UNIVERSITY OF TECHNOLOGY SYDNEY Faculty of Engineering and Information Technology

Optimal Task Scheduling and Flight Planning for Multi-Task Unmanned Aerial Vehicles

by

Bin Liu

A Thesis Submitted in Fulfillment of the Requirements for the Degree

Doctor of Philosophy

Sydney, Australia

Certificate of Authorship/Originality

I, Bin Liu declare that this thesis, is submitted in fulfilment of the requirements for

the award of doctor of philosophy, in the Faculty of Engineering and Information

Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In

addition, I certify that all information sources and literature used are indicated in

the thesis.

I certify that the work in this thesis has not previously been submitted for a degree

nor has it been submitted as part of the requirements for a degree at any other

academic institution except as fully acknowledged within the text. This thesis is the

result of a Collaborative Doctoral Research Degree program with Nanjing University

of Posts and Telecommunications.

This research is supported by the Australian Government Research Training Pro-

gram.

Production Note:

Signature: Signature removed prior to publication.

Date: 22/02/2022

© Copyright 2022 Bin Liu

ABSTRACT

Optimal Task Scheduling and Flight Planning for Multi-Task Unmanned Aerial Vehicles

by

Bin Liu

Unmanned aerial vehicles (UAVs), also known as drones, play an important role in various areas due to their agility and versatility. Integrated with many embedded components, the UAV is capable of conducting multiple tasks simultaneously. Coordinating different tasks to a multi-task UAV can be challenging. The reason is that tasks may require different levels of commitment and tolerate different latencies. Another reason is that multi-tasking can give rise to difficulties in the UAV's energy management, as many UAVs are battery-powered. In this thesis, we study the optimal flight planning, control, and routing for the multi-task UAV.

The main contributions of this thesis can be summarized as follows.

- This thesis presents a novel energy-efficient UAV flight planning framework, which integrates UAVs into intelligent transportation systems for energy-efficient, delay-sensitive delivery services. The UAV can dynamically choose actions from cruise speed, full speed, recharging at a roadside charging station, or hitchhiking and recharging on a collaborative vehicle. The objective is to minimize the energy consumption of the UAV and ensure timely delivery. We reveal the conditions under which the UAV's flight planning changes in terms of the remaining flight distance or the elapsed time. Consequently, the optimal flight planning can be instantly made by comparing with the thresholds.
- This thesis presents a new online control framework for multi-task UAVs, which allows a UAV to perform in-situ sensing while delivering goods. A new

finite-horizon Markov decision process (FH-MDP) problem is formulated to ensure timely delivery, minimize the UAV's energy consumption, and maximize its reward for in-situ sensing. We prove the monotonicity and subadditivity of the FH-MDP, such that the FH-MDP has an optimal, monotone deterministic Markovian policy. We find that the optimal policy consists of flight distance-related and time-related thresholds at which the optimal action of the UAV switches. As a result, the optimal actions of the UAV can be obtained by comparing its state with the thresholds at a linear complexity.

• This thesis presents a novel multi-task UAV routing framework, which aims to minimize the UAV's energy consumption, maximize its sensing reward, and ensure its timely arrival at the destination. We interpret possible flight waypoints as location-dependent tasks, hence accommodating the waypoints and in-situ sensing in a unified process of task selection. We construct a weighted time-task graph, and transform the optimal routing of the UAV to a weighted routing problem, which can be optimally solved by the celebrated Bellman-Ford algorithm.

Acknowledgements

I wish to thank all the people whose assistance was a milestone in the completion of this thesis.

First and foremost, I would like to express my deepest gratitude to my supervisors, Prof. Ren Ping Liu and Prof. Hongbo Zhu, for all the opportunities, patience and help throughout my study. Their meticulous academic attitudes much impress me. I am grateful for their advice and guidance to grow. I would also like to convey my sincere thanks to my co-supervisor, Prof. Y. Jay Guo, for his invaluable advice and immense knowledge. It's really joyful to receive his appreciation and support.

I would like to express my profound appreciation to my co-supervisor, Prof. Wei Ni, who has the substance of a genius: he convincingly guided and encouraged me to be professional and do the right thing even when the road got tough. Without his persistent help, the completion of this thesis would have been impossible.

Finally, I would like to express my deep and sincere gratitude to my parents for their encouragement and unconditional love. They support me to pursue research and being myself. This work would not have been possible without their input.

Bin Liu Sydney, Australia, 2022.

List of Publications

Journal Papers

- J-1. B. Liu, W. Ni, R. Liu, Q. Zhu, Y. J. Guo, and H. Zhu. "Novel Integrated Framework of Unmanned Aerial Vehicle and Road Traffic for Energy-Efficient Delay-Sensitive Delivery," *IEEE Transactions on Intelligent Transportation* Systems, Early Access 2021. (Chapter 3).
- J-2. B. Liu, W. Ni, R. Liu and H. Zhu. "Optimal Selection of Heterogeneous Network Interfaces for High-Speed Rail Communications," *IEEE Transaction* on Vehicular Technology, vol. 69, no.12, pp. 15005-15018. 2020.
- J-3. B. Liu, W. Ni, R. Liu, Y. J. Guo, and H. Zhu. "Optimal Control of Multi-Task Drone for Delay-Aware Goods Delivery and In-Situ Sensing," *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, Submitted 2021. (Chapter 4).
- J-4. B. Liu, W. Ni, R. Liu, Y. J. Guo, and H. Zhu. "Optimal Routing of Unmanned Aerial Vehicle for Joint Goods Delivery and In-situ Sensing," *IEEE Transactions on Intelligent Transportation Systems*, under major revision (revised and resubmitted), 2021. (Chapter 5).
- J-5. B. Liu, Q. Zhu, and H. Zhu. "Trajectory optimization and resource allocation for UAV-assisted relaying communications," Wireless Networks, vol. 26, no. 1, pp. 1–11, Nov. 739-749, 2019.
- J-6. B. Liu, Q. Zhu, and H. Zhu. "Rotman lens-based two-tier hybrid beamforming for wideband mmWave MIMO-OFDM system with beam squint," *EURASIP* Journal on Wireless Communications and Networking, vol.2018, no.1 pp.267, 2018.

Conference Papers

- C-1. B. Liu, W. Tan, H. Hu, and H. Zhu. "Hybrid beamforming for mmWave MIMO-OFDM system with beam squint," *IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)*, Bologna, Italy, Sept. 2018, pp. 1422–1426.
- C-2. B. Liu, Q. Zhu, and H. Zhu. "Delay-Aware LTE WLAN Aggregation for 5G Unlicensed Spectrum Usage," *IEEE 85rd Vehicular Technology Conference* (VTC Spring), Sydney, Australia, Jun. 2017, pp. 1-6.

Contents

	Cer	tificate		ii
	Abs	stract		iii
	Acknowledgments			V
	List of Publications			vi
	List of Figures			xi
	Abl	breviatio	on	xiv
1	Int	troduc	ction	1
	1.1	Backgr	ound	. 1
	1.2	Research	ch Challenges	. 2
	1.3	Research	ch Objectives	. 3
	1.4	Research	ch Contributions	. 4
		1.4.1	Energy-Efficient Flight Planning of Multi-Task UAV	. 5
		1.4.2	Optimal Routing of Multi-Task UAV	. 6
		1.4.3	Optimal Routing of Multi-Task UAV	. 7
	1.5	Thesis	Organization	. 8
2	Lit	teratu	re Survey	10
	2.1	Energy	Management of the UAV	. 10
	2.2	Task S	cheduling of the UAV	. 11
	2.3	Flight	Planning of the UAV	. 13

	2.4	UAV-as	ssisted In-Situ Sensing and Relay Communication	14
	2.5	Summa	ury	19
3	En	ergy-l	Efficient Flight Planning for Multi-Task UAV	20
	3.1	Introdu	action	20
	3.2	System	Model	23
	3.3	Probler	n Formulation	25
	3.4	4 Monotone Optimal Policy and Threshold Structure		30
		3.4.1	Monotone Properties of Optimal Policy	31
		3.4.2	Threshold Structure of Optimal Policy	36
		3.4.3	Threshold-Based Optimal Policy Decision	41
		3.4.4	Threshold-based Optimal Policy Algorithm	45
	3.5	Numeri	ical Results	49
		3.5.1	Threshold Structure Verification	49
		3.5.2	Performance Comparisons	51
	3.6	Conclus	sion	58
4	Op	otimal	Control of Multi-Task UAV	60
	4.1	Introdu	action	60
	4.2	System	Model	64
		4.2.1	Mobility Model of the UAV	65
		4.2.2	Energy Consumption of the UAV	65
		4.2.3	Reward for In-situ Sensing	66
		4.2.4	Penalty for Late Arrival	66
	4.3	Probler	n Statement	67
	4.4	Optim	al Monotone Policy and Threshold Structure	69

		4.4.1	Monotonicity of Bellman Equation	. 70
		4.4.2	Subadditivity and Optimal Policy	. 72
		4.4.3	Threshold-based Action Selection	. 78
	4.5	Numer	ical and Simulation Result	. 81
		4.5.1	Threshold Structure Verification	. 81
		4.5.2	Performance Comparison	. 83
	4.6	Conclu	sion	. 87
5	Op	timal	Routing of Multi-Task UAV	89
	5.1	Introdu	action	. 89
	5.2	System	Model	. 91
	5.3	Joint A	Aerial Sensing and Delivery Routing	. 93
	5.4	Numeri	ical Results	. 99
		5.4.1	Performance Comparison	. 99
		5.4.2	Case Study	. 103
	5.5	Conclu	sion	. 105
6	Co	onclusi	ion and Future Work	106
	Bi	bliogra	aphy	109

List of Figures

1.1	Delay-aware delivery service: a timely aerial delivery can be		
	guaranteed by the UAV optimization.	2	
1.2	Multi-task UAV for joint goods delivery and in-situ sensing	3	
1.3	Research Objectives	4	
2.1	UAV-assisted WSN	16	
3.1	A UAV flies along a route to deliver goods at different flight speeds.		
	As shown in the left-hand side (LHS) of the figure, the UAV can		
	hitchhike on collaborative vehicles and get recharged by the vehicle.		
	As illustrated in the right-hand side (RHS) of the figure, the UAV		
	can stop and recharge at roadside charging stations	23	
3.2	Threshold illustration	40	
3.3	Threshold structure verification: (b)-(f) are obtained under		
	$L=15$ km, and $T=20$ min; dark dot \cdot , green circle \circ , blue plus $+$,		
	and red star * represent the CS $(a = 0)$, FS $(a = 1)$, CE $(a = 2)$ and		
	VE $(a = 3)$ action, respectively	50	
3.4	Energy consumption under different flight distances under delay		
	requirement $T=20$ min	53	
3.5	Energy consumption under different flight distances under delay		
	requirement $T = 30 \text{ min}$	55	

3.6	Flight completion rate for the flight distance $L = 9$ km with the	
	increase of T	56
3.7	Energy consumptions for the flight distance $L=9~\mathrm{km}$ with the	
	increase of T	57
3.8	Recharge energy under different allowed flight delay T for $L=7.2~\mathrm{km}$	57
3.9	Flight completions of the proposed method (DVC) under different	
	flight delays	58
4.1	Illustration of a multi-task UAV performing goods delivery and	
	in-situ sensing at places of interest (POIs)	63
4.2	Total cost with the increase of required arrival time T for $M=10.2~\mathrm{km}$	81
4.3	Validation of the new threshold-based optimal policy, where are	
	achieved when $M=6$ km, and $T=20$ min; blue circle \circ , yellow star	
	*, and red stars * stand for actions $a=1$ (full speed), $a=2$ (cruise	
	speed), and $a=3$ (in-situ sensing), respectively	82
4.4	The energy usage against the required delivery distances, when the	
	specified delay T is 30 min	84
4.5	The timely flight completion ratio of the distance $M=8.4$ km, as	
	the allowed flight time T increases	84
4.6	The normalized in-situ sensing rewards for the flight distance	
	M=8.4 km, as the allowed flight time T increases	85
4.7	The timely flight completion ratio under different POI densities	
	$ \rho(\mathcal{L}^{(1)}) $	86
4.8	The normalized in-situ sensing rewards under different flight	
	distances, as the allowed flight time T increases	87

5.1	Illustration of joint aerial in-situ sensing and delivery framework: A
	UAV is dispatched to deliver goods from the warehouse to the
	destination, and can also carry out in-situ sensing at the road
	intersections when required (yellow circle)
5.2	Illustration of a feasible task-time route and an infeasible task-time
	route, where the solid circles denote sensing tasks and hollow circles
	represent virtual tasks (i.e., the UAV's flight)
5.3	Graph Updating: graph $\mathcal G$ is updated by replicating and distributing
	the reward of each vertex s' to the weights of any edge $[s, s'], \forall s \in \mathcal{S}$. 98
5.4	Averaged rewards under different delivery deadline T when the
	delivery distance (straight line distance on map) is 3 km 101
5.5	Energy consumption comparison under different delivery deadline ${\cal T}$
	when the delivery distance (straight line distance on map) is 3 km. 102
5.6	Net gain under different task demand densities when the UAV is
	required to complete the 3 km delivery within 12 min 103
5.7	The map of our on-campus case study, where the blue, yellow, and
	orange lines indicate the proposed algorithm, OTS, and GRS,
	respectively

Abbreviation

3GPP: 3rd Generation Partnership Project

BS: Base Station

CAV: Connected and Automated Vehicle

DP: Dynamic Programming

FAA: Federal Aviation Administration

ILP: Integer Linear Programming

IoT: Internet of Things

ITS: Intelligent Transportation Systems

LoRaWAN: Long Range Wide Area Network

LoS: Line-of-Sight

MDP: Markov decision process

POI: Places of Interest

SWIPT: Simultaneous Wireless Information and Power Transfer

UAV: Unmanned Aerial Vehicle

VRP: Vehicle Routing Problem

WPT: Wireless Power Transfer

WSN: Wireless Sensor Network