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Abstract

Carbon fibre is known for its high strength, light weight and durability. The
aerospace and automotive industries have demonstrated a strong interest in utilising
carbon fibre when designing their structural parts. However, there are still barriers
preventing other industries from realising the full potential of such advanced laminated
composites. Among these challenges are the formation of wrinkles and defects throughout
the manufacturing process. Currently, manufacturing composite parts with mitigation of
defects greatly relies on the designers’ experience and the outcomes of trial-and-error
procedures. Due to the high cost of experiments and a large number of process parameters
involved in composite manufacturing, an improved understanding of wrinkle formation
is desirable for industries. Therefore, predictive modelling to aid design engineers in their

understanding of the wrinkling phenomenon has become vital over the past two decades.

According to a few recent studies, fibre waviness, misalignment and the complex
viscoelastic behaviour of a composite’s layered structure during cure are the primary
causes of defects, wrinkle formation, and eventual rejection of large composite
components. However, the relationship between these factors and the wrinkling of plies
caused by micro-buckling has not been investigated quantitatively. Furthermore, these
effects are not fully captured in current process models. This research aims to develop an
efficient strategy for analysing the multi-scale mechanisms of wrinkling due to buckling
of plies during the composite consolidation process. A multi-scale approach that can be
incorporated into current process models is proposed for this purpose. Using the
suggested approach, the wrinkling response of plies under compressive and bending loads
are predicted numerically. Wrinkling wavelengths and critical buckling strength of flat
laminates are compared with wrinkling profiles and the strength values reported in the
literature. Unlike previous studies, the viscoelastic contribution of resin as well as fibre
stiffness and fabric architecture (for woven composites) are taken into account. The effect
of these parameters on the buckling behaviour of fibres and the orthotropic nature of plies
are also investigated at different scales, quantitatively. Results highlight that the
viscoelastic properties of the resin have a considerable effect on the buckling response of
woven composites and thus on wrinkle formation during the early stage of cure.
Experimental studies are suggested for characterizing the viscoelastic behaviour of resins

and its effect on the micro-buckling response of fibres during cure.
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