2

U ] with B2
L = B2

U −1×10−1.

The bifurcation diagram shows one branch at B2
L, whereas two branches at B2

U . We

then move to the hundredths place by letting B2
L = B2

U −1×10−2. If at B2
L one branch

is observed, then we move to the thousandth place. Otherwise, we let B2
U = B2

L firstly

and then B2
L = B2

U − 1×10−2. The process is repeated until that at B2
L one branch is

observed for the first time. For the thousandth place, we then let B2
L =B2

U −1×10−3 and

follow the same way to shrink the interval [B2
L,B2

U ]. The shrinking continues until seven

decimal places where B1
F ∈ [B2

L,B2
U ] with B2

L = B2
U − 1×10−7. Therefore, B2

L and B2
U

correspond to an identical number when the seventh digit after decimal point is dropped.

That number represents B1
F . Similarly, we shrink the interval BF ∈ [Bk

L,Bk
U ] by the rulek

that Bk
L corresponds to 2k−1 branches and Bk

U that 2k branches with k = 1, · · · ,10 for

locating a period-2k solution in the doubling.

Numerical period diagram. Bifurcation diagrams are ineffective to detect a change

in dynamics if period adding bifurcations occur [272]. However, period diagrams improve

the detection [132, 138, 148]. A period diagram is a diagram that records the periodicity

of a solution. If a period adding bifurcation is observed in a bifurcation diagram, then

we plot the periodicity of a solution against an increase of B ∈ {BL +k(BU −BL)/10000 :

k = 0,1, · · · ,10000}. Here, BL and BU are the lower and the upper bounds of the interval

where the period adding bifurcation is observed. We only calculate a period-k solution

with k smaller than 300. Period-300 in the diagram thus represents a periodic-300

solution, a solution with periodicity larger than 300, or an aperiodic solution.

A numerical bifurcation diagram can be different from an analytical bifurcation di-

agram of which the analysis is based on the Jacobian [34, 96]. In particular, an identifi-

cation of a BCB from a bifurcation diagram needs a high accuracy in locating the small
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Figure 3.2 : Bifurcation diagram of an ERP against the amplitude of the interactions, B (Eq. 3.3).
(a) Numerical bifurcation analysis is conducted over two sets of initial conditions, (r0

E , r0
I) = (0.3,0.3)

and (r0
E , r0

I) = (0.3,0.6). Panels (b) and (c) are a zoomed plot to visualize a jump in the bifurcation

diagram. Random initial conditions are applied to the dynamic pricing map (Eqs. 3.1, 3.3 and 3.9) for

a plot. The map exhibits different dynamics in the intervals, B1, · · · ,B6. In B3 coexisting solutions

occur. A doubling behavior is evident at B1 ≈ 0.2772, B2 ≈ 0.3763, B3 ≈ 0.4072, and B4 ≈ 0.8724.

neighborhood of the exact position where a BCB occurs [34, 96]. This thesis does not

focus on identifying a BCB. A use of a period diagram is merely to exemplify a rational

route to apparent randomness in the periodicity of a solution. An advanced numerical

method that improves the identification would be of interest for mathematical curiosity.

In addition, obtaining analytics for optimizations (Eq. 3.9) would further improve the

identification.

3.5 Mechanisms for volatile markets

A dynamic pricing map has been proposed. We then conduct a bifurcation analysis

to look at a rational route to apparent randomness. The rational route is interpreted
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BF
k+1−Bk

from dynamical systems’ perspective. The interpretation includes a plot of a bifurcation

diagram, an analysis of a BCB, and basins of coexisting solutions.

3.5.1 Bifurcation analysis

Fig. 3.2 shows the bifurcation diagram of the dynamic pricing map as B changes. The se-

quence that associates with the occurrence of possible doublings is B=B1
F ≈ 0.277786 . . .

(period-2), B = B2
F ≈ 0.376428 . . . (period-4), B = B3

F ≈ 0.409111 . . . (period-8), B =

B4
F ≈ 0.415522 . . . (period-16), B =B5

F ≈ 0.416644 . . . (period-32), B =B6
F ≈ 0.417249 . . .

(period-64), B = B7
F ≈ 0.417449 . . . (period-128), B = B8

F ≈ 0.417452 . . . (period-256),

B = B9
F ≈ 0.417453 . . . (period-512). Our numerical method is difficult to locate the

position where a period-1024 solution occurs. The calculation of Bk
F −Bk

F
1 yields 3.018,

5.098, 5.714, 1.855, 3.025, 66.667, 3.000 with k = 2, · · · ,8, respectively. The sequence is

different from the Feigenbaum sequence of the logistic map (section 3.2.2). Also, we are

unable to observe the Feigenbaum constant. The reason can be the errors induced by a

numerical bifurcation diagram [34, 96] or the discontinuity of the dynamic pricing map

(Eqs. 3.1, 3.3 and 3.9), which fundamentally changes the bifurcating behaviors.

Jumps are visible in the bifurcation diagrams, cf., Figs. 3.2b and 3.2c. The occurrence

of those jumps is consistent with the observations of discontinuous jump phenomena

near a grazing point [229, 404]. The jumps are likely to be related to Neimark-Sacker

bifurcations as a switching from periodic to quasi-periodic solutions occurs [346, 415].

However, the exact determination would require a normal form of Eq. (3.1), which

is difficult to be retrieved because of the lack of analytical formula in the function f

(Eq. 3.9).

Six intervals are used for a summary of the complex dynamics. The intervals are B ∈
B1 = [0,0.417),B2 = [0.417,0.605),B3 = [0.605,0.642) where coexisting solutions occur,

B4 = [0.642,0.679), B5 = [0.679,0.891), B6 = [0.891,1]. Complex changes and many

bifurcation structures are observed in Fig. 3.2a. Intervals B1 and B5 exhibit almost

periodic solutions. The interval B3 exhibits coexisting solutions. In addition, complex

bifurcation structures are found in the Figs. 3.2b and 3.2c.
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Figure 3.3 : Period diagrams. (a) The periodicity of an ERP against an increase of B ∈ B1 is plotted.

The initial condition (r0
E , r0

I) = (0.3,0.3) is applied. (b) A zoomed plot where B ∈ [0.2,0.3] shows
overlapping structures in the periodicity of the ERP. (c) A zoomed plot where B ∈ [0.09,0.1] shows
increasing and decreasing increments. (d) A zoomed plot where B ∈ [0.35,0.36] shows a period doubling
routine undergoing a BCB.

The ERP is regular in almost periodic windows (B1 and B5). However, it can be

aperiodic such as in the intervals B4 and B6. An aperiodic ERP fluctuates with irregular

patterns and gives rise to irregular price expectations. By means of interactions between

price and demand, the irregularities are then delivered to a market. Unpredictable

demand and volatile markets thus occur.

3.5.2 Border collision bifurcations

Fig. 3.3a shows the period diagram of the ERP as B is in the almost periodic window

B1 = [0,0.417). An irregular change occurs in the periodicity of a steady-state solution

(Fig. 3.3a). The phenomenon is called a BCB [139, 181]. Figs. 3.3b and 3.3c have a

common pattern in the periodicity (y−axis). Along the x−axis the periodicity of some

point satisfies that it equals to the addition of the periodicities of its neighboring points.

The phenomenon is coined to the period adding bifurcations [17, 139, 148, 357].

Figs. 3.3b and 3.3c show different structures of a period diagram. Fig. 3.3b shows

overlapping structures with increasing increments dominated, which resembles those of
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∗Matplotlib.mlab.psd is used [177, 247]. The sampling frequency is 1.

an incomplete Farey tree in [148]. Overlapping structures are due to discontinuous

rotation number [148]. On the other hand, Fig. 3.3c shows evidently decreasing and

increasing increments, which resembles those of a complete Fare tree in [148]. Obvious

patterns in both decreasing and increasing increments are due to continuous variations

in rotation number [148].

Fig. 3.3d shows a new pattern. The periodicity oscillates among the set {2,4,6,8}.

Period-2 and period-4 solutions are the two dominating ones. In Fig. 3.3d, B ∈ B1 is

in an interval that contains a doubling behavior in the bifurcation diagram (Fig. 3.2a.

However, an occurrence of period-6 and period-8 solutions indicates that a BCB influ-

ences the doubling behavior. The influence is not as strong as that in Figs. 3.3b and

3.3c.

More complex dynamics may develop near the point B = B1 ≈ 0.2772 where period

doubling bifurcations and a BCB simultaneously occur (Figs. 3.2a and 3.3a). The point

(B1) is referred to as the so-called codimension-2 point [337]. It sits at the intersection

of lines with different topological structures [17]. A small variation of the bifurcation

parameter B thus leads to the evolution of different dynamics [17]. Moreover, quasi-

periodic solutions are expected in the vicinity of the codimension-2 points [337], which

may explain the jumps at the codimension-2 points shown in Figs. 3.2b and 3.2c.

We calculate a time series (Figs. 3.4a1 to 3.4c1), a phase space (Figs. 3.4a2 to 3.4c2),

and the power spectral density∗ (Figs. 3.4a3 to 3.4c3), and benchmark the dynamics at

B1 with periodic and aperiodic dynamics. We observe a periodic-11 orbit at B = 0.2

(Figs. 3.4a1 to 3.4a3) and aperiodic dynamics at B = 1 (Figs. 3.4b1 to 3.4b3). The

observations are as follows. (1) The time series presents different patterns. Fig. 3.4a1

shows a regular pattern at B = 0.2, whereas Fig. 3.4b1 shows an irregular pattern at

B = 1. (2) A phase plot shows different patterns. At B = 0.2, the phase space includes

eleven scattered points (Fig. 3.4a2). At B = 1, the phase space shows a self-similar

structure between the original and the zoomed plots (Fig. 3.4b2). (3) The number of
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Figure 3.4 : Identifying the dynamics of a codimension-2 point at B = B1 ≈ 0.2772. Here, the initial
condition corresponds to (r0

E , r0
I) = (0.3,0.3). (a1 to c1) A time series is plotted for the identification of

dynamics. (a2 to c2) A phase space is plotted. (a3 to c3) Power spectrum density is calculated. (a1 to

a3) At B = 0.2, the patterns represent periodic dynamics. (b1 to b3) At B = 1, the patterns represent

aperiodic dynamics. (c1 to c3) At B = 0.2772, the patterns are consistent with aperiodic dynamics

shown at B = 1.

bands are different in the power spectrums. Fig. 3.4a3 shows a fixed number of bands

at B = 0.2, whereas Fig. 3.4b3 shows broadband power spectrums at B = 1. At B = B1,

(1) the time series is irregular (Fig. 3.4c1). (2) A phase space exhibits self-similarity

(Fig. 3.4c2). (3) The power spectrums are of broadband (Fig. 3.4c3). Those three

observations are consistent with aperiodic dynamics shown at B = 1 (Fig. 3.4b).

Another mechanism for volatility occurs in a period adding bifurcation and a non-

periodic solution. The solution simultaneously undergoes a period doubling bifurcation

and a period adding bifurcation. Here, the ERP fluctuates in a small range (Figs. 3.4c1

and 3.4c2), so a company is able to predict the ERP in a high accuracy. However, the
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Figure 3.5 : Coexisting solutions and their phase space. (a) Different initial conditions lead to different

structures in a bifurcation diagram. Here, B ∈ B3 (Fig. 3.2a). (b) At B = 0.622, the dynamic pricing

map (Eqs. 3.1, 3.3 and 3.9) reaches two different solutions. (b1) A period-6 orbit is plotted in phase

space. (b2) A period-4 orbit is plotted. (c) At B = 0.626, two coexisting solutions exist. (c1) An

aperiodic solution is plotted. (c2) A period-4 orbit is plotted. (d) At B = 0.632, two aperiodic solutions

coexist (d1 and d2). (b1 to d1) The initial condition, (r0
E , r0

I) = (0.3,0.3), is taken for a solution. (b2

to d2) The initial condition, (r0
E , r0

I) = (0.3,0.6), is taken.

total number of elements that constitute steady-state solutions varies drastically as the

market environment changes (Fig. 3.3). As a result, it becomes difficult to predict that

total number, causing volatility.

3.5.3 Coexisting solutions

Here, we report the coexistence of solutions with different dynamics as B changes. The

following cases are possible:

1. Two periodic solutions coexist. A period-4 solution (Fig. 3.5b2) and a period-6

solution (Fig. 3.5b1) are observed at B = 0.622.

2. At B = 0.626 a period-4 solution (Fig. 3.5c2) and an aperiodic solution (Fig. 3.5c1)

coexist. Fig. 3.6 shows the basins of the two coexisting solutions. The basins

exhibit a fractal structure. In addition, the basin of some solution is disconnected

and separated by the basin of its counterpart (Fig. 3.6). A basin of a non-smooth
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system is different from that of a smooth system. For a non-smooth system the

borders and their preimages serve as repellers that separate the basins. A basin

boundary thus shows up [308].

Figure 3.6 : Basins of coexisting solutions at B = 0.626. Black blocks represent the basin of an aperiodic

solution (Fig. 3.5c1). The blank white areas represent the basin of a period-4 solution (Fig. 3.5c2).

3. At B = 0.632, two aperiodic solutions (Figs. 3.5d1 and 3.5d2) show up.

An initial IRP r0
I and an initial ERP r0

E are inextricably associated with a company.

In particular, r0
E may heavily reply on the initial behavior of a company [203, 255, 364].

Coexisting solutions contribute to a third type of volatility, which is related to a market

manipulation. While implementing dynamic pricing strategies, a company can make

consumer expectations develop in different directions, such as a period-4 solution or an

aperiodic solution (Fig. 3.6). On the one hand, coexisting solutions indicate that a com-

pany should be forward-looking, so that a potentially volatile market could be avoided.

On the other hand, regulators could discourage a manipulation and abusive pricing by

means of an identification of the critical parameters. For example, the bifurcation pa-

rameter B runs into the intervals B3 where coexisting solutions occur (Figs. 3.2, 3.5a,

and 3.6).
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3.6 Optimal actions

We have presented three mechanisms to volatility. A change of the parameter B (Eq. 3.3)

has been used to model a change of market environments. The dynamics of the ERP has

been presented. Results show that a rational route to apparent randomness can explain

volatility of dynamic pricing problems from dynamical systems’ perspective (Figs. 3.2,

3.3, and 3.6). We then point out the actions that participants should take as apparent

randomness emerges from a rational route.

3.6.1 Optimal price choice

Fig. (3.1) shows a symbolic representation (Eq. 3.11) of optimal price choices. Four

symbols are evident. This suggests that while considering an internal and an external

reference effects, a company can take four actions to adjust the price for optimal revenue.

1. In Fig. 3.1, the area being labeled with L corresponds to a high IRP and a high

ERP. The symbol L represents that an optimal price should be lower than both the

ERP and the IRP (Eq. 3.11). If consumers have a high IRP and a high ERP, then

a company’s optimal action is to set the sales price at which consumers perceive

gains from both the internal and the external reference effects.

2. In Fig. 3.1, the area being labeled with R corresponds to a low IRP and a low

ERP. The symbol R represents that an optimal price should be higher than both

the ERP and the IRP (Eq. 3.11). If consumers have a low IRP and a low ERP,

then a company’s optimal action makes consumers perceive losses from both the

internal and the external reference effects.

3. The area with a low ERP, however, a high IRP is labeled with MI (Fig. 3.1). The

symbol MI represents that an optimal price choice is larger than the ERP but

lower than the IRP. Consumers, therefore, perceive gains from internal reference

effects, however, losses from external reference effects. This indicates that for

a large gap between the ERP and the IRP, a company should balance multiple

attributes that affect consumer purchase decisions.
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yet lower than the ERP (Fig. 3.1). Consumers, therefore, perceive gains from

external reference effects however losses from internal reference effects. This further

highlights the importance of the above-mentioned balance for a company.

recurs after 6 iterations.

Here, the time series of the first return iteration constitutes a horizontal line

(Fig. 3.7a1). Individual price choices that are elements of a price path, have an

identical recurrent behavior. The frequency of the recurrences is identical for all

elements (Fig. 3.7a2). The number of optimal price choices is thus equal to the

period of the map. In this setting, it is optimal to implement a regular pricing

strategy that includes different price choices.

4. In the area being labeled with ME , an optimal price is larger than the IRP

Two peculiarities in Fig. 3.1 should be noted. The symbol M misses. Also, The

borders between symbols are not smooth, but in the form of a stepwise curve. The

absence of M indicates either (1) the map defined by Eq. (3.1) has no fixed point, or (2)

the approximations of an optimal price or that of the (rn
E , rI

n)-plane make us skip fixed

points. Eq. (3.9) yields a solution that approximate and reaches a small neighborhood

of the optimum. However, the exact optimum cannot be derived from Eq. (3.9). Jumps

thus occur in approximations, causing the borders of the map non-smooth.

3.6.2 Optimal pricing strategy

An optimal price choice gives an indication of how to set the exact value of a price

(the variable p) under a specific pair of an ERP and an IRP (Fig. 3.1). Normative

implications that can guide a pricing decision are as important as the indication of the

exact value of a price [297]. A normative implication is concerned with how to choose

an optimal pricing strategy (a function f) that improves a pricing decision. In Fig. 3.7,

we observe four types of first return iterations, calculate the power spectrum density,

and reveal four types of optimal pricing strategies.

1. At B = 0.622, the pricing path has six different elements (Fig. 3.5b1). Each element
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Figure 3.7 : Four types of optimal pricing strategies. (a1 to d1) The time series of a first return

iteration is plotted. (a2 to d2) The power spectrum density of the corresponding first return iteration

is calculated. (a) At B = 0.622, a regular pricing strategy is optimal. The first return iteration contains

only one constant (6). (b) At B = 0.2, a regular pricing strategy is optimal. The first return iteration

contains three constants (1, 2, 3), which contribute to a period-11 orbit (Eq. 3.10). (c) At B = 0.2772,

an irregular pricing strategy is optimal. The first return iteration contains three constants (1, 2, 3).

However, two frequencies (9, 11) are set-wise co-prime as those constants repeat. (d) At B = 1, an

irregular pricing strategy is optimal. The first return iteration contains many elements. Irregular

patterns are observed from both the time series (d1) and the power spectrum density (d2). (a to d)

The initial condition, (r0
E , r0

I) = (0.3,0.3), is taken for a solution.

2. At B = 0.2, Eq. (3.10) gives a pricing path, which is a period-11 orbit having two

different elements.

Here, the time series of the first return iteration forms a regular curve with a unique

frequency, cf. Fig. 3.7b1. The first return iteration is periodic, cf. Fig. 3.7b2. In

this scenario, a regular pricing strategy is optimal. The optimal price choices

repeat, and the repetitions have a unique frequency. For example, at B = 0.2, the
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optimal pricing strategy is to implement the price path that Eq. (3.10) defines.

The path has two price choices, a low price 0.276 and a high price 0.337. The

sequence is to initiate a low price, and then repeat a low-high pricing pattern five

times, finally return to the low price (Eq. 3.10).

3.7 Conclusions

We have proposed a hypothetical model that applies a rational route to describe a dy-

namic pricing process. Deterministic chaos has explained a random-like and volatile

phenomenon of a dynamic pricing problem. Our model has entailed two sources of

nonlinearity. The one is concerned with a non-smooth demand function and with dis-

continuity in optimizations. The other one is concerned with an external reference price

3. At B = 0.2772, the pricing path has two elements (Fig. 3.7c1), 0.366 and 0.3.

However, the first return iteration is aperiodic, suggested by the broadband power

spectrums (Fig. 3.7c2).

Here, the time series of the first return iteration forms a regular curve with more

than two recurrent patterns. The frequencies of recurrent patterns cannot be

divided by each other, cf. Fig. 3.7c1. An aperiodic first return iteration emerges

from the step-wise co-prime frequencies. An irregular pricing strategy is thus

optimal. However, the time series of the first return iteration is seemingly regular,

cf. Fig. 3.7c1. Consumers may perceive a seemingly regular pricing pattern.

4. At B = 1, the time series of the first return iterations is irregular (Fig. 3.7d1).

An irregular pricing strategy is optimal, which makes consumer perceive irregular

pricing pattern.

We have presented two types of irregular pricing strategies at B = 0.2772 and B = 1.

However, the irregularities are different in those two cases. At B = 0.2772, the

irregularity remains in the irregular recurrence of fixed price choices (Fig. 3.7c). At

B = 1, the irregularity remains in varied price choices and their irregular recurrence

(Fig. 3.7d).
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(ERP), which models consumers’ adaptions of expectations.

The entangled sources of nonlinearity allow us to unveil three possible mechanisms

to a volatile phenomenon from dynamical systems’ perspective. (1) An aperiodic ERP

exhibits a large variation in amplitude (Fig. 3.2), thus delivering irregularities to markets.

(2) A period adding bifurcation causes a complex change in the periodicity of consumer

expectations (Fig. 3.3), thus giving irregularities to the periodicity of a pricing path.

(3) Coexisting solutions offer changeable structures of consumer expectations (Figs 3.5

and 3.6). The results highlight that a rational route is capable of modeling a volatile

phenomenon for a dynamic pricing problem. Since nonlinearity is ubiquitous in reality,

the finding emphasizes the importance of considering a rational route in a hypothetical

model and in the practical modeling of a real-life dynamic pricing problem.

As deterministic chaos occurs, optimal actions that participants should take is pro-

posed. For companies, an optimal pricing strategy should agree with the dynamics of

consumer behaviors. Facing with the volatility emerging from aperiodic price expecta-

tions, companies should choose an irregular pricing strategy. To implement an irregular

pricing strategy, a company can make price choices irregular. A company also can take

finite price choices but make the first return iterations irregular. For price regulators,

coexisting solutions provide new ideas to detect consumer manipulation by an identifi-

cation of critical parameters. Therefore, identifying nonlinear dynamics that a market

underlies could be essential to a company for avoiding potential revenue losses and to

a regulators for recognizing market mechanisms that consumers and companies should

respond to.

We have proposed a rational route to apparent random demand, which theoreti-

cally justifies dynamic pricing. The dynamic pricing map (Eq. 3.1) is, however, built

without a consideration of noise. For practical applications, noise is a constituent part

of uncertain demand. It would be interesting to allow the dynamic pricing map con-

taminated by noise. The effect of noise on the dynamics of the map would then be

investigated. Besides, the rational route has thrown up some questions in the model-
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ing of uncertain demand. An identification of underlying dynamics is needed instead

of directly assuming stochasticity. Recently, we apply order patterns to disambiguate

between deterministic and stochastic dynamics [234]. A combination of the SINDy [53]

algorithm and the Koopman operator [201, 259, 375] show a potential for determinis-

tic and stochastic-driven system identifications [197]. Recurrence plots and recurrence

quantification measures are capable of identifying the dynamics of Earth’s climate system

[397], daily S&P 500 returns [384], and the brake squeal [277]. In addition, recurrence

quantification measures can be continuously calculated by sliding windowed recurrence

plots. For streaming data, a sliding windowed recurrence analysis could be a promising

tool to disambiguate between deterministic and stochastic dynamics. For example, a

sliding windowed recurrence analysis identifies friction-induced vibrations [350] and an

abrupt transition of dynamics in the EI Niño-Southern Oscillation [146]. In the next

chapter, we will also conduct a sliding windowed recurrence analysis for identifying the

dynamics of real-life demand.



Chapter 4

Recurrence-based reconstruction of on-demand

attractor for dynamic pricing

Abstract

Price, demand, and supply are the fundamentals of a market. Dynamic pricing

utilizes demand information to adjust price for an optimal revenue. In the model-

ing of uncertain demand, stochastic demand is widely assumed. However, demand

dynamics remains yet to be identified when it comes to uncertain demand in a

real-life dynamic pricing setting. We propose a recurrence-based reconstruction to

identify real-life demand dynamics from a univariate time series. The reconstruc-

tion uses sliding windowed recurrence plots and a Pareto optimization to address

an optimal parameter set, the embedding and the time delay dimensions. The op-

timization is to find an optimal parameter set under which recurrence plots yield

the most robust results. Two recurrence quantification measures, the determin-

ism and the trapping time, quantify the robustness. We also provide a decision

matrix for identifying demand dynamics. The matrix covers the features that the

Pareto front, optimal recurrence plots, recurrence quantification measures, and

reconstructed attractors exhibit.

76
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An on-demand attractor is extracted from empirical data. The data are from

RideAustin, a company providing ride share service in the city of Austin, Texas, the

United States. The attractor exhibits period-7 limit cycle oscillations and a slow

and a fast dynamics that explains the well-known off-peak and on-peak patterns

in an on-demand market. The results suggest that a stochastic demand may be

incapable of describing a phenomenon of uncertainty. Our findings emphasize the

need for identifying demand dynamics prior to an assumption of stochasticity.

An attractor-based model would be further needed in the modeling of uncertain

demand. Besides, a use of Pareto optimality that aims for an optimal parameter

set opens a new door to reconstruct an attractor from observations in a practical

signal with noise and non-stationarity.

4.1 Introduction

Dynamic pricing is a strategy in which a price is adjusted according to demand-based

knowledge by optimizations [18, 232, 297, 361]. An optimal price is addressed by model-

ing a relationship between price and demand [70, 100]. A challenge comes from uncertain

demand, since uncertainty affects consumers [232], industries [70], and regulators of gov-

ernments [84].

Studies in operation research often assume a stochastic demand in the modeling

of uncertain demand [18, 21, 35, 38, 40, 58, 82, 83, 144, 191, 192, 287, 321, 386, 389].

Reviews in [45, 70, 100, 119] summarize the modeling of a stochastic demand for dynamic

pricing problems. The theory is that limited variables in a low dimensional system is

incapable of describing some phenomenon of uncertainty, so an external force being

random is introduced in the modeling of uncertainty [368]. Based on the assumption,

either the quantity demanded [44, 111, 127, 261] or the time when a demand is realized

is regarded as a stochastic variable [18, 35, 140, 287].

Nonlinear interactions between limited variables, however, are a critical mechanism

to uncertainty. The theory is related to deterministic chaos [143, 333, 343, 353, 398].
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In the modeling of dynamic pricing problems, a rational route has rarely been studied.

Rump and Stidham [319] show that consumers’ adaptions of expectations contribute

to a rational route, which explains uncertainty in consumers’ arrivals. Lu et al. [232]

and Hu et al. [175] introduce discontinuous demand, which explains a phenomenon of

uncertainty in the periodicity of periodic expectations [175, 232].

Identifying the dynamics that a real-life demand underlies is as important as propos-

ing a hypothetical model that explains a phenomenon of uncertainty. It remains a debate

whether the dynamics of equilibrium prices is deterministic or stochastic [384]. Increas-

ing attention has been paid to contribute to the debate [24, 26, 176, 405]. Recently, Vogl

and Rötzel [384] observe an attractor from the S&P 500 returns (2000–2020) in which

equilibrium prices are considered.

However, it remains to be seen whether deterministic dynamics occurs in a real-

life dynamic pricing setting. A lack of this knowledge casts doubt on the modeling

of uncertainty and hinders an improvement of revenue. A hypothetical model, either

building on a stochastic demand [18, 35, 140, 287] or a rational route [175, 232, 319], is

challenged by a lack of empirical evidence for the modeling.

Dynamic pricing is different from equilibrium prices [232]. Dynamic pricing is an

operational problem and uses demand-based knowledge for improving revenue [297, 361].

As supply is unadjustable in some decision window, dynamic pricing is concerned with

a strategy that is profitable for consumers [348] or a seller [130]. As demand and supply

are instantaneously adjustable, an equilibrium price is concerned with a price at which

adopting any strategy is nonprofitable for any agents in the market. However, capturing

the dynamics of uncertainty is the common challenge in the modeling of both dynamic

pricing and equilibrium prices.

We therefore focus on identifying demand dynamics in a real-life dynamic pricing

setting. Recurrence plots and Pareto optimality are introduced to find an optimal em-

bedding and an optimal time delay dimensions for an attractor reconstruction. We

then apply the recurrence-based attractor reconstruction to empirical data [310] from
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RideAustin, a company providing ride share service in the city of Austin, Texas, the

United States. We show the dynamic of demand by benchmarking against well-studied

deterministic and stochastic systems and by conducting three types of surrogate tests.

They are shuffle-based, Fourier-based, and truncated amplitude adjusted Fourier trans-

form surrogates.

4.1.1 Ride-sharing market

A dataset [310] that records individual transactions in a ride-sharing market is taken as

an example for an identification of demand dynamics. A description of the dataset will

be given in section 4.2.3. A ride-sharing market is a representative case of the growing

on-demand economics [332]. The market is exemplified for three reasons. Firstly, non-

equilibrium prices occur [332]. Implementing a dynamic pricing strategy is profitable

for both consumers and a driver (seller) [332]. Dynamic pricing becomes the main tool

to match demand and supply in a ride-sharing market [18, 21, 58, 144, 287, 402]. Lyft

and Uber [42, 44], for example, have implemented dynamic pricing models.

Secondly, strong interactions between demand and supply occur. In a ride-sharing

market, the three variables, price, demand, and supply, highly interact in time and also in

space [44]. This contributes to temporal and spatial demand fluctuations. Under a strong

interaction, demand and supply become a dynamical variable of an identical system,

rather than different systems being coupled by price. In this setting, deterministic chaos

of a dynamical system [116, 143, 150, 333, 343, 353, 360, 398] is more suitable than

synchronizations [13, 298] of different systems. Takens’ embedding theorem [324, 360] is

thus applicable for the study of demand dynamics. Also, demand can be a representative

variable of the market dynamics, including that of either price or supply.

Thirdly, a ride-sharing market provides a testing ground for nonlinear time series

analysis. On-peak and off-peak patterns are important features in a traÿc system [14,

198, 322]. The ride-sharing dataset [310] records the traÿc flow every second, leading

to an even sampling time series. The dataset thus provides a new real-life scenario

where different patterns are observed in a time series. For nonlinear time series analysis,
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a system with a transition between different patterns remains to be understood [49].

Demand in a ride-sharing market has heterogeneous patters, non-stationarity, and a

contamination of noise. A study of the dynamics of a ride-sharing market thus will

provide new insights into nonlinear time series analysis.

4.1.2 Recurrence plots

The dynamics that a time series underlies can be visualized and analyzed by a recurrence

plot [117, 246]. The analysis is based on a binary matrix, which is associated with the

recurrence of underlying dynamics in phase space [246]. Many recurrence quantification

measures exist such as the determinism and the trapping time to quantify the dynamics.

Diagonal lines of a recurrence plot quantify the determinism [246]. Vertical lines quantify

the trapping time [246]. Mathematical definitions will be given in section 4.2.2.

Recurrence plots being applied for a detection of different patterns in complex dy-

namics have attracted increasing attention [49, 146, 189, 350]. In thermo-acoustics, a

change in recurrence quantification measures is consistent with a change in the slow

and the fast dynamics [49, 189]. Recurrence analysis identifies an abrupt change in the

EI Niño-Southern Oscillation [146]. Besides, recurrence plots allow an extraction of an

attractor from friction-excited vibrations with multi-scale dynamics [350].

Our focus is on a real-life dynamic pricing setting where on-peak and off-peak pat-

terns are evident. We aim to (1) identify the dynamics of demand and extract an

on-demand attractor by recurrence plots and (2) utilize dynamic pricing scenario to

complement recurrence analysis. Demand dynamics is benchmarked against determin-

istic and stochastic dynamics. The Rössler system and the Duÿng oscillation represent

deterministic dynamics by showing periodic and chaotic states. The non-auto Fitzhugh-

Nagumo model and a stochastic resonance in Duÿng oscillator represent deterministic

dynamics contaminated by different levels of noise. An AR(2) process, multi-fractional

Gaussian noise, and a Poisson process represent stochastic dynamics.

To complement the recurrence analysis, we apply Pareto optimality on the statis-
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Table 4.1 : Deterministic and stochastic systems as the benchmarking dynamics.

System Equations Parameters and dynamics

Rössler


ẋ=−y− z

ẏ = x+ay

ż = b+z(x− c)

(E1)

a= 0.1, b= 0.2, c= 3. Periodic

a= 0.1, b= 0.2, c= 14. Chaotic

Duÿng ẍ+ δẋ+αx+βx3 =Acos(ωt) (E2)

δ = 0.3,α=−1,β = 1,A= 0.37,ω = 1.2

Periodic

δ = 0.05,α=−1,β = 1,A= 0.33,ω = 1.3

Chaotic

SR ẍ+ δẋ+αx+βx3 =Asin(ωt)+Dξ(t) (E3)

δ = 0.5,α=−1,β = 0.5,ω = 0.09,

A= 0.38,D = 1, ξ(t) : Gaussian noise

Stochastic driven, SNR= 26.85dB

nFHN


v̇ = v−v3−w+ Iext(t)

ẇ = v−a− bw

(E4)

mfG - Stochastic

AR(2) xt = a+ bxt−1+ cxt−2+ εt (E5)
a= 1, b=−1, c= 0.5, εt : Noise

Stochastic

tics of two recurrence quantification measures, the determinism and the trapping time.

The optimization aims for an optimal parameter set, the embedding and the time de-

lay dimensions. Our results will provide new insights into the modeling of uncertain

demand and into the disambiguation between deterministic and stochastic dynamics by

recurrence analysis and surrogate data.

4.2 Models, methods, and data

Five steps are involved to identify demand dynamics. (1) We propose a recurrence-based

attractor reconstruction. (2) Raw data from RideAustin is converted into a time series

a = −0.3, b = 1.4, τ = 20

Iext : Gaussian noise N (0, 0.5)

Stochastic driven, SNR = 8.14dB
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of demand. (3) Surrogate data of demand are generated. (4) We apply the recurrence-

based attractor reconstruction on well-studied deterministic and stochastic systems, a

time series of demand, and its surrogate data. (5) Demand dynamics is identified by

comparing with the dynamics of the well-studied deterministic and stochastic systems,

the surrogate data, and the widely assumed Poisson process. We develop a decision

matrix to show the dynamics that a time series underlies.

We will introduce the well-studied deterministic and stochastic systems in section

4.2.1. The reconstruction-based attractor reconstruction will be described in section

4.2.2. A method of processing raw data will be given in section 4.2.3. A method of

yielding a Poisson process to model raw data will be given in section 4.2.4. Surrogate

data methods will be described in section 4.2.5.

4.2.1 Benchmarking systems

We utilize six well-studied systems to benchmark demand dynamics. The systems ex-

hibit either deterministic dynamics being periodic or chaotic, stochastic dynamics, or

deterministic dynamics contaminated by different levels of noise. Considering the on-

peak and off-peak patterns of a ride-sharing market, we mainly choose the systems that

present an obvious change in the time series. Tab. 4.1 gives the parameters and the

equations of individual systems and indicates the corresponding dynamics.

The Rössler system (Rössler) [314] can exhibit periodic and chaotic dynamics, de-

pending on the value of the parameters (Tab. 4.1). The system has suddenly bursting

behaviors in z−component [143]. Generally, the dynamics of the Rössler system is

studied on x−component, y−component, or its three components together [49, 246].

However, our focus is on a univariate time series with different patterns in dynamics, so

our experiment is conducted on z−component.

The forced damped double-well Duÿng oscillator (Duÿng) [207] can also exhibit

periodic and chaotic dynamics. The system has been used to model the damped and

forced vibrations in many engineered systems [143, 207]. Under the parameters we
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choose, the system oscillates between two symmetric potential wells and exhibits a cross-

well behavior. The oscillation presents different time scales in dynamics [207]. The one

is a slow dynamics associated with the decaying oscillations in a slow time scale [207].

The other one is a fast dynamics associated with the damped natural frequency in a fast

time scale [207].

Non-auto FitzHugh-Nagumo model (nFHN) [131] and stochastic resonance (SR)

[32, 136] have deterministic components, however, the driven force is Gaussian noise

(Tab. 4.1). Stochastic resonance is a phenomenon taking place when a nonlinear signal

is amplified and optimized by the presence of noise [32, 136]. The system (Eq. E3∗) has

been applied to model climate changes [33]. For a given strength A (Eq. E3) of a peri-

odic force (periodic Duÿng oscillator), an optimal intensity D of noise (Eq. E3) exists

[32, 136], resulting in an SR. Eq. (E4) describes an excitable system, such as the brain

dynamics [420]. An nFHN model (Eq. E4) exhibits the slow and the fast dynamics [189].

An SR and an nFHN models combine deterministic with stochastic dynamics and rep-

resent stochastic-driven dynamics. Signal-to-noise ratio (SNR) measures the degree of

deterministic dynamics in a system. The higher SNR is, the higher level of determinism

a system contains.

For stochastic dynamics, we look at the multi-fractional Gaussian noise (mfG) and

an AR(2) process. Being consistent with Braun et al. [49], the Hurst exponent of mfG

is of time dependent, and sinusoidally changes from 0.25 to 0.75. Eq. (E5) defines an

AR(2) process. The mfG and an AR(2) process are representative systems that show the

feature of a recurrence plot related to stochastic dynamics [49]. In addition, a periodic

modulation exists in both the mfG and an SR. We thus use mfG to benchmark against an

SR for identifying a difference between stochastic dynamics and deterministic dynamics

contaminated by an optimal level of noise.

∗“E” is used to label equations related to benchmarking systems.
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4.2.2 Methods

A recurrence-based reconstruction is to find an optimal embedding and an optimal time

delay dimensions for reconstructing an attractor from a time series. To achieve that,

we apply Pareto optimality on recurrence plots and allow the embedding and the time

delay dimensions to travel through a feasible set. Pareto optimality is an optimization

with more than two objectives [199, 241]. A solution is Pareto optimal if and only if any

of its objectives cannot be improved without a deterioration in at least one objective

[199, 241]. A Pareto front is a set of Pareto optimal solutions. In an objective space,

the optimum of the corresponding objectives delineate a Pareto front.

Recurrence plot is a plot that visualizes and quantifies nonlinear dynamics based on

a binary matrix [246]. The matrix is called a recurrence matrix and satisfies

Ri,j =


1 ||xxxi−xxxj || ≤ ε

0 ||xxxi−xxxj ||> ε

(4.1)

where Ri,j is an entry of the matrix, and i, j ∈
{
1,2, · · · ,NS

}
. Here, xxxi and xxxj are a

state in phase space, NS is the total number of states, ε is a threshold, and || • || is a

distance measure. Euclidean distance || • ||2 is used in our calculation. Despite a use

of Euclidean distance in Eq. (4.1), one can customize the definition of a recurrence to

construct a recurrence matrix. For point process data or an event series, for example,

Hirata and Aihara [172] show that timing contains critical information. Suzuki et al.

[358] thus propose a customized distance matrix to capture the timing of point process

data.

An attractor reconstruction affects the quality of recurrence plots [246]. Takens’

embedding theorem [324, 360] ensures the existence of a reconstruction that embeds

an original attractor. Also, the reconstruction preserves the dynamics of the original

attractor by

xxxi = (xi, xi+τ , · · · , xi+(m−1)τ ) (4.2)

where m is the embedding dimension, τ is the time delay dimension, and xi is a scalar of a
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dynamical system. Eq. (4.2) describes an attractor reconstruction from a univariate time

series. The parameters, m and τ (Eq. 4.2), and a threshold, ε (Eq. 4.1), are adjustable

parameters. The value of m, τ and ε should be chosen with caution for avoiding pitfalls

of recurrence plots [243].

We use a fixed recurrence rate, which leads to an adaptive ε [246]. Recurrence rate

is a recurrence quantification measure that quantifies the density of recurrence points in

a recurrence matrix (Eq. 4.1) [246]. The definition follows

RR = 1
N2

N∑
i,j=1

Ri,j

In our experiments, RR = 0.1. Two reasons exist to use a fixed recurrence rate. Fixing

RR yields more reliable results than its counterparts as m changes [208]. In addition,

results are more comparable than its counterparts as m and τ simultaneously change.

Under a fixed ε, an increase of m and τ leads a recurrence plot to be zero almost every-

where regardless of the underlying dynamics. Recurrence quantification measures thus

suffer a disadvantage in disambiguating between stochastic and deterministic dynamics.

A fixed recurrence rate takes an adaptive ε [243], thus avoiding the disadvantage.

The parameters, m and τ , are often derived from mutual information and the false

nearest neighbors (FNN) [49, 60, 208, 278, 295], cf. section 1.4.3. For τ , the one under

which mutual information reaches the first local minimum is chosen. For m, the one

under which FNN goes below a threshold is chosen.

However, we do a reverse thinking to find an optimal m and an optimal τ . The

experimental thought is as follows. Let (m,τ) be adjustable and travel through all

feasible choices, then we apply an optimization to find an optimal parameter set (m∗, τ∗).

An attractor is reconstructed at (m∗, τ∗) according to Eq. (4.2). Because our data coming

from a ride-sharing market have obvious on-peak and off-peak patterns, we apply Pareto

optimality to find (m∗, τ∗) under which recurrence plots yield the most robust results.

The diagonal and the vertical lines of a recurrence matrix (Eq. 4.1) together quantify

the robustness of recurrence plots.
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Among recurrence quantification measures, the determinism DET quantifies the

dynamics of a system by diagonal lines of a recurrence matrix. The trapping time TT

quantifies the dynamics of a system by vertical lines. Here, DET and TT are calculated

via

DET =
∑N
l=lmin lP (l)∑N
l=1 lP (l)

TT =
∑N
v=vmin vP (v)∑N
v=vmin P (v)

(4.3)

(4.4)

At a given length l, P (l) is a histogram of diagonal lines of which the length is equal to

l in a recurrence matrix (Eq. 4.1). At a given length v, P (v) is a histogram of vertical

lines of which the length is equal to v. Also, lmin and vmin represent the minimal length

for a calculation. A diagonal line of length l is closely related to the divergence of a

trajectory segment [246]. During l time steps, the trajectory segment of length l is close

under the time evolution. A vertical line of length v implies that the consecutive l points

are close [246], thus being trapped in an identical state. Without explicit mentions, we

let lmin = 2 and vmin = 2.

For reconstructing an attractor, two steps are involved. The first step is to obtain

a time series {DETt} of the determinism and that {TTt} of the trapping time along

sliding windows (Figs. 4.1A to 4.1E). The second step is to choose (m∗, τ∗) from Pareto

optimal solutions (Figs. 4.1F and 4.1G). Those two steps are defined by

min
(m,τ)

(
SDDET (m,τ), SDTT (m,τ)

)

SDDET (m,τ) =

√√√√ 1
N −1

N∑
t=1

(DETt−µDET )2

SDTT (m,τ) =

√√√√ 1
N −1

N∑
t=1

(TTt−µTT )2

µDET = 1
N

N∑
t=1

DETt(m,τ), µTT = 1
N

N∑
t=1

TTt(m,τ)

DETt =DETt(m,τ), TTt = TTt(m,τ)

m ∈
{
2,3, · · · ,20

}
, τ ∈

{
2,3, · · · ,20

}

(4.5)

where N represents the total number of sliding windows, and DETt is the determinism
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Figure 4.1 : A workflow of recurrence-based attractor reconstruction. A. The reconstruction is based
on a univariate time series. B. At time t and a given parameter set (m,τ), Eq. (4.2) leads a t−th

window that includes (m−1)τ+S consecutive points to S states in phase space. C. Eq. (4.1) is applied

on those S states, yielding a recurrence plot. From Eq. (4.3), DETt(m,τ) is calculated. From Eq. (4.4),

TTt(m,τ) is calculated. As t increases, sliding windowed recurrence plots are yielded. D. As t increases,

a time series {DETt} ofDET and that {TTt} of TT are saved. At a given (m,τ), the standard deviation

SDDET of {DETt} and that SDTT of {TTt} are calculated. E. As (m,τ) changes, SDDET and SDTT
fluctuate. F. Minimizing SDDET and SDTT together results in a Pareto optimization (Eq. 4.5). All

Pareto optima outline a front. G. An optimal parameter set (m∗, τ∗) is then chosen by comparing

between the maximum of local maxima and the global maximum in the (m, SDTT )-plane as the front

(F) is reordered by an increase of m.

that is calculated by Eq. (4.3) at a given (m,τ) and a given t−th window (Figs. 4.1A to

4.1C). Similarly, TTt is the trapping time calculated by Eq. (4.4) at a given (m,τ) and a

given window. An increase of t leads to {DETt} and {TTt} (Fig. 4.1D). Also, µDET and

SDDET correspond to the mean and the standard deviation of {DETt}Nt=1 (Fig. 4.1D),
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respectively. Similarly, µTT and SDTT correspond to that of {TTt}Nt=1, respectively.

To obtain a sliding window, we let S = 500 (Fig. 4.1B). In our experiments for ride-

sharing demand, 500 states are enough for a sliding window to cover the dynamics of one

day. For the benchmarking systems (Tab. 4.1), 500 states are enough to allow a window

presenting the slow and the fast oscillations twice. However, the value of S should be

application dependent and ensure a sliding window covering the dynamics that matters.

Eq. (4.5) has two objectives, SDDET (m,τ) and SDTT (m,τ). At a given (m,τ),

SDDET (m,τ) and SDTT (m,τ) are derived from {DETt} and {TTt}, respectively. Vary-

ing (m,τ) results in a fluctuation of SDDET (m,τ) and that of SDTT (m,τ) (Fig. 4.1F).

This forms the objectives of Eq. (4.5). Here, m and τ are varied in this way.

(1) At a given m, we let τ change from 2 to 20.

(2) We then let m change from 2 to 20, and for a given m we do the procedure (1).

Here, m and τ start from 2, rather than 1. The reason is that the study is on a system

with heterogenous patterns in a time series (Fig. 4.1A). The patterns are often observed

in a phase space more than two dimensions. Varying m and τ makes m exhibit a

step-wise pattern (Fig. 4.1E), however, makes τ exhibit a zigzag pattern (Fig. 4.1E).

A use of DET and TT in Eq. (4.5) is due to two reasons. Firstly, DET shows the

ability to disambiguate between stochastic and deterministic dynamics [171, 244, 397].

The degree of determinism (predictability) of a system can be quantified by DET [246,

264]. A use of DET is thus consistent with our goal to identify a determinism from

a real-life signal. Secondly, TT shows the ability to identify a change in dynamical

patterns from a recurrence plot [277]. That how long a system is trapped in a specific

state can be quantified by TT [246]. A use of TT is thus consistent with the feature of a

ride-sharing market, which has two different (on-peak and off-peak) patterns. However,

the objectives in Eq. (4.5) should be application dependent. The choices for the number

and the type of recurrence quantification measures should agree with the goal of the

study and reflect the dynamics that one cares about.

It is often the case that Pareto optimality leads to more than one solution. However,
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an attractor reconstruction needs only one set of parameters (m,τ). We, therefore,

choose the optimal parameters (m∗, τ∗) according to this rule: (m∗, τ∗) should yield a

large SDTT at the cost of a small m. A Pareto front and a reordered front are important

for us to choose (m∗, τ∗). One plots SDDET (x−axis) against SDTT (y−axis), resulting

in the (SDDET , SDTT )-plane (Fig. 4.1F). Similarly, Plotting m (x−axis) against SDTT

(y−axis) results in the (m, SDTT )-plane (Fig. 4.1G). In the (SDDET , SDTT )-plane, all

feasible solutions, which can not be dominated by each other, outline a frontier. The

frontier is the Pareto front (Fig. 4.1F). A reordered front is all feasible solutions plotted

in (m, SDTT )-plane (Fig. 4.1G). A Pareto front is ordered by an increase of SDTT

(Fig. 4.1F), whereas a reordered front is ordered by an increase of m (Fig. 4.1G). Five

procedures are taken for finding the (m∗, τ∗).

1. All feasible solutions to Eq. (4.5) outline a Pareto front and a reordered front. If

more than two Pareto optimal solutions exist at some m, then the largest SDTT is

chosen as the point to outline a reordered front (Fig. 4.1G).

2. Does the reordered front has a local maximum? If none of maxima is observed, then

(m∗, τ∗) is chosen case by case.

3. If a local maximum is observed, then a balance is made between a large SDTT and

a small m. If the local maximum corresponds to the global maximum, then the

corresponding (m,τ) is chosen as (m∗, τ∗). If none of local maxima correspond to a

global maximum, then two cases are possible.

4. (1) If the maximum of local maxima is close to the global maximum, then (m,τ)

corresponding to the maximum of local maxima is chosen as (m∗, τ∗) (Fig. 4.9C2).

5. (2) If the maximum of local maxima is distant from the global maximum, then a

balance is made between the maximum of local maxima and the global maximum.

As it is diÿcult to tell the closeness between the global maximum and the maximum

of local maxima, recurrence plots should be generated to make the balance. By looking

at recurrence plots under different Pareto optimal choices of (m,τ), the one that reflects

a desired dynamics is chosen as (m∗, τ∗). In our experiments, if a local maximum being

a global maximum is observed, then Procedure (3) is applied for (m∗, τ∗). If none of
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local maxima is observed, then (m,τ) that corresponds to a global maximum is chosen

(Figs. 4.3H2, 4.9A2). If the maximum of local maxima is distant from a global maximum,

then the smallest of m that leads SDTT being close to the global maximum is chosen

(Figs. 4.3E2 and 4.3F2).

The rule to choose (m∗, τ∗) is based on a large SDTT , because our desired dynamics

is heterogenous patterns in a time series. A large SDTT indicates that along the sliding

windows recurrence plots yield results with a large deviation. This is consistent with

observations that the time series underlies heterogeneity. Eq. (4.5) is to find recurrence

plots with the robustest results. A choose of (m∗, τ∗) is to find the recurrence plots

with the best reflections of the heterogenous patterns from Pareto optimal solutions.

Again, the rule to choose (m∗, τ∗) should depend on individual applications. It is worth

mentioning that Eq. (4.5) does not lead to a recurrence plot with the maximal or the

minimal DET or TT , since Eq. (4.5) minimizes the standard deviations.

4.2.3 Data

We look at demand that is processed from a real-life dataset [310]. The dataset was

released by RideAustin [310]. It is a nonprofit company and provides transportation

services in the greater Austin region, Texas, the United States [198], for one third of

the local market share [217]. The dataset disclosures information of every transaction

from 4 June 2016 to 13 April 2017 and aims to promote research in data analysis and

transparent transportations [18, 198, 394].

The dataset [310] has 1,494,125 transactions (Fig. 4.2A). Each transaction includes

the time when it starts, creates, and completes and the latitude and the longitude where

it starts and ends. Information related to prices such as base fares and total fares is

included as well. More information about the dataset can be found in [310]. Raw

data [310] are processed by aggregating a time series of transactions and and finding an

optimal parameter p∗. Four procedures are involved in processing raw data.

(1) Aggregate transactions every p minutes. Here, p is related to the sampling rate

and determines the frequency of aggregations of the transactions. We count the
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0          2016-06-04 00:18:49-05:00
1          2016-06-04 01:50:12-05:00
2          2016-06-04 03:16:02-05:00
3          2016-06-04 10:05:13-05:00
4          2016-06-04 10:24:25-05:00

                     ...            
1494120    2017-04-13 18:59:13-05:00
1494121    2017-04-13 18:59:16-05:00
1494122    2017-04-13 18:59:27-05:00
1494123    2017-04-13 18:59:31-05:00
1494124    2017-04-13 18:59:43-05:00

Name: started_on, Length: 1494125, dtype: object

A

{ y1 , y 2 ,⋯ , yN d
}Results:

B
Calculate the number of 
transactions every p minutes 

y t

ŷ t

y t− ŷt
y=0

Raw demand
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Minimum of SDDET
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Recurrence analysis
(Fig. 4.1)
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Vary p

p=80

p=100
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p=95

Figure 4.2 : Data preparation for an optimal parameter p∗ to aggregate ride-sharing demand from
transactions. A. The dataset [310] records the arrival time of each transaction. B. Raw demand is

calculated by aggregating the number of transactions every p minutes. C. Linear regression is fitted

in raw demand for removing the trends. At time t, the minus between the raw demand yt and its

linear fit ŷt leads to detrended demand. (D) The object of recurrence analysis is the time series of

detrended demand. At a given p, varying (m,τ) produces a time series of SDDET (m,τ,p) and that of

SDTT (m,τ,p) (Fig. 4.1), and one can calculate the minimum of those SDDET and that of those SDTT
(Fig. 4.1F). (E) Let p ∈

{
5,10, · · · ,200

}
, then the optimal parameter p∗ is chosen from Pareto optimal

solutions to Eq. (4.6) that minimizes either the minimum of the SDDET or that of the SDTT .

number of transactions according to the time when the transaction starts, which

corresponds to the field “started on” (Fig. 4.2A) in the original dataset [310]. The

field “started on” records the arrival of consumers between 2016/06/04T00:18:49Z†

and 2017/04/13T18:59:43Z. For example, at p= 20 (Fig. 4.2B), we count the number

(y1) of transactions from 2016/06/04T00:00:00Z to 2016/06/04T00:20:00Z, and the

number (y2) of transactions from 2016/06/04T00:20:00Z to 2016/06/04T00:40:00Z,

and so on.

(2) Obtain a raw demand. At p, an aggregation yields a time series
{
y1,y2, · · · ,yNd

}
of

†“-05:00” in Fig. 4.2A indicates an adjustment to UTC-5 (Eastern Time in the United States), which

is different from the visualization in the original dataset [310].
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raw demand (Fig. 4.2B). Here, yNd depends on p and represents the total length of

the time series of raw demand. At p= 20, yNd = 22,593. At p= 100, yNd = 4,518.

(3) Apply a linear regression for a detrended demand. At time t, we make a linear

regression on a point set
{
yt−10,yt−9, · · · ,yt,y1, · · · ,yt+10

}
and then find the linear

fitting value ŷt that fits the point yt (Fig. 4.2C). A detrended demand represents the

time series,
{
yt− ŷt

}
. Algorithm 4.1 describes the regression and the procedures to

detrend a raw demand.

(4) Apply Pareto optimality for an optimal parameter p∗. We let p ∈ {20,25, · · · ,200}.

At an individual p, procedures (1) to (3) are applied, yielding 37 time series of

detrended demand. At a given p and the corresponding detrended demand, we

follow the workflow of conducting sliding windowed recurrence analysis (Figs. 4.1A to

4.1E). At a given p, the minimum of SDDET and that of SDTT are saved (Fig. 4.1E).

Varying the parameter p yields two sets that contain the minimum of SDDET and

that of SDTT , respectively. Pareto optimality is applied on those SDDET and SDTT

for an optimal parameter p∗. At p∗, the corresponding detrended demand represents

ride-sharing demand, thus being the subject of our empirical demand identification.

Algorithm 4.1: Algorithm for detrending a time series (Fig. 4.2C)
Result: Detrended demand

1 Input: A time series of raw demand {y1, ,y2, · · · , yNd}, where Nd is the total

length;

2 for t ∈ {11,12,yNd−11} do

3 Make a linear regression of the data

{(0,yt−10),(1,yt−9), · · · ,(10,yt), · · · ,(20,yt+10)};

4 Fit the linear regression and calculate the prediction at the point (10,yt),

which results in a linear fit (10, ŷt);

5 Return yt− ŷt;

6 end

7 Yield a time series {yt− ŷt}Nd−11
t=11 of detrended demand;
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Procedure (4) can be described by

min
p

(
min
m,τ

SDET (m,τ,p), min
m,τ

STT (m,τ,p)
)

SDDET (m,τ,p) =

√√√√ 1
N −1

N∑
t=1

(DETt−µDET )2

SDTT (m,τ,p) =

√√√√ 1
N −1

N∑
t=1

(TTt−µTT )2

µDET = 1
N

N∑
t=1

DETt(m,τ,p), µTT = 1
N

N∑
t=1

TTt(m,τ,p)

DETt =DETt(m,τ,p), TTt = TTt(m,τ,p)

m ∈
{
2,3, · · · ,20

}
, τ ∈

{
2,3, · · · ,20

}
, p ∈

{
20,25, · · · ,200

}

(4.6)

Different from Eq. (4.5), DET t and TT t in Eq. (4.6) depend on (m,τ) and p. The

reason is that Eq. (4.6) is applied on a detrended demand, which depends on the value

of p (Figs. 4.2A to 4.2D). However, Eq. (4.5) is applied on a well-sampled time series.

In addition, Eq. (4.5) is to find (m∗, τ∗) under which recurrence plots yields the smallest

deviations in the diagonal and the vertical lines together. Eq. (4.6) is to find (m∗, τ∗)

under which recurrence plots yields the smallest deviations either in the diagonal or in

the vertical lines.

The rule that under a reasonable sampling rate recurrence plots yield a reliable

dynamics is applied to define the objectives in Eq. (4.6). The reliability is quantified

by the standard deviations of recurrence quantification measures as well. However,

the dynamics can be represented by either diagonal or vertical lines. The reason to

take the rule is that the diagonal and the vertical lines represent different types of

dynamics [246]. The optimal sampling rate should lead to a time series with the reliable

type of dynamics, which is unrelated to the choices over the diagonal or the vertical

lines. Therefore, Eq. (4.6) aims for an optimal value of p∗ under which the minimum

between the minimum of SDDET and that of SDTT is chosen. The parameter set (m,τ)

corresponding to the minimal SDDET does not necessarily equal to that SDTT (Eq. 4.6).
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4.2.4 Poisson process

The dataset from RideAustin [310] is assumed to account to a Poisson process in the

modeling of dynamic pricing problems [18]. We generate a new dataset to test the null

hypothesis that demand extracted from the dataset follows a Poisson process. Here,

the arrival of consumers represents demand. According to an existing assumption [18],

the arrival rate of the Poisson process satisfies that five consumers randomly arrive per

minute. We count the number of transactions every p∗ minutes. Here, p∗ is the optimal

solution to Eq. (4.6) on which the dataset from RideAustin [310] is applied. A simulated

demand is thus yielded from a Poisson process. The detrended algorithm (Algorithm

4.1) is applied to the simulated demand as well. We term the new dataset as a Poisson

process, although it is the arrivals satisfying a Poisson process. An identical p∗ is applied

on the dataset from RideAustin [310] and the Poisson process.

4.2.5 Surrogate time series

A difference between stochastic and deterministic dynamics can be seen from a surrogate

data method as well. The method constructs a surrogate that satisfies a null hypothesis

and compares the dynamics between an original and a surrogated time series. From the

comparisons, one can reject or accept the null hypothesis [188, 215, 331, 341, 367]. We

use three surrogates to test the underlying dynamics of the ride-sharing demand from

nonlinear time series analysis perspective. They are shuffle-based, Fourier-based, and

truncated amplitude adjusted Fourier transform surrogates.

Shuffle-based surrogate The method randomly shuffles an original time series [215,

367]. The null hypothesis is that the time series underlies an independent and identically

distributed process (IID) [215, 367]. We use a shuffle-based surrogate to test that whether

the uncorrelated noise, such as Gaussian noise widely assumed for dynamic pricing

models, is responsible for the dynamics of ride-sharing demand.
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Fourier-based surrogate The method randomizes the Fourier components of an orig-

inal time series [215, 367]. The null hypothesis is that the time series does not contain

any nonlinearity [215, 367]. We use a Fourier-based surrogate to test that whether a

stationary linear Gaussian process is responsible for the underlying dynamics.

Truncated amplitude adjusted Fourier transform (AAFT) The method pre-

serves the amplitude distribution of an original time series, however, randomizes the

Fourier components of an original time series. The null hypothesis is that the time se-

ries represents a rescaled linear Gaussian process [215, 267, 367]. We use a truncated

AAFT to test that whether the irregularity is due to a stationary linear process [267].

Many surrogate data methods exist in testing a null hypothesis, such as a pseudo-

periodic test [342] and a wavelet-based surrogate [193]. The reader may refer to a recent

review about surrogate data in [215]. We use a package from Julia [43], TimeseriesSur-

rogate.jl [97, 370], to obtain the three types of surrogate data. The ride-sharing demand

is regarded as the original time series for conducting the three types of surrogate data

methods.
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Figure 4.3 : Pareto front and reordered front in the (m,SDTT )-plane for benchmarking dynamics.
A and B: Periodic dynamics. C and D: Chaotic dynamics. E and F: Stochastic driven dynamics

where noise drives the evolution of deterministic equations. G to H: Stochastic dynamics. A1 to H1:

Pareto front is outlined by the corresponding optima to Eq. (4.5) in the (SDDET ,SDTT )-plane. Here,

the x−axis has a log scale. A2 to H2: The corresponding Pareto front of A1 to H1 is reordered in the

(m,SDTT )-plane. The rule, a large SDTT but a small m, is applied to find optimal parameters (m∗, τ∗).

The global maximum and the maximum of local maxima are compared for finding (m∗, τ∗).
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4.3 Results

Recurrence-based attractor reconstruction (Fig. 4.1) is applied to the benchmarking

systems (Tab. 4.1), the ride-sharing demand (Fig. 4.2), the Poisson process (section

4.2.4), and the surrogate data (section 4.2.5). Results will be sequentially presented. The

features of the benchmarking systems will be shown firstly. The ride-sharing demand will

then be compared with the benchmarking systems, the Poisson process and the surrogate

data. The features include an organization of the Pareto front and the reordered front,

an observation of recurrence plot under (m∗, τ∗), a pattern of recurrence quantification

measures, and an outline of attractor under (m∗, τ∗). A decision matrix will be developed

for a summary of results as the ride-sharing demand is compared with those systems.

4.3.1 Benchmarking systems

As Eq. (4.5) is applied to the benchmarking systems (Tab. 4.1), differences between

stochastic and deterministic dynamics can be seen from the Pareto front and the re-

ordered front. Fig. 4.3 shows the feature of the Pareto front and the reordered front.

The differences can be seen from three perspectives. They are (1) the feature of SDDET

in the (SDDET ,SDTT )-plane, (2) the feature of the Pareto front related to an identifi-

cation of a plateau (Figs. 4.3A1 to 4.3H1), and (3) the feature of the reordered front in

the (m,SDTT )-plane (Figs. 4.3A2 to 4.3H2).

The number of log scales in SDDET . For deterministic dynamics (Figs. 4.3A1 to

4.3D1), SDDET varies at least in two different scales (Figs. 4.3A1 and 4.3B1,Tab. 4.2).

For stochastic driven dynamics, the number of log scales depends on the signal-to-

noise ratio (SNR). For SR, its SNR is 26.85dB. Its SDDET covers from 10−4 to 10−2

(Fig. 4.3E1) with maximum/minimum = 43.18 (Tab. 4.2) where maximum (minimum)

is the maximum (minimum) of SDDET over all possible choices of (m,τ). For nFHN,

the SNR is 8.14dB, and the maximum/minimum = 2.25< 10 (Tab. 4.2). This indicates

that only one log scale is enough to cover SDDET .

For stochastic dynamics, the ratio of the maximum of SDDET and the minimum of
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Table 4.2 : Features of Pareto front in deterministic and stochastic dynamics with respect to the

x−axis and y−axis of Figs. 4.3A1 to 4.3H1. For periodic and chaotic dynamics, SDDET covers at least

two log scales, evidenced by maximum/minimum> 10. For stochastic driven dynamics, the feature of

SDDET depends on SNR. The SR with SNR= 26.85dB covers two log scales. However, the nFHN with

SNR= 8.14dB is unable to cover two log scales, evidenced by maximum/minimum< 10 (SDDET ). For

stochastic dynamics, neither mfG nor AR(2) has SDDET that covers two log scales. For SR and AR(2),

their y−axis fluctuates in one log scale, evidenced by maximum/minimum< 10 (SDTT ).

System
SDDET (x−axis) SDTT (y−axis)

minimum maximum maximum
minimum minimum maximum maximum

minimum

Periodic Rössler 1.2×10−4 3.6×10−3 30 7.3×10−2 2.29 31.37

Periodic Duÿng 2.2×10−16 8.5×10−4 3.9×1012 3.6×10−15 3.6×10−1 1014

Chaotic Rössler 5.3×10−4 7×10−2 132.08 3.8×10−1 3.4×101 89.47

Chaotic Duÿng 1.1×10−4 6×10−3 54.55 4.5×10−1 6.82 15.16

SR 4.4×10−4 1.9×10−2 43.18 3.4×10−1 1.9 5.59

nFHN 2×10−2 4.5×10−2 2.25 9.4×10−2 1.14 12.13

mfG 2.4×10−2 1.3×10−1 5.42 9×10−2 3.87 43

AR(2) 9.6×10−3 5.5×10−2 5.73 3.4×10−2 2×10−1 5.88

SDDET is less than 10 (Tab. 4.2). This indicates that it is diÿcult to reduce SDDET

by a factor of 10 as different possible choices for (m,τ) are applied (Figs. 4.3G1 and

4.3H1). The x−axis in Fig. 4.3G1 has two different log scales, 10−3 and 10−2. However,

the maximum/minimum = 5.42 (Tab. 4.2), which indicates that one log scale exists to

cover all the variations in SDDET by rescaling SDDET .

A plateau in Pareto front. For deterministic dynamics, its Pareto front shows one

of the two phenomena. (1) Pareto optimality (Eq. 4.5) has a unique optimal solution

under which the minimal SDDET and the minimal SDTT are simultaneously achieved.

For example, for the periodic Duÿng oscillator, Fig. 4.3B1 shows that the optimization

(Eq. 4.5) yields a unique optimal parameter (m∗, τ∗) = (16,8). Under (m∗, τ∗), both

SDDET and SDTT are the minimum. (2) The Pareto front shows an obvious plateau. A
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plateau is a flat area of a Pareto front satisfying the following two properties. (A) SDDET

covers strictly more than one log scales (x−axis); and, (B) the points that sit around the

plateau have a relative small variation in the y−axis. For example, Fig. 4.3A1 presents

a plateau at the beginning part of the Pareto front. The reasons are (A) SDDET covers

two log scales, 10−4 and 10−3 (Fig. 4.3A1) with maximum/minimum = 30 (Tab. 4.2),

and (B) the y−axis of the plateau is around 0.33 (Fig. 4.3A1). Similarly, Figs. 4.3C1

and 4.3D1 also present a plateau.

For stochastic driven dynamics and stochastic dynamics, no obvious plateau exists.

In Fig. 4.3E1, the y−axis changes drastically, causing a lack of an area with a small

variation in SDTT . In Figs. 4.3F1 to 4.3G1, the x−axis is unable to cover two different

log scales, which is evidenced by maximum/minimum< 10 in SDDET (Tab. 4.2).

Local maxima in the reordered front. The number of local maxima in the

(m,SDTT )-plane shows a difference between deterministic and stochastic dynamics. For

deterministic dynamics, either at least one local maximum exists (Figs. 4.3A2, 4.3C2,

4.3D2) or a unique optimal solution exists (Fig. 4.3B2). For stochastic driven dynamics

and stochastic dynamics, at most one local maximum exists (Figs. 4.3E2 to H2). In

addition, for stochastic dynamics the Pareto optimal m clusters around some value

(Figs. 4.3G2 and 4.3H2). Fig. 4.3G2 presents that mfG has no Pareto optimal m that

is less than 11. Also, the AR(2) process has no Pareto optimal m that is strictly larger

than 5 (Fig. 4.3H2).

Furthermore, the maximum of local maxima equaling or approaching a global max-

imum is a feature to differ between deterministic dynamics and stochastic driven dy-

namics. For deterministic dynamics, the maximum of local maxima is either a global

maximum (Figs. 4.3A2 to 4.3C2) or close to it (Fig. 4.3D2). For the periodic and the

chaotic Rössler attractors, the unique local maximal of SDTT is the global maximal of

SDTT over all possible Pareto optimal m (Figs. 4.3A2 and 4.3C2). For SR, a unique local

maximum exists (Fig. 4.3E2). However, SR has different patterns while compared with

deterministic dynamics (chaotic Duÿng oscillation). The SDTT of SR monotonically in-
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Figure 4.4 : Evident oscillations in averaged mutual information (MI) do not exist in locating the time
delay τ . A. Periodic Rössler attractor. B. Periodic Duÿng oscillator. C. Chaotic Rössler attractor. D.

Chaotic Duÿng oscillator. E. SR. F. nFHN. G. mfG. H. An AR(2) process. Here, MI is calculated by

calling the TISEAN package [168], where the number of boxes (Nbox) increases from 10 to 400. The

mean of MI is the mean of MI over all boxes.

creases as m increases from 6 to 20 (Fig. 4.3E2), whereas the SDTT of the chaotic Duÿng

oscillation presents multiple local maxima as m increases from 8 to 20 (Fig. 4.3D2).

The reordered front show obvious ups and downs (Fig. 4.4), which clears the way for

finding (m∗, τ∗). However, the method based on mutual information and FNN (section

1.4.3) is diÿcult to locate m and τ when it comes to the time series we study (Fig. 4.4).

The periodic (Fig. 4.4B) and the chaotic (Fig. 4.4D) Duÿng oscillators have the first local

minimum at τ = 9 and τ = 12, respectively. Also, SR (Fig. 4.4E), nFHN (Fig. 4.4F), and

AR(2) (Fig. 4.4H) have the first local minimum at τ = 15, τ = 6, and τ = 8, respectively.

However, obvious oscillations, which are shown by multiple local maxima and minima

[350], cannot be observed as mutual information is plotted against an increase of τ

(Fig. 4.4). It is thus diÿcult to claim that τ at the first local minimum is suitable for

recurrence plots. Pareto front and the reordered front present obvious features that lead

to an optimal parameter set (m∗, τ∗). We then look at the feature of a recurrence plot

under (m∗, τ∗).

Differences in recurrence plots. Fig. 4.5 shows recurrence plots of benchmarking
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Figure 4.5 : Time series and recurrence plots of benchmarking dynamics under a Pareto optimal
parameter set (m∗, τ∗). A1 to D1 are the time series. A2 to D2 are corresponding recurrence plots.

E1 to H1 are an original time series. E2 to H2 are corresponding detrended time series. E3 to H3

are a recurrence plot of corresponding detrended time series. A shows the dynamics of the periodic

Rössler attractor under (m∗, τ∗) = (18,7), B shows the dynamics of periodic Duÿng oscillator under

(m∗, τ∗) = (16,8), C shows the dynamics of the chaotic Rössler attractor under (m∗, τ∗) = (5,5), D

shows the dynamics of the chaotic Duÿng oscillator under (m∗, τ∗) = (17,10), E shows the dynamics of

the SR under (m∗, τ∗) = (18,4), F shows the dynamics of the nFHN under (m∗, τ∗) = (9,15), G shows

the dynamics of the mfG under (m∗, τ∗) = (12,5), and H shows the dynamics of the AR(2) process

under (m∗, τ∗) = (2,7). Fig. 4.3 provides the calculations of corresponding (m∗, τ∗)

dynamics under (m∗, τ∗). For periodic dynamics (Figs. 4.5A2 and 4.5B2), recurrence

plots exhibit non-interrupted diagonal lines [246], and the distance between diagonal lines

is related to the periodicity of a signal [246]. For chaotic Rössler attractor, the recurrence
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Figure 4.6 : Patterns of DET (Eq. 4.3) and TT (Eq. 4.4) as lmin and vmin are varied. A1 to A4 are

the patterns of µDET as lmin is varied. Here, µDET is the mean of DET along all sliding windows,

cf. Eq. 4.5. B1 to B4 are the patterns of µTT as vmin is varied. Here, µTT is the mean of TT along

all sliding windows, cf. Eq. 4.5. A1 and B1 exemplify periodic dynamics. A2 and B2 exemplify chaotic

dynamics. A3 and B3 exemplify stochastic driven dynamics. A4 and B4 exemplify stochastic dynamics.

plot exhibits a switch between clusters of points and blank white areas (Fig. 4.5C2),

indicating a heterogeneity in dynamics. For chaotic Duÿng oscillator, its recurrence

plot contains long diagonal lines (Fig. 4.5D2). However, those lines are interrupted

by different patterns. For example, on the lower left in Fig. 4.5D2, there is a patch

of non-interrupted diagonal lines similar to that of Fig. 4.5A2. The different patterns

correspond to the cross-well behavior of chaotic Duÿng oscillator [207].

For stochastic driven dynamics, long diagonal lines in SR indicate that determinisms

exist (Fig. 4.5E3). However, an increase of noise level can destroy the diagonal lines. In

nFHN blocks thus scatter along the diagonal lines (Fig. 4.5F3). For stochastic dynamics,

an AR(2) process presents many isolated black points (Fig. 4.5H3), whereas the mfG

exhibits a switch between clusters and blank white areas (Fig. 4.5G3). Fig. 4.5E1 shows
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the cross-well behavior of an SR, which is consistent with the study of an SR in [49].

It is worth mentioning that Fig. 4.5E2 corresponds to a segment of the detrended time

series. Fig. 4.5E3 is the recurrence plot of that segment, which is different from the plot

shown in [49].

Variations in lmin and vmin. Fig. 4.6 depicts how µDET and µTT change as

lmin and vmin change, respectively. While µDET (Eq. 4.5) monotonically decreases as

lmin increases (Figs. 4.6A1 to 4.6A4), µTT firstly increases and then decreases as vmin
increases (Figs. 4.6B1 to 4.6B4). The phenomenon is due to different definitions of DET

and TT . The value of lmin only affects the numerator of DET (Eq. 4.3). However, the

value of vmin affects both the numerator and the denominator of TT (Eq. 4.4).

For periodic dynamics, the change in lmin has a relative small influence on µDET .

The periodic Rössler attractor and periodic Duÿng oscillator have µDET being larger

than 0.8 at lmin = 50 (Figs. 4.6A1). For chaotic dynamics, µDET presents two features.

(1) At lmin = 50, µDET does not approach to zero (Fig. 4.6A2). However, (2) the slope

of the curve depends on individual systems. Fig. 4.6A2 shows that the chaotic Rössler

attractor decreases faster than the chaotic Duÿng oscillator. The reason is that the

chaotic Rössler attractor has clusters in recurrence plots (Fig. 4.5C2), rather than long

diagonal lines shown in Fig. 4.5D2. The length of most clusters in the chaotic Rössler

attractor varies between 2 to 50. This causes a quick decrease as lmin increases. However,

for chaotic Duÿng oscillator (Fig. 4.6A2), most of long diagonal lines have a length larger

than 50. An increases of lmin thus does not lead to a so quick decrease of µDET while

compared with the chaotic Rössler attractor (Fig. 4.6A2).

For stochastic driven dynamics, the feature of µDET depends on SNR. The SR

with µDET = 26.85dB contains a high level of determinisms, and µDET shows a similar

pattern (Fig. 4.6A3) as the chaotic dynamics (Fig. 4.6A2). Nevertheless, for the nFHN,

its µDET approaches zero at lmin = 10. For stochastic dynamics, both the mfG and

the AR(2) process approach zero (Fig. 4.6A4). Also, the AR(2) shows a quicker way to

approach zero than mfG. Furthermore, as lmin increases from 2 to 5, µDET shows an
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Figure 4.7 : Original and recurrence-based reconstructed attractors for benchmarking systems. A1 to

H1: An original attractor is shown in a phase space. A2 to H2: Under (m∗, τ∗) reconstructed attractor

is shown in a phase space. A2 to D2 are reconstructed from the corresponding original time series shown

in Figs. 4.5A1 to 4.5D1, respectively. E2 to H2 are reconstructed from the corresponding detrended

time series shown in Figs. 4.5E2 to 4.5H2, respectively, thus marking with the superscript d.

abrupt decrease for nFHN, mfG, and AR(2) (Fig. 4.6A3 and 4.6A4).

Fig. 4.6B shows the patterns of µTT . For periodic dynamics, µTT has a plateau at

the beginning (Fig. 4.6B1). For chaotic Rössoler attractor and chaotic Duÿng oscillator

(Figs. 4.6B2), µTT increases firstly and then abruptly decreases as vmin increases. The

amplitude of the increase is relatively small. For stochastic driven dynamics (SR and
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nFHN), a common feature is that a plateau exists in the middle (Fig. 4.6B3), despite

a short length for nFHN. For stochastic dynamics, both mfG and AR(2) present a

downward “V”.

Reconstructed attractor. Fig. 4.7 shows a phase plot an original attractor and

that of the reconstructed attractor under (m∗, τ∗). For deterministic dynamics (Figs. 4.7A

to 4.7D), the reconstructed attractors preserve the topological structures of correspond-

ing original attractors. For example, the Duÿng oscillator (Figs. 4.7B1 and 4.7D1) ex-

hibits double occurrences of the scroll-and-squeeze phenomenon [143]. The reconstructed

attractors (Figs. 4.7B2 and 4.7D2) preserver that phenomenon. For stochastic driven

dynamics, the SR is with high determinism, the reconstructed attractor shows determin-

istic structures (Fig. 4.7E2). However, the double wells of SR are destroyed (Fig. 4.5E).

The reconstructed attractor of nFHN is incapable of preserving the structure of the

original attractor in phase plot (Fig. 4.5F). This is caused either by detrending the time

series or by noise. For stochastic dynamics, the reconstruction does neither preserve nor

distort the original phase plot (Figs. 4.5G and 4.5H).

4.3.2 Demand dynamics

The four features related to Pareto and reordered fronts, recurrence plots, recurrence

quantification measures, and reconstructed attractors, have shown the ability to differ

between deterministic and stochastic dynamics. We therefore benchmark the feature of

ride-sharing demand dynamics with the benchmarking dynamics, the Poisson process

and the surrogate data to test the corresponding null hypotheses.

Prior to show demand dynamics, we conclude the optimal sampling rate for pro-

cessing the raw data from RideAustin [310]. Fig. 4.2E shows the four Pareto optimal

solutions to Eq. (4.6). The solutions are p= 80, 85, 95, and 100. At p= 100, the mini-

mum of SDDET is the second smallest, and the minimum of SDTT is the third smallest

(Fig. 4.2E). The performances are reasonable for both SDDET and SDTT . We thus ag-

gregate transactions every p∗ = 100 minutes and then obtain ride-sharing demand from

Algorithm 4.1.
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Figure 4.8 : Dynamics of ride-sharing demand and the Poisson process at p∗=100. A1 and B1 show the

feature of a Pareto front. A2 and B2 show the the feature of a reordered front in the (m,SDTT )−plane.

C1 and D1 are an original time series. C2 and D2 are the corresponding detrended time series. C3

and D3 are a zoomed plot of the time series where recurrence plots are calculated. C4 and D4 are the

corresponding recurrence plots.

Recurrence-based attractor reconstruction is conducted at p∗ = 100, cf. Fig. 4.1.

The features of ride-sharing demand is summarized in a decision matrix (Tab. 4.3). A

score, ranging from 0 to 1, indicates the confidence in concluding ride-sharing demand

dynamics. A score “S” (0) represents that a feature is consistent with that of stochastic
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Table 4.3 : Identifications of ride-sharing demand dynamics. A decision matrix is developed for iden-

tifying demand dynamics based on four features. They are related to Pareto and reordered fronts

(compared Fig. 4.8 with Fig. 4.3), recurrence plots (compared Fig. 4.8 with Figs. 4.5), the patterns

as lmin and vmin increase (compared Fig. 4.10 with Figs. 4.6), and a phase plot of a reconstructed

attractor (compared Fig. 4.11 with Fig. 4.7).

Features
Pareto and reordered fronts Recurrence Patternsd

Phase plot Dynamics
Numbera Plateaub Maximac plots lmin vmin

Demande
D D D D D D

S S

Poisson
S S S S S S S S

a The number of log scales in SDDET . b A plateau in Pareto front. c Local maxima that

a reordered front presents. d Patterns in the changing of the minimal diagonal lines and the

minimal vertical lines. e Ride-sharing demand.

D : The score is 1, showing a high confidence in concluding deterministic dynamics.

S : The score is 0, showing a high confidence in concluding stochastic dynamics.

D : The confidence in concluding the corresponding dynamics is infinitesimally small.

dynamics. A score “D” (1) represents that a feature is consistent with deterministic

dynamics. For example, when scoring the feature, the number of log scales in SDDET

(Tab. 4.3), we compare the patterns between ride-sharing demand and the benchmarking

dynamics. The comparison is based on the x−axis of Fig. 4.8A1 and that of Figs. 4.3A1

to 4.3H1. The maximum and the minimum of SDDET in ride-sharing demand are 0.051,

0.012 (Fig. 4.8A1), respectively. Also, the maximum/minimum equals to 4.25 that is

less than 10. The feature is consistent with that of stochastic dynamics, as shown in

Fig. 4.3E1, 4.3G1, 4.3H1, and Tab. 4.2. Besides, a plateau is not observed in Fig. 4.8A1.

We thus score “S” to the two features, the number of log scales in SDDET and a plateau

in Pareto front (Tab. 4.3).



Recurrence-based reconstruction of on-demand attractor 108

However, the feature related to the local maxima in the (m,SDDET )-plane indicates a

more likely conclusion of deterministic dynamics (Fig. 4.8A2). Two observations support

the scoring of “D”. Three local maxima are observed in Fig. 4.8A2, and m spans from 2

to 18 (Fig. 4.8A2). Also, the maximum of local maxima is equal to a global maximum.

Those features are consistent with deterministic dynamics (Figs. 4.3A1 to 4.3D1).

Fig. 4.8C4 further indicates a high confidence in concluding deterministic dynamics

of ride-sharing demand. “D” is thus given to the feature related to recurrence plots

in Tab 4.3. The observations include (1) non-interrupted diagonal lines (Fig. 4.8C4),

similar to the pattern in periodic Rössler attractor (Fig. 4.5A2) and in periodic Duÿng

oscillator (Fig. 4.5B2); and, (2) recurring long diagonal lines (Fig. 4.8C4), similar to that

in chaotic Duÿng oscillator (Fig. 4.5D2).

Apart from the benchmarking dynamics, ride-sharing demand is benchmarked against

the Poisson process (Figs. 4.8B and 4.8D) and the three types of surrogate data (Fig. 4.9).

Differences are observed from the comparisons. In the (m,SDDET )-space, all Pareto

optimal solutions occur at m = 2 for the Poisson process (Fig. 4.8B2). However, the

Pareto optimal solutions occur at m that ranges from 2 to 18 for ride-sharing de-

mand (Fig. 4.8A2). In a recurrence plot, isolated dots are evident for the Poisson

process (Fig. 4.8D4). However, ride-sharing demand shows non-interrupted diagonal

lines (Fig. 4.8C4). Those observations reject the null hypothesis that ride-sharing de-

mand satisfies a Poisson process [18] of which the arrival rate is five consumers per

minute. We then compare ride-sharing demand with its surrogates.

For the shuffle-based surrogate, its feature is consistent with that of a Poisson pro-

cess, instead of ride-sharing demand (Fig. 4.8A2 and 4.8C4). (1) In the (m,SDTT )-plane,

a local maximum does not exists (Figs. 4.9A2 and 4.8B2). (2) Recurrence plot exhibits

isolated dots (Figs. 4.9C5 and 4.8D4). Those two observations are different from the

features that ride-sharing demand exhibits, thus rejecting the null hypothesis that un-

correlated noise is responsible for the ride-sharing demand.

For the Fourier-based surrogate, the features that are based on the Pareto and the re-
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Figure 4.9 : Features in the surrogate data of ride-sharing demand. A. Shuffle-based surrogate shows

a feature being consistent with the Poisson process (Fig. 4.8D). B. Fourier-based surrogate has Pareto

optimal solution m∗ clustering at m∗ = 2 and presents sword-like patterns in a recurrence plot [189]. C.

Truncated AAFT surrogate has a feature being consistent with nFHN (4.3F1, and 4.3F2) and sword-like

patterns in a recurrence plot. A1 to C1 are the Pareto front. A2 to C2 are the reordered front in the

(m,SDTT )-plane. A3 to C3 are a time series. A4 to C4 are a zoomed plot of a segment of A3 to C3,

respectively. A5 to C5 are a recurrence plot of the time series shown in A4 to C4, respectively.
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ordered fronts are similar to that of a Poisson process (Figs. 4.9B1, 4.9B2, 4.8B1, 4.8B2).

For the truncated AAFT, the features that are based on the Pareto and the reordered

fronts are similar to that of nFHN (Figs. 4.9C1, 4.9C2, 4.3F1, and 4.3F2). Under Pareto

optimal solutions, the change of SDTT is relative small. Although (m∗, τ∗) = (6,15) is a

local maximum, SDTT has no obvious increase when compared with points in the near-

est left and right sides (Fig. 4.9C2). Moreover, the recurrence plots of the Fourier-based

and the truncated AAFT surrogates exhibit sword-like patterns along the diagonal line

(Figs. 4.9B5 and 4.9C5). The phenomenon is related to the slow and the fast dynamics

that a time series underlies [189]. Figs. 4.9B3, 4.9B4, 4.9C3, and 4.9C4 further show

a heterogeneity in the corresponding surrogate. However, neither the Fourier-based

nor the truncated AAFT shows the recurring long diagonal lines that ride-sharing de-

mand presents (Figs. 4.9B5, 4.9C5, 4.8C4). The different features between ride-sharing

demand and the surrogate data (Fourier-based and truncated AADT) reject the corre-

sponding hypothesis. This suggests that nonlinearity is responsible for the dynamics of

ride-sharing demand, instead of stochasticity.

As lmin and vmin increase (Fig. 4.10), the changing patterns of µDET and µTT also

indicate that ride-sharing demand is consistent with the dynamics of a deterministic

system. (1) At lmin = 50, ride-sharing demand presents a non-zero µDET (Fig. 4.10A).

(2) A linear correlation exists between lmin and µDET , which is consistent with the

feature of chaotic Rössler attractor (Fig. 4.6A2) and SR (Fig. 4.6A3). (3) A plateau in

µTT is observed in the middle as vmin increases (Fig. 4.10B), which is similar to the

feature of SR (Fig. 4.6B3).

The hypotheses to which the surrogate date methods correspond (section 4.2.5) are

further rejected by statistical tests of DET (Fig. 4.10A) and TT (Fig. 4.10B). For either

the 95% or the 5% percentile of DET , there is no overlapping between ride-sharing

demand and the three types of surrogate data (Fig. 4.10A). This indicates a statistically

significant difference between ride-sharing demand and its surrogate data. For DET ,

the 5% percentile of ride-sharing demand goes to zero (Fig. 4.10A). The observation

indicates a contamination of noise. For the three types of surrogate data, µTT goes to
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a similar manner as the chaotic Rössler attractor and the SR (Figs. 4.6A2 and 4.6A3). The 95% and

the 5% percentiles of DET have no overlapping with that of the three surrogates. B. For ride-sharing

demand, µTT has a plateau in the middle. The pattern is consistent with that of the SR (Fig. 4.6B3),

showing an obvious difference with that of the three surrogates and the Poisson process. The error bars

of µDET and µTT are too small to be seen. In A and B, the bars correspond to the 95% and the 5%

percentiles of the DET and the TT among all sliding windows, respectively.

t

A

y td

(per week) 1

0.1 0.14 0.15 0.18

0.14

0.16

0.1

0.13

Slow Fast

y t
+
τ∗

d

y t
d

B

y t
+
τ∗

d

y t
d

C

Slow Fast 
y t

+
τ∗

d

y t
d

D Poisson 

Figure 4.11 : On-demand attractor and a Poisson process. A. A time series covers one week of ride-
sharing demand. It exhibits the slow and the fast dynamics. B. On-demand attractor is reconstructed

from the time series. C. An outline of the on-demand attractor further indicates the slow and the fast

dynamics and the period-7 limit cycle oscillations. D.The Poisson process is reconstructed to show a

difference between a practical on-demand attractor and an assumed stochastic demand in describing

the empirical data [310].

zero at vmin = 15 (Fig. 4.10B). For ride-sharing demand, however, µTT does not goes to

zero (Fig. 4.10B). This further rejects the corresponding hypotheses.
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Finally, a reconstructed attractor further confirms that ride-sharing demand is con-

sistent with deterministic dynamics (Figs. 4.11B and 4.11C). The attractor is recon-

structed under (m∗, τ∗) = (13,3), which is calculated by the recurrence-base reconstruc-

tion (Fig. 4.1) and Fig. 4.8A2. Fig. 4.8C4 further indicates that the periodicity of the

attractor is around one week. Fig. 4.11A thus shows a time series that covers one week.

Fig. 4.11B shows the attractor that is reconstructed from the exemplified time series

(Fig. 4.11A). Fig. 4.11C is an outline of the reconstructed attractor for showing a switch

behavior. The following features are evident.

(1) The system switches between the slow and the fast dynamics (Figs. 4.11A to

4.11C).

(2) The slow dynamics takes the five inner circles (Figs. 4.11A to 4.11C), whereas

the fast dynamics takes the two outer circles (Figs. 4.11A to 4.11C). The oscillations

produce a periodic-7 limit cycle. Here, a circle is not closed, cf. Lu et al. [232].

(3) However, the oscillations take different time to complete an individual circle. For

the time series we present, the seven circles take 0.1, 0.14, 0.15, 0.18, 0.16, 0.14, and

0.13 weeks (Fig. 4.11A), respectively.

Nevertheless, the Poisson process fails to preserve either periodic oscillations (Fig. 4.8D4)

or the slow and the fast dynamics (Fig. 4.11D). The comparison further confirms that

the Poisson process is incapable of capturing the dynamics of ride-sharing demand.

In summary, Tab. 4.3 shows the scores of ride-sharing demand and that of the Poisson

process. The Poisson process are scored with “S” from seven features. We have a high

confidence in concluding that the Poisson process underlies stochastic dynamics, indi-

cating the eÿciency of recurrence-based attractor reconstruction. Ride-sharing demand

is scored with “S” in two features and “D” in five features. In addition, ride-sharing

demand shows statistically significant differences with shuffle-based, Fourier-based, and

truncated AAFT surrogate data (Figs. 4.8, 4.9, and 4.6).
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4.4 Discussions

Demand information is critical for online and traditional marketplaces to increase rev-

enue by dynamic pricing [69, 70, 232, 330]. Governing equations that describe the inter-

actions between price, demand, and supply are absent. This motivates various models

for addressing dynamic pricing problems. A stochastic demand is a widespread assump-

tion in those models [18, 35, 40, 111, 140, 191, 261, 287, 389]. However, the assumption

is made without an identification of demand dynamics [232]. A lack of that knowledge

makes the assumption open to being challenged.

Nonlinear time series analysis [333] such as recurrence plot [246] provides a tool that

studies the dynamics of a system without any prior knowledge of governing equations.

The embedding m and the time delay τ dimensions are the critical parameters that

affect the eÿciency of nonlinear time series analysis [243, 333]. We propose a recurrence-

based method that applies recurrence plots and Pareto optimality to find an optimal

embedding m∗ and an optimal time delay τ∗ dimensions. The idea is to let m and τ

travel through feasible choices and then let Pareto optimality find m∗ and τ∗. Sliding

windowed recurrence plots yield a time series of the determinism DET (Eq. 4.3) and

that of the trapping time TT (Eq. 4.4). A statistics of DET and that of TT constitute

the two objectives of an optimization (Eq. 4.5).

A recurrence-based reconstruction has four features that disambiguate between de-

terministic and stochastic dynamics. The features consider Pareto and reordered fronts,

recurrence plots under (m∗, τ∗), µDET and µTT , and the reconstructed attractor. Among

benchmarking systems (Tab. 4.1), those features differ deterministic (Rössler and Duff-

ing), stochastic (mfG and AR(2)), and stochastic driven (SR and nFHN) dynamics.

Results show that ride-sharing demand exhibits patterns being consistent with deter-

ministic dynamics. The patterns also have a statistically significant difference with

that of the Poisson process and that of the shuffle-based, Fourier-based, and truncated

AAFT surrogates. The results indicate the eÿciency of a recurrence-based reconstruc-

tion. Those four features show the ability to identify the dynamics of a real-life signal
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with noise and non-stationarity. The comparisons with benchmarking systems and sur-

rogate data confirm that ride-sharing demand underlies deterministic dynamics. The

assumption of a stochastic demand is thus rejected. The findings emphasize the impor-

tance of identifying demand dynamics prior to an assumption of stochasticity [232].

4.4.1 Recurrence-based attractor reconstruction

The diagonal and the vertical lines of recurrence plots lead to many quantification mea-

sures [246]. Those measures are closely related to the dynamics of a system, such as

the positive Lyapunov [117, 246], transitions [246], and unstable periodic orbits [284].

A traditional thinking is to reconstruct an attractor firstly, and then obtain m and τ

for recurrence plots [49, 60, 208, 243, 278, 284, 295]. However, our reverse thinking lets

sliding windowed recurrence plots search over a mesh grid that m and τ define. Pareto

optimality is then applied to find (m∗, τ∗) under which recurrence plots yield the most

robust results. The robustness is quantified by DET and TT (Eq. 4.5), which connects

with the diagonal (Eq. 4.3) and the vertical (Eq. 4.4) lines, respectively. Finally, under

(m∗, τ∗), an on-demand attractor is reconstructed (Figs. 4.11B and 4.11C).

Observations show that τ∗ being found in a deterministic system is relative small

(Figs. 4.3A to 4.3D and Fig. 4.8A). This finding is consistent with the observation that

the method based on auto-correlation or mutual information causes an overestimation

of τ [243]. In a system that exhibits the slow and the fast dynamics, it is diÿcult to

locate an appropriate τ for attractor reconstruction (Fig. 4.4) by the traditional method

(section 1.4.3) such as averaged mutual information. For example, the problem happens

to the z−component of the Rössler attractor (Fig. 4.4B) and the Duÿng oscillator

(Fig. 4.4D).

Moreover, a recurrence-based reconstruction provides a tool for identifying dynamics

that a time series underlies from evidence of multiple sources. Clusters are observed

in a recurrence plot of chaotic Rössler attractor (z−component) (Fig. 4.5B2) and that

of mfG(Fig. 4.5H3). However, under corresponding (m∗, τ∗) (Figs. 4.3B and 4.3H), the

reconstructed attractor of chaotic Rössler attractor and that of mfG are completely dif-
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ferent (Figs. 4.7B2 and 4.7H2). The findings confirm a necessity to cross-check recurrence

quantification measures for illustrating nonlinear dynamics [171, 243].

Furthermore, a recurrence-based reconstruction utilizes multiple recurrence quantifi-

cation measures and Pareto optimality together (Eq. 4.5) for (m∗, τ∗). There are several

interesting topics that are needed to be further explored. It could be interesting to com-

pare (m∗, τ∗) derived from Eq. (4.5) with that from a traditional method. The systems,

which have no obvious heterogeneous dynamics, such as the Lorenz attractor and the

x− or y−component of Rössler attractor, are of particular interest. Also, It could be

interesting to investigate the influence of a change of the objective functions (Eq. 4.5) of

Pareto optimality on (m∗, τ∗). For example, Eq. (4.5) could use three or more recurrence

quantification measures, or replaces DET and TT with other measures.

4.4.2 Nonlinearity of low-dimensional versus linearity of infinite-dimensional

The null hypothesis that ride-sharing demand is as a result of uncorrelated noise or a

linear process is rejected by the shuffle-based, Fourier-based and truncated AAFT surro-

gate data (Fig. 4.9). Those types of surrogate data reject a stochastic or a linear process

from nonlinear time series analysis’ perspective [188, 341]. However, an alternative per-

spective stems from Koopman operator theory for showing the dynamics that a time

series underlies. The theory introduces an operator of infinite-dimensional to represent

nonlinear systems in a linear way [48, 54, 201, 259, 260]. A chaotic system becomes “an

intermittently forced linear system” [54].

Koopman operator is found from a Hankel matrix in a recent study [54]. A Hankel

matrix is a matrix whose columns and rows are in the form of a time-delayed coordinate

(Eq. 4.2). Linear algebra, such as singular value decomposition, and contemporary

regressions are applied on the Hankel matrix [54]. The eigenvalues and eigenvectors are

then calculated for an analysis of the Koopman operator [54]. This is called a Hankel

alternative view of Koopman (HAVOK) analysis.

Many interesting directions to be investigated have been identified. A new surrogate
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data should be proposed to test the null hypothesis that the underlying dynamics is

“an intermittently forced linear system” [54] where stochasticity is a forced term. As

Mezić [259] argued, a system that satisfies the superposition theorem may represent the

nonlinearity of low-dimensional in the sense of preserving the spectrum of the Koopman

operator by involving of a stochastic term. The recurrence-based reconstruction can be

applied on the nonlinearity of low-dimensional and the linearity of infinite-dimensional

for testing the null hypothesis. Moreover, the HAVOK analysis will also improve our

understanding of ride-sharing demand. Singular spectrum analysis of the Hankel matrix

is related to Fourier analysis of a time series [48]. It would be interesting to look at

the dimensionality of ride-sharing demand from HAVOK or Fourier analysis. Finally,

the “relationships between the number of delays included in the Hankel matrix and the

geometry of the resulting embedded attractor” [54] should be explored in more details

by means of recurrence plots and contemporary optimizations.

4.4.3 On-demand attractor

The slow and the fast dynamics explain on-peak and off-peak patterns. The patterns

are observed in traÿc dynamics [14, 198, 322] and in on-demand markets [332, 352]. We

observe that as the on-demand attractor goes through the slow dynamics (Figs. 4.11B

and 4.11C), the time series shows off-peak patterns (Fig. 4.11A). As the attractor goes

through the fast dynamics (Figs. 4.11B and 4.11C), the time series shows on-peak pat-

terns (Figs. 4.11A). Figs. 4.8C4, 4.11A to 4.11C further indicate that ride-sharing de-

mand satisfies period-7 limit cycle oscillations.

Figs. 4.11B and 4.11C exemplify the oscillation of an on-demand attractor. A com-

plete oscillation takes about 7 days (Figs. 4.11B and 4.11C). The result supports the

method that studies traÿc dynamics by day of the week [198]. Within one week, de-

mand goes through seven circles. The inner and outer circles exhibit two different types

of dynamics. The inner area is with five circles (Figs. 4.11B and 4.11C), whereas the

outer area is with two circles (Figs. 4.11B and 4.11C). As the attractor moves along the

five inner circles (Figs. 4.11B and 4.11C), the amplitude of demand changes in a small
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scale (Fig. 4.11A). A slow dynamics occurs, and the off-peak patterns are observed

(Figs. 4.8C1 to 4.8C3). However, as the attractor moves along the two outer circles

(Figs. 4.11B and 4.11C), the amplitude of demand changes in a large scale (Fig. 4.11A).

A fast dynamics occurs, and the on-peak patterns are observed (Figs. 4.8C1 to 4.8C3).

The slow and the fast dynamics are further shown in recurrence plots (Fig. 4.8C4).

Along the main diagonal lines, recurrence plot presents a switch between a block of long

diagonal lines and a block of blank white areas. The former corresponds to the slow

dynamics. The latter corresponds to the fast dynamics. A common understanding of

traÿc dynamics is that the on-peak pattern occurs on weekend (Friday to Sunday, three

days), and the off-peak pattern occurs on other days (four days) [198]. The ratio we

observed between the slow and the fast dynamics is 5:2, rather than 4:3. The difference

comes from the fifth circle (ordered from the inner to the outer). The circle represents

a transient between the slow and the fast dynamics (Fig. 4.8B). Its amplitude is larger

than the inner four circles (Figs. 4.8A and 4.8B), however, smaller than the outer two

circles (Figs. 4.8A and 4.8B). In our experiments, the fifth circle sometimes exhibits slow

dynamics, but sometimes exhibits fast dynamics. The dynamics depends on individual

weeks. We use the time series of Fig. 4.11A to illustrate the transient behavior, and

categorize it into the slow dynamics. It is owing to that the exemplified fifth circle is

closer to the inner four circles than the outer two circles (Fig. 4.11A).

Our results support that ride-sharing demand underlies deterministic dynamics, ex-

plaining the success of the application of nonlinear dynamics in a traÿc system. For

example, the susceptible-infected-recovered (SIR) model fits well in Melbourne traÿc

systems [322]. A linear decomposition of nonlinear dynamics (Koopman mode decompo-

sition) well reconstructs the dynamics of the US-101 highway [14]. Also, the on-demand

attractor complements an existing study [332]. Schröder et al. [332] introduce game

theory and propose a theoretical model for identifying the dynamics that a time series

of prices underlies in on-demand markets of different countries. We reconstruct the on-

demand attractor, further supporting the eÿciency of the method [332] that separates

price changes into a slow and a fast time scales for dynamic pricing problems.
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Despite an observation of period-7 limit cycle oscillations (Fig. 4.8C4), Fig. 4.11A

indicates that irregularity occurs in the periodicity among individual circles. For the

exemplified time series (Fig. 4.11A), one week is separated into 0.1, 0.14, 0.15, 0.18,

0.16, 0.14, and 0.13 weeks by those 7 circles. One day is around 0.14 weeks. Within a

limit cycle oscillation (a week), the time that a circle takes is uneven and not necessarily

to be one day. The finding indicates irregular demand. In addition, Fig. 4.8C4 shows that

within each week, the location where blocks of long diagonal lines and the length of the

long diagonal lines are different. The observation confirms that the irregularities exist in

the length of each circle for individual weeks as well. The result is consistent with border

collision bifurcations we observe in [232]. It could be due to either a discontinuity in

optimizations for dynamic pricing problems [232] or consumers’ discontinuous adoption

of the ride-sharing services [352].

Finally, our results confirm that a Poisson process fails to reflect the dynamics that a

ride-sharing market underlies. In a ride-sharing market consumers’ demand is inelastic

because of fixed daily routines [332]. The findings demonstrate that a careful identi-

fication of demand dynamics becomes necessary for dynamic pricing problems before

assuming a stochastic demand. The matrix that summaries the features of a recurrence-

based reconstruction could be a promising tool for identifying demand dynamics. As

an on-demand attractor has been extracted, a future study that utilizes deterministic

chaotic information [53, 293, 359] as opposed to assuming a stochastic demand becomes

critical for dynamic pricing problems. Applying the theory that studies a dynamical

system to a dynamic pricing problem would be needed for better understanding and

predicting the behavior of demand and prices.



Chapter 5

Inherent signatures of machine behaviors to analyze

artificial chaos in complex dynamics

Abstract

Machine learning is increasingly used to analyze complex dynamics, which can

solve some qualitative and quantitative issues of individual chaotic trajectories

well. However, this does not guarantee an equivalence between an original and

an artificial systems. To illustrate this, we apply nonlinear time series analysis to

examine machine behaviors, the behaviors of an artificial system that mimics a

chaotic system as initial conditions are varied. The originally chaotic trajectories

are from the coexisting Rössler attractors, the Lorenz attractor with an unbounded

basin, and the Hénon map with fractal basins. The reservoir computing paradigm

is employed as the artificial system to mimic those trajectories, respectively. Initial

conditions of an artificial system are identified. Varying initial conditions allows

an artificial system to yield a series of outputs. The sensitive dependence on ini-

tial conditions are compared between the original trajectories and the outputs.

Our results show that machine behaviors coincide chaotic trajectories, however,

may fail to capture the sensitive dependence on initial conditions that an original

system possesses. For example, machine learning basins could alter the basins of

119



Inherent signatures of machine behaviors 120

the Hénon map, although the artificial system synthesizes a map that coincides

the Hénon map. Garbled symbolic dynamics further indicates that a coincidence

of a single chaotic trajectory could mislead conclusions. Besides, a common way

to deviate from an originally chaotic trajectory is observed under varying initial

conditions, which forms the signature of machine behaviors. The findings empha-

size the importance of revealing the sensitive dependence on initial conditions to

machine learning methods. Machine behaviors being applied with nonlinear time

series analysis could provide a potential tool for revealing the sensitivity.

5.1 Introduction

Complex dynamics is ubiquitous in nature and society [246, 387], owing to omnipresent

nonlinearity. Its analysis is challenging, especially as an original system runs into deter-

ministic chaotic regimes [333]. Researchers who analyze complex dynamics are facing

twofold challenges: (a) for many real-life systems, explicit and mathematical formula-

tions and their solutions remain elusive [53, 351]. The lack of knowledge often prohibits

a mode-based analysis of a complex system. (b) For deterministic chaos, the sensitive

dependence on initial conditions leads not only to different trajectories [398] but also to

multi-stability with scenario-dependent invariant sets (attractors) [232, 258, 299].

Machine learning methods show a potential to realize a model-free analysis of deter-

ministic chaos [293], thanks to abundant time-series data available from measurements

[351]. Related to machine learning methods, we have introduced the terms, artificial

systems, artificial chaos, mimetic trajectory, and ML-mimetic attractor in section 1.4.2

and will give the mathematical definitions in section 5.1.1. An artificial system is an

artificial intelligence system that is designed for mimicking deterministic chaos with two

special purposes. The first one is for mimicking trajectory-level dynamics of determinis-

tic chaos, such as the correlation dimension [248] and the Lyapunov exponent [292]. The

second one is for mimicking system-level dynamics of deterministic chaos. The examples

include a prediction of tipping points [200], a reconstruction of attractors [235, 266],
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and a detection of unstable periodic orbits as part of an attractor [421]. An especially

appealing prospect of artificial chaos is that it has the potential to mimic the long-term

evolution of a chaotic system for chaos predictions [64, 179, 293, 383, 423].

Among these applications an artificial system generally works in a sequential manner.

The system is fed with chaotic trajectories (input). It then produces an optimal mimetic

trajectory (output) for mimicking deterministic chaos that the input possesses. The op-

timization can be based on the distance of natural or embedded coordinates [383, 423],

the duration of trajectories overlap in phase space [200, 293], vector field discrepancies

[303, 318], or a combination of the above [237]. An artificial system can behave either

like a universal function generator [53, 288, 378] or like a universal function approximator

[95, 155, 194, 387]. The former delivers explicitly mathematical formulations that ap-

proximate an original system. The latter allows an artificial system directly resembling

an original system.

However, deterministic chaos has a diÿcult y in high-fidelity and reliable predictions

[277, 333]. The diÿcult is due to the sensitive dependence on initial conditions [277,

333]. In a chaotic system, an arbitrarily small variation in initial conditions grows

exponentially with time [333, 398]. This property causes qualitatively and quantitatively

different trajectories or a system with multistability. Nonlinear dynamics under varying

initial conditions thus becomes critical for deterministic chaos [232, 333, 398].

Artificial chaos represents the dynamics of an artificial system that mimics the be-

havior of a chaotic system. For an artificial system, however, its sensitive dependence

on initial conditions remains to be elucidated. Under varying initial conditions, the be-

havior of an artificial system remains unclear. Three questions are thus raised. (Q.A)

How does artificial chaos recur as a coincidence is observed between an original and a

mimetic trajectories? (Q.B) Does an artificial system produce signatures in mimicking

deterministic chaos? (Q.C) What could lead an original system to success in preserving

deterministic chaos that an original system possesses?

Machine behaviors study the patterns of an artificial intelligence system under vary-
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ing settings [304]. The study is to mitigate unfavorable affects and harvest the benefits

of machine learning methods [304]. Our focus is therefore on studing machine behav-

iors of artificial systems for providing insights into those three questions (Q.A to Q.C).

A mathematical definition of machine behaviors will be given in the next section. An

artificial system often works as a black box [218]. Analytical formulas that describe the

evolution of artificial chaos are thus often absent.

Nonlinear time series analysis is a model-free tool that analyzes nonlinear dynamics

without prior knowledge of the governing equations of a system [188]. Trajectory-level

and system-level methods exist in quantifying nonlinear dynamics [257]. Trajectory-level

methods are based on a unique trajectory. From a time series the correlation dimension,

for example, can be estimated over a change of the size of an ε−neighborhood [168]. The

estimations provide information about the fractal property of an individual trajectory

under a perturbation of the size of ε−neighborhoods. By contrast, system-level methods

are based on a series of trajectories yielded from variations of initial conditions. For

example, basins of attraction provide a global view of the behavior of a system with

respect to a perturbation of its initial conditions [3, 257, 258]. A basin of attraction is

the largest open set of points in phase space [3, 353, 398], and the points taken as initial

conditions lead to an identical asymptotic behavior [188].

Basins of attraction often have fractal basin boundaries [3]. A visualization of basins

is feasible in a phase space of n−dimensional with n = 1,2 [3]. The basins provide

information about how a chaotic system recurs under variations in initial conditions. For

a flow in phase space with dimension higher than three, it becomes diÿcult to visualize

the basins [3]. However, a return map provides information about the recurrent behavior

of a chaotic system [188, 333]. Besides, conducting a symbolic analysis provides a tool

for identifying an equivalence between two different systems [143]. A symbolic analysis

shifts a focus from phase space to a space of symbols [110, 312].

We introduce machine behaviors for identifying a gap between deterministic and

artificial chaos. The Rössler system [313, 314], the Lorenz system [230], and the Hénon
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map are employed as original systems for benchmarking machine behaviors. In the

Rössler system, we calculate the return map of coexisting attractors and that of mimetic

trajectories. In the Lorenz system, the return map and unbounded basin are introduced

for an analysis. In the Hénon map, basins of an artificial system (machine learning

basins) are calculated and benchmarked against original fractal basins. Besides, symbolic

dynamics is conducted in the Hénon map. Those three systems are well studied, leading

to full knowledge of corresponding behaviors under varying initial conditions. That an

original system results in a new trait of machine behaviors is thus excluded.

We aim to identify a gap between deterministic chaos that an original system pos-

sesses and artificial chaos that an artificial system represents. Behavioral traits of artifi-

cial systems are analyzed by varying initial conditions. The focus is on artificial systems

that satisfy the universality to approximate any underlying equations within arbitrar-

ily small errors. Fractal properties of a return map and that of basins of attraction

are compared between an original and an artificial systems. We hypothesize that an

artificial system establishes a local connection with its input trajectory rather than a

global relationship with its original system. We further hypothesize that an artificial

system imprints its signature in machine behavior, thus changing the fractal properties

of deterministic chaos. To testify the hypothesis, we apply nonlinear time series to study

machine behavior. Our results will gain insights into the properties that lead artificial

chaos to an equivalence with deterministic chaos.

5.1.1 Mathematical definitions

We consider a dynamical system[159, 333, 346] that is governed by a function fffω under

fixed parameters via
d

dt
ωωω(t) = fffω(ωωω(t)) (5.1)

where ωωω(t) ∈ IRm is a point in phase space and represents a state of the system at time

t. Here, m is the dimension of the system, and ωωω0 =ωωω(0) is the initial point. Taken ωωω0

as initial conditions, an original trajectory ωωω is yielded (Fig. 5.1A). Two consequences

are possible as ωωω0 is varied. (1) Varying ωωω0 leads to a new trajectory. (2) Also, a new
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Figure 5.1 : A conceptual diagram of the behavior of an artificial system in mimicking deterministic
chaos. Three types of initial conditions affect the system (Section 5.2). A. Type I initial condition is

an original trajectory ωωω. An original system (Eq. 5.1) takes a point (ωωω0) that sits in an original phase

space as an initial point, thus yielding ωωω. B. An artificial system is fed with ωωω in a training process

(Eq. 5.2) that aims to optimize deviations between ωωω and ννν. Here, ννν is an output with a finite length

T for mimicking ωωω. C. Type II initial condition is an initial point νννP0 . The point sits in an original

phase space and initializes a mimetic trajectory νννP in a prediction process (Eq. 5.2). Type III initial

condition is initial network states (XXX0, or XXXP
0 ) in a training or a prediction process.

attractor may be produced, depending on where ωωω0 sits in phase space. If a variation

leads ωωω0 crossing different basins, then the new trajectory approaches a new attractor.

The system that yields a chaotic trajectory via Eq. (5.1) is called an original system.

We then consider a system that takes an input/output framework to mimic deter-

ministic chaos
Training: νννt+1 = fffν |ωωω (ωωωt,XXXt, θ)

Prediction: νννPt+1 = fffν |ννν (νννPt ,XXX
P
t , θ)

(5.2)

where ωωωt is a state of an original system (Eq. 5.1), νννt ∈ IRm and νννPt ∈ IRm are a state of

the system in a training (Fig. 5.1B) and a prediction (Fig. 5.1C) processes, respectively.
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Also, XXXt ∈ IRn and XXXP
t ∈ IRn are network states with n being the size of a network.

Here, θ represents the hyperparameter that is fixed for setting up a network and other

parameters that is derived from a training process [145, 178]. A chaotic trajectory

ωωω = {ωωωt}Tt=1 with finite length T is an input of the system. A mimetic trajectory is

an output that the system synthesizes in a prediction process, i.e. {νννPt }t=0. An ML-

mimetic attractor is the invariant set [398] that {νννPt }t=0 approaches. Here, fffν |ωωω maps

an original trajectory to an output for mimicking fffω (Eq. 5.1) in a training process

(Fig. 5.1B). However, fffν |ννν synthesizes a mimetic trajectory in a prediction process for

mimicking an original trajectory that fffω yields from νννP0 via Eq. (5.1). The relationship

between fffν |ωωω and fffν |ννν will be discussed in section 5.2.4. The system that mimics the

original system via Eq. (5.2) is called an artificial system.

Three types of initial conditions influence an artificial system (Eq. 5.2) when it

synthesizes a mimetic trajectory. They are an original trajectory ωωω (Fig. 5.1A), an

initial point νννP0 (Fig. 5.1C), and initial network states XXX0 and XXXP
0 (Figs. 5.1B and

5.1C). We term them as Type I, II, and III initial conditions, respectively. Type I initial

condition is the input ωωω = {ωωωt}Tt=1 that an artificial system is fed with in a training

process (Eq. 5.2). Type II initial condition is a point νννP0 of m−dimensional space. The

point also initializes a chaotic trajectory (supposed) in an original system via Eq. (5.1).

Type III initial condition is an initial state that initializes a network. Suppose behavior

of an artificial system is the behavior of fffω (Eq. 5.1) when it starts from νννP0 . Actual

behavior is the behavior of fffν |ννν (Eq. 5.2) when an artificial system starts from given

initial conditions that is a fixed set of ωωω, νννP0 , XXX0 and XXXP
0 . Machine behavior is the

behavior of fffν |ννν (Eq. 5.2) under varying type I, type II, or type III conditions. We only

focus on the dynamics of fffν |ννν under varying type I or type II initial conditions.

5.1.2 Differences with existing studies

We apply nonlinear time series analysis for a study of machine behaviors. Our study is

different from a statistical analysis of ML-mimetic attractors [80, 383] and a study of a

network to possess the ability of arbitrarily small approximation errors [154, 163, 164,
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238, 323]. Firstly, we study how an artificial system behaves under varying initial condi-

tions. The statistical analysis of ML-mimetic attractors averages out the outliers that do

not follow the distribution of target trajectories. An underlying assumption is that an

original system approaches a unique attractor. Otherwise, an occurrence of outliers has

two implications. (1) An outlier indicates a divergence from a target trajectory, which

implies a bad performance in mimicking the supposed behavior. (2) An outlier indicates

a convergence to an original trajectory that is different from the target trajectory. In

this setting, fffω has two coexisting attractors, and fffν |ννν well mimics one attractor. How-

ever, the other attractor is the target one. An outlier thus implies a good performance in

mimicking an original system. A statistics of ML-mimetic attractors becomes ambiguous

to tell the implication of errors or outliers. For example, the correlation analysis of ML-

mimetic attractors [80, 383] gives information about the closeness between an original

and an ML-mimetic attractors [383]. However, the closeness is incapable of indicating

the dynamics of an artificial system under varying conditions.

Secondly, machine behavior examines the relationship between an original fffω (Eq. 5.1)

and an artificial systems fffν |ννν (Eq. 5.2). Recently, the attention has been paid on the

closeness of trajectories as Type III initial condition changes [154, 163, 164, 323]. The

focus is on network architectures [163, 323] or network properties [154, 164] that im-

prove the performance in a coincidence between an original and a mimetic trajectories.

Those studies give information about what properties an artificial system should have to

achieve the consistency of an ML-mimetic attractor [238]. Most of artificial systems we

use satisfy an insensitivity to Type III initial condition. The coincidence can be satisfied

in experiments related to the Hénon map and the Lorenz system. Therefore, network

architectures and network properties are not the focus of this chapter.

Thirdly, our study of machine behavior does neither intend for “applying complex

system techniques to leverage the performance of machine learning techniques with high-

eÿciency” [363] nor for reproducing long-term behavior of complex systems by machine

learning methods [293, 363]. In particular, the reservoir computing paradigm we em-

ploy has attracted a focus issue to facilitate the research field “When machine learning
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meets complex systems” [363]. We employ the reservoir computing paradigm only for

exemplifying a gap between fffω (Eq. 5.1) and fffν |ννν (Eq. 5.2). We will provide an insight

into the question “When machine learning induces an arbitrarily small error, what does

the error mean?”

Indeed, “even with an infinite amount of data the optimal least squares solution is

simply incorrect” [254]. It is thus diÿcult to erase errors between fffω (Eq. 5.1) and fffν |ννν
(Eq. 5.2). Machine behaviors aim to investigate how the errors evolve under varying

initial conditions. We introduce machine behavior to disambiguate between the sensi-

tivity of fffω to errors of initial conditions and new dynamics developed by the errors that

diverge fffν |ννν from fffω.

In the research field of nonlinear time series analysis, a solution exists in reducing an

error that the modeling of a dynamical system induces. Kantz and Jaeger [187] introduce

total least squares and more step errors to minimize errors of fittings. McSharry and

Smith [254] utilize a maximum likelihood estimation to reduce the error. Kilminster

[195] builds behavior criteria to balance between short-term predictions and long-term

behavior matches for modeling complex dynamics. Shadowing theorem [47, 152] ensures

that the error resulting from measurements such as computers and sensors is bounded.

The theorem illustrates “the existence of an uncountable number of true trajectory”

[152] that is close to a numerical trajectory with measurement errors. When it comes to

“machine learning meets complex systems” [363], the shadowing of a mimetic trajectory

by an original trajectory remains unclear as initial conditions are varied. A solution to

reduce the error of machine learning methods thus remains understudied.

Fig. 5.2 schematizes our study of machine behaviors. In Section 5.2, the role of initial

conditions on an artificial system is discussed (Fig. 5.2A). In Section 5.3, three original

systems and seven artificial systems are provided (Fig. 5.2B). Under varying initial

conditions (Figs. 5.2A and 5.2B), three experiments are conducted for collecting data

that describe machine behavior (Figs. 5.2C and 5.2D). In Section 5.4.1, the trajectory-

level machine behavior is collected from mimetic trajectories that mimic the coexisting
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Figure 5.2 : A conceptual diagram of three experiments that collect machine behaviors. A. Section 5.2
describes the role of the three types of initial conditions on an artificial system. B. Section 5.3 de-

scribes three original systems and seven artificial systems. Supposed and actual behaviors are collected

from the original and the artificial systems, respectively. C. Section 5.4.1 describes the experiment on

the Rössler attractors and collects a unique mimetic trajectory from a unique initial condition. The

experiment examines the behavior of an artificial system in mimicking two co-existing chaotic attrac-

tors. D. Section 5.4.2 describes the experiment on the Lorenz attractor and examines the behavior of

an artificial system under varying original trajectories (inputs, Type I). The trajectories are from an

identical basin. Section 5.4.3 describes the experiment on the Hénon map and examines the behavior

of an artificial system under varying initial points (Type II). The points are from fractal basins. E.

Section 5.4.4 describes a method that extracts governing equations from a time series. The extraction

compares between supposed and actual behaviors in the sense of preserving mathematical formulas.

Rössler attractors (Fig. 5.2C). The analysis is on comparing the return map of original

trajectories and that of mimetic trajectories (Fig. 5.2C). System-level machine behaviors

are designed to mimic the Lorenz attractor (Fig. 5.2D1) and the basins of the Hénon

map (Fig. 5.2D2), respectively. In Section 5.4.2, the experiment is conducted on the

Lorenz attractor as Type I initial conditions are varied. The analysis is on the behavior

of an artificial systems as a series of inputs that approach an identical attractor are

varied. In Section 5.4.3, the experiments is conducted on the Hénon map as Type II

initial conditions are varied. The analysis is on quantitative differences between an

original and an artificial systems. Three quantifications are used (Fig. 5.2D2), including

(1) a comparison of the basins calculated from an original and an artificial systems, (2)
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Sec. 5.2.1: Type I Sec. 5.2.2: Type II Sec. 5.2.3: Type III Sec. 5.2.4: Differences

Sec. 5.4.2: 2nd  EXP Sec. 5.4.1: 1st EXP Sec. 5.4.3: 3rd  EXP Sec. 5.4.4: Extractions Sec. 5.4.5: Summary

Sec. 5.5.2: 2nd  Result Sec. 5.5.1: 1st Result Sec. 5.5.3: 3rd  Result Sec. 5.5.4: Extractions

  Vary IC Vary IC Vary IC Vary IC

Collect TRAJs Collect TRAJs Collect TRAJs Extract equations

Sec. 5.2.1: Original
Trajectories (TRAJs)

Sec. 5.2.1: Initial points Sec. 5.3.1: Three Original systems

Sec. 5.3.2: Seven artificial systems

Sec. 5.6: Summary and Discussions 

Vary pointsVary TRAJs

IC: Initial conditions

EXP:  Experiment

Figure 5.3 : An organization of Chapter 5. Section 5.2 introduces the role of initial condition on
artificial systems. Section 5.3 describes the mathematical formulas of the original (Section 5.3.1) and

the artificial systems (Section 5.3.2). Section 5.4 describes the three experiments that collect machine

behaviors. Section 5.4.1 describes the first experiment on the Rössler system by varying Type I and

Type II initial conditions. Section 5.4.2 describes the second experiment on the Lorenz system by

varying Type I initial conditions. Section 5.4.3 describes the third experiment on the Hénon map by

varying Type II initial conditions. Section 5.4.4 describes an extraction of governing equation from a

time series. A summary is made in the final part of Section 5.4. Section 5.5 presents the experimental

results. Section 5.6 discusses the three experiments and their corresponding results.

symbolic dynamics, and (3) the statistics of correlation dimension estimations. Finally,

the governing equations of the three original systems and that of the seven artificial

systems are extracted and compared in Section 5.4.4 (Fig. 5.2E).

Fig. 5.3 further indicates an organization of this chapter. Three experiments are

conducted on three different original systems. In Section 5.2, the initial conditions are

identified. In Section 5.3, the three original and the seven artificial systems are described.

In Section 5.4, three experiments are introduced. In Section 5.5, results are shown. In

Section 5.6, results are discussed.
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5.2 Initial conditions of artificial chaos

We shall discuss the initial conditions that a mimetic trajectory depends on (Fig. 5.2A).

There exist three types of initial conditions. Type I (ωωω) initial conditions can have an

influence on a training process (Eq. 5.2). Type II (νννP0 ) initial conditions can have an

influence on a prediction process (Eq. 5.2). Type III (XXX0 and XXXP
0 ) initial conditions can

have an influence on both a training and a prediction processes.

5.2.1 Type I initial condition: original trajectory (ωωω)

Figs. 5.1A and 5.1B and Eq. (5.2) indicate how an artificial system depends on an original

trajectory. A training process (Fig. 5.1B) is described by a function fffν |ωωω. An input that

the system is fed with is an original trajectory of a finite length T (Eq. 5.2). The system

synthesizes an output ννν as a network state XXX0 is initialized. In a training process the

deviations between ωωω and ννν are optimized for fixing the parameter θ (Eq. 5.2), rather

than synthesizing a mimetic trajectory. We then shall discuss the role of an original

trajectory on a mimetic trajectory in a prediction process.

5.2.2 Type II initial condition: initial point (νννP0 )

Fig. 5.1C and Eq. (5.2) indicate how an artificial system depends on an initial point νννP0 .

A prediction process is described by a function fffν |νννP . The system starts from νννP0 and

XXXP
0 together to synthesize a mimetic trajectory. Type II initial condition νννP0 ∈ IRm is a

point in phase space of an original system (Eq. 5.1). Let assume that an artificial system

(Eq. 5.2) is equivalent with its original system (Eq. 5.1). The supposed behavior of a

mimetic trajectory then should be consistent with the dynamics of an original trajectory

that is initialized from ωωω0 = νννP0 via Eq. (5.1). Therefore, the role of νννP0 on an artificial

system is supposed to be identical to the role of ωωω0 on an original system. Varying

νννP0 should have those two consequences mentioned in Section 5.1.1. For arbitrary two

different initial points, the supposed behavior depends on where the points sit in an

original system. (1) The two points are from an identical basin of an original system.

The mimetic trajectories should approach an identical ML-mimetic attractor. (2) The
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two points cross different basins of an original system. The mimetic trajectories should

approach different ML-mimetic attractors.

The universality [95, 112, 155, 410] of machine learning methods ensures an existence

of an artificial system satisfying that fffν |νννP approximates fffω within any small errors.

This suggests that fffν |νννP should be insensitive to Type I initial conditions (ωωω), provided

that different original trajectories ωωω are yielded via identical equations (Eq. 5.1). Let

assume that fffν |νννP is equivalent to fffω. A mimetic trajectory that is synthesized via

Eq. (5.2) should be consistent with the dynamics of a trajectory that is yielded via

Eq. (5.1) at ωωω0 = νννP0 . The consistence is supposed to be free from the influence of ωωω.

5.2.3 Type III initial condition: initial network states (XXX0,XXX
P
0 )

Figs. 5.1B and 5.1C and Eq. (5.2) indicate how an artificial system depends on initial

network states. A training process learns information related to an original system

(Eq. 5.2). However, initial network states do not contain any information of an original

system. Therefore, a critical property being imposed on an artificial system is that the

system does not have sensitive dependence on initial network states. The insensitivity

ensures that an artificial system has asymptotic convergence while synthesizing a mimetic

trajectory [335, 403].

5.2.4 A training and a prediction processes (fffν |ωωω, fffν |ννν)

A difference exists between a training and a prediction processes (Eq. 5.2). The equation

fffν maps an inputted state to an outputted state, which is identical in those two processes.

The difference comes from what a network is fed with. In a training process (Fig. 5.1B

and Eq. 5.2), fffν maps an original trajectory to an output. In a prediction process

(Fig. 5.1C and Eq. 5.2), fffν maps νννPt to νννPt+1. Therefore, fffν is fed with ωωω that exhibits

the dynamics of an original attractor in a training process (Fig. 5.1B). However, fffν

defines an automatic system by iterating previous states to current states in a prediction

process (Fig. 5.1C), which leads to a time-delay dynamical system. Compared with the

training process, the prediction process admits a state that deviates from an original
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attractor. Therefore, fffν is restricted to ωωω in a training process, and we mark it as fffν |ωωω.

However, fffν is restricted to an ML-mimetic attractor that νννP approaches in a prediction

process, and we mark it as fffν |νννP .

Since fffν |νννP synthesizes an ML-mimetic attractor, our focus is thus on the differences

between fffω and fffν |νννP . Machine behavior is the behavior of fffν |νννP in mimicking fffω under

varying ωωω, νννP0 , XXX0, or XXXP
0 (Eq. 5.2). The supposed behavior of fffν |νννP is the behavior

of fffω when fffν |νννP and fffω are applied with an identical initial point νννP0 . Deterministic

chaos represents the phenomenon that the trajectories being yielded via Eq (5.1) diverge

as νννP0 is varied. Artificial chaos represents the phenomenon that mimetic trajectories

being synthesized via Eq. (5.2) diverge or converge as ωωω, νννP0 , XXX0, or XXXP
0 is varied.

5.3 Original and artificial systems

To study machine behaviors, we need to describe the original and the artificial systems

that are responsible for the behaviors (Fig. 5.2B). Two elements are vital for machine

behavior. They are an input yielded from an original system and an output synthesized

from an artificial system. Fig. 5.1 schematizes how artificial chaos works in translating

an input, a chaotic trajectory, into an output, a mimetic trajectory.

Our experiments are based on three original systems, the Rössler and the Lorenz

systems and the Hénon map. To collect the data about machine behaviors, we use seven

artificial systems to synthesize artificial chaos. Two artificial systems are used to mimic

the coexisting Rössler attractors, respectively. One artificial system is used to mimic

the Hénon map. Those three artificial systems follow an identical architecture, however,

equip with different parameters. Four different artificial systems are used to mimic the

Lorenz attractor.

5.3.1 Original systems

We separate the behaviors of artificial systems from that of original systems. The idea is

to choose the original systems that are well studied as inputs, so any new behavioral traits

if observed from outputs are caused by the artificial systems. In this way, the new traits
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Table 5.1 : Equations and dynamical properties of original systems. Eqs. (F1) and (F2) describe a

flow. Eq. (F3) describes a two-dimensional map. The python package, scipy.integrate.ode [302, 390],

is applied to obtain a numerical trajectory from Eqs. (F1) and (F2). The integrator is “dopri5”, an

explicit Runge-Kutta method of orders four and five. The step-size control is set to be 0.02.

System Equations Parameters
Dynamical tem-

plate

Basin

boundary

Rössler


ẋ=−y− z

ẏ = x+ay

ż = b+z(x− c)

(F1) a= 0.29, b= 0.14, and,

c= 4.52

Stretching and

folding [56]

Fractal

Lorenz


ẋ= σL(y−x)

ẏ = x(ρL− z)−y

ż = xy−βLz

(F2) σL = 10,βL = 8/3, and,

ρL = 28

Stretching and

tearing [56]

Unbounded

Hénon


xn+1 = a−x2

n+ byn

yn+1 = xn

(F3) a= 1.4, b= 0.3. Stretching and

folding [143]
Fractal

reflect the nonlinear dynamics of artificial chaos, instead of that of original deterministic

chaos. We therefore choose the Rössler system [314], the Lorenz system [230], and

the Hénon map [169] as the original systems. Tab. 5.1 summarizes the equations, the

parameters and well-established nonlinear dynamical properties of the three original

systems.

Rössler system. Rössler [314] proposed an equation with only one nonlinear term in

its z−component, cf. Eq. (F1∗) in Tab. 5.1, to study deterministic chaos. The Rössler

attractor is with a single-scroll mechanism in a three-dimensional phase space [221].

Multistability is a crucial phenomenon for the Rössler attractor. If a nonlinear dynam-

ical system has coexisting attractors under given parameters, [128], then multistability

occurs. For a system with multistability, its initial conditions determine final states

∗We use “F” to label equations related to original systems or extracted equations.
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[221, 299]. Under the parameters we study (Tab. 5.1), the Rössler system approaches

two co-existing chaotic attractors [313], marked as R0 and R1, respectively. The ini-

tial point ωωωR0
0 = (−1.25,−0.72,−0.1) approaches R0, whereas ωωωR1

0 = (0.72,−1.28,0.21)

approaches R1.

Lorenz system. Lorenz [230] proposed an equation, cf. Eq. (F2) in Tab. 5.1,

to truncate the Navier-Stokes equation for a study of fluid dynamics. The equation

contributes to the first study of deterministic chaos [143]. Lorenz attractor have two

fundamental differences with Rössler attractor. Firstly, the dynamical template is dif-

ferent. A template is a branched manifold that describes how unstable periodic orbits

topologically organize in a phase space [143]. It also represents the signature of chaotic

attractors [143, 376]. The responsible mechanism of Rössler attractor is the stretching

and the folding [56, 143], resulting in a single scroll. However, the responsible mechanism

of Lorenz attractor under the parameters we study (Tab. 5.1) is the stretching and the

tearing [56], evidenced by a discontinuity in return map [56]. The second fundamental

difference lies in the fractality of basins of attraction. The Rössler system has co-existing

attractors. Fractal basin boundaries separate the basins of the two coexisting attractors

[3]. However, the basin of the Lorenz attractor is the whole phase space, IR3, so basin

boundary does not exist. A basin of attraction of an attractor includes the domain of

the attractor [398], thus being an open set in phase space [3, 353, 398].

It is worth mentioning that the Lorenz system defined by Eq. (F2) (Tab. 5.1) has

three fixed point, (0,0,0), FL = (−
√

72,−
√

72,27), and FR = (
√

72,
√

72,27) [398]. The

three fixed points have corresponding manifolds. Along the manifolds the Lorenz system

approaches corresponding fixed points. In phase space, however, any deviations from the

manifolds cause the Lorenz system approaching the chaotic attractor. This suggests that

any point from the manifolds exists and only exists one direction along which its final

state is one of the fixed points. A neighborhood of a point is defined over an arbitrary

direction [273]. Therefore, for a point that lies in the manifolds, its neighborhood that

is capable of reaching its corresponding fixed point does not exist in IR3. A basin of

attraction of an attractor is well defined if and only if a neighborhood exists [3, 353, 398].
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The definition of a basin of attraction thus excludes the manifolds of those three fixed

points. Therefore, the basin of the chaotic Lorenz attractor is unbounded in IR3.

Hénon map. Hénon [169] proposed a simple two-dimensional map, cf. Eq. (F3)

in Tab. 5.1, to show deterministic chaos. The Hénon map serves as a testing ground

for deterministic chaos in real-life dynamical systems [151, 278, 284]. It has become the

most widely studied once-folding map in a two-dimensional phase space [143]. Symbolic

dynamics [143, 151] and basins of attraction [344] enable the analysis of the nonlinear

dynamics of the Hénon map. Symbolic dynamics is concerned with an invariant set and

translates it into an infinite sequence of symbols by a one-to-one shifting map [143, 398].

Under the map, the analysis is shifted from a phase space to a space of symbols.

Grassberger, Kantz, and Moenig [151] develop algorithms to locate critical points

of the Hénon map. Critical points are points in phase space and define a shifting map

under which symbolic dynamics in a space of symbols is equivalent to the dynamics of an

original system in phase space (Eq. 5.1) [143]. Forbidden words emerge from symbolic

dynamics. A forbidden word is related to a grammar of deterministic chaos, alike a

forbidden grammar of a language [110, 312]. The word is prohibitive due to nonlinear

operations of deterministic chaos [143], for example, the once-folding operation in Hénon

map [143]. On the other hand, the basins of attraction provide information of future

behavior of a dynamical system [3]. For the Hénon map, its basins of attraction present

two different types of behaviors. In one area of a two-dimensional phase space, the points

attract to infinity [344]. However, in the other area, the points attract to the Hénon

map [344]. Fractal basin boundaries separate the two different areas [3]. Moreover, the

Hénon map has a similar mechanism as the Rössler attractors [143]. The responsible

mechanism for deterministic chaos is the stretching and the folding as well [143].

5.3.2 Artificial systems

We have presented the three original systems that exhibit deterministic chaos. We then

need to describe the seven artificial systems that produce artificial chaos for mimicking

deterministic chaos. Here, we apply the reservoir computing paradigm [179] to study
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machine behaviors. Reservoir computing is a recurrent neural network [179] and takes

an input/output framework (Eq. 5.2).

Fig. 5.1 schematizes the input/output framework. The matrix W in maps an input

ωωω to network states XXXt (Figs. 5.1B and 5.1C). The matrix W maps previous network

states XXXt−1 to new network states XXXt (Figs. 5.1B and 5.1C). The matrix W out maps

network states to an output (Figs. 5.1B and 5.1C). While the matrices W in and W are

randomly set up, the matrix W out is optimized by minimizing deviations between an

input and an output (Fig. 5.1B).

Four reasons exist in using the reservoir computing paradigm. Firstly, echo state

property ensures that the output has asymptotically convergent behavior [335, 403].

An echo state property is a condition that is imposed on either W or W in [403]. As

echo state property is satisfied, ννν and νννP are asymptotically convergent. Here, ννν is

an output in a training process (Eq. 5.2), whereas νννP is a mimetic trajectory that an

artificial system synthesizes in a prediction process (Eq. 5.2). Secondly, a convergence

of an output effectively mitigates the gradient problems of machine learning methods

[166, 291]. The problems are widely observed in recurrent neural networks and cause an

output to diverge or have a diÿcult y in connecting with an input in a training process

[291]. However, reservoir computing utilizes random setups for W and W in by imposing

echo state property. Thirdly, artificial chaos is widely studied on reservoir computing

[80, 266, 293, 393, 423]. Importantly, memristor-based reservoir computing is attracting

attention for mimicking deterministic chaos through physical devices [362, 419]. Our

study on reservoir computing will provide insights for the memristor-based analysis of

deterministic chaos. Lastly, although deep neural networks [237] and long short term

memory networks [64, 323] are applied to study deterministic chaos, reservoir computing

runs the fastest among its counterparts. Our study of machine behaviors is based on

enormous runnings of artificial systems, for example, 4× 106 runnings to calculate a

basin. The use of reservoir computing saves time. Other machine learning frameworks

take hours to conduct one running, which makes one experiment diÿcult to finish in one

year. However, reservoir computing conducts one experiment less than one week.
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Figure 5.4 : Architectures of artificial systems in a training and a prediction processes (Fig. 5.2B). A
and B: The classical reservoir computing paradigm directly synthesizes an output from network states

via νννt = g(XXXt) in a training process (A) and νννPt = g(XXXP
t ) in a prediction process (B). C and D: A

new reservoir computing paradigm synthesizes an output from network states and a previous outputted

state via νννt = g(XXXt,νννt−1) in a training process (C) and νννPt = g(XXXP
t ,ννν

P
t−1) in a prediction process (D).

According to the nonlinearity of the output layer (Figs. 5.1B and 5.1C), we use a

linear and a nonlinear readouts to synthesize a mimetic trajectory. Fig. 5.4 outlines

the architecture of different readouts in a training and a prediction processes. Classi-

cal reservoir computing paradigm synthesizes νννPt solely from XXXt via νννPt = g(XXXt), cf.,

Fig. 5.4B. Here, νννPt is a state of a mimetic trajectory, and g is a function that reads out

network states at time t. We term the classical reservoir computing architecture as a

linear readout (Figs. 5.4A and 5.4B). However, we propose a new reservoir computing

paradigm, which synthesizes νννPt from XXXt and νννPt−1 together via νννPt = g(XXXt,ννν
P
t−1), cf.,

Fig. 5.4D. We term the new paradigm as a nonlinear readout (Figs. 5.4C and 5.4D). In

a nonlinear readout, the function g acts on network states XXXt and the last state νννPt−1 of

a mimetic trajectory.
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We propose the nonlinear readout for two reasons. According to Takens’ embedding

theorem [324, 360], time delays are crucial for an attractor reconstruction. Time delay

terms capture information associated with the time derivative of an original system. Be-

sides, the original systems we use have time delay terms. The Hénon map, cf. Eq. (F3), is

described by a time delay term. Rössler attractor (Eq. F1) and Lorenz attractor (Eq. F2)

can be discretized by incorporating a time delay term. The well-known Runge–Kutta

method, for example, utilizes time delay terms to obtain a numerical solution of a flow.

We then need to describe the mathematical formulas that define the architectures.

An original system is described by fffω via Eq. (5.1), cf. Tab. 5.1. A training process

(Figs. 5.4A and 5.4C) is described by fffν |ω = g ◦φ(ωωωt,XXXt). Here, ωωωt ∈ IRm is a state

of an original system with m equaling to the dimension of an original system, and φ is

an activation function. For example, m = 2 for the Hénon map. A prediction process

(Figs. 5.4B and 5.4D) is described by fffν |νP = g◦φ(νννPt ,XXXP
t ). Here, φ acts on a IRm×IRn

space where n is the total number of network states and represents the size of a network.

A linear and a nonlinear readouts are different due to the definition of g. For a linear

readout, g solely acts on IRn (Figs. 5.4A and 5.4B). However, g acts on a IRm× IRn

space for a nonlinear readout.

Before defining the formulas of fffν |ω and fffν |νP , we elaborate how to set up the

matrices, W and W in. A construction of W is based on an adjacent matrix of a random

Erdös-Rényi network. The average degree of the network is d, and the size of the network

is n. We then follow Pathak et al. [292] to rescale the adjacent matrix.

(1) An arbitrarily non-zero entry of the adjacent matrix is reset to a random number that

is independently and uniformly drawn from the interval [−a,a]. In our experiment

a= 1.

(2) We let the adjacent matrix derived from (1) be a matrix W (1).

(3) Assuming ρ0 = ||W (1)||2, we applyW =W (1)∗ρ/ρ0. Here, ρ= ||W ||2 is the Euclidean

norm of W , and its value is related to the echo state property.

To construct W in, we randomly set up an n×m matrix whose non-zero elements are

independently and uniformly drawn from the interval [−δ,δ], where δ > 0.
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The echo state property is satisfied as ρ < 1 [166, 403], and ρ > 1 often leads to a

network dissatisfying the echo state property. The expression ρ < 1 can be true or false,

depending on the value of ρ. A choice between a linear and a nonlinear readouts and

the value of ρ lead to four combinations for setting up an artificial system.

A linear readout and ρ < 1 are adopted for artificial systems that mimic the Rössler

system and the Hénon map, respectively. A training process (Figs. 5.1B and 5.4A) is

described via

fffν |ω :XXXt = φ(ωωωt−1,XXXt−1) = tanh(W inωωωt−1 +WXXXt−1), νννt = g(XXXt) =W outXXXt (5.3)

where XXX0 = 000. We then let W in
opt = W in and Wopt = W , and W out

opt is the solution to a

least square regression problem

min
W out

=
t=T∑
t=1

(||ωωωt−νννt||2 +β||I||2) =
t=T∑
t=1

(||ωωωt−W outXXXt||2 +β||I||2) (5.4)

where I is an identity matrix, and T is the length of the input, representing the finiteness

of a training process. Here, a Tikhonov regulation is to mitigate an overfitting [423], and

β is the parameter that controls the regulation. We let β = 0.0001 in all experiments.

A prediction process is then described via

fffν |νP : XXXP
t = φ(νννPt−1,XXX

P
t−1) = tanh(W in

optννν
P
t−1 +WoptXXX

P
t−1)

νννPt = g(XXXP
t ) =W out

optXXX
P
t

(5.5)

where XXXP
0 = 000, and νννP0 is an initial point that depends on applications. Two artificial

systems, ASR0 and ASR1 , are employed for mimicking coexisting Rössler attractors, R0

and R1, respectively. One artificial system ASH is employed for mimicking the Hénon

map. Therefore, ASR0 , ASR1 , and ASH follow Eq. (5.3) in a training process (Figs. 5.1B

and 5.4A), and follow Eq. (5.5) in a prediction process (Figs. 5.1C and 5.4B).

For the Lorenz attractor, we allow ρ < 1 and ρ > 1. Also, both linear and nonlinear

readouts are applied. The combinations of the choice of ρ and that of readouts give

four different artificial systems, ASAL , ASSL, ASAN , and ASSN . They are marked with a

superscript A as ρ > 1, a superscript S as ρ < 1, a subscript L for a linear readout, and
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a subscript N for a nonlinear readout. With a linear readout, the artificial systems, MA
L

and MS
L , satisfy the following formulas.

fffν |ω : XXXt = φ(ωωωt−1,XXXt−1) = tanh(W inωωωt−1 +WXXXt−1)

νννt = g(XXXt) = [W out
1 XXXt,W

out
2 XXXt,W

out
3 X̂XXt]T

(5.6)

Eq. (5.6) describes the training process of MA
L and MS

L . Here,
[
·
]T

is a transpose of a

matrix. The matrices W out
1 , W out

2 , and W out
3 map the network states to the x−, y−,

and z−component of ννν, respectively. Also, we let Wout =
[
W out

1 ,W out
2 ,W out

3
]T

, where

W out
i ∈R1×n with i= 1,2,3. In Eq. 5.6,

X̂XXt =


XXX i,t, for 0≤ i≤ bn/2c

XXX2
i,t, for bn/2c+1≤ i < n

(5.7)

Eq. (5.7) is consistent with existing studies [292, 293]. Using square terms in network

states is to improve artificial chaos when the original attractors are with symmetry.

The Lorenz attractor is symmetric since Eq. (F2) is invariant under a transformation

of x 7→ −x and y 7→ −y. Optimal matrices, W out
1,opt, W out

2,opt and W out
3,opt, are derived from

Eq. (5.4). A prediction process then satisfies

fffν |νP : XXXP
t = φ(νννPt−1,XXX

P
t−1) = tanh(W in

optννν
P
t−1 +WoptXXX

P
t−1)

νννPt = g(XXXP
t ) =

[
W out

1,optXXX
P
t ,W

out
2,optXXX

P
t ,W

out
3,optX̂XX

P

t

]T (5.8)

where XXXP
0 = 000, and νννP0 depends on individual cases as well.

With a nonlinear readout, the artificial systems, MA
N and NS

S , satisfy the following

formulas.

fffν |ω : XXXt = φ(ωωωt−1,XXXt−1) = tanh(W inωωωt−1 +WXXXt−1)

νννt = g(XXXt,νννt−1) =W out
ν νννt−1 +

[
W out

1 XXXt,W
out
2 XXXt,W

out
3 X̂XXt

]T (5.9)

Eq. (5.9) describes the training process of MA
N and MS

N . Here, W out
ν is a vector that

defines the coeÿcien ts of the x−, y−, and z−component of νννt−1, respectively. Those co-

eÿcien ts represent the parameters of the delay terms in a nonlinear readout (Figs. 5.4C
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Table 5.2 : Parameters and equations of artificial systems (Fig. 5.2B). The artificial systems, ASR0 and

ASR1 , use Eqs. 5.3 and 5.5 to mimic the coexisting Rössler attractors (Figs 5.4a and 5.4b), R0 and R1,

respectively. The artificial systems, ASSL and ASAL , use Eqs. 5.6 and 5.8 to mimic the Lorenz attractor

(Figs 5.4a and 5.4b). However, ASSN and ASAN , use Eqs. 5.9 and 5.10 to mimic the Lorenz attractor

(Figs 5.4c and 5.4d). Also, ASH uses Eqs. 5.3 and 5.5 to mimic the Hénon map (Figs 5.4a and 5.4b).

Original Artificial m n T ρ d δ Equations

Rössler
ASR0 3 300 2,000,000 0.91 8 0.09

Eqs. 5.3, 5.5
ASR1 3 300 2,000,000 0.91 8 0.07

Lorenz

ASAL 3 300 5,000 >1 6 -
Eqs. 5.6, 5.8

ASSL 3 300 5,000 < 1 6 -

ASAN 3 300 5,000 > 1 6 -
Eqs. 5.9, 5.10

ASSN 3 300 5,000 < 1 6 -

Hénon ASH 2 300 180,000 0.78 6 0.07 Eqs. 5.3, 5.5

and 5.4D). We let Wout =
[
W out
ν ,W out

1 ,W out
2 ,W out

3
]T

. According to Eq. (5.4), a predic-

tion process of MS
N and NA

L then follows

fffν |νννP :XXXP
t = φ(νννPt−1,XXX

P
t−1) = tanh(W in

optννν
P
t−1 +WoptXXX

P
t−1)

νννPt = ggg(XXXP
t ) =W out

ν,optννν
P
t−1 +

[
W out

1,optXXX
P
t ,W

out
2,optXXX

P
t ,W

out
3,optX̂XX

P

t

]T (5.10)

where W out
ν,opt and W out

i,opt with i = 1,2,3 are optimal solutions derived from Eq. (5.4).

Tab. 5.2 summarizes the artificial systems in our experiments and their parameters.

5.4 Experiments

We have identified the different roles of initial conditions (Fig. 5.2A) and presented

the three original and the seven artificial systems (Fig. 5.2B). Prior to study machine

behaviors, we need to describe how experiments are conducted under varying initial

conditions (Figs. 5.2C and 5.2D). We need to describe the methods for an analysis of

the behaviors as well.
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Machine behaviors are categorized into trajectory-level and system-level behaviors.

Trajectory-level behaviors are concerned with the behavior of a unique mimetic tra-

jectory that mimics an original chaotic trajectory. In this setting, an artificial system

(Eq. 5.1) is fed with one input, and synthesizes one output (Fig. 5.2C). We term it as

one-in-one-out mode. The experiment on the Rössler system follows a one-in-one-out

mode (Fig. 5.2C). An individual artificial system is fed with only one original trajectory

and initialized from two initial points for mimicking the coexisting attractors, R0 and

R1, respectively. This allows one artificial system yielding two mimetic trajectories in

case of two coexisting attractors.

System-level behaviors are concerned with the behaviors of an artificial system as

either initial points νννP0 or original trajectories ωωω are varied (Fig. 5.1 and Eq. 5.2). This

corresponds to two modes. (1) Original trajectories ωωω are varied (Eq. 5.2), however, the

initial point νννP0 is fixed (Eq. 5.2). A series of mimetic trajectories are thus synthesized.

In this setting, an artificial system is fed with enormous original trajectories, and syn-

thesizes a series of mimetic trajectories (Fig. 5.2D1). The number of mimetic trajectories

is equal to the number of original trajectories, which are from an identical basin. We

term the setting as basin-in-one-out mode. The experiments on the Lorenz attractor

follows a basin-in-one-out mode (Fig. 5.2D1). (2) Initial points νννP0 are varied (Eq. 5.2),

however, the original trajectory ωωω is fixed (Eq. 5.2). A series of mimetic trajectories

are synthesized as well. In this setting, an artificial system is fed with a unique original

trajectory, however, synthesizes enormous mimetic trajectories for mimicking the basin

of an original attractor (Fig. 5.2D1). The number of mimetic trajectories are equal to

the number of initial points that is applied on an artificial system. We term is as one-

in-basin-out mode. The experiments on the Hénon map follow a one-in-basin-out mode

(Fig. 5.2D2).

An intuitive difference between trajectory-level and system-level behaviors is what

machine behaviors are benchmarked against with. Trajectory-level behaviors require

a unique original and a unique mimetic trajectory. However, system-level behaviors

require either a series of original trajectories or a series of initial points to synthesize
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Figure 5.5 : One-in-one-out experiment that collects trajectory-level behaviors by fixing Type I and II
initial conditions (Fig. 5.2C). A and B: The Rössler system yields two coexisting attractors, R0 and R1,

under two different initial points. C. While ASR0 is fed with R0, ASR1 is fed with R1. D. Type II initial

conditions, ωωωR0
T and ωωωR1

T , are the T−th point of R0 and R1, respectively. E. Initialized from the two

points, ASR0 synthesizes two ML-mimetic attractors, MAR0
R0
and MAR1

R0
, respectively. Similarly, ASR1

synthesizes, MAR0
R1
and MAR1

R1
. Supposed behavior of MAR0

R0
and MAR0

R1
should satisfy the dynamics

of R0. Supposed behavior of MAR1
R0
and MAR1

R1
should satisfy the dynamics of R1. F. The qualitative

analysis is based on return maps that Eq. (5.11) defines.

enormous mimetic trajectories. Therefore, trajectory-level experiments benchmark a

mimetic trajectory with a unique trajectory of an original system. Nevertheless, system-

level experiments benchmark an ML-mimetic attractor with an original attractor.

5.4.1 Trajectory-level behaviors: Return maps

The fist experiment compares trajectory-level behaviors between an original and an

artificial systems (Fig. 5.2C). Mean square error is a well-know and a widely used measure

to compare trajectory-level behaviors [50, 293]. However, a return map of a flow provides

invariant topologies of deterministic chaos [219] and its signatures [56, 373]. A return

map as an invariant set defines the recurrence of a chaotic system in a Poincaré section.

We, therefore, benchmark the return map of mimetic trajectories against that of original

trajectories for experiments related to the Rösser and the Lorenz systems.

Rössler attractors. The experiment on the Rössler system (Eq. F1) collects

trajectory-level behaviors and follows a one-in-one-out mode. It is designed to find

how an artificial system responds to varying original trajectories. Those trajectories are
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governed by an identical equation, however, approach different chaotic attractors.

Fig. 5.5 outlines the procedures of conducting a one-in-one-out experiment. Two

artificial systems ASR0 and ASR1 are introduced for examining the sensitive dependence

on Type I initial condition (Fig. 5.1A). Here, ASR0 is fed with R0 (Fig. 5.5B), whereas

ASR1 is fed with R1 (Fig. 5.5B). We then apply two different types of initial points to

examine the sensitive dependence on Type II initial condition (Fig. 5.1C). Under two

different original trajectories and two different initial points, four ML-mimetic attractors

are synthesized (Fig. 5.5E). They are marked as MAR0
R0

, MAR1
R0

, MAR0
R1

, and MAR0
R1

. The

(5.11)

where x− = 0.009 being equal to the x−component of one of the fixed points of the

Rössler system [313]. Here, xn, yn, and zn are the x−, y−, and z−component of a

point, respectively. The point represents the state as the attractor crosses the Poincaré

section. Also, Mn is a normalization of yn. Here, “max” and “min” represent the

maximum and the minimum of a time series {yn}, respectively.

The reason to normalize yn is that trajectory-level behaviors are compared among

the two Rössler attractors and the four ML-mimetic attractors, and their return maps.

Eq. (5.11) gives a linear transformation. The normalization thus keeps the topological

structures of a return map, and allows comparable results among different return maps.

For example, Rosalie [313] uses an identical normalization to compare different return

maps of the Rössler attractors as different parameters are applied on Eq. (F1).

subscript R0 represents that the ML-mimetic attractor is synthesized by ASR0 , whereas

the subscript R1 represents that the ML-mimetic attractor is synthesized by ASR1 . The

superscript R0 represents that the ML-mimetic attractor is designed to approach R0; and,

the superscript R1 represents that the ML-mimetic attractor is designed to approach R1.

Finally, we stay consistent with Rosalie [313] and apply the following Poincaré section

P to calculate the return map of the two coexisting Rössler and the four ML-mimetic

attractors
P :

{
(yn,−zn) ∈ IR2|−xn = −x−,−ẋ < 0,y < −7

}

and
{
Mn : Mn = max

max−
mi
yn

− n ,(yn,−zn) ∈ P
}
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5.4.2 System-level behaviors: Basin-in-one-out mode

We have described our first experiment that collects trajectory-level behaviors (Figs. 5.2C

and 5.5). We then need to describe our second experiment related to system-level behav-

iors. A basin of attraction is an invariant measure to differ the behavior of a dynamical

system under varying initial conditions [3, 353, 398]. A basin-in-one-out experiment lets

an artificial system be fed with enormous original trajectories that are initialized from

an identical basin (Fig. 5.2D1).

Lorenz attractor. The experiment on the Lorenz system, cf. Eq. (F2), collects

system-level behaviors and follows a basin-in-one-out mode. It is designed to find how

an artificial system responds to individual chaotic trajectories. Those trajectories are

described by identical equations and approach an identical attractor. We apply the

following two return maps to both original and mimetic trajectories

{
zn : zn is the local minimum of z-component

}
{
Yn : Yn = yn−

√
72 if x > 0 and ẋ < 0; Yn = yn+

√
72 if x < 0 and ẋ < 0

} (5.12)

(5.13)

Eq. (5.12) derives a return map from the minima of the z−component of the attractor.

Eq. (5.13) derives a return map from disconnected segments of a Poincaré section where

Fig. 5.6 outlines the procedures of conducting a basin-in-one-out experiment. We use

x,y,z x
√

,x < x,y,z x −√
,x <PR =

{
( ) : = 72 ˙ 0

}
and PL =

{
( ) : = 72 ˙ 0

}
. Here, Yn is

an oriented distance, which measures the distance between an interior point and the

point that crosses the Poincaré section in the (x,y) plane. If x < 0, the interior point

is (−√
72,−√

72); otherwise, the interior point is

−
(
√

72,
√

72). The selection of two

disconnected segments is because of the Lorenz attractor, which is bounded by a genus-

g (g=3) torus [56, 219, 373]. A Poincaré section with g −1 (two) disconnected segments

well presents the topology of an attractor with a genus-g (g=3) torus [56, 219].

four artificial systems S ∈
{
ASL

A,ASS
L,ASA

N ,ASS
N

}
to examine the sensitive dependence

on Type I initial conditions (Fig. 5.1A). Here, S represents an individual artificial system.

The experiment takes the following steps.
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satisfies ωωω0 ∈ BL =
{
(x,y,z) : x =−5 + 10ix/1000,y =−5 + 10iy/1000, z = 27

}
with

ix = 0, · · · ,999 and iy = 0, · · · ,999. The cardinality of BL is 106, and BL represents

a plane (z = 27) in a three-dimensional space.

(2) We obtain 106 original trajectories from the Lorenz system (Fig. 5.6B).

(3) For a given artificial system S (Tab. 5.2), we feed S with individual original trajec-

tories (Figs. 5.6B and 5.6C).

(4) We fix the initial point νννP0 = ωωωi,LT (Fig. 5.6D). Here, ωωωi,LT is the T−th point of the

i−th original trajectory that S is fed with, and, i= 1, · · · ,106.

(5) The given S then synthesizes 106 mimetic trajectories (Fig. 5.6E).

(6) We calculate the return map of the mimetic trajectories according to Eq. (5.12).

(7) We choose a new S ∈
{

ASAL ,ASSL,ASAN ,ASSN
}

and return to Procedure (3).

(8) In total, we obtain 4×106 mimetic trajectories and 4×106 return maps.

Enormous return maps are calculated from the experiment (Fig. 5.6), which are

diÿcult to be visualized. We focus on seven cases to exemplify those results. Fig. 5.7

Figure 5.6 : Basin-in-one-out experiment that collects system-level behaviors under varying Type I ini-

tial conditions. A. The initial conditions of an original system (Fig. 5.1A) travel through a grid BL that

represents the basin of the Lorenz attractor. B. Original trajectories have an identical equation (Eq. F2)

and approach an identical attractor. C. For an individual artificial system S ∈ {
ASL

A,ASS
L,ASA

N ,ASS
}

,N

it is fed with those original trajectories. D and E: Initialized from a fixed point ννν0
P = ωωωi,L, S synthesizesT

NL mimetic trajectories, Trj si,L. Here, i is the index of trajectories, and NL is the cardinality of BL.

Supposed behavior of mimetic trajectories should satisfy the dynamics of the Lorenz attractor.

(1) We vary the points ωωω0 and let it travel through a grid BL (Fig. 5.6A). The definition
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Figure 5.7 : Seven cases to exemplify system-level machine behaviors (Fig. 5.2D1). Cases A to G are

either widely observed patterns or patterns shown in existing literature [163, 292]. Procedures A to E

follow the procedures that Fig. 5.6 outlines for collecting machine behaviors. Procedure F calculates

two different return maps according to Eqs. (5.12) and (5.13).

presents how the seven cases are analyzed. Three reasons exist for us to use those

seven cases A to G (Fig. 5.7). Firstly, some cases are widely observed in those 4× 106

return maps. Here, we randomly choose 104 return maps among those 4×106 samples

and manually find the patterns of the chosen return maps. Secondly, some cases are

also observed in existing studies [163, 292]. The cases exemplify the prevalence of the

corresponding patterns as “machine learning meets complex dynamics” [363].

A third reason is closely related to the goal of our experiments shown in Fig. 5.6. For
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cases A and G, their artificial systems are identical. The only difference is the original

trajectory that ASSN is fed with (Fig. 5.7). Similarly, cases B, D, and F only differ in

their original trajectories that ASSL is fed with. The cases in Fig. 5.7 thus exemplify the

behavior of ASSL or ASSN under varying ωωω that underlies an identical fffω (Eq. 5.1) and

approaches an identical attractor.

It is worth mentioning that Eq. (5.13) is applied solely to the seven cases that Fig. 5.7

exemplifies. The reasons are twofolds. One return map, Eq. (5.12), is enough to lead to

the seven cases A to G. Also, calculating only one type of return map saves time.

5.4.3 System-level behaviors: One-in-basin-out mode

We have presented two experiments. The experiments collect trajectory-level behaviors

in the Rössler system (Figs. 5.2C and 5.5) and collect system-level behaviors in the

Lorenz system (Figs. 5.2D1, 5.6 and 5.7). We then describe the third experiment on

comparing system-level behaviors in the Hénon map. The experiment follows a one-

in-basin-out mode (Fig. 5.2D2). An original trajectory† is fixed (Figs. 5.8A and 5.8B).

However, the initial points are varied and allowed traveling through a grid in phase space

(Fig. 5.8D2). The amount of mimetic trajectories that an artificial system synthesizes

is equal to the amount of initial points.

The experiment on the Hénon map, cf. Eq. (F3), is designed to find how an artificial

system responds to individual initial points. Taking the points as initial conditions,

an original system approaches different attractors. Fig. 5.8 outlines the procedures of

conducting a one-in-basin-out experiment. We use a unique artificial system ASH to ex-

amine the sensitive dependence on Type II initial conditions (Fig. 5.1C). The experiment

takes the following steps.

(1) The point ωωω0 =ωωωH0 (Fig. 5.8A) is fixed. The Hénon map thus yields a unique chaotic

trajectory (Fig. 5.8B).

†We use “trajectory” to make terms be consistent in a flow and a map, although the term “orbit” is

suitable for a map.
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Figure 5.8 : One-in-basin-out experiment that collects system-level behaviors under varying Type
II initial conditions (Fig. 5.2D2). A. The initial condition of the Hénon map is fixed. B. A unique

original trajectory is yielded. C. A unique artificial system, ASH , is used. D. ASH is fed with the

unique original trajectory, however, its Type II initial conditions travel through a grid, BH . E. Machine

learning basins present the different dynamics of mimetic trajectories in BH . Supposed behavior should

satisfy the dynamics of the Hénon map and its basins. The quantitative analysis is based on the climate

of symbolic dynamics and the statistics of correlation dimension estimations (Fig. 5.2D2).

(2) The artificial system ASH (Tab. 5.2) is fed with the unique trajectory (Fig. 5.8D).

(3) The initial points νννP0 are varied (Fig. 5.8D) and allowed traveling through basins

of the Hénon map, BH . The artificial system then synthesizes a series of mimetic

trajectories. Here, νννP0 ∈BH =
{
(x,y) : x=−2.4+4.8ix/2048,y=−2.4+4.8iy/2048

}
with ix, iy ∈ {−, · · · ,20−7}. The cardinality of BH is 20482.

(4) In total, 20482 mimetic trajectories are collected. We translate those trajectories to

symbolic sequences.

(5) The visualization of BH is based on an appearance and a disappearance of forbidden

words of mimetic trajectories (Fig. 5.8E).

We introduce three quantifications to analyze a gap between an original and an

artificial systems. The three quantifications are machine learning basins, symbolic dy-

namics, and a statistics of correlation dimension (Fig. 5.2D2). Machine learning basins

are calculated from |H . Symbolic dynamics and the statistics of correlation dimension

estimations are calculated from a subset of |H . The points in the subset approach an

identical attractor.
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A shift map  
Equivalent?

Difficult

Original system
(Start)

Artificial system
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Equivalent?

Equivalence 
(phase space)
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A space of symbols
(Original)

A space of symbols
(Artificial)

A

B

C D

E

Figure 5.9 : A conceptual diagram of why (A and B) and how (C to E) to conduct a symbolic analysis

(Figs. 5.2D2 and 5.8). A. In phase space, a mimetic trajectory coincides with an original trajectory. B.

The coincidence makes it difficult to spot a difference between an original and an artificial systems. C.

A shift map encodes a time series into a sequence of symbols. Symbolic analysis is concerned with the

dynamics of the time series in a space of symbols. D. A shift map, which allows an original system having

an equivalence between the dynamics in phase space and that in a space of symbols, is applied to both

the original and the mimetic trajectories. E. A comparison of symbolic dynamics between original and

mimetic trajectories provides insights into a relationship between an original and an artificial systems.

5.4.3.1 Machine learning basins

The basin of the Hénon map is in a two-dimensional phase space, which can be visualized

from the (x,y)-plane. As initial points (ωωω0) of the Hénon map travel through BH , the

dynamics of original trajectories defines original basins (Fig. 5.8D). As initial points

(ννν0
P ) travel through an identical phase space to which original basins correspond (BH),

the dynamics of mimetic trajectories defines machine learning basins (Fig. 5.8E).

Since ννν0
P is one of the three types of initial conditions of an artificial system (Fig. 5.1

and Eq. 5.2), a machine learning basin is a basin of a solution [143] or a state [257],

rather than a basin of attraction [3, 353, 398]. A basin of a solution or a state is the set

of initial conditions that approach an identical attractor [143, 257]. However, a basin

of attraction is the largest open set of phase space whose points have a neighborhood

approaching an identical attractor [3, 353, 398].

Our results will show that machine learning basins alter original ones. To find the

reasons to the results, we conduct symbolic and statistical analysis on original and

mimetic trajectories. To achieve it, we need to introduce methods related to symbolic
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Figure 5.10 : Stable and unstable manifolds to locate the critical points of the Hénon map (Fig. 5.2D2).

Those points define a shift map that achieves an equivalence between the dynamics in phase space and

that in a space of symbols (Fig. 5.9C). The “Segplot” algorithm [406] is used to draw the stable and the

unstable manifolds of the fixed point P0 = (0.884,0.884). The parabola-like curves (vertical) represent

the stable manifold. The curves (horizontal) that looks like the Hénon map represent the unstable

manifold. They coincide with the Hénon map in phase space. The tangencies between the stable and

the unstable manifolds define four critical points. A line that connects those four points divides phase

space into two segments being marked with “0” and “1”, respectively.

and statistical analysis.

5.4.3.2 Climate of symbolic dynamics

Fig. 5.9 schematizes the idea of symbolic dynamics and how to translate a trajectory

to its symbolic sequence. If an original system has analytical formulas, then a shift

map that preserves nonlinear dynamics of the system can be derived by locating critical

points. We then apply an identical shift map to mimetic trajectories.

When it comes to the Hénon map, You, Kostelich, and Yorke [406] utilize the tan-

gencies between the stable and the unstable manifolds of a fixed poin−P0≈(0.884,0.884)

to locate the critical points. Those points define a shift map being one-to-one with

the Hénon map [143, 406]. Fig. 5.10 outlines the stable and the unstable manifolds of

P0. The two manifolds segment a phase space into two parts, which are marked as “0”



Inherent signatures of machine behaviors 152

and “1” in Fig. 5.10. Here, the partition line is defined by four critical points, which

correspond to the tangencies between the stable and the unstable manifolds (Fig. 5.10).

From the left to the right of the partition line (Fig. 5.10), those critical points are C1,

C2, C3,and C4, respectively. Their values satisfy

C1 = (Cx1 ,C
y
1 )≈ (0.986,−0.012),C2 = (Cx2 ,C

y
2 )≈ (1.121,0.032),

C3 = (Cx3 ,C
y
3 )≈ (1.724,−0.118),C4 = (Cx4 ,C

y
4 )≈ (1.780,−0.097).

where Cxi is the x−coordinate of Ci with i= 1, · · · ,4, and Cyi is the y−coordinate of Ci.

The partition line defines a shift map via

(x,y) = δH(x,y) =



“0” if x < Cx1 and y < Cy1

“1” if x < Cx1 and y ≥ Cy1

“0” if Cxi ≤ x < Cxi+1 and y <
(x−Cxi )(Cyi+1−C

y
i )

(Cxi+1−C
x
i )+Cyi

“1” if Cxi ≤ x < Cxi+1 and y ≥ (x−Cxi )(Cyi+1−C
y
i )

(Cxi+1−C
x
i )+Cyi

“0” if x≥ Cx4 and y < Cy4

“1” if x≥ Cx4 and y ≥ Cy4

(5.14)

The point above the partition line is encoded with “1”, otherwise, “0” is encoded.

A trajectory
{
(xn,yn)

}
is translated to a symbolic sequence

{
δH(xn,yn)

}
according

to Eq. (5.14). For example, the symbolic sequence of a trajectory (0,0)→ (1.4,0)→

(−0.56,1.4)→ (1.5064,−0.56)→ (−1.1037,1.5064) is “11101” since δH(0,0) = 1, δH(1.4,0) =

1, and so on.

We have introduced how to conduct symbolic analysis. We then need to introduce

a new quantification based on symbolic dynamics. The quantification is the climate

of symbolic dynamics, which is related to the statistics of k−words. A k−word is

consecutive k words of a symbolic sequence. For example, the symbolic sequence “11101”

has three different 2−words, “11”, “10”, and “01”. The climate of symbolic dynamics is

based on a dataset that records symbolic sequences and their k−words.

Fig. 5.11 schematizes how a dataset is created for a calculation of the climate of sym-}NS
i=1

(Fig. 5.11D).bolic dynamics. Initial points are chosen from a set
{
ννν0

P = ωωωi,H ∈ BH
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Figure 5.11 : A workflow of a calculation of the climate of symbolic dynamics (Figs. 5.2D2 and 5.8).

Procedures A to C are consistent with the procedures in Fig. 5.8 for collecting system-level behaviors.

D. Taken an arbitrary point νννP0 = ωωωi,H as initial conditions, the artificial system ASH synthesizes a

mimetic trajectory TrjHi . Here, i = 1,2, · · · ,NS with NS = 1,000, and represents the index of mimetic

trajectories. E. The initial points are chosen in this way. Taken an arbitrary point νννP0 =ωωωi,H as initial

conditions, the original system (Eq. F3) approaches the Hénon map, and the artificial system ASH

approaches the ML-mimetic attractor MAH . F. Eq. (5.14) translates an individual trajectory (TrjHi ) to

a symbolic sequence S Si. A dictionary, R F ki , saves an individual k−word as a key. The value of the

key is the relative frequency of the corresponding k−word among S Si. As i increases from 1 to NS ,

one can calculate the relative frequency of the value of a given k−word among
{

S Si
}Ns

i=1. The climate

of symbolic dynamics is concerned with the statistics of that relative frequency.

An artificial system then synthesizes NS mimetic trajectories as νννP0 is varied (Fig. 5.11E).

Here, NS = 1,000 is the total amount of initial points for a calculation. The set{
νννP0 = ωωωi,H ∈ BH

}NS
i=1

satisfies two properties. An arbitrary point ωωωi,H in the set leads

the original system (Eq. F3) to approach the Hénon map, and also leads the artificial

system (ASH) to approach an identical ML-mimetic attractor MAH (Fig. 5.11E).

An individual mimetic trajectory TrjHi is then translated into a symbolic sequence

S Si via Eq. (5.14). For each S Si, a dictionaryR F ki is created. The key of the dictionary

is individual k−words, and the value is the relative frequency of the corresponding

k−word. The subscript i represents the index of a mimetic trajectory. The superscript
k represents the length of a k−word. For example, the dictionary of 2-words of the

symbolic sequence “11101” is
{
“11” : 2

4 ; “10” : 1
4 ; “01” : 1

4
}
. By varying initial points NS

symbolic sequences
{

S Si
}NS
i=1

and NS dictionaries
{
R F ki

}NS
i=1

are collected.
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A two-dimensional dataset
{
R F ki

}NS
i=1

is thus created. The first dimension saves

information about the relative frequency of an individual k−word among all k−words

for a given S Si. A given key of a given R F ki represents the first dimension. For example,

for “11101” , the relative frequency of “11” is 2
4 . As i changes from 1 to NS , an individual

k−word has NS values by searching through
{

R Fki
}Ns
i=1

. This contributes to a second

dimension, which saves information about NS corresponding relative frequencies of a

given key (k−word). The climate of symbolic dynamics is concerned with a statistic

of those NS relative frequencies. For example, a second dimension can appear if we

have NS dictionaries, and each dictionary records the relative frequency of the 2−word

“11”. A climate of symbolic dynamics is then about the statistics of those NS relative

frequencies of the 2−word “11”.

It is worth mentioning that we schematize the concept of the climate of symbolic

dynamics in an ML-mimetic attractor. However, a calculation is based on a series of

trajectories and their symbolic sequences (Fig. 5.11). A calculation of the climate of

symbolic dynamics is thus not limited to an artificial system. For the Hénon map,

we calculate its climate of symbolic dynamics to benchmark that of the ML-mimetic

attractor MAH . The calculations can be applied to other dynamical systems as well.

5.4.3.3 Forbidden words

We have collected a series of symbolic sequences (Fig. 5.11F). Forbidden words provide

another perspective to understand the mechanism of deterministic chaos [143]. A for-

bidden word is a k−word that the topology of deterministic chaos precludes [143]. A

forbidden word can be understood in the following way. An invariant topology is re-

sponsible for the organization of a chaotic attractor in phase space [143, 219]. A shift

map divides a phase space into L segments. For example, Eq. (5.14) divides phase

space of the Hénon map into two segments (Fig. 5.10). Under time evolution, redundant

permutations of the L segments emerge. On the one hand, after p iterations, a phase

space is divided into Lp segments since L words have Lp different permutations with

repetition. On the other hand, an attractor is invariant under iterations and bounded
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in a phase space by its topology. This suggests that if a phase space has a blank white

area to which an attractor does not visit, then a redundant permutation appears at a

suÿcien t large p. To be special, there exists a minimum p satisfying that a permutation

of length p is well defined in the blank area, however, the attractor has no definition

in the blank area. This results in a redundant permutation. The permutation is thus

prohibitive in the symbolic sequences of the attractor, which is the so-called forbidden

word [110, 143, 312]. For example, a 4-word “0000” is a forbidden word of the Hénon

map [151]. The stretching and folding mechanism prohibits the Hénon map to stay at

phase space that is marked with “0” for 4 consecutive iterations (Fig. 5.10). Therefore,

a difference in the appearance and the disappearance of forbidden words indicates in-

equivalent topologies [143]. Besides, a forbidden word has the least length to appear in

symbolic sequences, for it takes at least p iterations to allow the blank area being en-

coded with a redundant permutation. For example, the least length of forbidden words

in the Hénon map is four [151].

The climate of symbolic dynamics provides information about forbidden words. The

dataset
{
R F ki

}NS
i=1

collects k−words that appear in symbolic sequences. Those k−words

can be studied from two perspectives. (1) For arbitrary i and j, if two dictionaries, R F ki

and R F kj , have different keys, then S Si and S Sj have different forbidden words. This

suggests that ASH yields different ML-mimetic attractors from different initial points

νννP0 . (2) If two dictionaries, R F ki and R F kj , have identical keys, then we gather a new

data set, dict H=
{
R F k

i : i ∈ Kk}. Here, Kk is a set of indexes of those dictionaries that

have identical keys of length k. A set
{
S Si

k : i ∈ Kk} collects the symbolic sequences

that have identical keys. The sequences in the set thus have an identical appearance

and an identical disappearance of forbidden words of length k. In our experiment, the

climate of symbolic dynamics is conducted at k = 11. The reason is that the mimetic

attractor MAH firstly shows a difference with the Hénon map at k = 11.
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5.4.3.4 Statistics of correlation dimension estimations

For an analysis of mimetic trajectories, a natural idea is to investigate the statistics of

invariant measures. We therefore conduct a statistic of correlation dimension estimations

on those NS original and those NS mimetic trajectories (Fig. 5.11). Finding a scaling

regime is the key to correlation dimension estimations. We identify a scaling regime

based on NS original trajectories and take the following steps.

(1) For an individual trajectory, the “D2” algorithm is called from the TISEAN pack-

age [168]. We then save two pieces of information. They are the size (ε) of an

ε−neighborhood and the correlation dimension estimation Di
2(ε,m) under an ε.

Here, i is the index of original trajectories (Fig. 5.11), and m is an embedding di-

mension. We change m from 1 to 20 and let the minimum size r and the maximum

size R of ε−neighborhoods be 10−5 and 2.2 respectively.

(2) For an ε, NS estimations
{
Di

2(ε,m)
}NS
i=1

are thus collected at a given m.

(3) A statistic over each ε is conducted. At a given ε = ε′, we calculate the median of{
Di

2(ε′,m)
}NS
i=1

. Here, ε′ represents a given value of ε. As ε′ increases from r to R,

we connect the corresponding median of
{
Di

2(ε′,m)
}NS
i=1

, thus forming the median of

correlation dimension estimations. A scaling regime ε ∈ [ps,PS ] represents a plateau

of the median of correlation dimension estimations. Here, ps and PS are the lower

and the upper values of ε that the scaling regime corresponds to.

(4) A series of correlation dimension estimations ED2 =
{
Di

2(ε,m) : ε ∈ [ps,PS ]
}NS
i=1

are

collected. The cardinality of ED2 is ND2, representing the sampling size of the

statistics.

(5) A 99% confidence interval of the mean of ED2 is calculated and interpreted as the

estimations of the correlation dimension.

For the NS mimetic trajectories (Fig. 5.11), procedures (1) and (2) lead to NS correlation

dimension estimations. The scaling regime is then fixed to ε∈ [ps,PS ], which is identified

from the NS original trajectories. Finally, following procedures (4) and (5) yields an

estimation.
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Existing studies [168, 278] have applied the “D2” algorithm [168] to calculate cor-

relation dimension. However, our statistics are different. Hegger, Kantz, and Schreiber

[168] utilize only one trajectory for the estimation. However, we utilize NS different tra-

jectories, which approach an identical attractor. In our experiment, NS=1,000. Oberst

and Lai [278] propose a statistical approach for correlation dimension estimations as

well. However, the scaling regime is identified from only one trajectory. Besides, our

approach to find the scaling regime is different from that in [278]. We let ε, m, and i

increase for obtaining a statistical curve and then identify a plateau of the curve. For a

given ε, we calculate the median of
{
Di

2(ε,m)
}NS
i=1

. As ε increases, we then connect the

corresponding median. The scaling regime corresponds to a plateau of the connected

curve. Therefore, we conduct a statistic firstly, and then identify the scaling regime. Fi-

nally, we follow Oberst and Lai [278] and conduct a second statistics over the identified

scaling regime ε ∈ [ps,PS ] for an estimation.

The reasons for us to use NS trajectories are twofolds. A use of NS trajectories

is for reliable and comparable estimations as nonlinear time series analysis is applied.

No analytical formulas exist to describe how an artificial system works (Fig. 5.1 and

Tab. 5.2). Optimizations in a training process (Fig. 5.1B) are often without analytical

solutions [145, 218], which preclude analytical formulas in a prediction process (Fig. 5.1C,

Eq. 5.2). Although analytical formulas exist in original systems (Tab. 5.1), we apply

nonlinear time series analysis to both the original and the artificial systems for com-

parable results. The second reason is related to the way we find the scaling regime.

From NS trajectories, an alternative thought is to estimate the correlation dimension of

individual trajectories and then apply a statistic on those final estimations. However, in

our experiments, we observe that individual trajectories of an identical attractor have

a difference in the scaling regime, although most of areas overlap. The observation will

present in Fig. 5.16, which gives motivation for identifying the scaling regime firstly and

then conducting a statistics.
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Figure 5.12 : An extraction of governing equations from a time series (Fig. 5.2E). The SINDy algorithm
[53] is applied on a single trajectory and extracts governing equations by a sparse regression. Supposed

and actual behaviors are compared in the sense of measuring a closeness in governing equations.

5.4.4 Extraction of equations

We have introduced nonlinear time series analysis for comparing between an original

and an artificial systems (Figs. 5.2C and 5.2D). The comparison can also be based on an

extraction of the equations that govern the systems (Figs. 5.2E). To achieve it, we need to

introduce the methods of extracting governing equations from a trajectory (Figs. 5.2E).

Fig. 5.12 presents a use of the SINDy algorithm [53] to extract the governing equa-

tions of a time series. The SINDy algorithm [53] makes a sparse regression over a library

of known equations. The regression allows identifying the parameters of equations. In

our experiments, the library of equations includes the terms of individual original sys-

tems. For example, in experiments related to the Lorenz system, we allow the library

including the terms of the original system, x,y,z,xy,xz, and yz.

Two reasons exist to compare an extracted equation of an artificial system fffν |ννν
(Eq. 5.2) with that of an original system fffω (Eq. 5.1), rather than the ground truth

(Tab. 5.1). The SINDy algorithm is a data-driven approximation of a dynamical sys-

tem [303], which induces errors [63]. A comparison between extracted equations is to

mitigate the error that the SINDy algorithm induces. In addition, the comparisons

among trajectory-level behaviors, system-level behaviors, and approximations of gov-

erning equations together provide an insight into what matters for an artificial system

in mimicking deterministic chaos. Universal approximation theorems tell that fffν |ννν is

close to fffω within arbitrarily small errors. A comparison between extracted equations

shows the closeness between fffν |ννν and fffω in the sense of governing equations.
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Table 5.3 : Summary of experiments that collect machine behaviors with reference to Figs. 5.2C, 5.2D1

and 5.2D2. The experiments examine a gap between supposed and actual behaviors as the initial

conditions of artificial systems are varied. The label • is related to Methods, and the label � is related

to the hypothesis to be validated.

Original Experiments Descriptions

Rössler Fig. 5.5

• The original system yields two chaotic trajectories that approach

different attractors.

• The artificial system is fed with the two chaotic trajectories, re-

spectively, and takes two initial points to mimic the coexisting

attractors that the original system approaches.

� A coincidence in one of coexisting attractor is incapable of showing

an equivalence between an original and an artificial systems.

Lorenz Figs. 5.6 and 5.7

• The original system yields enormous chaotic trajectories that ap-

proach an identical basin.

• Four types of artificial systems are fed with those chaotic trajec-

tories (inputs), respectively, and take the T−th point of the input

to synthesize equal amount of mimetic trajectories as inputs.

� A coincidence in one types of return maps is incapable of showing

an equivalence between an original and an artificial systems

� Under the coincidence, an artificial system can develop trajectory-

level behaviors.

Hénon Figs. 5.8 to 5.11

• The original system yields one chaotic trajectory.

• The artificial system is fed with the unique trajectory, and syn-

thesizes mimetic trajectories from enormous initial points. Taken

those points as initial conditions the original system has fractal

basins.

� A coincidence in chaotic trajectories is incapable of concluding a

similar sensitive dependence on initial conditions.

5.4.5 Summary of experiments

Our experiments are conducted in the Rössler attractor, the Lorenz attractor, and the

Hénon map for the study of the trajectory-level and system-level behaviors (Fig. 5.2).
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Tab. 5.3 summarizes the methods and the hypotheses related to the three experiments.

For the Rössler system, Eq. (F1), the experiments use two artificial systems that

satisfy the echo state property (Tab. 5.2) and adopt a classical reservoir computing

paradigm (Figs. 5.4A and 5.4B). The main purpose is to investigate how an artifi-

cial system (Eq. 5.2) behaves as its mimicked system has co-existing chaotic attractors

(Tab. 5.3). Here, our focus is on the trajectory-level behaviors. The results will provide

insights into the following problem. Let assume that an original system has two coex-

isting chaotic attractors. If we feed an artificial system with one of the attractors, then

which of the two original attractors does a mimetic trajectory approach (Tab. 5.3)?

For the Lorenz system, Eq. (F2), the experiments use four artificial systems. They

represent a satisfaction and a dissatisfaction of the echo state property and an adoption

of a classical reservoir computing paradigm and an adoption of our newly proposed

paradigm with a time delay term (Fig. 5.4 and Tab. 5.2). The main purpose is to

investigate how artificial systems behave under varying inputted trajectories, Type I

initial conditions. The trajectories have an identical governing equations and approach

an identical attractor, thus sitting in an identical basin. Here, our focus is on the system-

level behaviors responding to a variation in original trajectories (Fig. 5.6). The results

will provide insight into the problem. Which does matter for artificial chaos, a fitting of

a chaotic trajectory, the approaching of a chaotic attractor, or an approximation of the

underlying equations (Tab. 5.3)?

For the Hénon map, Eq. (F3), the experiments use one artificial system, which

satisfies the echo state property (Tab. 5.2) and adopts a classical reservoir comput-

ing paradigm (Figs. 5.4A and 5.4B). The main purpose is to investigate how an artificial

system behaves under varying initial points, Type II initial conditions. Here, our focus is

on the basin boundaries and the climate of symbolic dynamics. The results will provide

insight into the problem. What properties that an artificial system preserve do lead to

an equivalence between an original and an ML-mimetic attractors (Tab. 5.3)?
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5.5 Experimental results

We have described three experiments that collect the data about machine behavior

(Fig. 5.2B). The three experiments are conducted on the Rössler and the Lorenz systems

and the Hénon map (Fig. 5.2A), respectively. Three types of initial conditions have been

identified (Fig. 5.1). In theory, an artificial system is supposed to be sensitive to Type II

initial condition (initial point, νννP0 ), however, be insensitive to Type I (original trajectory,

ωωω) and Type III (initial network states, XXX0 and XXXP
0 ) initial conditions (Eq. 5.2). In

practice, machine behaviors, related to the behaviors of an artificial system under varying

initial condition, need to be investigated.

A behavior that an artificial system presents has two intrinsic properties. The one is

supposed behavior which relies on an original system. The other one is actual behavior.

Our narratives thus include two parts. The first part presents supposed behavior that

we observe from an original system. The second part presents actual behavior that we

observe from an artificial system. A summary is then followed. Finally, supposed and

actual behaviors are compared.

5.5.1 Trajectory-level machine behaviors

The first experiment is conducted on the co-existing chaotic Rössler attractors. Fig. 5.13

shows the supposed and the actual behaviors.

Supposed behaviors. The Rössler system approaches two attractors (Fig. 5.13A),

R0 and R1. The return map RMoR0 of R0 and that RMoR1 of R1 are topologically

equivalent and symmetric [313] (Fig. 5.13E). The symmetry is in a sense that reversing

the branch order of RMoR0 leads to RMoR1 . The maximum is the critical point of

RMoR0 (Fig. 5.13E). The point segments the return map to a left and a right branches.

The left side of the maximum corresponds to a left branch, and the right side of that

corresponds to a right branch. The order of branches represents the topological structure.

Also, the left branch is shorter than the right one. However, RMoR1 is a symmetrically
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Figure 5.13 : Trajectory-level machine behaviors in mimicking the coexisting Rössler attractors. Pro-
cedures A to C are consistent with the procedures that conduct trajectory-level experiments (Fig. 5.5).

D. A phase plot of attractors is used to visualize a difference between an original and an ML-mimetic

attractors. D1 is a phase plot of MAR0
R0
and MAR1

R0
. D2 is a phase plot of MAR0

R1
and MAR1

R1
. E.

Return maps are calculated. E1 outlines the return maps of MAR0
R0
and MAR1

R0
, marked as RMaR0

R0
and

MAR1
R0
, respectively. E2 outlines the return maps of MAR0

R1
and MAR1

R1
, marked as RMaR0

R1
and RMaR1

R1
,

respectively. Here, RMoR0 and RMoR1 are return maps of R0 and R1, respectively.

reversed organization. Its critical point is the minimum (Fig. 5.13E). The left side of

the minimum corresponds to a left branch, and the right side of that corresponds to a

right branch. Reversing the left branch of RMoR1 leads to the righ branch of RMoR0 .

Similarly, the right branch of RMoR1 is a reversed left branch of RMoR0 .

Actual behaviors. The artificial system ASR0 synthesizes two ML-mimetic attractors

(Fig. 5.13D1), MAR0
R0

and MAR1
R0

, to mimic R0 and R1, respectively. Similarly, ASR1

synthesizes two ML-mimetic attractors (Fig. 5.13D2), MAR0
R1

and MAR1
R1

, to mimic R0

and R1, respectively. The return map of MAR0
R0

and that of MAR1
R0

are RMaR0
R0

and RMaR1
R0

(Fig. 5.13E1), respectively. The return map of MAR0
R1

and that of MAR1
R1

are RMaR0
R1

and

RMaR1
R1

(Fig. 5.13E2), respectively.

The two artificial systems, ASR0 and ASR1 (Tab. 5.2), fail to preserve the supposed

behaviors (Fig. 5.13E). Neither ASR0 nor ASR1 is capable of preserving the symmetric
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structure of RMoR0 and RMoR1 (Fig. 5.13E). For ASR0 , it breaks the structures of

both RMoR0 and RMoR1 (Fig. 5.13E1). In the Rössler system, RMoR0 is continuous

in its phase space (Fig. 5.13E1). However, for ASR0 , its return map RMaR0
R0

presents

discontinuity, which is shown by a gap in Fig. 5.13E1. Besides, RMoR1 has an obvious

longer left branch than the right branch. Nevertheless, RMaR1
R0

has an almost equal

length related to left side and right side branches (Fig. 5.13E1). However, the deviations

between the original and the artificial ASR0 systems are diÿcult to be recognized in the

phase plot of attractors (Fig. 5.13D1).

For ASR1 , new patterns are observed. In the phase plot of attractors (Fig. 5.13D2), a

limit cycle emerges when ASR1 is initialized from the initial point νννP0 =ωωωR0
T (Fig. 5.13C).

The point νννP0 approachesR0 in the Rössler system via Eq. (F1) (Fig. 5.5). The differences

between the original and the ML-mimetic attractors are also evident in the plot of

return maps (Fig. 5.13E2). A circle is observed from RMaR0
R1

, indicating the incapacity

of ASR1 to mimic R0. Although RMaR1
R1

follows the pattern of the left branch of RMoR1 ,

deviations exist in the right branch of RMoR1 . The deviation is shown by a divergence

in the rightmost edge of RMaR1
R1

(Fig. 5.13E2).

Summary. From the trajectory-level experiment, we observe differences between the

original and the artificial systems in producing coexisting attractors (Figs. 5.13D and

5.13E). The artificial systems, ASR0 and ASR1 , are incapable of simultaneously mimick-

ing the coexisting attractors (Figs. 5.13E1 and 5.13E2). Also, for comparing trajectory-

level behaviors between an original and artificial systems, a phase plot of return map is

a better candidature than a phase plot of an attractor (Figs. 5.13D and 5.13E).

5.5.2 Basin-in-one-out machine behaviors

The second experiment is conducted on the Lorenz attractor whose basin is unbounded

in IR3. Fig. 5.14 presents the supposed and the actual behaviors.
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Figure 5.14 : Seven representative cases of system-level machine behaviors in mimicking the Lorenz
attractor. Procedures A to E are consistent with the procedures that conduct a basin-in-one-out ex-

periment (Figs. 5.6 and 5.7). Cases A and B: A mimetic trajectory stabilizes at a fixed point, which

can be either related (A) or unrelated to (B) the fixed point of an original system. Case C: A mimetic

trajectory stabilizes at a limit cycle. Case D: A mimetic trajectory presents abrupt changes in the am-

plitude of the time series. Case E: A mimetic trajectory carries the transients of an original trajectory.

Case F : A mimetic trajectory breaks the symmetrical structure of an original attractor. Case G: A

mimetic trajectory seemingly produce an original return map, however, a change of Poincaré section

tells the deviations between the original and the mimetic trajectories.
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Supposed behaviors. All initial conditions approach the Lorenz attractor. The re-

turn map that Eq. (5.12) defines has two branches (Fig. 5.14E1). Here, the minimum rep-

resents the critical point. The left side of the minimum defines a left branch (Fig. 5.14E1).

The right side of the minimum defines a right branch (Fig. 5.14E1). The return map

that Eq. (5.13) defines has four branches (Fig. 5.14E2), which are isolated in the phase

plot of return maps. The four branches are positioned in the upper left, the upper right,

the lower left, and the lower right (Fig. 5.14E2), respectively.

Actual behaviors. The four artificial systems, ASAL , ASSL, ASAN , and ASSN , develop

individual traits (Fig. 5.14) as Type I initial condition travels through the basin of the

Lorenz attractor (Fig. 5.6). In advance of reporting the comprehensive comparisons

of different artificial systems, we reveal the differences between the supposed and the

actual behaviors in the seven representative cases that Fig. 5.7 outlines. According to

the steady state dynamics of ML-mimetic attractors (Fig. 5.14), we classify six types

of patterns. Cases A and B (Fig. 5.14) represent Type I pattern, converging to a fixed

point. Case C (Fig. 5.14) represents Type II pattern, converging to a limit cycle. Case

D (Fig. 5.14) represents Type III pattern, evolving with bursts. Case E (Fig. 5.14)

represents Type IV pattern, carrying transients. Case F (Fig. 5.14) represents Type V

pattern, breaking symmetry. Case G (Fig. 5.14) represents Type VI pattern, specious

behavior. The six types of patterns satisfy the following features, respectively.

5.5.2.1 Different patterns in machine behaviors

Type I pattern: converging to a fixed point. Cases A and B in Fig. 5.14 show two

stabilizing mechanisms that an artificial system approaches a fixed point. For case A

(Fig. 5.14), a mimetic trajectory approaches a fixed point (columns C and D in Fig. 5.14).

The point coincides with FL, one of the three fixed points of the Lorenz system. For case

B, a mimetic trajectory approaches a fresh fixed point (columns C and D in Fig. 5.14).

The point is unrelated to the dynamics of the Lorenz system. The return map also shows

the incapacity of mimicking the Lorenz attractor (columns E1 and E2 in Fig. 5.14). The
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steady states of cases A and B are a single point. However, the return maps we present

in cases A to C (Fig. 5.14) are not calculated on the steady states. The calculations

are on the first 15,000 points for case A and the first 30,000 points for cases B and C.

A return map with transients is to show that a deviation from the return map of an

original system could cause Type I or Type II pattern.

In case A (Fig. 5.14), the mimetic trajectory shows a discontinuity in the two types

of return maps that Eqs. (5.12) and (5.13) define. In column E1 of case A (Fig. 5.14),

the right branch of the return map is split into two isolated segments. In column E2 of

case A (Fig. 5.14), the return map of the mimetic trajectory has five isolated branches.

However, the return map of the Lorenz attractor has and only has four branches (case A,

Fig. 5.14E2). This suggests that a forbidden branch emerges from the mimetic trajectory.

In case B, the mimetic trajectory presents a deviation in the left branch related to the

return map that Eq. (5.12) defines (column E1 of case B in Fig. 5.14). The observation

is that an additional branch occurs in the left branch. Besides, The return map that

Eq. (5.13) yields shows a different curvature in the upper left branch between the original

and the mimetic trajectories (column E2 of case B in Fig. 5.14).

Type II pattern: converging to a limit cycle. Case C in Fig. 5.14 shows

another mechanism that an artificial system stabilizes at steady states. In this pattern,

a mimetic trajectory approaches a limit cycle that follows apparently chaotic behaviors

durning transients (columns C and D of case C in Fig. 5.14). An abrupt switch to a limit

cycle has occurred to an artificial system presented in [163, 292] as well. In case C, the

return map that Eq. (5.12) defines has deviations in the left branch. Those deviations

scatter among the left branch (column E1 of case C in Fig. 5.14), rather than forming

a new branch as shown in case B (column E1 of case B in Fig. 5.14). In case C the

return map that Eq. (5.13) defines further demonstrates a deviation. The way that the

lower right branch of the return map (Eq. 5.13) bends is completely different between

the original and the mimetic trajectories (column E2 of case C in Fig. 5.14).

For Type I and II patterns, a mimetic trajectory eventually fails to approach the
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chaotic Lorenz attractor. The failure can be identified from a phase plot (column C

of cases A to C in Fig. 5.14) under enough iterations. Remaining patterns visit some

neighborhoods of the Lorenz attractor, however, develop new behavior. It is diÿcult to

show a deviation solely from a phase plot (column C of cases D-G in Fig. 5.14). Return

maps become a crucial tool for showing a deviation.

Type III pattern: evolving with bursts. For case D, a mimetic trajectory

exhibits bursting behaviors in the time series, evidenced by an abrupt change in the

amplitude of the z−component (column D of case D in Fig. 5.14). In case D, a return

map of a mimetic trajectory has outliers (column E of cases D in Fig. 5.14), which are

away from branches that an original return map shows. For example, the return map that

Eq. (5.12) defines has two outliers away from the left and the right branches of the Lorenz

attractor (column E1 of case D in Fig. 5.14). The return map that Eq. (5.13) defines

has an obvious outlier between the upper left and the upper right branches (column E2

of case D in Fig. 5.14). Those outliers occur in an area that the topology of the Lorenz

attractor prohibits a return map from visiting. The appearance of a forbidden event

indicates that a mimetic trajectory alters invariant property of deterministic chaos.

Type IV response: carrying transients. For case E, the artificial system ASAN
has an obvious feature in the phase plot of attractors. The ML-mimetic attractor visits

the transients of the Lorenz attractor. Two holes exist as the Lorenz attractor is pro-

jected onto the (x,z)-plane (column A of case G in Fig. 5.14). The transients correspond

to the dynamics that a trajectory spires out of the holes. The initial conditions around

FL or FR cause trajectories taking a bit long time to attenuate transients [213]. An ob-

servation can be found in the phase plot of the Lorenz attractor related to column A of

cases A, B, E and F in Fig. 5.14. In case E the mimetic trajectory, however, recurrently

spires in the left hole (column C of case E in Fig. 5.14). This indicates that ASAN is

incapable of distinguishing between the transients and the steady-state dynamics.

In addition, case E shows that a choice of the Poincaré section is a decisive factor

in identifying a deviation between an original and an artificial systems. It is diÿcult to
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identify a deviation from the return map that Eq. (5.12) defines (column E1 of case E in

Fig. 5.14). However, the return map that Eq. (5.13) defines shows an obvious deviation

in the curvature of the lower right branch (column E2 of case E in Fig. 5.14).

Type V pattern: breaking symmetry. For case F, the artificial system ASSL has

a feature evidenced in the return maps. The mimetic trajectory breaks the symmetrical

topology of the Lorenz attractor. The violation of symmetry can be seen from the two

types of return maps (Eqs. 5.12 and 5.13). For the mimetic trajectory, its return map

that Eq. (5.12) defines has three branches (column E1 of case E in Fig. 5.14), two left

and one right branches. However, the Lorenz system uses identical dynamical template

(the stretching and the tearing) to yield the left (x< 0) and the right (x> 0) sides as the

attractor is projected onto the (x,z)−plane [56, 143]. The return map of the mimetic

trajectory, however, has two different structures at where x < 0 and x > 0 (column E1

of case F in Fig. 5.14).

In case F the return map that Eq. (5.13) defines is also capable of showing the de-

viations between the original and the artificial systems. The lower right branch has

different curvatures between the two systems (column E2 of case F in Fig. 5.14). This

further indicates that ASSL synthesizes a mimetic trajectory by following a new topolog-

ical mechanism, instead of preserving the topology of the Lorenz attractor. However,

Type V pattern is diÿcult to be identified by a phase plot of the attractors or a plot of

the time series (columns C and D of case F in Fig. 5.14).

Type VI pattern: specious behavior. For case G, the mimetic trajectory is the

best approximation of the Lorenz attractor among all seven cases (Fig. 5.14). It has the

following features. (1) The mimetic trajectory coincides with a trajectory of the Lorenz

system in a phase plot and a time series. A phase plot is incapable of showing a difference

between the original and the artificial systems (column C of case G in Fig. 5.14). (2)

The time series of the mimetic trajectory is bounded by that of the Lorenz attractor

(column D of case G in Fig. 5.14). (3) The return map that Eq. (5.12) defines is diÿcult

to indicate a deviation between the original and the mimetic trajectories (column E1
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of case G in Fig. 5.14). A coincidence in one return map is thus observed. (4) For the

mimetic trajectory, its return map that Eq. (5.13) defines follows the pattern of that

of the Lorenz attractor in the upper left, the upper right, and the lower left branches

(column E2 of case G in Fig. 5.14). (5) A slight deviation occurs in the rightmost edge

of the lower right branch (column E2 of case G in Fig. 5.14).

In case G, a mimetic trajectory almost follows the return map of the Lorenz attractor

(columns E1 and E2 of case G in Fig. 5.14). However, deviations exist in the return map

(column E2 of case G in Fig. 5.14) that Eq. (5.13) defines. This suggests that the

artificial system ASSN is inequivalent to the Lorenz system. Case G also indicates that

an optimal Poincaré section exists for a topological analysis of artificial chaos, although

the dynamics of an original system is free from a choice of a Poincaré section. The

reason is that the deviations in some Poincaré sections are diÿcult to be identified, such

as Eq. (5.12) for the return map shown in column E1 of case G in Fig. 5.14.

We have shown the effect of νννP0 on fffν |νννP (Eq. 5.2) by letting νννP0 travel through the

basin of the Lorenz attractor (Figs 5.6 and 5.7). The six patterns (Fig. 5.14) have been

shown in a phase plot, the time series, and the two types of return maps that Eqs (5.12)

and (5.13) define. In the following subsection, we shall compare the behaviors of an

identical artificial system under varying Type I initial conditions for understanding the

effect of ωωω on fffν |νννP (Eq. 5.2)

5.5.2.2 Sensitive dependence on Type I initial conditions

Cases B, D, and F use an identical artificial system ASSL to synthesize mimetic trajecto-

ries (column B in Fig. 5.14). Cases A and G use ASSN to synthesize mimetic trajectories

(column B in Fig. 5.14). We therefore take those five cases to exemplify the effect of ωωω

on fffν |νννP (Eq. 5.2).

For cases B, D, and F , their sole difference is the original trajectory ωωω that ASSL is fed

with (column A in Fig. 5.14, Eq. 5.2). The original trajectories in cases B, D, and F are

yielded by the Lorenz system, cf. Eq. (F2), however, different initial conditions are taken
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(Eq. 5.1). For cases B and F , the corresponding original trajectories ωωω exhibit transients

(Fig. 5.14). For case D, the original trajectory ωωω has no obvious transients (Fig. 5.14).

However, the mimetic trajectories in cases B, D, and F exhibit three different patterns.

This shows that ASSL responses individually to Type I initial condition. Therefore, ASSL
is sensitive to Type I initial conditions, which behaves against the supposed behavior

(Section 5.2).

On the other hand, a common feature is observed among the three cases. In phase

plot, the mimetic trajectory of case D visits a small neighborhood of the fixed point

that ASSL synthesizes in case B (column C of cases B and D in Fig. 5.14). The small

neighborhood is far away from the Lorenz attractor, and the mimetic trajectory of case

D exhibits an abrupt change in the amplitude for visiting the neighborhood. Besides,

a deviation is only observed at x < 0 for cases B and D as Eq. (5.12) is applied for

a return map of corresponding mimetic trajectories (column C of cases B and D in

Fig. 5.14). The asymmetric way to deviate from the Lorenz attractor indicates that the

mimetic trajectories of cases B and D break the symmetry as well. A choose of case F

to represent Type V pattern is because the violation of symmetry in case F is the most

obvious among the three cases (column E1 of cases B, D, and F in Fig. 5.14).

Another artificial system ASSN has similar behaviors related to the sensitive depen-

dence on Type I initial conditions. For cases A and G, ASSN is fed with an identical

attractor and an identical equation, cf. Eq. (F2), however, different original trajectories.

In case A the mimetic trajectory converges to a fixed point (case A in Fig. 5.14), whereas

the mimetic trajectory of case G almost follows the return map of the Lorenz attractor

(case G in Fig. 5.14). The individual behaviors in cases A and G indicate that ASSN is

sensitive to Type I initial condition. The observation is against the supposed behavior

that fffν |νννP should be insensitive to ωωω. The incapacity to preserve the insensitivity fur-

ther demonstrates that the ML-mimetic attractor of case G exhibits a specious behavior

in mimicking the Lorenz attractor. Moreover, for cases A and G a common feature exists

in the lower right branch of the return map that Eq. (5.13) defines (column E2 of cases

A and G in Fig. 5.14). At that branch, the mimetic trajectories of cases A and G form
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an upward curve to deviate from the Lorenz attractor (column E2 of cases A and G in

Fig. 5.14), as opposed to a downward curve in cases B to F (column E2 of cases B to

F in Fig. 5.14).

Summary. From the basin-in-one-out experiment, we observe six types of patterns

in machine behaviors among seven cases (Fig. 5.14). The original trajectories that an

artificial system is fed with approach an identical attractor and underly an identical

equation via Eq. (F2). Results show that the artificial systems are sensitive to the

original trajectories and develop unique features in mimicking the Lorenz attractor.

The artificial systems, ASAL , ASSL, ASAN , and ASSN , exhibit a deviation from the Lorenz

system. The deviations can be identified either from a phase plot of attractors in IR3,

the time series, or the return maps (Fig. 5.14). Moreover, ASSL has common behavioral

features related to a violation of the symmetry of the Lorenz attractor (column E1 of

cases B, D, and F in Fig. 5.14). Also, ASSN has common features related to the way to

deviate from an original return map (column E2 of cases A and G in Fig. 5.14).

5.5.3 One-in-basin-out machine behaviors

The third and the last experiment is conducted on the Hénon map whose basin is fractal

and visible in a two-dimensional space. Previous experiments on the Rössler (Fig. 5.13)

and the Lorenz systems (Fig. 5.14) are analyzed based on qualitative behaviors. However,

the following one-in-basin-out experiment (Fig. 5.8) are analyzed based on quantitative

behaviors. The quantifications include machine learning basins (Fig. 5.15), the statistics

of correlation dimension estimations (Fig. 5.16), and the climate of symbolic dynamics

(Fig. 5.17). Machine learning basins quantify the sensitive dependence of an artificial

system, ASH , on Type II initial conditions (Fig. 5.8). The statistics of correlation

dimension estimations quantify a statistical difference between an original and an ML-

mimetic attractors. Moreover, the climate of symbolic dynamics quantifies a statistical

difference in symbolic sequences for explaining observations in machine learning basins

and the statistics of correlation dimension estimations.
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Figure 5.15 : System-level machine behaviors in mimicking the basins of the Hénon map. Procedures
1 to 5 are consistent with the procedures that conduct a one-in-basin-out experiment (Fig. 5.8). A. The

basins of the Hénon map are calculated. Two types of behaviors exist. One type of points attract to

infinity. The other type of points attract to the Hénon map. B. An original trajectory that approaches

the Hénon map is fed into an artificial system ASH . C. A mimetic trajectory that approaches the ML-

mimetic attractor, MAH (Fig. 5.11), is synthesized. In phase space, MAH coincides with the Hénon

map. D. Machine learning basins are calculated. Two types of behaviors exist. One type of points

approach a fixed point (-422.7206, -41.8639). The other type of points approach MAH . The percentage

of points that approach a fixed point via the original and the artificial systems is 18.75%. The percentage

of points that approach the Hénon map and MAH via corresponding systems, respectively, is 22.31%.

Under Eq. (5.14), a phase space is encoded with the two symbols “0” and “1” for a symbolic analysis

of the Hénon map and MAH .

5.5.3.1 Machine learning basins

Consistent with previous reports in the Rössler and the Lorenz systems, we first reveal

observations in the Hénon map for the analysis of supposed behaviors, and then reveal

observations in ASH for the analysis of actual behaviors. Finally, actual behaviors are

benchmarked against supposed behaviors.

Supposed behaviors. Fig. 5.15A shows the basins of the Hénon map. The original

basins exhibit three features. (1) Two different attractors exist. The one initial poij ts

in |H attract to the Hénon map (Fig. 5.15B). The others attract to infinity. Among

20482 points (Fig. 5.8), the percentage of points to the Hénon map is 69.54%, whereas
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that to infinity is 30.46% (Fig. 5.15). (2) The basin of the Hénon map contains the map

itself. (3) Fractal basin boundaries exist to separate the two types of dynamics [3].

Actual behaviors. Fig. 5.15D shows the machine learning basins of the ML-mimetic

attractor MAH (Fig. 5.15C). No obvious deviations exist between the original and the

ML-mimetic attractors (Figs. 5.15B and 5.15C). However, the original and the machine

learning basins are different (Figs. 5.15A and 5.15D). The machine learning basins exhibit

the following four features. (1) Two different attractors exist. The one points attract

to MAH (Fig. 5.15C). The others attract to a fixed point (Fig. 5.15D). Among 20482

points (Fig. 5.8), the percentage of points to MAH is 34.02%, whereas that to the fixed

point is 65.98% (Fig. 5.15). (2) A basin of an ML-mimetic attractor is incapable of

containing the attractor itself in phase space. For example, MAH travels across its

own basin and the basin of the fixed point (Fig. 5.15D). (3) Basin boundaries become

more complicated than the original one (Figs. 5.15A and 5.15D). (4) Machine learning

basins are with tentacles, which are observed in high-dimensional systems due to twisted

coexisting attractors [413].

Comparisons between the original and the machine learning basins indicate that ASH

are inequivalent to the Hénon map (Eq. F3), although the original and the mimetic tra-

jectories coincide in a phase space (Figs. 5.15B and 5.15C). The sensitivity of the original

and the artificial systems to initial conditions are quantitatively different. The percent-

age of the points in BH , taken as initial conditions, which approach the Hénon map in

the original system and approach the ML-mimetic attractor in the artificial system, is

22.31% (Fig. 5.15) out of 20482 total points. The percentage of the points in BH , taken

as initial conditions, which attract to infinity in the original system and stabilize at the

fixed point in the artificial system, is 18.75% (Fig. 5.15) out of 20482 total points. The

percentage of the points in BH , taken as initial conditions, which approach the Hénon

map in the original system but stabilize at the fixed point in the artificial system, is

47.23% (Fig. 5.15) out of 20482 total points. The percentage of the points in BH , taken

as initial conditions, which attract to infinity in the original system but approach the
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ML-mimetic attractor in the artificial system, is 11.71% (Fig. 5.15) out of 20482 total

points. Most of points (47.23%) are supposed to approach the original chaotic attractor,

however, approach a fixed point. Also, 11.71% points do not belong to the basin of the

original chaotic attractor, however, approach the ML-mimetic attractor. Comparisons

between Figs. 5.15A and 5.15D indicate that ASH is sensitive to Type II initial condi-

tion, which agrees with the supposed behaviors. However, ASH quantitatively alters the

original basins.

In addition, the organization of an attractor in its basin is different between an origi-

nal and an ML-mimetic attractors. The Hénon map almost touches the basin boundary

in the original basins (Fig. 5.15A). However, the basin of the ML-mimetic attractor

is incapable of containing the attractor itself. The reason is that the ML-mimetic at-

tractor is a projection of network states along the matrix W out
opt (Figs. 5.1C and 5.4B).

However, the dimension of network states is not necessarily equal to the dimension of

an original attractor that an artificial system is designed to mimic. For example, for

ASH , the dimension of network states is 300 (Tab. 5.2), whereas the Hénon map is in

two-dimensional phase space (Tab. 5.1). Moreover, machine learning basins are unable

to preserve the fractal basin boundary of the original basins. Contrarily, octopuslike

basins [413] are observed in machine learning basins (Fig. 5.15D).

5.5.3.2 Statistics of correlation dimension estimations

We have seen the differences between the original and the machine learning basins.

An artificial system presents the sensitivity to Type II initial conditions, νννp0 (Eq. 5.2).

However, the artificial system is incapable of preserving the invariant measure, a basin

that quantifies the sensitivity to initial conditions. We then shall address the problem

why an artificial system alters the original basin. To achieve it, we conduct the statistics

of correlation dimension estimations. Fig. 5.16 presents the estimations of the original

and the ML-mimetic attractors.
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Figure 5.16 : A statistics of correlation dimension estimations to quantify a difference between the

Hénon map and MAH (Fig. 5.2D2). A. For the Hénon map, its correlation dimension estimations

Di2(ε,m) are presented as ε, m, and i increase. Here, ε is the size of an ε−neighborhood, m is the

embedding dimension, and i represents the index of an original trajectory. A scaling regime ε ∈ [ps,PS ]

with ps = 5.2214×10−4 and PS = 9.8475×10−2 is identified from trajectories that approach the Hénon

map. B. For MAH , its correlation dimension estimations Di2(ε,m) are presented as ε, m, and i increase.

Here, i represents the index of a mimetic trajectory. The scaling regime ε ∈ [ps,PS ] is applied for

an estimation of correlation dimension. Also, Sn = 645,000 estimations are in the scaling regime for

both the Hénon map and MAH . C. A boxplot is applied on corresponding Sn estimations, showing an

overlap. However, the mean and the median in the Hénon map are different from that in MAH .

Supposed behaviors. Fig. 5.16A shows a plateau ε∈ [ps,PS ] with ps = 5.221−×1−−4

and PS = 9.847−×1−−2. The plateau ε ∈ [ps,PS ] represents a scaling regime. There are

Sn=645,000 correction dimension estimations Di
2(ε,m) that fall into the scaling regime

(Fig. 5.16A). The statistics are conducted on those Sn correlation dimension estimations

Di
2(ε,m). A 99% confidence interval of the mean of those Sn estimations is D2 ∈CI99 =

[1.1976,1.1984] (Fig. 5.16A).

Actual behaviors. Fixing ε ∈ [ps,PS ] results in Sn correlation dimension estimations

of the ML-mimetic attractor MAH as well. A 99% confidence interval of the mean of

those Sn estimations is D2 ∈ CI99 = [1.2394,1.2403] (Fig. 5.16B).

Three differences exist in the correlation dimension estimations between the original



Inherent signatures of machine behaviors 176

and the ML-mimetic attractors. (1) The correlation dimension is different in the sense

of 99% confidence interval of the estimations (Figs. 5.16A and 5.16B). (2) A box plot

over corresponding Sn correlation dimension estimations also indicates a difference. The

mean and the median of correlation dimension estimations are different, although some

overlaps are observed in the interquartile range (IQR) (Fig. 5.16C). (3) The statistics

of Di
2(ε,m) differently fluctuates in the original and the ML-mimetic attractors as ε

increases (Figs. 5.16A and 5.16B). For example, Fig. 5.16A and Fig. 5.16B have ups

and downs at different positions for the corresponding 95th percentile. In particular, at

the left side where 1×10−5 < ε < 1×10−4 and at the right side where ε > 1×10−1, the

fluctuation is different between the Hénon map (Fig. 5.16A) and MAH (Fig. 5.16B).

The differences indicate that the ML-mimetic attractor MAH just coincides with the

Hénon map. However, MAH does not preserve the fractality of the Hénon map. It is

worth mentioning that the discrepancy between D2 ∈ CI99 = [1.1976,1.1984] (original)

and D2 ∈ CI99 = [1.2394,1.2403] (ML-mimetic) is smaller than 0.05. The tiny deviation

is identified thanks to a statistic over 1,000 trajectories.

5.5.3.3 Climate of symbolic dynamics

We have shown that an ML-mimetic attractor is incapable of preserving the fractality of

both the original attractor and the basins, although a coincidence is observed in phase

space. We shall further look at why the incapacity happens by shifting the analysis

from phase space to a space of symbols (Fig. 5.9). To achieve it, we conduct a symbolic

analysis (Fig. 5.11). Fig. 5.17 shows the results of the climate of symbolic dynamics.

Supposed behaviors. Eq. (5.14) transforms an original orbit (trajectory) of length

200,000 to a symbolic sequence of length 200,000. We then calculate the k−words of

the symbolic sequence with k ranging from 1 to 11. The result is consistent with existing

findings [151]. The least length that forbidden words appear is 4. The corresponding

forbidden 4-words are “0000”, “0010”, and “0110”. The total number of different 4-words

is 13 (24− 3). Consistent with [151], the total number of 4-words, 7-words, 8-words,
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Figure 5.17 : The climate of symbolic dynamics to quantify a difference between the Hénon map and

MAH (Fig. 5.2D2). A. The ML-mimetic attractorMAH is incapable of following the climate of symbolic

dynamics (11−words) of the Hénon map. B. At the length k = 11, the Hénon map has 353 different

11−words, however, MAH has 355 different 11−words. The two additional 11-words are “01111001111”

and “00111001111”. They are forbidden 11−words of the Hénon map [151].

9-words and 11-words are 13, 53, 84, 133, and 353, respectively. For k−words with

k = 5,6,10, there are no new forbidden words [151].

Actual behaviors. Eq. (5.14) is applied to NS = 1,000 mimetic trajectories that

approach the ML-mimetic attractor MAH (Figs. 5.11 and 5.15C), yielding NS symbolic

sequences. The length of a mimetic trajectory and its symbolic sequence are 200,000.

For an individual symbolic sequence, the total number of 4-words, 7-words, 8-words,

9-words and 11-words are 13, 53, 84, 133, and 355, respectively. The minimal length,

at which the original and the mimetic trajectories have different k−words, appears at

k = 11. The two 11-words, “01111001111” and “00111001111”, are forbidden words of

the Henon map [151] (Fig. 5.17B), however, appear in the symbolic sequence of the

mimetic trajectories (Fig. 5.17B). The climate of symbolic dynamics is conducted on the

11−words of the original and the mimetic trajectories, respectively. Fig. 5.17A shows

that the ML-mimetic attractor is incapable of following the climate of symbolic dynamics

of the Henon map.

Summary. From the one-in-basin-out experiment, we observe that the ML-mimetic

attractor MAH coincides the Hénon map in a phase plot (Fig. 5.15). However, the

coincidence does not lead to the preservations of the fractal basin boundary (Fig. 5.15),
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Table 5.4 : Extracted equations of an original and corresponding mimetic trajectories. The extraction

is based on a unique trajectory that approaches corresponding attractor.

Original Equations and attractors Equations and attractors

Rössler


ẋ=−y−0.999z

ẏ = x+0.29y

ż = 0.1391+z(0.996x−4.504)

R0

(F4)


ẋ=−y−0.999z

ẏ = x+0.29y

ż = 0.1401+z(0.998x−4.51)

R1

(F5)

Rössler


ẋ=−1.001y−0.998z

ẏ = 0.999x+0.29y

ż = 0.1451+z(0.997x−4.504)

MAR0
R0

(F6)


ẋ=−y−0.993z

ẏ = 0.996x+0.29y

ż = 0.1141+z(0.985x−4.374)

MAR1
R0

(F7)

Rössler


ẋ=−0.112xz

ẏ = 0.925x

ż = z(1.006x−4.742)

MAR0
R1

(F8)


ẋ=−1.001y−0.993z

ẏ = x+0.29y

ż = 0.1451+z(x−4.51)

MAR1
R1

(F9)

Lorenz


ẋ=−9.911x+9.911y

ẏ = 27.209x−0.846y−0.978xz

ż =−2.636z+0.988xy

Lorenz

(F10)


ẋ=−9.910x+9.910y

ẏ = 27.224x−0.861y−0.977xz

ż =−2.636z+0.987xy

A

(F11)

Lorenz


ẋ=−9.912x+9.910y

ẏ = 27.207x−0.849y−0.978xz

ż =−2.636z+0.989xy

B

(F12)


ẋ=−9.903x+9.902y

ẏ = 27.232x−0.832y−0.979xz

ż =−2.642z+0.992xy

C

(F13)

Lorenz


ẋ=−9.909x+9.909y

ẏ = 27.205x−0.846y−0.978xz

ż =−2.635z+0.988xy

D

(F14)


ẋ=−9.909x+9.909y

ẏ = 27.228x−0.841y−0.978xz

ż =−2.635z+0.988xy

E

(F15)

Lorenz


ẋ=−9.910x+9.906y

ẏ = 27.130x−0.838y−0.976xz

ż =−2.635z+0.988xy

F

(F16)


ẋ=−9.911x+9.911y

ẏ = 27.210x−0.846y−0.978xz

ż =−2.636z+0.988xy

G

(F17)

Hénon

 xn+1 = 1.4001−x2
n+0.3yn

yn+1 = xn

Hénon

(F18)

 xn+1 = 1.4001−x2
n+0.3yn

yn+1 = xn

MAH

(F19)
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or of the fractality of the original attractor (Fig. 5.16). Symbolic analysis shows that

the ML-mimetic attractor exhibits the incapacity to synthesize the symbolic dynamics

of the Hénon map (Fig. 5.17). In addition, the Hénon map has two forbidden 11−words.

Those two 11−words , however, are allowed in the ML-mimetic attractor. This indicates

an inequivalence between the Hénon map and ASH .

5.5.4 Extracted equations

We have seen the differences between an original and an artificial systems from three

perspectives. They are the dynamics in producing coexisting attractors, the six types

of behavioral patterns, and the symbolic dynamics. Apart from nonlinear dynamics,

we apply the SINDy algorithm [53] to extract the equations of an original and an ML-

mimetic attractors (Fig. 5.12). Tab. 5.4 shows the extracted equations.

Supposed behaviors. Eq. (F4) is the extracted equation of the Rössler attractor R0

and used for benchmarking against Eqs. (F6) and (F8). Eq. (F5) is the extracted equa-

tion of the Rössler attractor R1 and used for benchmarking against Eqs. (F7) and (F9).

Eq. (F10) is the extracted equation of the Lorenz attractor and used for benchmarking

against Eqs. (F11) to (F17). Eq. (F18) is the extracted equation of the Hénon map and

used to benchmarking against Eq. (F19).

Actual behaviors. Eqs. (F6) and (F7) are the extracted equations of mimetic trajec-

tories that the artificial system ASR0 synthesizes for mimicking R0 and R1 (Fig. 5.5),

respectively. Eqs. (F8) and (F9) are the extracted equations of mimetic trajectories that

the artificial system ASR1 synthesizes for mimicking R0 and R1 (Fig. 5.5), respectively.

Eqs. (F11) to (F17) are the extracted equations of mimetic trajectories that are syn-

thesized in cases A to G (Fig. 5.7), respectively, for mimicking the Lorenz attractor.

Eq. (F19) is the extracted equation of a mimetic trajectory that ASH synthesizes for

mimicking the Hénon map (Fig. 5.8).

For the trajectory-level experiment in the Rössler system (Figs. 5.5 and 5.13), Eq. (F6)
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has identical terms with Eq. (F4), but the parameters of Eqs. (F6) and (F4) are different.

Eq. (F8) has different terms with Eq. (F4), which is consistent to our observation of a

limit cycle in Fig. 5.13D2. Eqs. (F7) and (F9) have identical terms with Eq. (F5), but

the parameters of Eqs. (F5), (F7), and (F9) are different.

For the basin-in-one-out experiment in the Lorenz system (Figs. 5.6, 5.7, and 5.14),

Eq. (F10) and Eqs. (F11) to (F17) have identical terms, but different parameters. The

result shows a limitation of a data-driven extraction of governing equations. For cases A

to C, the mimetic trajectories stabilize at either a fixed point or a limit cycle. However,

Eqs. (F11) to (F13) approximate the governing equation of the chaotic Lorenz attractor

(Tab. 5.4). This indicates that the extracted equations may fail to reflect the dynamics

of the time series. The limitation further highlights the importance of showing nonlinear

dynamics of a mimetic trajectory.

For one-in-basin-out experiment in the Hénon map (Figs. 5.8, 5.15 to 5.17), Eqs. (F18)

and (F19) have identical terms and parameters. We observe that if the ML-mimetic

attractor coincides with the original attractor, then their extracted equations have iden-

tical terms. Also, the parameters of extracted equations are close. For example, the

return map of MAR1
R1

almost coincides with that of R1( Fig. 5.13), and the parameters

of Eqs. (F5) and (F9) are close. In case G the return map coincides with that of the

Lorenz attractor (column E1 of case G in Fig. 5.14), and the parameters of Eqs. (F10)

and (F17) are close.

Summary. From the extracted equations (Tab. 5.4), we observe that a coincidence of

an ML-mimetic attractor with an original one in phase space corresponds to a reason-

able approximation of the governing equations between the two attractors. However,

the extraction of equations has a limitation when the time series has transients. The

extraction may fail to indicate the stabilization either to a fixed point or to a limit cycle.
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5.6 Summary and Discussions

Deterministic chaos is concerned with the sensitive dependence of a nonlinear system

on its initial conditions [143, 333, 353, 398]. Machine learning methods are applied to

mimic deterministic chaos [63, 293, 423]. The methods attract increasing attention as

they offer a potential means for predicting deterministic chaos [293].

In computer science machine behavior is concerned with the behavioral patterns of

an artificial intelligence system as initial settings are varied [304]. The understanding of

machine behavior would improve the ability to control artificial intelligence systems and

harvest their benefits [304]. An artificial system is a special artificial intelligence system

that is equipped with machine learning methods and designed for mimicking determin-

istic chaos. We borrow the idea of machine behavior from computer science and regard

the behavior of an artificial system under varying initial conditions as machine behavior.

The comparisons of the sensitive dependence on initial conditions allow identifying a gap

between an original fffω (mimicked, Eq. 5.1) and an artificial fffν |ννν (mimicking, Eq. 5.2)

systems. Before we make discussions, we shall summarize the corresponding results.

5.6.1 Summary

We have identified three types of initial conditions that have an effect on an artificial

system (Fig. 5.2A). Type I initial condition is an original trajectory (Fig. 5.1A), ωωω

(Eq. 5.2). The trajectory is yielded from an original chaotic system (Eq. 5.1) and

fed to an artificial system in a training process (Fig. 5.1B, Eq. 5.2). Type II initial

condition is an initial point, νννP0 (Eq. 5.2). The point is in phase space of an original

attractor (Fig. 5.1C). Taking the point as initial conditions, an original system yields

a chaotic trajectory, whereas an artificial system synthesizes a mimetic trajectory for

mimicking that chaotic trajectory. Type III initial condition is initial network states

(Figs. 5.1B), XXX0 and XXXP
0 . They initialize a network in a training and a prediction

processes, respectively. We have conducted three experiments for understanding the

behavior of an artificial system under varying Type I or Type II initial conditions.
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artificial system synthesizes 106 mimetic trajectories. We take seven representative cases

to exemplify the behavior of an artificial system as Type I initial conditions are varied

(Fig. 5.7). According to Eqs. (5.12) and (5.13), we calculate two types of return maps

to show the supposed and the acutal behaviors (Fig. 5.14). Six types of patterns are

identified in terms of a deviation in phase space (column C in Fig. 5.14), the time series

(column D in Fig. 5.14), or return maps (column E in Fig. 5.14). The patterns include

converging to a fixed point (cases A and B in Fig. 5.14) or to a limit cycle (case C in

Fig. 5.14), evolving with bursts (case D in Fig. 5.14), carrying transients (case E in

Fig. 5.14), breaking symmetry (case F in Fig. 5.14), and specious behavior (case G in

Fig. 5.14).

The third experiment (Fig. 5.2D2) focuses on quantitative differences between an

original and an artificial systems as Type II initial conditions travel through different

N

Results have been shown by comparing between the supposed (fffω) and the actual (fffν |ννν)

behaviors.

The first experiment (Fig. 5.2C) focuses on a unique mimetic trajectory and its return

map (Fig. 5.5), contributing to trajectory-level behaviors (Fig. 5.2C). The supposed

behaviors are represented by two coexisting Rössler attractors (Fig. 5.13A), R0 and R1,

and their return maps (Fig. 5.13E). Actual behaviors are synthesized by two artificial

systems (Fig. 5.13B), ASR0 and ASR1 . An individual artificial system synthesizes two

ML-mimetic attractors (Fig. 5.13E) as Type II initial conditions are varied. According to

Eq. (5.11), we calculate the return map to quantify the differences between the supposed

and the actual behaviors (Fig. 5.13F).

The second experiment (Fig. 5.2D1) focuses on behavioral patterns of an identical

artificial system as Type I initial conditions travel through a basin (Figs. 5.6 and 5.7),

BL. System-level behaviors with a basin-in-one-out mode are collected from the second

experiment (Fig. 5.2D1). The supposed behaviors are represented by the unbounded

basin of the Lorenz attractor (Fig. 5.6A). Actual behaviors are synthesized by four

artificial systems (Figs. 5.6C and 5.7C), ASL
A, ASS

L, ASA , and ASS
N . An individual
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basins (Fig. 5.8), BH . System-level behaviors with a one-in-basin-out mode are collected

from the third experiment (Fig. 5.2D2). Supposed behaviors are represented by the

fractal basins of the Hénon map (Fig. 5.15A). Actual behaviors are synthesized by one

artificial system, ASH (Fig. 5.8C). Here, ASH synthesizes 20482 mimetic trajectories.

We use three quantifications, which are machine learning basins (Fig. 5.15), the statistics

of correlation dimension estimations (Fig. 5.16), and the climate of symbolic dynamics

(Fig. 5.17). Based on machine learning basins (Fig. 5.15A), the latter two quantifications

are conducted on 1,000 trajectories (Fig. 5.11).

For a flow, either the coexisting Rössler attractors or the Lorenz attractor, return

maps are an invariant measure to understand the topological organization of determin-

istic chaos [56, 313]. We thus use the return map to analyze and qualify the nonlinear

dynamics of machine behaviors (Figs. 5.2C and 5.2D1). An ML-mimetic attractor that

the artificial system ASH synthesizes almost coincides with the Hénon map (Figs. 5.15B

and 5.15C). Besides, the basins of the Hénon map are well studied and quantifiable in a

two-dimensional space [3]. We thus use three quantifications that are developed from the

basins the of Hénon map to quantify the differences in nonlinear dynamics between an

original and an artificial systems. The three quantifications examine nonlinear dynam-

ics from different perspectives. Machine learning basins examine the fractality in basin

boundary (Figs. 5.15A and 5.15D). The statistics of correlation dimension estimations

examine the fractality of an ML-mimetic attractor (Fig. 5.16). Also, the climate of sym-

bolic dynamics examines an equivalence between an original and an artificial systems

from a space of symbols (Fig. 5.17). A shift map that critical points define ensures an

equivalence between the nonlinear dynamics in phase space and the symbolic dynam-

ics in a space of symbols [143, 151]. According to Eq. (5.14), we shift the focus from

nonlinear dynamics in phase space to symbolic dynamics in a space of symbols (Fig. 5.9).

5.6.2 Discussions

Novel behavioral traits have been observed from the return maps of mimetic trajectories

in mimicking either the Rössler attractors (Fig. 5.13) or the Lorenz attractor (Fig. 5.14).
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Those traits indicate the diÿcult y of artificial chaos in preserving deterministic chaos.

We also observe that an ML-mimetic attractor coincides with the Hénon map. However,

the basins of the ML-mimetic attractor alter the basins of the Hénon map (Fig. 5.15).

The correlation dimension estimations indicate a significantly statistical difference be-

tween the Hénon map and the ML-mimetic attractor (Fig. 5.16).

Moreover, we observe that the ML-mimetic attractor that coincides with the Hénon

map is incapable of preserving the symbolic dynamics (Fig. 5.17). For example, two 11-

words are forbidden in the Hénon map. Nevertheless, those two words are allowed in the

ML-mimetic attractor (Fig. 5.17). The observations highlight that artificial chaos seems

to mimic a chaotic attractor in phase space, however, may suffer from a deprivation of

fractality that the chaotic attractor has. To be more detailed, we proceed by providing

insights into the three questions introduced in section 5.1. The questions are concerned

with the recurrence (Q.A) and the signatures (Q.B) of artificial chaos and the equivalence

(Q.C) between deterministic and artificial chaos.

5.6.2.1 Recurrence of errors under perturbation

In this subsection, we shall discuss a limitation of universal approximation theorems

“when machine learning meets complex dynamics” [363]. Universal approximation the-

orems offer an artificial system the ability to synthesize equations. The equations arbi-

trarily approach those of an original system [95, 112, 155, 194, 410]. We firstly discuss

the effect of arbitrarily small approximation errors [155, 340] on artificial chaos and then

provides insights into the recurrence of errors (Q.A) that artificial chaos induces under

varying initial conditions.

In the three experiments (Figs. 5.5 to 5.8), we compare the supposed and the actual

behaviors of artificial systems (Figs. 5.13 to 5.17). According to the comparisons, our

results identify the differences between an original and an ML-mimetic attractors. This

suggests that arbitrarily small approximation errors introduce a perturbation term to

equations that an original system underlies. Universal approximation theorems provide

the existence of an artificial system that leads to arbitrarily small approximation er-
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rors [95, 112, 155, 194, 410]. However, the theorems disregard the recurrence of those

arbitrarily small errors under perturbation.

The limitation results from the disregard of how those arbitrarily small errors recur.

In complex dynamics, arbitrarily small errors have four implications for a nonlinear

system. (1) Under fixed parameters of a known equation, errors in initial conditions

result in different trajectories or different attractors [232, 333]. (2) Errors in parameters

of a known equation induce bifurcations in nonlinear dynamics [159, 232]. (3) Errors

by changing the term of an equation bring about a new system of similar dynamics or

bifurcations [159]. (4) Errors can bring about a new system with dynamics unrelated to

an original system. The existence of an arbitrarily small approximation error is incapable

of indicating the insignificance of errors in complex dynamics.

However, a study of machine behaviors provides a tool for showing how an arbitrarily

small error recurs as Type I or II initial conditions are varied. A basin of a state provides

information about the recurrence of a dynamical system under global perturbations

[257, 258]. Machine learning basins, as a basin of states, thus indicate how an arbitrarily

small error recurs under global perturbations. The results show that machine learning

basins alter the basins of the Hénon map (Figs. 5.15A and 5.15D). This suggests that

the approximation errors of ASH bring about a new system with different dynamics.

The findings support the hypothesis that the arbitrarily small errors allow an artificial

system to develop its own behavioral traits and deviate from supposed behaviors.

The incapacity to preserve symbolic dynamics confirms that an ML-mimetic at-

tractor can use different organizations of topology to synthesize a mimetic trajectory

(Fig. 5.17B), although the ML-mimetic attractor coincides with the original attractor

(Figs. 5.15B and 5.15C). The finding emphasizes the importance of showing symbolic

dynamics as a conclusion is drawn on a system-level relationship between an original

fffω (Eq. 5.1) and an artificial systems fffν |ννν (Eq. 5.2), for example, a conclusion of the

topological conjugation [80]. Showing machine behaviors could provide an effective tool

to avoid the pitfalls [311] of machine learning methods as they meet complex dynamics.



Inherent signatures of machine behaviors 186

5.6.2.2 Trajectory-centric behavior

In this subsection, we shall discuss the behavior of an artificial system under varying

Type I initial condition. We firstly discuss the observations and then explain contra-

dictions between the supposed and the actual behaviors. Solutions that may address

the contradictions are discussed for providing insights into the signatures of machine

behaviors (Q.B).

The supposed behaviors of an artificial system should be insensitive to Type I initial

condition. An original system yields a chaotic trajectory as a result of some nonlinearity.

The nonlinearity can be defined either by equations with nonlinear terms [219, 333] or by

topological organizations of branches in phase space [56, 143, 219]. An artificial system,

however, utilizes a new type of nonlinearity (Figs. 5.1 and 5.4) that a network defines

via Eq. (5.2) for mimicking deterministic chaos. A mimetic trajectory that the artificial

system synthesizes is thus not necessarily chaotic. For example, a mimetic trajectory

can develop non-chaotic dynamics, a fixed point (case A and B in Fig. 5.14), a limit

cycle (case C in Fig. 5.14), or novel dynamics (cases D to F in Fig. 5.14).

Although Type I initial conditions are varied, the governing equations of original

trajectories with which an artificial system is fed keep unchanged. In theory, if the

artificial system did behave as a function approximator, then varying Type I initial

condition could not affect the mimetic trajectories for the governing equations of original

trajectories are unchanged.

In practice, however, we observe trajectory-centric machine behaviors. In the experi-

ment related to the Lorenz system (Fig. 5.14), ASSN produces a reasonable approximation

of the governing equation of the Lorenz attractor in case G, cf. Eqs. (F10) and (F17) in

Tab. 5.4. However, ASSN synthesizes a fixed point in case A (Fig. 5.14). Here, a unique

difference between case A and G is Type I initial condition with which ASSN is fed. The

phenomenon is observed in ASSL as well. The observation is that cases B, D, and F in

Fig. 5.14 present individual behaviors under varying Type I initial conditions.

The contradiction between the supposed behaviors and observable phenomena can be



Inherent signatures of machine behaviors 187

understood in this way. (1) Despite a coincidence in phase space, an original fffω (Eq. 5.1)

and an artificial systems fffν |ννν (Eq. 5.2) develop different system-level behaviors. (2) An

artificial system could develop its own signatures in the way to deviate from mimicked

deterministic chaos. As Type I initial conditions are varied, both ASSN and ASSL fail to

understand the mechanism that is responsible for the mimicked dynamics (Fig. 5.14).

On the other hand, ASSN and ASSL leave a signature to mimetic trajectories (Fig. 5.14).

The contradiction may be addressed by an exploration of the parameter space of a

network and a training process (Fig. 5.1), an extension of the length of the inputted

trajectories, the size of a network, and so on. However, those improvements exactly

reflect the sensitivity of fffν |ννν to Type I or III initial conditions. This again causes a

contradiction between supposed and observable phenomena of fffν |ννν . In this sense, a new

machine learning framework should be proposed to achieve an equivalence between fffω

and fffν |ννν . Under the framework, an arbitrary segment of ωωω or an arbitrary parameter

choice chosen from parameter space would lead fffν |ννν to be a shallow of fffω, an existence

of uncountable original trajectories being close to a mimetic trajectory.

Recently, an advanced framework introduces automatic differentiation [27] to neural

networks. Information related to the derivatives of data is thus captured by the new

framework [27, 76]. Two different frameworks are popular. The one is neural ordinary

differential equations (neuralODE). The other one is physics-informed neural network.

NeuralODE allows consecutive layers of a neural network to make an infinitesimal step for

approximating the deviates of the equations that the data underly [76]. Physics-informed

neural networks allow a graph to represent the derivate values of an operation [305, 306].

The basic idea is that “all numerical computations are ultimately compositions of a

finite set of elementary operations for which derivatives are known, and combining the

derivatives of the constituent operations through the chain rule gives the derivative of the

overall composition” [27]. An optimization is then constructed by considering “more-step

errors” [187]. Instead of individual points in phase space (Fig. 5.1B), a continuous-time

trajectory [76], which is a solution to ODE, is optimized and smoothed.
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Incorporating derivatives may lead to a reduction of the occurrence of Type I to V

patterns that we observe in Fig. 5.14, since cases A to F fail to preserve the derivative

of the Lorenz attractor (column E Fig. 5.14). Let assume an artificial system, either

neuralODE or physics-informed neural networks, is capable of approximating the n-th

derivative of ωωω within an arbitrarily small error for suÿcien t large n. Therefore, ωωω and

νννP are equivalent in the sense of identical n-th derivative with n being suÿcien t large.

The artificial system then could produce a mimetic trajectory that is a shallow of true

trajectories yielded via fffω (Eq. 5.1).

Indeed, our study does not reject the existence of machine learning methods that

produce a shallow of fffω or are equivalent to fffω. However, we introduce machine behavior

for showing whether the shallow or the equivalence is achieved by a given fffν |ννν . As

“machine-learning tools can also turn up fool’s gold – false positives, blind alleys and

mistakes” [311], a study of machine behavior is for avoiding the pitfalls of machine

learning that meets complex dynamics. An automatic differentiation applies “black-box

differential equation solver” [76] for a solution. A study of machine behavior would allow

showing that whether the n-th derivative is suÿcie nt large for a conclusive evidence on

the shallow or the equivalence.

Our findings further demonstrate that a misleading conclusion could be drawn with-

out the study of machine behaviors related to Type I initial conditions. For example,

if case G was the only source to validate the eÿcie ncy of ASSN (Case G in Fig. 5.14),

then the conclusion is that ASSN preserved the deterministic chaos of the Lorenz system.

However, we let ASSN synthesize a mimetic trajectory in case A, a fixed point appears

(Case A in Fig. 5.14) instead of chaotic dynamics. The observation thus supports that

ASSN fails to preserve the governing equation and the nonlinear dynamics of the Lorenz

attractor.

5.6.2.3 Machine learning embedding

In this subsection we shall interpret an equivalence of an original and an ML-mimetic

attractors (Q.C). Machine learning embedding is an embedding that an artificial system
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reconstructs [166]. The reconstruction is based on a conjecture that fffν |ωωω (Fig. 5.1B) and

fffω (Fig. 5.1A) are topologically conjugate [166]. We introduce a new term, dynamics-

preserving learning, to represent a topological conjugacy between fffν |νννP (Eq. 5.2) and

fffω (Eq. 5.1).

In theory, the conjecture imposes a too strict condition for a dynamics-preserving

learning. The difference between fffν |ωωω and fffν |ννν lies in initial conditions and the mech-

anism to be an autonomous system (Figs. 5.1B and 5.1C). Let assume that fffν |ωωω and

fffω were topologically conjugate, then there existed a one-to-one correspondence be-

tween {ωωωi} and {νννi} (Figs. 5.1A and 5.1B). Since the functions {ωωωi−1} → {XXX i} and

{XXX i} → {νννi} are surjective (by the assumption), and {ωωωi} is a countable set because

{ωωωi} is collected under iterations, there exists a one-to-one correspondence between {ωωωi},

{XXX i}, and {νννi}. According to the one-to-one correspondence, there exists a unique XXXP
0 .

Taken XXXP
0 as initial conditions, a dynamics-preserving learning is achieved. However,

analytical solutions to optimization problems are often absent (Fig. 5.1B), so it is im-

practicable to find the unique XXXP
0 . Indeed, XXXP

0 is often set to be zero or XXXT+1 when it

comes to practical applications [64, 80, 166, 200, 293, 383, 423].

However, we observe that machine behaviors contain new traits. The traits are not

attributed to the nonlinear dynamics of an original system. In the Rössler system, ASR0

breaks symmetry that the return maps of coexisting Rössler attractors have (Fig. 5.13E).

Also, ASR1 mimics the return map of R1 with a reasonable approximation (Fig. 5.13E2),

however, it is unable to simultaneously produce the coexisting attractors. Here, ASR0

contains new traits of symmetry violated (Fig. 5.13E1); and ASR0 contains new traits by

changing the sensitivity to initial conditions (Fig. 5.13E1). In the Lorenz system, ASAL ,

ASSL, ASAN , and ASSN contain new traits through the way to deviate from the return map

of an original attractor (Fig. 5.14).

Moreover, the new traits are reflected by statistical differences between supposed

behaviors and machine behaviors in the Hénon map. In phase space, only 22.31% points,

taken as initial condition, simultaneously approach the Hénon map and the ML-mimetic
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attractor (Fig. 5.15). This suggests that ASH has only 22.31% probability in producing

a mimetic trajectory, which reasonably mimics the dynamics of the Hénon map. Besides,

novel structures are observed in machine-learning basins such as basins with tentacles

[413], which alter the basins of the Hénon map (Fig. 5.15D). Zhang and Strogatz [413]

conclude basins with tentacles may be common in a high-dimensional system. Our

calculation confirms the conclusion and exemplifies how machine learning basins with

tentacles are fundamentally different from an original basin.

Our observations highlight that a coincidence in a single chaotic trajectory is insuf-

ficient to support an equivalence between machine learning and time delay embeddings.

Takens’ embedding theorem [324, 360] ensures an equivalence between an original at-

tractor and the time delay embedding. However, a dynamic-preserving learning remains

to be solved for machine learning that meets complex dynamics. It is thus impractical to

ensure an equivalence between supposed and actual behaviors of an artificial system. A

conclusive evidence of the equivalence should be based on supposed and actual behaviors

under varying initial conditions, rather than a coincidence of a single chaotic trajectory

at a given initial condition.

In complex dynamics, the study of deterministic chaos is concerned with the dy-

namics under varying initial conditions. However, the embrace of artificial chaos is

often concerned with a good performance in a single chaotic trajectory. For avoiding

machine learning pitfalls and misleading conclusions, our results indicate that artificial

chaos should be concerned with the dynamics under Type I or II initial conditions. The

findings highlight that machine behaviors provide qualifications and quantifications for

showing the quality of artificial chaos. Besides, a coincidence in trajectory-level dy-

namics such as chaotic trajectories and a topology of a chaotic attractor is incapable of

showing the relationship between an original and an artificial systems. However, ma-

chine behaviors provide information about the recurrence of arbitrarily small errors and

the impact of the errors on an artificial chaos.



Chapter 6

Conclusions and new directions

In this thesis, dynamic pricing is modeled from dynamical systems’ perspective

and analyzed by nonlinear time series analysis. The focus is on a rational route to

apparent randomness by a hypothetical model and a reconstruction of on-demand

attractor. When dynamic pricing meets complex dynamics and machine learning,

the sensitive dependence on initial conditions is compared between deterministic

and artificial chaos.

6.1 Conclusions

This thesis has bridged three research fields, dynamic pricing, deterministic chaos, and

machine learning methods that synthesize a mimetic trajectory for mimicking determin-

istic chaos. A hypothetical model has been proposed for justifying dynamics pricing

from dynamical systems’ perspectives (Fig. 1.1). A rational route contributes to uncer-

tain demand by nonlinear interactions between consumers and a seller (Chapter 3). An

on-demand attractor has been reconstructed for confirming the existence of a rational

route in a ride-sharing market (Fig. 1.1). The attractor satisfies period-7 limit cycle

oscillations. The reconstruction is based on recurrence plots and Pareto optimality by

accumulating arrivals of transactions. Moreover, machine behaviors have been studied

191
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for showing a gap between an original and an artificial systems (Fig. 1.1). Three types of

initial conditions, including original trajectories (Type I), initial point (Type II), and ini-

tial network states (Type III), are identified. The sensitive dependence on Type I and II

initial conditions is analyzed by conducting experiments that collect machine behaviors

(Chapter 5). We condense the achievements of this work in the following sections.

6.1.1 Stochastic demand and border collision bifurcations

As explained in Chapters 3 and 4, demand dynamics poses a unique challenge in modeling

dynamic pricing problems. In a theoretical setting, we show that nonlinear equations

with a sine and a quadratic terms could contribute to volatile demand (Chapter 3). The

results justify dynamic pricing strategy being a hedge against volatility. Besides, those

nonlinear equations form a rational route to apparent randomness. The findings agree

with Hu et al. [175] and Rump and Stidham [319] and indicate that consumers’ nonlinear

adaptation of price expectations could cause irregular demand (Chapter 3).

We emphasize the importance of identifying demand dynamics for practical dynamic

pricing problems. The interactions among price, demand, and supply bring about ir-

regular price expectations, thus contributing to unpredictability of demand. However,

the unpredictability is due to the inaccuracy in initial conditions, rather than exogenous

forces of a market. The inaccuracy could due to an incapacity to know the parameters

that quantify a demand function [232], an incapacity to obtain a demand function that

a market underlies [191], or a misspecification of a demand function [40].

We observe border collision bifurcations in the analytical demand mode (Chapter 3)

and the time series of on-demand attractor (Chapter 4). den Boer and Keskin [102] in-

troduce a piecewise continuous demand function. Their results show that the ignorance

of discontinuity in demand can cause revenue losses. Hu et al. [175] use a piecewise

continuous demand function to model consumers’ reference price, thus observing border

collision bifurcations. By contrast, the demand model we consider allows discrete price

choices. The discontinuities result from a piecewise continuous demand function and

optimizations together. We show that border collision bifurcations can emerge from
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demand fluctuations (Chapter 3) and can be evidenced by irregularity in limit cycle os-

cillations (Chapter 4). The reconstructed on-demand attractor further provides real-life

evidence of an occurrence of border collision bifurcations. Our analytics emphasize the

importance of the understanding of demand functions, in particular, the consideration

of discontinuities in the modeling of demand for avoiding revenue losses.

6.1.2 Recurrence-based attractor reconstruction

Based on recurrence plots and their quantifications, we propose a new approach to re-

construct an attractor from a univariate time series (Chapter 4). The approach explores

the parameters of recurrence plots while exploiting the determinisms and the trapping

time that are derived from recurrence plots. Pareto optimality allows the simultaneously

exploring and exploiting and aims for finding optimal parameters for attractor recon-

structions. The recurrence-based attractor reconstruction provides a tool to identify

demand dynamics. Also, the new reconstruction improves the applicability of recur-

rence plots related to a signal contaminated with noise or nonstationarity.

6.1.3 Machine behaviors

Machine learning methods seem to have a great potential to realize a mode-free analysis

of deterministic chaos [293]. Indeed, we observe that an artificial system is capable of

synthesizing a mimetic trajectory that coincides with a chaotic trajectory of an original

system (Chapter 5). Under the coincidence, the mimetic trajectory approaches the

chaotic trajectory within arbitrarily small errors. The coincidence can be extended in

phase space of an attractor and in that of a return map as well (Chapter 5). However,

differences are identified between an original and an artificial systems as initial conditions

are varied. This indicates that the existence of arbitrarily small errors is incapable

of showing the recurrence of those errors under varying initial conditions. However,

machine behaviors reflect the nonlinear dynamics of an artificial system. They provide

insights into how those errors evolve by comparing the supposed and the actual dynamics

of artificial chaos.
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The study opens a new way to show artificial chaos through behaviors under varying

initial conditions, instead of a coincidence in trajectories. For avoiding machine learning

pitfalls, an artificial system should be performed under varying initial conditions and

be compared with the sensitive dependence on initial conditions of an original system.

The findings suggest that for artificial chaos, showing its sensitive dependence on initial

conditions is as important as showing the coincidence of mimetic trajectories in phase

space or return maps.

6.2 Managerial implications

We have drawn two main conclusions (Fig. 1.1). (1) Deterministic dynamics can be

a constituent part of irregular demand. (2) The reliability of machine learning meth-

ods in mimicking deterministic chaos depends on their sensitive dependence on initial

conditions, rather than a coincidence of a single chaotic trajectory or a single trajectory-

based measure. In the following, we address what the conclusions imply in the sense of

practical actions of agents in a market with irregular demand.

For a price maker, an irregular pricing strategy is optimal responding to irregular

demand that underlies deterministic dynamics. Under border collision bifurcations, it

is optimal to make the periodicity of a pricing strategy irregular. For example, a price

maker can use two different frequencies to switch between a high and a low prices. Those

two frequencies are relatively prime to each other.

On the other hand, machine learning methods are applied in addressing practical

pricing problems [59, 157, 224, 253, 338, 417]. However, we observe that novel behavioral

patterns occur in machine behavior. The observations indicate that an artificial system

could mislead conclusions. For example, we observe an abrupt change in the amplitude

of a mimetic trajectory (evolving with bursts, Chapter 5). The abrupt changes, however,

are unrelated to the true dynamics that the inputted data underly.

For a price maker, the accuracy and the reliability of demand predictions are the

main concerns. Three solutions exist to examine the accuracy and the reliability of
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predictions that machine learning methods make. They are (A) a change of Type I

initial conditions, (B) a change of Type II initial conditions, and (C) a use of another

machine learning method. Here, (A) and (B) are related to the use of machine behaviors

to validate predictions. A machine learning method for demand predictions can utilize

different data sets (A) that come from an identical market to train its parameters, the

results are then compared for validating the reliability of the method. In case of limited

data, for example, a unique data set, an artificial system can be fed with the unique

data. However, two or more predictions can be made by allowing the artificial system

initialized from two or more points (B). Those points are from a small neighborhood

of a target point. Different predictions are then compared for a cross-validation. In

addition, different machine learning methods can be applied on an identical data set for

a cross-validation of predictions to avoid pitfalls.

Discontinuity causes a new type of uncertainty in demand (Chapters 3 and 4), ev-

idenced by border collision bifurcations. An ignorance of uncertain demand causes a

policy maker out of a control of public welfare [84]. It is necessary to take discontinu-

ity into considerations for the policy maker of governments. Besides, irregular pricing

strategies adapt the sales price according to consumers’ price expectations, thus being

benefit to consumers’ welfare as well .

6.3 New directions

This thesis draws conclusions and implications to bridge dynamic pricing, deterministic

chaos, and artificial chaos. In the following, we recommend future work to gain guidelines

for an improvement of dynamic pricing problems and for the reliability of artificial chaos.

1. As shown in this thesis, the dynamics of demand can be deterministic. It is impor-

tant to propose a new optimization method to address the maximization of revenue

solely based on an attractor. Current optimizations are based on known equations

or statistics to harvest averaged revenue. An attractor can be reconstructed from

a time series with a high accuracy. However, an equation that describes the evolu-
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tion of the reconstructed attractor remains elusive. An attractor-based optimization

method could address an optimal price by the topology of an attractor without any

prior knowledge of the governing equation. For example, a method would use the

deterministic structures of an attractor to harvest optimal revenue.

2. An alternative research direction could identify the governing equations of the

on-demand attractor (Chapter 4). If an equation was identified, then contemporary

optimizations could be applied to improve a pricing decision. Besides, a mode-free

framework could be used to approximate the governing equation of an attractor. An

attractor is with an invariant topology in phase space. A dynamic template of an

attractor could be encoded. Regressions then could be applied to decode a template

to a trajectory. The encoding and decoding framework would define an equation that

approximates the attractor.

3. We have shown that recurrence plots and their quantifications increase the quality

of attractor reconstructions. As we discuss in Chapter 4, another two or more than two

recurrence quantifications would be used as the objective of Pareto optimality. Also,

recurrence-based attractor reconstruction could be applied to other real-life scenarios

for showing nonlinear dynamics of a signal.

4. Our study of machine behaviors is based on deterministic chaos without noise.

It would be interesting to examine how artificial systems behave in mimicking de-

terministic chaos that is contaminated by noise. For example, experiments could be

designed to collect machine behaviors as original trajectories are contaminated by

noise. A physics-informed neural network is robust to a contamination of substantial

noise [305, 307]. The behavior of the physics-informed neural network could be exam-

ined by a contamination of different levels of noise under varying Type I and II initial

conditions. It would also be interested to conduct surrogate data between determin-

istic chaos contaminated by noise and artificial chaos in mimicking that. The null

hypothesis could be related to a preservation of nonlinearity by an artificial system

under a contamination of noise.
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5. Trajectory-centric behaviors have been observed from artificial systems that satisfy

universal approximation theorems. It is worth proposing an artificial system that uni-

versally approaches an original attractor within arbitrary small errors. The artificial

system targets a chaotic attractor, rather than a chaotic trajectory. Similar to 2, an

artificial system could be based on the encoding and decoding framework.

6. We study dynamic pricing problems based on maximizing revenue of a single

product within a single selling period (Chapter 3). It would be interesting to look

at how discontinuities affect dynamic pricing problems for multiple products within

multiple selling periods. We did some work for a single produce within multiple

selling periods in Appendix B. Besides, our symbolic dynamics is analyzed based on

an identification of critical points (Chapter 5), which could be a diÿcult task for

some original systems. It would be interesting to investigate the climate of symbolic

dynamics related to order patterns. An order pattern is based on comparing values

of a time series, which has no need of critical points. We advanced some work related

to order patterns in Appendix C.



Bibliography

[1] D. M. Abrams, H. A. Yaple, and R. J. Wiener. Dynamics of social group competi-

tion: modeling the decline of religious aÿliation. Physical Review Letters, 107(8):

088701, 2011.

[2] G. Abrate, G. Fraquelli, and G. Viglia. Dynamic pricing strategies: Evidence from

european hotels. International Journal of Hospitality Management, 31(1):160–168,

2012.

[3] J. Aguirre, R. L. Viana, and M. A. Sanjuán. Fractal structures in nonlinear

dynamics. Reviews of Modern Physics, 81(1):333, 2009.

[4] A. Ajorlou, A. Jadbabaie, and A. Kakhbod. Dynamic pricing in social networks:

The word-of-mouth effect. Management Science, 64(2):971–979, 2018.
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[325] D. Sauré and A. Zeevi. Optimal dynamic assortment planning with demand learn-

ing. Manufacturing & Service Operations Management, 15(3):387–404, 2013.

[326] K. Schindler, H. Gast, L. Stieglitz, A. Stibal, M. Hauf, R. Wiest, L. Mariani,

and C. Rummel. Forbidden ordinal patterns of periictal intracranial eeg indicate

deterministic dynamics in human epileptic seizures. Epilepsia, 52(10):1771–1780,

2011.

[327] R. M. Schindler. The 99 price ending as a signal of a low-price appeal. Journal of

Retailing, 82(1):71 – 77, 2006. ISSN 0022-4359.

[328] S. Schinkel, N. Marwan, and J. Kurths. Order patterns recurrence plots in the

analysis of erp data. Cognitive neurodynamics, 1(4):317–325, 2007.

[329] C. Schlereth, B. Skiera, and F. Schulz. Why do consumers prefer static instead

of dynamic pricing plans? an empirical study for a better understanding of the

low preferences for time-variant pricing plans. European Journal of Operational

Research, 269(3):1165–1179, 2018.

[330] R. Schlosser and M. Boissier. Dynamic pricing under competition on online mar-

ketplaces: A data-driven approach. In Proceedings of the 24th ACM SIGKDD



BIBLIOGRAPHY 231

International Conference on Knowledge Discovery & Data Mining, pages 705–714,

2018.

[331] T. Schreiber and A. Schmitz. Surrogate time series. Physica D: Nonlinear Phe-

nomena, 142(3-4):346–382, 2000.
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Appendix A

Supplementary information of Chapter 3

A.1 Algorithm to run the map

Algorithm A.1: (Part A) Algorithm to run the map that Eq. (3.1) defines

1 Demand function d(p), cf. Eq. (3.6);

Input : A given pair of (rEn , rIn) and a price p

Output: d(p)

Do : Calculate d(p) according to Eq. (3.6)

241
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Algorithm A.1: (Part B) Algorithm to run the map that Eq. (3.1) defines

2 The function f , cf. Eq. (3.9), for an optimal price;

Input : A given pair of (rEn , rIn), and finite price choices

Pε = {κε : κ= 0,1,2, . . . ,Nε}

Output: p∗∗(rEn , rIn)

Do : For each p ∈ Pε
Do Procedure 1

Find the solution, p∗∗(rEn , rIn) ∈ Pε, to Eq. (3.9).

Go to Procedure 3

3 The function (Eq. 3.1a) and the function h (Eq. 3.3), to update the IRP and

the ERP, respectively;

Input : p∗∗(rEn , rIn)

Output: (rEn+1, r
I
n+1)

Do : Calculate the IRP according to Eq. (3.1a).

Calculate the ERP according to Eq. (3.3)

Go to Procedure 4

4 Map iteration;

Input : (rEn+1, r
I
n+1)

Output: p∗∗(rEn+1, r
I
n+1)

Do : (rEn , rIn)← (rEn+1, r
I
n+1)

Go to Procedure 2
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A.2 Correlation dimension estimation

Fig. A.1 shows a correlation dimension estimation D2 of the dynamic pricing map. The

calculation is based on the time series shown in Fig. (3.4b1). The result of the calculation

(cf. [279]) is D2 = 1.26 ∈CI = [1.11,1.41], which helps to know the dynamics of the map

(Eq. 3.1). The calculation is similar to a statistics of correlation dimension estimations

detailed in section 5.4.5.4. However, a unique orbit is used for a calculation. “D2”

algorithm is called as the size of an ε−neighborhood and the embedding dimension m

increase. A series of estimations D2(ε,m) are thus obtained. For a given ε, we calculate

the median of {D2(ε,m)} under varying m. We follow Oberst and Lai [279] and conduct

a statistics over D2. The 10% estimations of the local maximum in the leftmost and the

10% estimations of the local maximum in the rightmost are cut off in the following plot.
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Figure A.1 : Correlation dimension estimation and its median for the time series given by Fig. (3.4b1),

cf. [279].
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A.3 A visualization of the dynamics of the system

Fig. A.2 plots the (rEn , rIn,p∗∗n )−plane to visualize the map (Eq. 3.1). At B = 1, we start

from the initial condition (rE0 , rI0) = (0.3,0.3), dispose the first 20,000 iterations, and

then record each point (rEn , rIn,p∗∗n ) to make a scatter plot.
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Figure A.2 : A visualization of the dynamics of the system from the (rEn , rIn,p∗∗n )−plane



Appendix B

Period adding bifurcations in dynamic pricing

processes

Abstract

Price information enables consumers to anticipate a price and to make purchasing

decisions based on their price expectations, which are critical for agents with pric-

ing decisions or price regulations. A company with pricing decisions can aim to

optimize the short-term or the long-term revenue, each of which leads to different

pricing strategies thereby different price expectations. Two key ingredients play

important roles in the choosing of the short-term or the long-term optimization

objectives: the maximal revenue and the robustness of the chosen pricing strategy

against market volatility. However the robustness is rarely identified in a volatile

market. Here, we investigate the robustness of optimal pricing strategies with the

short-term or long-term optimization objectives through the analysis of nonlinear

dynamics of price expectations. Bifurcation diagrams and period diagrams are

introduced to compare the change in dynamics of the optimal pricing strategies.

Our results highlight that period adding bifurcations occur during the dynamic

pricing processes studied. These bifurcations would challenge the robustness of

an optimal pricing strategy. The consideration of the long-term revenue allows a

245
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company to charge a higher price, which in turn increases the revenue. However,

the consideration of the short-term revenue can reduce the occurrence of period

adding bifurcations, contributing to a robust pricing strategy. For a company, this

strategy is a robust guarantee of optimal revenue in a volatile market; for con-

sumers, this strategy avoids rapid changes in price and reduce their dissatisfaction

of price variations.

B.1 Introduction

Increased information eÿciency , e.g. higher price transparency due to the availability

of novel information technologies, influences strongly consumer purchasing decisions

[256]. For travel arrangements consumers tend to use online travel agents or meta-search

engines which facilitate their purchasing decisions of an airline ticket [223]. Apart from

that a lot of extra price information can be conveniently accessed over the internet,

which allows consumers to compare prices from different channels and to anticipate a

price as a reference point to support purchasing decisions [175].

When the anticipation of the price is based on historical values it is called the internal

reference price [251] or reference price in short.

The reference price acts as a benchmark for consumer purchasing decisions [175, 205,

206, 300]. While a sales price lower than a reference price is perceived by the customer

as a gain, a higher sales price is perceived as a loss. The experience of receiving a gain

makes a consumer more likely to purchase something in the future. However, consumers

who experience a loss rather tend to reject new purchases. The effect of the perceived

gains/losses on the demand is called the reference effect [206].

Owing to reference effect, a decision maker with pricing decisions could set a lower

price to attract a higher volume of consumers and so gain an increased short-term rev-

enue. The decision maker, however, may suffer losses considering the long-term revenue

since a low price decreases the reference price of consumers. A decreased reference price,

however, makes consumers less likely to accept a higher price in the future [300].
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Although the long-term revenue is critical, subjective reasons may influence the de-

cision maker to emphasize the short-term revenue such as the quarterly earning expec-

tations or the subjective job security cf. [263].

Another reason to focus on the short-term revenue is the computational complex-

ity found in the associated optimization problem. An analytic solution is possible for

optimizing the short-term revenue [79, 175]. However, when consumers behave asym-

metrically towards gains and losses, the demand function becomes non-smooth, which

challenges the optimization of the long-term revenue. So far, no explicit analytic solution

but numerical approximations are available for this type of problem [79, 175, 205].

With regards to the advantages of a short-term revenue strategy, one question arises

naturally: Can a decision maker benefit from a short-term revenue strategy and simul-

taneously gain insights from its detailed analysis to guide the pricing decision process

for the long-term revenue?

Answering the question includes two criteria required to evaluate an optimal pricing

strategy: what is the maximal revenue obtained from it? And what is the robustness

against the volatile market and the optimization objectives.

To date it has been studied to compare the maximal revenue achieved from the

short-term and the long-term optimization objective [300].

However, the studies neglect the robustness of the optimal pricing strategy. opti-

mization responding to a changing environment, where the maximal revenue is not the

unique criterion to choose an optimal pricing strategy [297, 361]. Therefore, in practice,

a decision maker needs the robustness to evaluate optimal pricing strategies except if

the maximal revenue is concerned [297, 361].

Also, consumers asymmetrically respond to gains and losses [175, 205, 300]. This

leads to two different tangent slopes at the point in the demand curve where the reference

price equals the sales price. As a result, the demand function becomes non-smooth .

Owing to the non-smoothness of the problem, border collision bifurcations have been
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reported in mathematical models underlying dynamic pricing processes [175]. Border

collision bifurcations or grazing bifurcations are also widely observed in other systems

such as impact or friction oscillators [381, 404], and models of the financial market [289].

Period adding or period incrementing bifurcations are the cornerstones of border

collision bifurcations [139, 265, 289]. For period incrementing bifurcations, the period

either increases or decreases by a positive integer; for period adding bifurcations, the

period follows the Farey summation rule with the changing bifurcation parameter [139,

265, 289]∗.

Although dynamic pricing models are generally nonlinear with a non-smooth demand

function, their bifurcation structures have not been studied to the best of the authors’

knowledge. Here we aim to uncover these structures for the short-term and long-term

revenue and introduce bifurcation and period diagrams to study the robustness of opti-

mal pricing strategies.

B.2 Models

B.2.1 Reference price

Following a dynamic pricing process, the reference price evolves via

rn+1 = αrn+(1−α)pn (B.1)

where rn is the reference price at period n, pn is the sales price at period n, and α ∈ [0,1]

represents a memory factor.

For a given initial r0, Eq. (B.1) can be transformed to

rn+1 = αn+1r0 +(1−α)(αnp0 +αn−1p1 + · · ·+α0pn) (B.2)

In an extreme case when α= 0 in Eq. (B.2), consumers only remember the latest price;

for α > 0 consumers start remembering past prices but slow down their adaptions to

∗According to the Farey rule, a period-m+n solution between the bifurcation parameters which

generate period-m and period-n solution can been observed.
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the past until for α = 1, consumers memorize only r0. Here, being consistent with Hu

et al. [175], we define r0 ∈ [0,U ] and pn ∈ [0,U ] with U being the maximal price that a

decision maker is allowed to charge.

B.2.2 Demand

Following Hu et al. [175], the demand d(pn, rn) is composed of a linear base demand

and nonlinear reference effects via

d(pn, rn) =


b−apn+γg(rn−pn), if rn > pn,

b−apn, if rn = pn,

b−apn+γl(rn−pn), if rn < pn.

(B.3a)

(B.3b)

(B.3c)

Here, Eq. (B.3b) represents the base demand, a and b are parameters of the base demand,

and γg and γl stand for the sensitivity of consumers to either a gain or a loss, respectively.

When γg 6= γl, the demand becomes non-smooth. Hu et al. [175] restricts their study

to the special case of γl = 0. Yet, this assumption can result in losses [175] and should

therefore be avoided from a management point of view. A more general scenario would

be required to better understand the dynamics and to avoid losses. We therefore define

a new parameter β to act as the relative sensitivity of consumers to losses and gains,

β = γl/γg : (B.4)

• If β = 1, then γg = γl, and consumers are neutral and become equally sensitive to

gains and losses;

• if β ∈ [0,1), then γg > γl, and consumers are gain-seeking; if β = 0, then γl = 0, and

consumers are insensitive to losses; and

• if β > 1, then γg < γl, and consumers are loss-averse.

Gain-seeking consumers are observed in the market with promotion-driven consumers

or highly stockable products [175]. In line with this observation, we focus here on gain-
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seeking consumers and assume β ∈ [0,1). In this setting, the demand becomes non-

smooth due to being non-differentiable at the point pn = rn (cf. Eq. (B.3a)-(B.3b)).

Other scenarios (neutral and loss –averse consumers) require different modeling and

optimization procedures and are therefore not considered here.

B.2.3 Short-term revenue

Suppose a decision maker aims to optimisze the short-term revenue, then optimal price

choices are provided through

p∗n = arg max
pn∈[0,U ]

Π = pnd(pn, rn). (B.5)

Lemma 1: The reference price evolves via

rn+1 =



αrn+(1−α) γ
lrn+b

2(a+γl) , if rn ≤R≤RU

αrn+(1−α) γ
grn+b

2(a+γg) , if R < rn,R≤RU ,and

αrn+(1−α)U if R >RU

(B.6)

where R = b

a+
√

(a+γg)(a+γl)
, RU = 2(a+γl)U−b

γl
, cf. [175].

B.2.4 Long-term revenue

When a decision maker focuses on the long-term revenue, the optimal price choices are

determined by the following equation

max
pn∈[0,U ]

∞∑
n=0

ωnpnd(pn, rn) (B.7)

where ω ∈ (0,1] represents a discount rate, which is a rate to evaluate the present cash

value of the discounted future revenue [175].

A numerical approximation solution p∗n to Eq. (B.7) here is based on dynamic pro-

gramming, which is described in more detail in [79, 175]. Plugging p∗n into Eq. (B.1), we

get a map that describes the evolution of the reference price for the long-term revenue

scenario.
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Figure B.1 : Bifurcation diagram of reference price against memory factor in the case of optimizing
the short-term revenue.

Figure B.2 : Period diagram of reference price against memory factor in the case of optimizing the
short-term revenue.

Bifurcation diagrams summarize the entire behavior of the system as a significant

parameter changes [347]. Bifurcation diagrams can analyze the change in the amplitude

of the steady-state solutions as well as the change in the complexity of the solution.

However, bifurcation diagrams may fail to detect the change in dynamics for border

collision bifurcations [272]. Period diagrams record the period of solutions with the

changing bifurcation parameter [132]. Period diagrams allows examining the robustness

of steady-state solutions and allows comparing the optimizations with the short-term

and the long-term revenue.
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To generate the bifurcation and period diagrams, we assume the following parameters

to be constant [175]:

b= 582,a= 569.4,γg = 2671.2,ω = 0.9,U = 1, (B.8)

The choosing of parameters given by Eq. B.8 is based on an empirical study [174,

175], where the parameters are estimated through ordinal least square to fit a given

database [174]. Here, the memory factor α and β are chosen as the bifurcation parameter,

respectively.

B.3 Dynamics in the short-term revenue strategy

Next the dynamic behavior of the reference price as evolved via Eq. (B.6) is investigated

through numerical simulations. We focus on the reference price rather than the optimal

price choices for two reasons. From Eq. (B.6), the dynamic behavior of the optimal

price is in line with that of the reference price. Also, the evolution of the reference price

provides critical information for a regulator to identify the behavior of a company in the

market.

B.3.1 Variation of the memory rate α

In this section the relative sensitivity β = 0 is fixed and the memory rate α is varied

which would be a conventional way of studying this type of equation [175].

Fig. B.1 depicts the results in form of a bifurcation diagram. When α ≤ 0.813, the

reference price converges to three branches, however, when α ∈ (0.813,1], more branches

with the decreasing amplitude of reference price emerge until a constant value is reached.

Jumps in the bifurcation diagram can indicate the occurrence of either sub-critical Hopf-

or border collision bifurcations [404, 414].

Fig. B.2 depicts a period diagram. Except for a small interval α∈ [0.012,0.017] where

the period changes from 3 to 8 and then to 5, the number of periods remains constant

at 3. Complex changes in periodic behavior emerge from around α= 0.813 up to unity,

indicating the occurrence of border collision bifurcations [139, 181].
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Figure B.3 : Zoom-in of Fig. B.1. Bifurcation diagram of reference price against the memory factor
in the case of optimizing the short-term revenue. The branches in the window marked as ‘b’ are an

overlap of its ‘left’ side branches marked as ‘a’ and its ‘right’ side branches marked as ‘c’.

To investigate the dynamics in more detail as α ∈ (0.813,1], we zoom into both, the

bifurcation diagram of Fig. B.1 and the period diagram of Fig. B.2. The results are

shown in Fig. B.3 and Fig. B.4.

Fig. B.3 highlights how branches overlap. The window marked with ‘b’ results from

an overlap of branches found in window ‘a’ with those found in window ‘c’. Fig. B.4

details these period adding cascades [149]. The period adding cascades within the period-

13, period-16 and period-29 window are called period adding bifurcations as a result of

border collisions [113, 138, 149]. According to this adding rule, there is a period-45

window between the period-16 and the period-29 window, and so forth.

For the short-term revenue, the reference price is robust to a change in the memory

rate of consumers such that α < 0.813, which leads to a robust and optimal period-3

pricing strategy. However, as α > 0.813, period adding bifurcations emerge. This leads

to a maximal revenue which is generated from a periodic pricing strategy based on a

rapid changing period.
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Figure B.4 : Period diagram of reference price against the memory factor in the case of optimizing the
short-term revenue. Zoom-in of Fig. B.2 shows period adding cascades. Between the period-16 and the

period-13 solutions, its sum, a period-29 solution, emerges.

Figure B.5 : Bifurcation diagram of the reference price against the relative sensitivity of consumers in
the case of optimizing the short-term revenue.

B.3.2 Variation of the relative sensitivity β

Next we set the the memory factor to be α= 0.85, and alter the relative sensitivity β as

shown in Fig. B.5. As β increases, the amplitude of the reference price decreases until a

constant value is reached. Again, cascades of period adding bifurcations are observed. In

the following Fig. B.6 illustrates two scenarios of period adding cascades as β increases:

1. For the window marked as ‘a’, the lowest period lies in the middle of the period

adding cascade which is called in the following a U-cascade. In a U-cascade the
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Figure B.6 : Period diagram of the reference price against the relative sensitivity in the case of

optimizing the short-term revenue. The the window marked with an ‘a’ highlights a U-cascade which

contains pairs of opposed period adding bifurcation cascades; the window marked by ‘b’ represents an

S-cascade which only consists of period adding cascades of increasing order.

period of its right-hand side is greater than that of the left-hand side.

2. For the window marked with ‘b’, we observe an S-cascade of which period adding

cascades have layers of increasing periods.

For the short-term revenue strategy, period adding bifurcations are observed only

when β < 0.795. As the relative sensitivity to losses and gains approaches unity, the

reference price becomes a period-2 solution, which is robust to the change in the relative

sensitivity.
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Figure B.7 : Bifurcation diagram of reference price against the memory factor in the case of optimizing
the long-term revenue.

Figure B.8 : Period diagram of reference price against the memory factor in the case of optimizing the
long-term revenue.

B.4 Dynamics in the long-term revenue strategy

This section investigates the nonlinear dynamics of reference price for a decision maker

who aims at optimizing the long-term revenue.

B.4.1 Variation of memory rate α

The parameters used here are the same as those in section B.3.1 but a different objective

function is used: The decision maker obtains the optimal price from the solutions to

Eq. (B.7).
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Fig. B.7 depicts the bifurcation diagram; again bifurcations in branches add up

until α reaches a value of about 0.6, where the branches start merging into three main

branches. This convergence is followed by the emergence of many branches and the

shrinking amplitude until a constant value is reached.

However, when comparing the y-axis of Fig. B.1 and Fig. B.7, we find that for the

same α, the reference price in the case of the long-term revenue can be higher than that

in the case of the short-term revenue. The result is consistent with observations made

by [300]: A company chooses usually a higher sales price to increase future reference

prices and thereby to grow its long-term revenue.

Fig. B.8 depicts the change in dynamics with the changing α. As α ∈ (0,0.222],

the reference price becomes a period-2 solution. As α ∈ (0.222,0.592), period adding

bifurcations occur.

However, comparisons between the short-term (cf. Fig. B.2) and the long-term rev-

enue (cf. Fig. B.8) in the interval α ∈ [0.018,0.813) shows the robustness of the op-

timization of the short-term revenue. The solution in such interval of Fig. B.2 is a

clear period-3 solution. In contrast, period adding bifurcations occur when the objective

function is the long-term revenue (cf. Fig. B.8).

From the comparison between the behavior of the reference price and that of the

amplitude and the period, a decision maker can charge a higher price when aiming

for the long-term revenue. However, opposed to the short-term revenue strategy the

consideration of the long-term revenue enables scenarios for which the reference price

becomes prone to period adding bifurcations.

B.4.2 Variation of relative sensitivity β

The parameters are the same as section B.3.2. The optimal price is approximated

according to Eq. (B.7).

Fig. B.9 shows the bifurcation diagram as the relative sensitivity changes. Similar to

Fig. B.5, the branches show bifurcation adding cascades. Comparisons between Fig. B.9
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Figure B.9 : Bifurcation diagram of reference price against the relative sensitivity in the case of

optimizing the long-term revenue.

Figure B.10 : Period diagram of reference price against the relative sensitivity in the case of optimizing
the long-term revenue.

and Fig. B.5 further validate our observations: a company can achieve a higher reference

price for the long-term revenue strategy than in the short-term revenue strategy. Also,

U-cascades shown in Fig. B.10 is not so obvious as in Fig. B.6. This observation indicates

that the consideration of the long-term revenue reduce the variation in the period of the

periodic reference price.

A reduced variation is due to a clairvoyant perspective in solving the optimization

problem in the case of the long-term revenue. The underlying assumption is that the

system does not follow any drift terms, evolves according to given equations and that
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the ‘maximal generating revenue’ price path is chosen. The decision maker has full

information of the market evolution.

This information helps the decision maker to reduce unnecessary transitions to

steady-state solutions. As a result, the long-term consideration reduces the amplitude

of the change in dynamics when the period adding bifurcations emerge both in the

short-term and the long-term revenue strategy.

B.5 Conclusion

We have studied bifurcation and period diagrams to examine the nonlinear dynamics in

a dynamic pricing model considering reference effects. Comparisons between a short-

term and a long-term revenue strategy have been conducted. Period adding bifurcations

are observed as the market environment changes. According to the order of the left and

the right hand side of the period adding cascades, we classify two types of cascades: the

U-cascade and the S-cascade [148]. These two types of cascades enable us to identify

different bifurcation structures which belong to different revenue strategies.

The consideration of optimizing the long-term revenue has two advantages over opti-

mizing the short-term revenue. A decision maker could charge temporarily a higher price

to increase the reference price. Also, the long-term revenue strategy induces a less vari-

ation in the period. Further, this reduced variability lowers the amplitude of the period

of the reference price. However, optimizing the long-term revenue breaks a supposedly

robust pricing strategy in some situations (here α ∈ (0.222,0.592)). In this situation, the

short-term revenue generates a robust periodic solution with a fixed period, which avoids

period adding bifurcations. Knowing of such a robust period would enable a decision

maker to reduce price volatility and manage consumer price expectations.

Our focus is on the periodic solution of the reference price and solutions with a period

smaller than 300 using period diagrams. This limitation, however, makes it diÿcult

to distinguish between higher periodic, quasi-periodic or chaotic solutions. Symbolic

analyzes or order pattern recurrent plots and associated quantifiers may provide further
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condensation of the complex information contained in bifurcation diagrams [234].

Future work will concentrate on the development of a theoretical framework on how

to determine all parameters. Also the classification of cascades will further be used

to characterize period adding bifurcations into different evolution of rotation numbers.

Whether structures as calculated here are realistic or whether the model needs to be

further adjusted is unknown to-date but is currently verified using real-life business data.



Appendix C

Novel order patterns recurrence plot-based

quantification measures to unveil deterministic

dynamics from stochastic processes

Abstract

Forbidden ordinal patterns are known to be useful to discriminate between chaotic

and stochastic systems. However, while uncorrelated noise can be separated from

deterministic signals using forbidden ordinal patterns, correlated noise exhibits

apparently forbidden ordinal patterns, which can impede distinguishing noise from

chaos.

Here, we introduce order patterns recurrence plots to visualize the difference

among deterministic chaotic systems, and stochastic systems of uncorrelated and

correlated noise. In an order pattern plot of a chaotic system with an optimal em-

bedding dimension, the diagonal lines remain preserved, while uncorrelated noise

shows up as thinly isolated dots and correlated noise forms clusters. We propose

two measures, the mean and the median of relative frequencies of order patterns

that appear in a time series to distinguish those dynamics. The effectiveness of

the two measures is analyzed through bifurcation diagrams of the logistic map,

261
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the tent map, the delayed logistic map and the Hénon map.

Our results show, that both, the mean and the median, distinguish chaos from

quasi-periodicity in the delayed logistic map. The mean of relative frequencies

of order pattern is reciprocal to the number of order patterns that occur in a

given time series, thus can be a measure of forbidden structures - which becomes

unbounded. While the mean is robust to the change of parameters in the bi-

furcation diagrams, the median exhibits sensitive changes, which is significant to

characterize chaotic signals.

C.1 Introduction

Given a measured time series, irregularity often dominates. The irregularities can emerge

in economics [214], finance [289], natural sciences (physics [66], biology [282], chemistry

[353], geology [284], medicine [396] or engineering [277, 349, 395]). For real data it is often

necessary to distinguish between stochastic dynamics (random noise, high dimensional)

and deterministic dynamics which can also be chaotic, either low or high dimensions.

However, both a stochastic system and a chaotic system generate a broadband power

spectrum in the frequency domain, which often hinders their disentanglement [315]. The

situation complicates when it comes to real-life data or natural information (life sciences)

since measurements here are inextricably contaminated by omnipresent dynamical or

observational noise [210, 276, 283, 315].

To discriminate chaotic systems with observational noise from stochastic systems,

[20] developed a symbolization scheme, the Bandt-Pompe(BP) methodology, which en-

codes a time series into order patterns. An order pattern with embedding dimension

m represents a permutation of the set {0,1, ...,m− 1}, which is an invariant under the

process of monotonous transformations and known to be robust with regards to obser-

vational Gaussian noise [20]. Owing to this robustness, order patterns have attracted a

growing interest [23, 211, 290, 301, 412].

Two streams of studies have been devoted to quantify order patterns and the degree
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of determinism on the basis of the BP method. The first stream is that of forbidden

ordinal patterns [7, 8, 317, 326, 408, 409, 424], which are non-occurring permutations in

a time series [5, 8, 62, 210, 316].

The occurrence of forbidden ordinal patterns is related to structures of deterministic

processes. For a deterministic map xi+1 = f(xi), the number of intersections of f0(x) =

x,f1(x),...,fm−1(x) determines the number of order patterns. As a result, when the

number of intersections is smaller than m! (and exponentially growing with m), the map

exhibits forbidden pattern [8, 9, 317].

However, there is a minimal embedding dimension to detect the outgrowth of for-

bidden ordinal patterns [317]. For the logistic map (xi+1 = 4xi(1−xi)), as m = 3, the

number of intersections of f0,f1,f2 is 6, hence the number of order patterns equals 5 and

the permutation (2,1,0) is forbidden, irrespective of the time series’ length [8]. Also, the

number of forbidden ordinal patterns is robust to low degrees of sampling irregularities

as the time series is generated from irregular time intervals [211].

To visualize forbidden ordinal patterns, Kulp and Smith [212] and Kulp and Zunino

[210] introduce a permutation spectrum test, which plots the counts of frequencies of

each permutation of {0,1, ...,m−1}. A permutation that counts 0 is a forbidden ordinal

pattern and indicates determinism. However, this plot fails to discriminate determinism

from correlated noise, which is stochastic but shows missing order pattern. Both forbid-

den and missing order pattern are pattern structures that does not show up in a time

series. However, while the forbidden order patterns is unrelated to the length of the

time series, the missing order patterns have small probability to show up but will show

up as long as the time series are long enough. Permutation entropy is further needed to

facilitate the identification of determinism based on this plot [285, 316, 317].

On the other hand, the second stream of measures applied the BP method is to

visualize and estimate recurrent behaviour of order patterns, using order patterns recur-

rence plot (OPRP). OPRP was developed by Groth [156] to visualize the dependencies

between two time series. While a conventional recurrence plot (RP) is based on the
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(phase) spatial and temporal closeness to define recurrent and laminar behaviour [246],

a recurrence in an OPRP is that the same order pattern recurs [57, 156].

However, literature is scarce on interpreting recurrence quantification analysis (RQA)

measures extracted from an OPRP [57]. Schinkel et al. [328] and Marwan et al. [245]

employ the RQA to detect determinism of event-related potentials of brain responses

using electroencephalography (EEG). Donner et al. [109] use RQA to investigate short-

term dynamics of discrete-valued data. McCullough et al. [252] regenerate a time series

using an ordinal network to compare the dynamics of the original time series and a

surrogate time series designed from ordinal network data using the RQA and OPRP.

Apart from ordering a time series, Caballero-Pintado et al. [57] define a new OPRP

using a symbolic correlation integral by ordering the time series relative to the original.

Motivated by the study of Lu et al. [231], our goal here is to connect these two streams

of studies and show that OPRP can visualize the effect of an exponential increase of

forbidden ordinal patterns through the increase of embedding dimension m. To unveil

the change of dynamics as the parameters of the dynamical system change, we introduce

and validate two new measures, the mean and the median of the relative frequencies of

order patterns that occur in a time series. To examine the evolution of those two

measures, as deterministic test models, we apply the logistic map, the delayed logistic

map, the tent map and the Hénon map; as stochastic test models we use white and

Brown noise.

C.2 Methodology

Underlying a one-dimensional time series ({xt}Nt=1) with length N , order patterns of

{xt}Nt=1 depend on the time delay τ and the embedding dimension m [20]. We encode xt
to its order pattern through ranked elements in the vector

−−→
x(t) = (xt,xt+τ , ...,xt+(m−1)τ )

[156]. Here, we study order patterns in the case of τ = 1, and then rank
−−→
x(t) =

(xt,xt+1, ...,xt+(m−1)), where 0 corresponds to the smallest element in
−−→
x(t). To guaran-

tee the uniqueness of order patterns, when xt+i = xt+j , i < j, we assume si < sj , where
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si is the rank of xt+i in
−−→
x(t). As a result, order patterns of {xt}Nt=1 are permutations

of {0,1, ...,m− 1},and the length of order patterns equals to the embedding dimension

m with the number of well-defined order patterns in {xt}Nt=1 equalling N −m+ 1. An

order pattern of {x1 = 4,x2 = 1,x3 = 7,x4 = 5}, with embedding dimension m = 4 cor-

responds to the permutation (ordered sequence) (1,0,3,2) since 7 is the largest number

corresponding to the symbol 3 and 1 being the smallest element corresponding to the

symbol 0.

C.2.1 Order patterns recurrence plot

Given a time series, an OPRP [156, 246] visualizes its order patterns (i.e. ordered

sequences) and analyzes recurrent order structures via the following matrix

Ri,j(m) =


1,πi = πj

0,πi 6= πj

i, j = 1,2, ...,N −m+1 (C.1)

where πi and πj are the order patterns of the ith and jth element of {xt}Nt=1,respectively.

C.2.2 Forbidden ordinal patterns

Let Πm = {πξ1 , ...,πξn} be the set of order patterns that occur in {xt}Nt=1 with embedding

dimension m and Ci be the frequency of πξi ∈ Πm, then

n∑
i=1

Ci =N −m+1 (C.2)

where n is the number of order patterns that appear in {xt}Nt=1.

The maximal value of n is m! when N ≥m!+m−1. This leads to all possible order

patterns showing up and the number of forbidden ordinal patterns becoming zero. If

the time series is long enough to allow every possible order pattern (N �m!) to show

up, then the number of forbidden ordinal patterns (FOP) becomes

FOP =m!−n (C.3)



Novel order patterns recurrence plot-based quantification measures 266

with n <m!. The relative frequency (RF) of πξi is then provided by

RFπξi = Ci
N −m+1

(C.4)

The mean of relative frequencies (MRF) is then given by

MRF =
n∑
i=1

RFπξi/n=
n∑
i=1

Ci
n(N −m+1)

= 1
n

(C.5)

Kulp and Zunino [210] observe that a few order patterns of the fractional Brown

noise have high frequencies. This leads to a skewed frequency distribution. The median

is a better indicator to look at the statistic property of the frequency distribution. The

reason is in that the median can reduce the influence of outliers [147]. The median of

relative frequencies (MDRF) can be expressed via

MDRF = median{RFπξ1 , ...,RFπξn}= median{C1, ...,Cn}
N −m+1

(C.6)

However, the MRF and the MDRF may variate in a small interval. This hinders

visualizing a small variation in the MRF and the MDRF. We therefore take the negative

value of the logarithm of the mean (meanl) and the median (medianl) of all relative

frequencies. This approach is consistent with that of Bandt and Pompe [20] for a cal-

culation of the permutation entropy. Here, the meanl and the medianl are expressed

via

meanl =− logMRF = logn (C.7)

medianl =− logMDRF = log(N −m+1)− log(median{C1, ...,Cn}). (C.8)

Plugging Eq. C.3 into Eq. C.7 yields

meanl = log(m!−FOP). (C.9)

where Eq. (C.9) describes the relationship between the meanl and the FOP. A pseudo

algorithm to calculate the meanl and the medianl is provided in Algorithm C.1.
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(A) OPRP of a periodic system (B) OPRP of a chaotic system

(C) OPRP of Gaussian noise (D) OPRP of Brown noise

Figure C.1 : OPRPs as m increases.The embedding dimension m is 4 (A) and 6 (B). (C) is the

distribution of order patterns. (1) and (2) logistic map xi = αxi−1(1−xi−1) for α= 3.55 (periodic) and

3.91 (chaotic), respectively;(3) Gaussian noise (20,000 samples chosen from N (0, 1)); (4) Brown noise

(20,000 samples chosen from power spectrum S(f) = (1/f)2, with f ∼N (0, 1) [371].)

Figure C.2 : Time series. (1) and (2) logistic map (periodic,r = 3.55); and (chaotic,r = 3.91); (3)
Gaussian noise of Fig C.1C; (4) Brown noise of Fig C.1D; parameters of noise as provided previously.
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(A) Logistic map (B) Tent map

(C) Delayed logistic map (D) x component of Hénon map

Figure C.3 : Bifurcation diagrams (A) and the evolution of the meanl and the medianl (B). (1)-(4)
correspond to logistic map, tent map, delayed logistic map and Hénon map, respectively.
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Algorithm C.1: Calculation of the meanl and the meanl
1: procedure Time series to symbolic sequences through the BP method

2: if i < N −m+1, where N = 20,000,m= 6.

3: Order patter πj = (j0, ·, j5) ← {xi, ·,xi+5}

4: Record the frequency: πj : Cj , where j ≤ n.

5: procedure Relative frequency of each πj

6: Calculate the MRF and MDRF of each πj according to Eq. C.5 and Eq. C.6.

7: procedure Calculate the meanl and the medianl

8: Calculate the meanl and the meanl according to Eq. C.7 and Eq. C.8.

C.3 Results

C.3.1 Order patterns recurrence plot

For Gaussian noise (Fig C.1C), the increase of m makes the OPRP sparse. In Fig C.1C

(A,B), we use Gaussian noise and see that the OPRP is denser for m= 4 than for m= 6.

However, the OPRP of Brown noise (Fig C.1D) preserves many points indicating that

the system has the order pattern of which the relative frequency is high. For the periodic

or the chaotic system under study (Fig C.1A and Fig C.1B), the OPRPs show distinctly

more diagonal lines than the cases of Gaussian or Brown noise. As highlighted by Rosso

et al. [317], a minimal embedding dimension allows the occurrence of forbidden ordinal

patterns and their exponential growth. An OPRP can then have an optimal embedding

dimension that rules out Gaussian noise.

The reasons for a sparse OPRP in case of Gaussian noise are that no forbidden

ordinal patterns exist [8] and that the relative frequencies of every order pattern is close

[6]. Therefore as m increases (Fig C.1C(C)), the number of order patterns that occurs

is up to m!, and thus the probability of an order pattern that recurs in a given time

window is 1
m! , which is low for large m, leading to a spare distribution of points in a

given time window.



Novel order patterns recurrence plot-based quantification measures 270

Figure C.4 : Analysis of the meanl and the medianl as more initial conditions are considered. The
M meanl represents the mean of the meanl; the MD medianl is the median of the medianl. The

bifurcation diagram is plotted on a 1,000× 1,000 grid with each point in the x− axis having 1,000

samples of randomised conditions. (A) Logistic map; (B) tent map; (C) delayed logistic map; (D)

Hénon map.

However, for Brown noise, in a given time window, the time series shows an upward

(downward) tendency (Fig C.2(D)). As the upward (downward) tendency lasts for six

time intervals, it forms the order pattern 012345 (543210). If the tendency lasts for over

six time intervals, the order pattern does not change and forms a cluster in the OPRP

(Fig C.1D(C)).

Due to the tendencies in the time series, Brown noise shows high relative frequencies

(over 4%) of order patterns (012345 and 543210) (Fig C.1D(C)), compared with Gaussian

noise (below 0.24%) (Fig C.1C(B)). As consistent with [316], Brown noise shows missing

ordinal patterns (n= 710< 6! = 720) (Fig C.1D(B-C)).
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Figure C.5 : Influence of noise on the meanl and the medianl of the logistic map as r = 3.91. SNR
represents the signal-to-noise ratio. Here SNR=δ2

signal/δ
2
noise, where δ

2
signal = 0.0926. The noise is

additive and follows N (0, δ2
noise).

C.3.2 Bifurcation diagrams

Caballero-Pintado et al. [57] showed that RQA in the OPRP can detect changing dy-

namics. Now, we show how the meanl and medianl unveil a change in dynamics and are

able to uncover details in bifurcation diagrams. The embedding dimension is m = 6 in

the following.

Fig C.3 shows that the change of the meanl is like a staircase as bifurcation param-

eters change. That is, the number of forbidden ordinal patterns is robust to the change

in dynamics. This result is complementary to the observation that forbidden ordinal

patterns are robust to irregular sampling time [211].

From Fig C.3AB, Fig C.3BB, Fig C.3CB and Fig C.3DB, we find that the medianl

quickly responds to a small change in the bifurcation parameter. As a result, the medianl

is non-robust to a change in dynamics. In a periodic window, the medianl is close or

equal to the meanl. However, in a chaotic window, the medianl and the meanl become

more visible. Also, the medianl abruptly decreases to fit with the meanl in a periodic

point or a periodic window. In contrast, a sudden increase of the meanl is found at

points where the system switches between chaotic and periodic dynamics.

In a periodic window, the length of a time series may cause the number of some
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order patterns to become slightly higher than the order patterns of the neighbouring

regimes∗. For the same length of the time series, as the periodicity increases, this

difference becomes smaller. However, the difference may be visualized in a low periodic

window such as the period-3 window. This is possible since a low periodicity leads to

a high relative frequency for each order pattern. The unit difference of low periodicity

induces a higher difference between the medianl and the medianl than that of a high

periodicity (Fig C.3AB).

Whereas in a periodic window the order patterns are evenly distributed without

consideration of the unit difference, in a chaotic window, the order patterns are not

necessary evenly distributed [210]. An uneven distribution of order patterns can result

in a difference of medianl and meanl. Fig C.3A and Fig C.3B show that the meanl

changes step by step even in a chaotic region, contributing to the number n of order

patterns which are robust against the change in dynamics. According to Eq. C.3, when

n is robust, FOP is robust as well. Therefore, our results support that the number of

forbidden ordinal patterns show some degree of robustness to the changes of dynamics

since the meanl is related to the number of forbidden ordinal patterns.

As shown by Sprott [345], for the delayed logistic map, it is diÿc ult to distinguish

chaos from quasi-periodicity using a bifurcation diagram. However, fig C.3CB shows

different structures of the change of the medianl and meanl under the two kinds of

dynamics. In the window of quasi-periodicity (see fig C.3CA), where the maximal Lya-

punov exponent remain at zero [280, 345], the meanl shows no evident variations, and

the medianl has no abrupt changes. Also, different from periodic windows, the evolution

of the medianl does not fit with that of the meanl, showing a different quality in changes.

Next, we study the influence of randomized initial conditions on the meanl and

∗For example, in our numerical experiments, N = 20,000,m= 6, for the logistic map with r = 3.55,

eight order patterns appear, so that the total amount of these eight order patterns is N−m+1=19,995.

However, 19,995 cannot be divided by 8, so the count of some order patterns is 2,500, that of the others

is 2,499, resulting in the difference of unity between the mean and the median of {C1, · · · ,Cn}. This

further shows the difference between the meanl and the medianl according to Eq. C.7 and Eq. C.8.
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the medianl as bifurcation parameters change. We implement the Algorithm C.1 using

1,000 randomised initial conditions for each ri. For logistic map and tent map, initial

conditions are chosen from U(0,1); for the delayed logistic map, both the x0 and x1 are

chosen from U(0.4,0.8); for the Hénon map, both the x0 and y0 are chosen from U(0,1).

The meanl and medianl are calculated in each sample. Then the y−axis records the

mean of the meanl or the median of the medianl. Fig C.4 shows the results. Fig C.4

(C) and fig C.3CB have the same phenomena in the almost quasi-periodic window: the

meanl is almost fixed.

The influence of noise on the two measures studying a noise contaminated regime

of the logistic map is examined in Fig. C.5. Variations in the meanl is less than those

of the medianl. This result is consistent with the observation that the FOP is robust

against Gaussian noise [6]. Since the meanl = log(m!−FOP ), a robust FOP leads to

a more robust meanl against Gaussian noise. However, the medianl shows persistent

variations, which reflects the system is changing. Yet, whether this robustness will lead

to similar prediction quality over a wide range of bifurcation parameters as shown for

purely deterministic regimes and different or even different and varying SNRs will need

to be studied in the future in more detail.

C.4 Conclusion

We have used the mean (meanl) and the median (medianl) of the relative frequency of

order patterns to characterize chaotic signals and stochastic signals. Although the mean

and the median are common measurements in statistics, our definitions provide new

measurements for order pattern recurrence plots to distinguish between chaotic signals

and stochastic signals and to detect the change in dynamics in a purely chaotic signals.

Here, the meanl quantifies the number of forbidden order patterns (FOP, see Eq. C.9)

for the first time.

Also, monitoring the embedding dimension can be used to qualify chaotic versus

stochastic dynamics in an OPRP. An optimally embedded OPRP preserves diagonal
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lines for a chaotic system, leads in the case of uncorrelated noise to thinly distributed

isolated points and in the case of correlated noise to small clusters. However, whether

this holds true for any system especially if noise contaminated systems are considered

needs to be verified in the future.

While the meanl is robust to changing bifurcation parameters, the medianl is sensitive

to the change in the dynamics. Using the difference between the meanl and the medianl

and their fluctuations, we can distinguish chaos from quasi-periodic dynamics for the

delayed logistic map.

The calculation of the medianl and the meanl is easily accomplished and computa-

tionally inexpensive, which makes the medianl and the meanl a cost effective analysis

tool to tell deterministic signals from stochastic signals.

Further, the meanl shows the robustness to Gaussian noise. However, the medianl

is not robust to Gaussian noise. Since the relative frequencies of each order pattern of

Gaussian noise are close in value to each other, the meanl and the medianl of deter-

ministic signals being buried in Gaussian noise, would likely to be different from that of

pure noise.

From a practical viewpoint, especially low-dimensional deterministic signals are of-

ten contaminated by high-dimensional processes (noise); yet only the lower dimensional

scales are often of interest. Cleaning these signals by employing dynamics-preserving

nonlinear (geometric) filters as conducted by Oberst et al. [283, 284] could expand

utilizing the measures, which are suggested here to real-life data problems. Especially

studying border-collision/grazing bifurcations the measures could potentially assist in

detecting of tipping points in bifurcation diagrams of maps and flows related to discon-

tinuous dynamics, cf. [175, 272].
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