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Abstract 

Carbon fibre is known for its high strength, light weight and durability. The 

aerospace and automotive industries have demonstrated a strong interest in utilising 

carbon fibre when designing their structural parts. However, there are still barriers 

preventing other industries from realising the full potential of such advanced laminated 

composites. Among these challenges are the formation of wrinkles and defects throughout 

the manufacturing process. Currently, manufacturing composite parts with mitigation of 

defects greatly relies on the designers’ experience and the outcomes of trial-and-error 

procedures. Due to the high cost of experiments and a large number of process parameters 

involved in composite manufacturing, an improved understanding of wrinkle formation 

is desirable for industries. Therefore, predictive modelling to aid design engineers in their 

understanding of the wrinkling phenomenon has become vital over the past two decades.  

According to a few recent studies, fibre waviness, misalignment and the complex 

viscoelastic behaviour of a composite’s layered structure during cure are the primary 

causes of defects, wrinkle formation, and eventual rejection of large composite 

components. However, the relationship between these factors and the wrinkling of plies 

caused by micro-buckling has not been investigated quantitatively. Furthermore, these 

effects are not fully captured in current process models. This research aims to develop an 

efficient strategy for analysing the multi-scale mechanisms of wrinkling due to buckling 

of plies during the composite consolidation process. A multi-scale approach that can be 

incorporated into current process models is proposed for this purpose. Using the 

suggested approach, the wrinkling response of plies under compressive and bending loads 

are predicted numerically. Wrinkling wavelengths and critical buckling strength of flat 

laminates are compared with wrinkling profiles and the strength values reported in the 

literature. Unlike previous studies, the viscoelastic contribution of resin as well as fibre 

stiffness and fabric architecture (for woven composites) are taken into account. The effect 

of these parameters on the buckling behaviour of fibres and the orthotropic nature of plies 

are also investigated at different scales, quantitatively. Results highlight that the 

viscoelastic properties of the resin have a considerable effect on the buckling response of 

woven composites and thus on wrinkle formation during the early stage of cure. 

Experimental studies are suggested for characterizing the viscoelastic behaviour of resins 

and its effect on the micro-buckling response of fibres during cure.
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Chapter 1. Introduction 

1.1. Laminated composites 

A composite material is composed of at least two materials or constituents. Often, 

the resulting material exhibits improved properties over its constituents. The two 

constituents are often a reinforcement fibre and a bonding matrix. Fibre reinforcements 

may include glass, aramid, natural fibres (e.g. wood or flax) and carbon, which may be 

continuous or discontinuous. Three examples of continuous fibre reinforcements are 

unidirectional (UD), woven fabric and helical winding fibres, as shown in Fig. 1.1a. 

Examples of discontinuous reinforcements include glass fibres and wood strands (mat) 

(Fig. 1.1b). The primary role of fibres is to provide strength and stiffness. Fibres carry 

longitudinal loads while the matrix secures them in place and distributes the loads among 

the tensioned fibres. The matrix is also the primary load carrier for shear between the 

layers and in the transverse direction. Although unreinforced fibres are incapable of 

carrying compressive loads, reinforced composites can do so via this shear transfer 

mechanism between matrix and fibre. Polymers, metal or ceramics can all be used as 

matrix materials. Thermoset-based or thermoplastic-based matrices can be used to 

manufacture polymeric composites. Under elevated temperatures, uncured thermosets 

have low viscosities such that fibre reinforced thermoset composites can be consolidated 

and cured under low pressure, forming an intractable solid. In contrast, a thermoplastic 

forms a high-viscosity polymer melt if heated above its melting temperature during 

processing and requires higher pressures for consolidation. Unlike thermosets, 

thermoplastics can be reheated for additional processing and recycling. In this study, only 

thermoset composites are considered. 

Laminated composites are made by stacking composite sheets (i.e. lamina) in 

different orientations to obtain the desired strength and stiffness properties. 

Unidirectional (0o) layup as depicted in Fig. 1.2a is extremely strong and stiff in the 0o 

direction, yet it is a lot more compliant and brittle in the 90o direction because the load 

must be carried by the much weaker polymeric matrix. For some structural applications, 

it is necessary to balance the load-carrying ability in a number of different directions, for 

instance 0o, +45o, -45o and 90o. The quasi-isotropic laminate illustrated in Fig. 1.2b is 

often preferred in practice since its stiffness is independent of loading direction.  
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Figure 1.1: Typical reinforcement types 
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Figure 1.2: Arrangement of plies in (a) a unidirectional (UD) layup (b) a quasi-isotropic 
layup 

1.2. Textile composites 

Textile composites provide an attractive alternative to unidirectional composites 

(UD) because they offer superior forming capabilities to produce complex shapes. Several 

scales are evident on the internal structure of textile composites. During the 

manufacturing process of textile composites, four important levels are usually categorised 

(Dixit & Singh 2013). Firstly, fibres are assembled into yarns. A yarn has a large length 

and a relatively small cross-section, with and without twist. The fibres are then arranged 

into a sheet, which is referred to as a fabric. Finally, composite part is consolidated by the 

infiltration of resin and curing in a mould. Textile composites can be classified into three 

categories as shown in Fig. 1.3, based on textile techniques used, such as weaving, 

braiding and knitting (Long 2005). 
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Figure 1.3: Classification of textile composites.
(Dixit & Singh 2013)

Woven fabric textile composites are created by the interlacing of warp fibre tows 

and weft fibre tows in a regular pattern or weave style. Fig. 1.4 shows the most common 

weave styles that present how the warp and weft tows are interwoven. Three-dimensional 

(3D) woven fabrics have additional yarns placed in through-the-thickness direction. 

Currently, most of the woven fabrics used in textiles are simple 2D fundamental weaves, 

i.e., plain, twill and satin weaves, which are identified by the repeating patterns of the 

interlaced regions in warp and weft directions (Alshahrani 2017). Plain weave is the most 

commonly used basis reinforcement for woven composites. In a plain weaving structure, 

one warp yarn is repetitively woven over and under weft yarns as shown in Fig. 1.4a. 

Such frequent undulation of yarn reduces the composite’s strength and stiffness. Twill 

weave has a looser interlacing and the weave is characterised by a diagonal line. Satin 

weave has a good drapability (Alshahrani 2017) with a smooth surface and minimum 

thickness. In a satin weave (seen in Fig. 1.4c), one warp yarn is woven over ng (ng > 2) 

successive weft yarns, and then under one weft yarn. This weave structure which features 

disconnected interlaced regions, is referred to as (ng + 1) – harness satin weave. The 

selected weave style used in Chapter 6 is 5HS satin weave as shown in Fig. 1.4c.
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(a) Plain weave (b) Twill weave (c) 5-harness satin weave 

  Warp yarn   Weft yarn 
Figure 1.4: Schematic of the common weaves. (a) Plain weave. (b) Twill weave. (c) 5-

harness (5HS) satin weave 

1.3. Overview of composite manufacturing techniques 

Fibre reinforced plastics (FRP) can be manufactured in a variety of ways. While 

this research is not primarily concerned with this aspect of the subject, it is important to 

recognise the profound effect that the manufacturing routes and processes have on the 

final properties of composite materials due to their effect on the microstructure and 

internal stresses. Autoclave processing is commonly employed for aerospace 

applications. In this process, composite components are fabricated by laying up multiple 

layers, usually pre-impregnated fibre sheets with B-stage cured resin (i.e. prepregs), on 

the mould surfaces in specified orientations until the appropriate thickness is achieved. 

They are then sealed in a flexible bag and consolidated using a vacuum or pressure bag 

in an autoclave vessel at the required curing temperature and pressure. The autoclave 

curing process is demonstrated in Fig. 1.5. 
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Figure 1.5: Principle of autoclave curing 

1.4. Applications and challenges 

Carbon fibre-reinforced plastics (CFRPs) have been widely used in engineering 

applications in recent years due to their excellent characteristics relative to their weight 

(Friedrich & Almajid 2012). This rapid growth has been achieved mainly by the 

substitution of traditional materials, primarily metals in structural members. If only 

strength or stiffness is compared with those of metal alloys, fibre-reinforced composite 

materials do not provide a clear advantage. However, the strength and stiffness per unit 

weight of composite materials, also known as specific strength and specific modulus 

respectively, are factors of great importance in engineering design (Hilburger & Starnes 

Jr 2002; Leissa 1987). Moreover, composite materials can be tailored to generate different 

directional properties which potentially can contribute to reducing structural weight. 

Apart from inheriting high strength and stiffness of the fibres, the composite materials 

maintain the chemical resistance of the plastic. The cost savings associated with routine 

maintenance constitute an important factor for the preference of these advanced materials 

in deep-water applications (Beyle et al. 1997).  

In civil infrastructure, application of CFRPs in strengthening structural elements 

has been explored in recent decades. Compared to conventional reinforcing materials (i.e. 

steel), the lightweight CFRPs are easy to handle and do not need any heavy lifting and 

handling equipment. Such advantages make CFRPs more widely accepted for the repair 

and rehabilitation of steel buildings (Danilov 2016; Täljsten, Hansen & Schmidt 2009). 

Additionally, due to durability under cyclic loading conditions and corrosion resistance, 

CFRP plates have been employed extensively for the maintenance or repair of old bridges 
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and infrastructure (Bocciarelli et al. 2009). Furthermore, the use of composites for 

electrical towers, light poles or the blades of large wind turbines has also increased 

markedly. 

Advanced composites are also replacing steel and aluminium parts in aircraft and 

road vehicles. In fact, the primary structural elements of the Boeing 787 Dreamliner and 

the Airbus A350 XMW including the wing and fuselage are built mostly from composite 

materials. It was reported by Soutis (2005) that in the twenty-first century, CFRPs can 

and will contribute to more than 50% of the structural mass of an aircraft. More recently, 

automobile manufacturers like BMW, Mercedes-Benz and Lamborghini have been 

moving towards increased carbon fibre usage in their vehicles. With automakers putting 

a priority on fuel economy, it is predicted that CFRPs will soon be the preferred material 

for the bodies of future cars. Due to the fact that corrosion is a significant issue and 

expense for the maritime industry, the hulls of boats ranging in size from small fishing 

boats to huge racing yachts have consistently been constructed using composite materials 

comprised of glass fibres and polyester or vinyl ester resins. Masts and scuba tanks are 

other applicants of composites improving the marine industry. 

Despite their great benefits, the uncured composite prepreg materials are 

susceptible to defects in the course of the manufacturing process (Belnoue et al. 2018; 

Bloom, Wang & Potter 2013; Boisse, Huang & Guzman-Maldonado 2021; Hallander, 

Sjölander & Åkermo 2015; Johnson et al. 2019; Rashidi et al. 2021).  For example, under 

a predefined heat and pressure cycle in an autoclave, the resin changes from a liquid to a 

solid. The major transformation in terms of physical and mechanical properties 

contributes to the change in thickness and subsequent formation of defects (often referred 

to as wrinkles). When forming quasi-isotropic, multilayer unidirectional (UD) prepreg 

over a double curved geometry, out-of-plane wrinkling is a general problem (Hallander 

et al. 2013).  

Furthermore, the components commonly used for aerospace applications consist 

of multiple thin sheets (plies) of unidirectional (UD) carbon or glass fibres. When they 

are subjected to compressive stresses that usually occur during various curing processes, 

out-of-plane misalignment of the fibre paths, generally known as wrinkling is a relatively 

common phenomenon (Alshahrani & Hojjati 2017c; Wang, Long & Clifford 2009; Weber 

et al. 2019). Based on an experimental study, Wang et al. (2011) developed three 
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fabrication techniques to generate fibre waviness within flat laminates. These techniques 

were aimed at creating similar wrinkling patterns to those usually observed in industrial 

components. However, in other research conducted by Hallander et al. (2013), it is shown 

that out-of-plane defects also occur in a recess area where a tensile force is applied 

globally. This is due to the development of local compressive forces in some areas during 

the forming process. 

Wrinkles are more likely to be formed when composite plies have excess length 

and restrained from slipping over one another due to friction or fixed ends (Dodwell, 

Butler & Hunt 2014; Weber et al. 2019). As shown in Fig. 1.6, under the applied debulk 

pressure during the consolidation of the uncured curved laminate, the reduction of the 

thickness results in a diminished length from lbefore to lafter. Meanwhile, the applied 

boundary constraints prevent plies from moving with respect to another. Therefore, 

buckling of the plies is the only way to accommodate that excess length. Lightfoot, 

Wisnom & Potter (2013) proposed a mechanism for the formation of ply wrinkles due to 

shear forces between plies. Such forces were the result of mismatches in the coefficient 

of thermal expansion between composite and tool or ply slippage during consolidation.  

 

Figure 1.6: Buckling of the plies due to the excess length with fixed ends during 
consolidation (Adapted from Belnoue et al. (2018)) 

The presence of wrinkled fibre compromises the service life of the components as 

it can lead to a very significant reduction in mechanical performance such as compressive 

strength (Lightfoot, Wisnom & Potter 2013; Varkonyi et al. 2019). In comparison with 

stresses at initial failure stage of samples without defects, out-of-plane wrinkles with all 

plies affected and in-plane wrinkles with 50% of plies affected made significant 

reductions to about 25% and 50% of the corresponding stresses (Potter et al. 2008). 

Debulk pressure Wrinkle formation 

Constrained ends: 
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Therefore, the wrinkle formation mechanisms need to be better understood in order to 

mitigate them in the manufacturing process (Alshahrani & Hojjati 2017c). 

Specific material properties of prepregs or their constituents may affect wrinkle 

formation differently. A mere 5% variation in the thickness of a tapered laminate can 

result in a dramatic difference in the severity of wrinkles (Belnoue et al. 2018). Forming 

temperature, consolidation pressure and layup sequence were found to be important 

contributors to the fibre misalignment in hot drape forming process of a C-shaped part 

(Farnand et al. 2017). Furthermore, although process simulation has advanced 

significantly in recent years, currently, mitigating defects during composite 

manufacturing relies heavily on the designers’ experience and trial-and-error methods 

(Belnoue et al. 2018). Proceeding with trials is very expensive and a large number of 

process parameters is required. For this reason, predictive modelling and improved 

understanding of the involved wrinkling phenomena are now of paramount importance to 

the industrial and scientific community. 

Previous results have shown that the forming behaviour of a composite was 

influenced by the uncured material properties of its plies such as their stiffness as well as 

their geometrical characteristics (Larberg & Åkermo 2011), resin compound, degree of 

impregnation and level of consolidation (Hubert & Poursartip 2001; Lukaszewicz & 

Potter 2011). Moreover, viscous composite materials generally exhibit non-linear 

bending behaviour. The fibres in a composite are assumed to be rigid and inextensible. 

Due to the mobility of polymer matrix, these fibres are free to move relative to one 

another. This imparts some flexibility to the composite and reduces its bending rigidity 

in comparison to solid composites (Boisse et al. 2018). A computational tool which is 

able to relate the flexibility of plies to the wrinkle formation is still missing. With this in 

mind, it is envisioned that a multi-scale model should be developed for analysing the 

wrinkling response of plies during the consolidation process. 

1.5. Knowledge gaps 

Some knowledge gaps in predicting the wrinkle formation during consolidation 

of thermoset composites are identified below: 

▪ There is a lack of validated and efficient FE models capable of predicting 

wrinkle formation during processing. 



 

10 

 

▪ Some existing models (Belnoue et al. 2018; Hallander et al. 2013; Johnson et 

al. 2019) have been developed for specific curved part geometries and 

processes such as draping or autoclave. However, the wrinkle formation in flat 

laminates (i.e. those used in the construction industry) at the early stage of 

manufacturing has not been investigated in detail. 

▪ The accuracy range of commercial tools such as Abaqus built-in composite 

element for predicting the response of composites with soft interfaces which 

is relevant to the early stage of cure has not been assessed. 

▪ Despite some experimental evidence (Alshahrani & Hojjati 2017b; Larberg & 

Åkermo 2014; Wang, Long & Clifford 2009), the effects of ply anisotropy, 

fibre bed and viscoelasticity on the buckling behaviour of composites are not 

well understood. 

▪ Although out-of-plane bending has been well known as one of the deformation 

mechanisms governing wrinkle formation during composite manufacturing, 

predictions of the out-of-plane properties of viscoelastic composites with 

various fibre architecture have not been examined comprehensively. 

▪ Multi-scale modelling that accounts for micro-structural effects on the macro-

structural response during cure has not been investigated experimentally and 

numerically. 

▪ The properties of the uncured composites that should be used to represent 

bending behaviour in the finite element model for forming simulation are still 

not well understood. 

▪ Contribution of complex deformation mechanisms such as in-plane shear, out-

of-plane bending and inter-ply slippage during forming process of laminated 

composites has not been investigated comprehensively. 

1.6. Research objectives 

The objectives of this research can be categorised into two main groups. The first 

one is to investigate the buckling response as well as load-displacement curves of 

viscoelastic composite laminates under compression for a better understanding of the ply 

wrinkling behaviour at the early stage of thermoset composite manufacturing. The second 

one is to develop a multi-scale model for predicting efficiently the effect of various 

parameters on wrinkle formation such as fibre stiffness, loading rates, ply anisotropy, 
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resin properties and yarn’s architecture on the bending behaviour of viscoelastic 

laminates. Specific research tasks are to: 

▪ Examine the ability of commercial FE tools, e.g. Abaqus in simulating the 

buckling behaviour of laminated composites with many numbers of layers and 

soft thin interfaces. 

▪ Perform nonlinear FE analysis to investigate the ultimate compressive 

strength and the post-buckling behaviour of UD thermoset carbon/epoxy 

prepreg sheets during the manufacturing process. 

▪ Employ various material models (e.g. isotropic elastic, transversely isotropic 

and orthotropic viscoelastic) to demonstrate the importance of consideration 

of the rate dependence in describing the behaviour of prepreg materials. 

▪ Incorporate viscoelastic micromechanical models proposed by Malek et al. 

(2014) in a commercial FE software Abaqus to determine the effective time-

dependent response of large composite parts. 

▪ Compare the buckling behaviour as well as load-displacement curves obtained 

from the present multi-scale analysis with the experimental results available 

in the literature for validation purposes. 

▪ Conduct a mesh convergence study to determine the efficient mesh size that 

should be used throughout this study. 

▪ Conduct parametric studies on the effect of viscoelastic parameters of the resin 

such as assumed unrelaxed/ relaxed moduli, relaxation times and weight 

factors on the post-buckling response of uncured laminated composites. 

▪ Predict the effective mechanical properties and structural responses such as 

buckling and bending behaviours depending on constituent property (e.g. fibre 

stiffness), different fabric architectures and loading conditions. 

▪ Determine the overall stiffness of elastic/viscoelastic woven composites using 

micromechanical equations developed by Naik (1994) and implement in 

MATLAB. The analytical procedure is verified/validated wherever 

experimental data are available.  

▪ Investigate deformation mechanisms that may occur simultaneously during 

the formation of woven composites such as in-plane shear, out-of-plane 

bending or inter-ply slippage. 
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1.7. Thesis structure 

 Based on these objectives, the thesis is organised as shown in Fig.1.1 and the 

chapter progression of the thesis is illustrated as follows: 

Chapter 1: Introduction 

This chapter presents a brief introduction to composite materials such as 

unidirectional (UD) and woven prepregs so that their buckling and bending behaviours 

during the forming process are later investigated in Chapter 5 and Chapter 6 respectively. 

Recent engineering applications in different sectors and challenges relating to wrinkling 

formation during the manufacturing process are also stated to highlight the significance 

of this research. Lastly, the knowledge gaps and objectives of the study are identified in 

detail. 

Chapter 2: Literature review 

A review of micromechanical models for estimating the elastic properties of 

unidirectional composites is first carried out. However, a comprehensive study had 

already been done in the literature (Malek 2014). Therefore, only analytical 

micromechanics equations selected in the current proposed multi-scale modelling 

framework are shown for clarification purpose. In addition, for thermoset composites 

during cure, fibre bed referring to the slight waviness of the fibres in prepregs is believed 

to play a significant part in carrying the load in the transverse fibre orientation. Hence, 

how to consider such an effect on the viscoelastic properties of composites during cure 

using an appropriate analogue representation is also revisited for later application in 

predicting the effective mechanical properties of composites and presented in this chapter. 

Secondly, a review of meso-mechanical models for elastic analysis of textile 

composites is conducted. Both analytical and numerical models in the literature have been 

presented for estimating the effective mechanical properties of specific composites in 

terms of geometry modelling and homogenisation techniques. After considering 

applicability of the reviewed approaches for the current multi-scale modelling 

framework, the analytical technique proposed by (Naik 1994) for calculating the 

homogenised material properties of 5HS satin weave is selected and shown in Chapter 3. 

 Thirdly, as a first step in providing a better understanding of wrinkle formation, 

the buckling behaviour of laminated viscoelastic composites under axial loads is 
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reviewed. Subsequently, the bending behaviour of viscoelastic woven composite is 

studied because the bending properties of uncured thin laminates have been known to 

govern the appearance of wrinkles, particularly in determining the shape of wrinkles. 

Finally, to create a reliable forming simulation, the properties of the uncured material 

must be known and properly represented in the finite element model. A review in detail 

of experimental studies on uncured composites and calibrated material properties for the 

corresponding FE simulations is also undertaken. This is done to better understand the 

mechanical properties of such composites and their constituents under bending.  

Chapter 3: Methodology 

The chapter describes in general a multi-scale method that is used throughout this 

study to analyse wrinkling (i.e. buckling and bending responses) during consolidation of 

thermoset composites. At smaller contexts such as micro and meso levels, the effective 

viscoelastic properties of a unidirectional Representative Volume Element (RVE) or 

Repeating Unit Cell (RUC) of the woven fabric reinforced composites are determined 

using analytical models. Details of the geometric modelling technique of 5HS satin weave 

as well as discretisation technique of yarns and calculation of three-dimensional effective 

stiffnesses are presented in this chapter. A specific MATLAB script is written to facilitate 

the computation of the effective properties of the fabric at the meso-scale with given 

quantities. The transformation matrix [Tm] used in expression of effective stiffness matrix 

is documented in Appendix A.1. 

At the macro-scale, both analytical and numerical methods are considered. The 

analytical approach involves different simple mathematical equations for specific 

problems such as buckling or bending behaviour of assumed isotropic elastic beams. The 

particular mathematical equations are presented in a separate chapter according to certain 

problems of concern. In terms of numerical approach, the finite element method using 

commercial software, Abaqus is used to predict the structural responses such as buckling 

or bending of both elastic and viscoelastic composite plates at various loading rates. For 

viscoelastic analysis, the composite plate is first assumed to behave as an isotropic 

viscoelastic solid and modelled using the Abaqus built-in viscoelastic constitutive model 

which is based on the integral form (IF) of viscoelasticity. Since the application of Abaqus 

viscoelastic model is limited to isotropic materials, a more versatile orthotropic 

viscoelastic constitutive model (based on a differential form of viscoelasticity – DF) that 
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has been developed and implemented as a UMAT by researchers (Malek 2014; Zobeiry 

et al. 2016) is employed to elucidate the effect of ply anisotropy on the structural 

responses of uncured/ partially cured composite plates. For this purpose, both numerical 

approaches using Abaqus built-in viscoelastic model (IF) and orthotropic viscoelastic 

user material model (UMAT) are shown in this chapter. The DF approach and its 

implementation in Abaqus are briefly described in Appendices A.2 and A.3 respectively. 

Chapter 4: Buckling analysis of multilayered elastic beams with soft and rigid interfaces 

 As the first step for better comprehending wrinkle formation, the behaviour of 

multilayered elastic beams under bending and buckling is examined using available 

analytical and numerical strategies. A numerical model simulating the tests in Dodwell 

(2015) is described in detail at the beginning of this chapter. To investigate the effect of 

very soft interfaces and ply anisotropy on the overall beam rigidity using two types of 

models (i.e. composite layup option (CE) and physically modelling layers (PML)), two 

case studies are introduced later. By observing the obtained results, a new model based 

on the hypothesis that the resin stiffness dominates the longitudinal compressive strength 

is created in the next chapter. A version of this chapter has been published in conference 

proceedings (see Le, A., Zobeiry, N., Erkmen, E. & Malek, S. 2019, 'Buckling analysis 

of multilayered beams with soft and rigid interfaces', ICCM22, Engineers Australia, 

Melbourne, Vic, pp. 204-12). 

Chapter 5: Buckling behaviour of laminated viscoelastic composite under axial loads 

 Following the studies conducted in the previous chapter, here the viscoelastic 

properties of the resin are included in a macro-scale model. The effective properties of 

the composites obtained from viscoelastic micromechanical models instead of assumed 

elastic inputs for the resin properties as in Chapter 4 are used in the macro-scale FE model. 

A more versatile orthotropic viscoelastic constitutive model based on differential form 

(DF) of viscoelasticity implemented as a user material subroutine (UMAT) compared to 

using Abaqus built-in viscoelastic model (IF) is employed. It helps to elucidate the effect 

of ply anisotropy on the buckling response of uncured/partially cured unidirectional (UD) 

laminates. 

This chapter begins with a description of analytical equations to approximately 

estimate the critical buckling load of a linear isotropic laminate. Model verification and 

validation with the experimental data available in Wang, Long & Clifford (2009) are 
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introduced in later subsections. Some important aspects such as viscoelastic behaviour, 

effect of resin properties on the post buckling response are also investigated. A version 

of this chapter has been published in a peer-reviewed international journal paper (see Le, 

V.A., Zobeiry, N., Erkmen, E. & Malek, S. 2021, 'Buckling behaviour of laminated 

viscoelastic composites under axial loads', Mechanics of Materials, 159, 103897). 

Chapter 6: Bending behaviour of viscoelastic woven composite plates  

Given that out-of-plane bending is well known as an important deformation 

mechanism that governs the wrinkle formation during composite manifacturing 

(Margossian, Bel & Hinterhoelzl 2015), this chapter investigates the bending behaviour 

of viscoelastic composites under conditions similar to forming processes. For a multi-

scale modelling framework involving analyses at different scales and implemented in a 

general purpose finite element code, Abaqus is used. Due to the limitation of Abaqus 

built-in viscoelastic model to isotropic materials, an orthotropic viscoelastic constitutive 

model implemented as a UMAT in other research (Malek 2014; Zobeiry et al. 2016) is 

employed to consider the influence of ply anisotropy on bending behaviour. 

 The multi-scale modelling approach that is used in this study was introduced in 

general in Chapter 3. The detail of the multi-scale framework for a specific problem (i.e. 

bending behaviour of uncured woven composites) is described in Section 6.2. The details 

of the FE model and its verification are provided in 6.2. In Section 6.3, numerical results 

are compared with the experimental data available in the literature (Alshahrani & Hojjati 

2017b) for validation purpose. The capabilities and limitations of the developed model 

are discussed in Section 6.4. Future works and the conclusion are presented in Section 

6.5. A version of this chapter has been published in a peer-reviewed international journal 

paper (see Le, V.A., Nimbalkar, S., Zobeiry, N. & Malek, S. 2022, 'An efficient multi-

scale approach for viscoelastic analysis of woven composites under bending', Composite 

Structures, 292, 115698).  

Chapter 7: Bending behaviour of multilayered viscoelastic plates with thin and soft 

interfaces 

As reviewed in the previous chapter, bending properties of uncured thin laminates 

are known to significantly influence the appearance of wrinkles including the shape, 

magnitude and intensity of wrinkles. Apart from bending stiffness, shear deformation in 

the form of inter-ply slippage is deemed to be an important deformation mechanism 
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during the process of forming composites, particularly for multilayered textile 

composites. Therefore, the method developed in Chapter 6 has been expected to expand 

the investigation into the bending behaviour of multilayered textile composite separated 

by relatively soft interfaces. Consequently, this chapter is concerned primarily with the 

concurrent deformation mechanisms during bending behaviour of orthotropic elastic 

multilayered beams with thin and soft interfaces. A version of this chapter is submitted 

to ECCM20 Switzerland, 26-30 June 2022: Le, V.A., Nimbalkar, S., Zobeiry, N. & 

Malek, S. 2022, 'Multi-scale viscoelastic bending analysis of laminated composites with 

soft interfaces'. 

Chapter 8: Conclusions and recommendations 

This chapter summarises the major outcomes of the research. A discussion of the 

possible issues that may be attributed to the disparity between the predictions using the 

proposed numerical model and available experimental results is also included. 

Recommendations for future research are provided at the end. 

 

Figure 1.7: Thesis structure 
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Chapter 2. Literature review 

2.1. Micro-mechanical modelling of circular fibre composites 

Numerous studies on micromechanical models for the elastic study of composite 

materials have been published. While numerical models can take into account the 

microstructure's complexity, they frequently consume an increasing amount of 

computational time than simple closed-form equations. In the current study, the analytical 

micromechanical approach is adopted because it provides accurate and efficient ways to 

predict the effective mechanical properties of viscoelastic composites with circular fibre 

that can later be used within a multi-scale modelling framework like process simulation 

of composite structures. Well-known micromechanical models have been reviewed in 

detail in Malek (2014). Only chosen models for calculating specific moduli and 

modification approach for viscoelastic properties of composite materials during cure used 

in this study are reviewed in the sections below for completeness.  

2.1.1. Analytical micromechanics equations for predicting properties of solid 

unidirectional composites 

The Composite Cylinder Assemblage (CCA) model proposed by Hashin & Rosen 

(1964) was used to estimate the effective viscoelastic characteristics of unidirectional 

(UD) cylindrical fibre composites. The approach based on the assumption that the volume 

of composite material can be occupied by a gathering of cylindrical fibres in a 

surrounding resin as demonstrated in Fig. 2.1. The volume fraction of fibre, Vf, defined 

as the ratio of the fibre diameter (b) to the matrix diameter (a), is considered to be the 

same in the whole system. 

𝑉𝑓=
𝐴𝑓
𝐴𝑐
= (

𝑏

𝑎
)
2

, (2.1) 
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Figure 2.1: Composite Cylindrical Assemblage (Malek 2014) 

The longitudinal Young’s modulus (E1c) and Poisson’s ratio of the UD composite 

(υ12c) are determined from (Hashin & Rosen 1964): 

𝐸1𝑐=𝐸1𝑓𝑉𝑓+𝐸𝑟(1 − 𝑉𝑓)+
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(2.2) 
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+
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+
1
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, 

 

(2.3) 

Note that subscripts f and r refer to fibre and resin. The effective bulk modulus of 

the composite in plane strain (K23c) is given by (Hashin 1972): 

𝐾23𝑐=𝐾23𝑟 +
𝑉𝑓

1
𝐾23𝑓 −𝐾23𝑟

+
(1 − 𝑉𝑓)
𝐾23𝑟 + 𝐺𝑟

, (2.4) 

where the fibre and the resin plane strain bulk modulus, K23f and K23r, can be determined 

as follows: 

𝐾23𝑓=
1

(1/𝐺23𝑓) − (4𝜈23𝑓/𝐸3𝑓) − (4𝜈12𝑓
2 /𝐸1𝑓)

, (2.5) 

 

𝐾23𝑟=
1

2(1 − 𝜈𝑟 − 2𝜈𝑟2)
, (2.6) 
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where 𝜈𝑟 and 𝜈𝑓   are the resin and the fibre Poison’s ratios. 

Similarly, the longitudinal shear modulus is given by: 

𝐺12𝑐=𝐺13𝑐 = 𝐺𝑟 [
𝐺𝑟(1 − 𝑉𝑓) + 𝐺12𝑓(1 + 𝑉𝑓)

𝐺𝑟(1 + 𝑉𝑓) + 𝐺12𝑓(1 − 𝑉𝑓)
], (2.7) 

𝐸2𝑐(±)=
4𝐾23𝑐𝐺23𝑐(±)

𝐾23𝑐 +𝑚𝐺23𝑐(±)
, (2.8) 

𝜈23𝑐(±)=
𝐾23𝑐 −𝑚𝐺23𝑐(∓)

𝐾23𝑐 +𝑚𝐺23𝑐(∓)
, (2.9) 

where m is defined as:  

𝑚 = 1 +
4𝐾23𝑐𝜈12𝑐

2

𝐸1𝑐
, (2.10) 

Using GSC model, Christensen & Lo (1979) proposed the effective transverse 

shear modulus of UD composites with long fibre by solving the following quadratic 

equation:  

𝐴 (
𝐺23𝑐
𝐺𝑟

)
2

+ 𝐵 (
𝐺23𝑐
𝐺𝑟

) + 𝐶 = 0, 
(2.11) 

where A, B and C are math functions provided below: 

𝐴 = 3𝑉𝑓(1 − 𝑉𝑓)
2
(
𝐺23𝑓
𝐺𝑟

− 1)(
𝐺23𝑓
𝐺𝑟

+ 𝑛𝑓)

+ [(
𝐺23𝑓
𝐺𝑟

)𝑛𝑟 + 𝑛𝑟𝑛𝑓

− ((
𝐺23𝑓
𝐺𝑟

) 𝑛𝑟 − 𝑛𝑓)𝑉𝑓
3] [(

𝐺23𝑓
𝐺𝑟

− 1)𝑛𝑟𝑉𝑓

− ((
𝐺23𝑓
𝐺𝑟

) 𝑛𝑟 + 1)], 

(2.12) 
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𝐵 = −6𝑉𝑓(1 − 𝑉𝑓)
2
(
𝐺23𝑓
𝐺𝑟

− 1)(
𝐺23𝑓
𝐺𝑟

+ 𝑛𝑓)

+ [(
𝐺23𝑓
𝐺𝑟

) 𝑛𝑟 + (
𝐺23𝑓
𝐺𝑟

− 1)𝑉𝑓 + 1] [(𝑛𝑟 − 1) (
𝐺23𝑓
𝐺𝑟

+ 𝑛𝑓)

− 2𝑉𝑓
3 ((

𝐺23𝑓
𝐺𝑟

) 𝑛𝑟 − 𝑛𝑓)]

+ (𝑛𝑟 + 1)𝑉𝑓 (
𝐺23𝑓
𝐺𝑟

− 1) [
𝐺23𝑓
𝐺𝑟

+ 𝑛𝑓

+ ((
𝐺23𝑓
𝐺𝑟

) 𝑛𝑟 − 𝑛𝑓)𝑉𝑓
3], 

(2.13) 

 

𝐶 = 3𝑉𝑓(1 − 𝑉𝑓)
2
(
𝐺23𝑓
𝐺𝑟

− 1) (
𝐺23𝑓
𝐺𝑟

+ 𝑛𝑓)

+ [(
𝐺23𝑓
𝐺𝑟

) 𝑛𝑟 + (
𝐺23𝑓
𝐺𝑟

− 1)𝑉𝑓 + 1] [
𝐺23𝑓
𝐺𝑟

+ 𝑛𝑓

+ ((
𝐺23𝑓
𝐺𝑟

) 𝑛𝑟 − 𝑛𝑓)𝑉𝑓
3], 

 

(2.14) 

where 

𝑛𝑓 = 3− 4𝜈23𝑓 , 

𝑛𝑟 = 3 − 4𝜈𝑟 , 
(2.15) 

2.1.2. Predicting the viscoelastic properties of composites during cure 

The accuracy of the above chosen closed-form analytical equations in determining 

the effective viscoelastic characteristics of UD composites had been verified with 

numerical reference solutions (Malek 2014) over a variety of fibre volume fractions. 

However, for thermoset composites during cure, the resin develops from a lowly viscous 

fluid to a highly cross-linked viscoelastic solid. Therefore, these equations were adjusted 

by incorporating the fibre bed effect. 

In practice, fibres in long-fibre reinforced composites are not ideally straight. We 

refer the slight waviness of the fibres in prepregs as shown in Fig. 2.2 as fibre bed. As 

fibre volume fraction is high (Vf > 0.5), the fibre bed plays a significant part in carrying 
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the load in the transverse fibre orientation (Gutowski et al. 1987). Fig. 2.2ab illustrates 

the deformation behaviour of a fibre bed impregnated with resin under shear loading 

(Malek, Thorpe & Poursartip 2011). It is believed that in vertical section (see in Fig. 2.2a) 

the fibre bed and the resin deform equally (isostrain condition) and in the horizontal 

section (see in Fig. 2.2b), the resin carries the same stress as the fibre does (isostress). 

 (c) 
Figure 2.2: Fibre bed deforms under shear stress. (a) Fibre bed deforms together with resin. 

(b) Fibre deforms under the overall shear stress. (c) Analog representation 
 (Malek, Thorpe & Poursartip 2011). 

The mechanism of load transfer then can be represented using a simple analog 

model indicated in Fig. 2.2c. The impact of each element to the overall stiffness of the 

composite is expressed by k. 

According to this representation, the fibre bed stiffness is parallel to the resin 

stiffness and therefore the wavy fibre bed perturbs the resin shear modulus Gr by GFB. 

Then the function of any solid micromechanical model MM (Gr, Gf, Vf, …), for example, 

the prepreg shear modulus could be represented by: 

GPrep= MM (Gr + GFB, Gf, Vf, …), 
 

(2.16) 

2.2. Meso-mechanical modelling of textile composites 

The prediction of elastic properties of textile composites has attracted much 

research attention in the past two decades because the mechanical characteristics of such 

composites are highly complex due to many parameters as fibre architecture, matrix 

properties and fibre properties involved (Balokas, Czichon & Rolfes 2018; Qi, Liu & 

Chen 2019). Various predictive models have been published and categorised into 

analytical models and numerical models (Dixit & Singh 2013). 
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 Numerical models are more flexibly applied for different geometries and consider 

more complex mechanical interaction of yarns and matrix since it relies on available 

computational solvers (Nguyen et al. 2021; Qi, Liu & Chen 2019). Using FE-based 

numerical models (Qi, Liu & Chen 2019; Tan, Tong & Steven 1997), the general 

procedure to predict the mechanical properties of a textile composite includes 

determining properties of a RVE. The selected RVE is sufficient to represent the fabric 

architecture for a later calculation of entire textile structure’s mechanical properties 

(Dixit, Mali & Misra 2013; Sun & Vaidya 1996; Udhayaraman & Mulay 2017). With 

rapid advances being made in computers, the mechanical properties of composites with 

complex structures have been widely computed using the FE method. Sun et al. (2003) 

proposed a new method for modelling the effective mechanical properties of three-

dimensionally braided composites material via homogenisation theory and incompatible 

multivariable FEM. Li et al. (2012) described the actual microstructure of 3D five-

directional braided composites by using the unit cell model with the FEA method. Tensile 

behaviour in 0o and 90o directions at the RVE scale of 3D orthogonal woven composites 

was investigated numerically by Yang, Gao & Ma (2018). The effects of crack damage, 

yarn/matrix interface and geometric model size of component material (i.e. matrix, warp, 

weft and z-yarn) were analysed (Yang, Gao & Ma 2018). Based on cross-scale simulation 

and the homogenisation theory, the mechanical properties of different types of CFRP with 

the change of angle and different stacking sequences of UD-CFRP were obtained by Qi, 

Liu & Chen (2019). However, many challenges such as the choice of an appropriate unit 

cell (Cao et al. 2020) with correct boundary conditions and FE mesh size were involved 

in modelling a periodic representation of a specific textile composite (Camanho & Hallett 

2015).   

The need for accurate and less complicated analytical models compared to 

numerical models in terms of computational effort in predicting mechanical properties of 

textile composites is increasing (Hallal, Younes & Fardoun 2013). Moreover, there are 

many parameters involved in calculating the fabric structure such as fabric architecture, 

the density of yarns in the fabric, properties of warp and weft yarns, characteristics of 

fibre and matrix etc. Therefore, analytical models are necessary to evaluate the effects of 

various parameters on the mechanical properties of textile composites. Concerning two 

major factors such as the geometrical modelling and the homogenisation technique based 
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on isostrain assumptions, isostress assumptions, mixed isostrain/isostress assumptions 

etc, many different approaches were proposed by researchers.  

Ishikawa & Chou (1982) conducted the first studies that investigated the stiffness 

and strength of 2D woven fabric composites. Three analytical models were proposed and 

developed for approximating the elastic behaviour of woven fabric composites. The first 

model is referred to as “mosaic model” which is idealised as an assemblage of two one-

dimensional models for a formation of a two-dimensional cross-ply laminate as a 

consequence of neglecting the continuity of fibres in the thread direction (see Fig. 2.3a). 

The upper and lower bounds for stiffness in the tow direction are obtained according to 

constant strain (isostrain) and constant stress (isostress) assumed. 

 Considering the fibre undulation and continuity, the second model introduced as 

“fibre undulation model” or “crimp model” (see Fig. 2.3b) was found to be effective for 

modelling the mechanical properties of 2D plain weave fabric composites (Ishikawa & 

Chou 1982). The length of a tow in the fabric repeating unit is divided into small portions 

(see Fig. 2.3b). For the undulating section, only considered in yarns along loading 

direction, a sinusoidal expression defines the undulation of the yarns. Then, they are 

assembled under isostress assumption using the Classical Laminate Theory (CLT). 

The “bridging model” was later developed for the analysis of mechanical 

properties of satin composites. In this model shown in Fig. 2.3c, an interlaced region 

(labelled as III) is separated from surrounding straight regions (I, II, IV and V) as the 

local in-plane stiffness in this place was found to be much lower than that of the straight 

areas. The four regions of straight fill threads (I, II, IV and V) can be regarded as pieces 

of 0o/90o cross-ply laminates while the undulating tow in region III is modelled using the 

crimp model. Assuming that a load, N (see Fig. 2.3c) is applied along the weft threads, 

regions such as II, III and IV are considered to be parallel models and the remaining cross-

ply laminates I and V are in series. Therefore, stiffnesses of regions II, III and IV are 

averaged using an isostrain assumption and stiffnesses of I and V are averaged based on 

isostress assumption. Employing laminated models to describe the geometry of the woven 

fabric composites, Ishikawa & Chou (1982)’s studies are based on classical laminate 

theory (CLT) and demonstrated the validity of the theory for every infinitesimal piece of 

the repeating unit of a woven lamina. However, these models only considered loading in 

the x-direction while the undulation and continuity in the warp threads were ignored. 
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(a) (b) (c) 
Figure 2.3: Schematic of (a) mosaic model; (b) undulation model and (c) bridging 

model proposed by Ishikawa & Chou (1982) 

Naik & Shembekar (1992) extended the existing 1D models of Ishikawa & Chou 

(1982) and improved a 2D model for plain weave composites. The model accounts for 

undulation in both along and across the yarns (i.e, warp and weft) (see Fig. 2.4). The 

presence of a gap between two adjacent yarns, yarn cross-sectional area and lamina 

thickness was also investigated and demonstrated to have significant effects on the elastic 

analysis of woven fabric composites. Two methods used to assemble discrete sections are 

PS (Parallel-Series) scheme and SP (Series-Parallel) scheme. In the SP model, yarn slices 

along the loading direction are assembled in series using isostress assumptions and yarn 

portions across the loading direction are assembled in parallel using isostrain conditions. 

The PS model is opposite to the SP one and been validated as generating better predictions 

of in-plane elastic properties. 

 In later work, Naik (1994) developed an analytical technique for determining 

overall stiffness of woven composites along with braided textile composites (i.e. 2D 

braided and 2D triaxial braided composites). Having described the RUC geometry for a 

specific textile composite, the three-dimensional (3D) effective stiffness for the 

composite was calculated following two steps. Firstly, each yarn in the RUC was 

discretised into yarn slices. Secondly, based on an isostrain assumption within the RUC, 

the 3D effective properties of the composite were obtained by utilising the material 

characteristics, spatial direction and volume fraction of each yarn slice. The predicted 

mechanical properties agreed well with numerical solutions and experimental data for 

both the satin weave and braided composites. Subsequent research by Naik considered 

the effect of twisted yarns on the strength of plain weave fabric (Naik & Kuchibhotla 
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2002), leading to an analytical method for determining through-thickness moduli of 3D 

orthogonal interlock woven composites (Naik et al. 2001; Naik & Sridevi 2002). 

 

 

aw: Width of the warp yarn 
gw: Gap between two adjacent warp 
yarns 
af: Width of the fill yarn 
gf: Gap between two adjacent fill 
yarns 

 

Figure 2.4: Unit cell of plain weave composite improved by Naik & Shembekar (1992) 

Sankar & Marrey (1997) proposed an analytical procedure known as the selective 

averaging method (SAM) for the estimating the thermoelastic properties of textile 

composite materials. The unit cell is divided into slices of a thickness (meso-scale) which 

are further subdivided into elements (mico-scale). Both stiffness and compliance 

coefficients can be averaged selectively based on either isostress or isostrain assumptions. 

(Tan, Tong & Steven 1999, 2000; Tan et al. 2000) also devised two analytical models to 

determine the mechanical properties and the thermal expansion coefficients of 3D 

orthogonal and through-the-thickness angle interlock woven composites. Having 

discretised the RVE into micro-blocks, they are further assembled for simple strips using 

the “X model”, “Y model” or “Z model” as shown in Fig. 2.5. The micro-blocks can be 

warp/weft impregnated with resin or tow blocks whose mechanical properties and 

coefficients of thermal expansions are known. Depending on loading directions and the 

relative position of assembled blocks, isostrain and isostress assumptions are applied. 
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(a) (b) (c) 

Figure 2.5: Schematic of  (a) “X model”; (b) “Y model” and (c) “Z model” developed 
by Tan, Tong & Steven (1999) 

Wu, Brown & Davies (2002) and Wu (2009) introduced an analytical model for 

determining the stiffnesses of 3D orthotropic laminated fabric composites. The proposed 

technique includes discretising the representative unit cell into slices (layers) which are 

later decomposed into stripes (elements) (see Fig. 2.6). In the scenario of either isostress 

or isostrain following the applying stress, the components of the stiffness matrix of the 

slices are obtained based on those of the elements. The stiffness of the RUC is 

subsequently formulated by combining these slices. Although the approach has been 

shown to be simple and computationally efficient, it overestimates all Young’s moduli 

compared to the experimental values. 

Hallal et al. (2012) developed an analytical model labelled as 3SHM for 

calculating the effective elastic properties of 2.5D interlock woven fabrics composite. The 

3SHM is the abbreviation for 3 Stage Homogenisation Method at mico-, meso- and 

macro-scales. At micro-scale, each yarn is decomposed into sub-volumes with known 

volumes and these stiffness matrices are calculated using a micromechanics model in the 

literature. At meso-homogenisation stage, the stiffness matrices of yarns are later 

determined by assembling sub-volumes using mixed isostrain and isostress assumptions 

(see Fig. 2.7). Finally, at the macro-scale, the stiffness of the REV is obtained by 

combining homogenised yarns and matrix stiffness matrices under isostrain conditions 

(see Fig. 2.7). It is noted that the proposed method accounts for the real geometry of 

undulated yarns, resulting in flexibility in modelling textile composites with different 

geometries. 

Recently, Zhou et al. (2022) proposed an analytical model based on the energy 

principles for calculating the uniaxial tensile modulus of plain woven fabric (PWF) 

composites. By observing computed tomography, the lenticular shape was selected to 
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describe the cross-section of the plain woven composites’ fibre tows and the undulation 

path was assumed to be composed of equal radius arcs for both the warp and weft yarns. 

The yarn segments are subjected to uniaxial tension load along with the simplified 

interaction force between yarns. The analytical equations for the uniaxial tensile modulus 

of the plain woven fabric are subsequently withdrawn. Such a model results in a small 

deviation compared to experimental data and high calculation efficiency. However, 

Zhou’s model relies heavily on the input parameters from costly experiments and the 

cross-section of fibre tows and the interaction between the warp and weft tows are 

simplified for a specific woven fabric. Therefore, the application of the proposed 

analytical model for another type of textile composite with different geometric and 

mechanical properties (i.e. fibre and matrix) should be further investigated. 

  

(b) 

 

(a) (c) 
Figure 2.6: Schematic of (a) the representative unit cell  in a 3D orthotropic laminated 

composite; (b) the discretised stripes of layer l; (c) global and local coordinate 
systems for stripe 1 (Wu, Brown & Davies 2002). 
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Figure 2.7: Schematic of 3 Stage Homogenisation Method (3SHM) developed by 
Hallal et al. (2012) 

In the literature, the bulk of fairly recent research (Doitrand et al. 2015; Naouar et 

al. 2014; Wehrkamp-Richter, De Carvalho & Pinho 2018) focuses on FE simulation for 

accurately predicting the meso-scale mechanical properties of textile composites. 

However, the current research aims to develop an efficient strategy for multi-scale 

analysis of wrinkling during the composite consolidation process. Then, an analytical 

model for determining the effective mechanical properties of woven composite at the 

meso-scale would be preferred. It has been demonstrated that the analytical model 

developed by (Naik 1994) for overall stiffness of 5-harness satin weave composite gave 

good correlation with experimental results, while maintaining flexibility and being easy 

to apply with less time consumption in comparison with corresponding numerical FE 

models. Therefore, analytical technique of  Naik (1994) would be applied for predicting 

the mechanical properties of a fabric unit cell via the homogenisation technique as input 

constants of the structural analysis. 

2.3. Buckling behaviour of laminated viscoelastic composites 

The composite structures employed in the aerospace industry are commonly 

composed of multiple thin layers (plies) (Hallander, Sjölander & Åkermo 2015). 

Buckling of composite elements is one of the characteristic failure modes in such 

structures (Boisse et al. 2018; Hallander, Sjölander & Åkermo 2015; Leissa 1987). 

Buckling or ply wrinkling is more likely to lead to a sudden and dramatic failure of a 

component or the whole structure in service (Hallander, Sjölander & Åkermo 2015). As 

a result, special attention must be given to the design of laminated composite parts so that 

they can safely support their intended loadings without buckling.  
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In the literature, much attention has been paid on mechanisms behind wrinkle 

formation during consolidation onto curved tools. Lightfoot, Wisnom & Potter (2013) 

proposed a mechanism for the formation of wrinkles due to frictional shear stresses. At 

very early stages in the cure cycle when the resin is soft, plies can move relative to other 

plies and the tool surface. The mismatch between the coefficients of thermal expansion 

(CTE) of the tool surface and the curing composite, combined with a small amount of ply 

slippage results in shear forces. These shear forces are known to be the primary cause of 

wrinkle formation. Following a development of a one-dimensional analytical model 

comprising of uniformly thick layers laid over an external corner radius under the 

consolidation onto a tighter geometry, Dodwell, Butler & Hunt (2014) assumed that those 

layers may form wrinkles if they are prevented from slipping over one another. Wrinkling 

of a ply or buckling occurs when the ply is subjected to compressive stresses in the 

direction of its fibres generally (Hallander et al. 2013). According to Hallander et al. 

(2013),  although a tensile force may be applied globally, local compressive forces could 

still be developed in some recess areas, leading to out-of-plane defects during the forming 

process of quasi-isotropic, multilayer unidirectional (UD) prepreg over a double-curved 

geometry. Sjölander, Hallander & Åkermo (2016) simulated two different causes for 

wrinkle development during forming of multi-layer UD prepregs onto a 3D beam 

geometry to clarify the experimental findings in Hallander, Sjölander & Åkermo (2015). 

They are global buckling of the entire tack of material due to excessive material and local 

compression of single layers. 

While wrinkles are commonly found in curved composite parts as the localised 

band of wavy fibres, buckling behaviour of flat laminated composites at the early stage 

of forming has also attracted the interest of researchers. Wang, Long & Clifford (2009) 

investigated the out-of-plane bending behaviour of a 3-ply flat UD laminate using large-

displacement buckling tests. A bending model combining classical elastic laminate beam 

theory and uniaxial continuum theory was also developed for further understanding. 

Although the shape of buckling curves captured from the experimental data and the 

prediction models agreed reasonably well, there is a mismatch at the transition region 

from pure elastic to pure plastic (Wang, Long & Clifford 2009). This inconsistency makes 

simulating the buckling behaviour challenging using a unified model. The predictive 

model of elastic buckling is actually set to fit experimental data while the practical 

bending rigidity of the prepreg is still unknown. Dodwell (2015) applied successfully a 
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general 2D Cosserat model in modelling defect formation of thickly layered beams 

consisting of stiff layers separated by weak interfaces. This Cosserat continuum model 

showed the potential of capturing the internal buckling instabilities of laminated 

composites at the beginning of cure when the resin is very soft. However, the study 

focused only on the elasto-plastic behaviour instead of the true viscoelastic nature of 

polymer composites. In short, the predictive models of wrinkle formation during the 

composite manufacturing while considering the true viscoelastic nature of composites are 

still in high demand and of interest to composite manufacturers 

Currently, manufacturing composite parts with mitigation of defects relies heavily 

on the designers’ experience and trial-and-error practices (Belnoue et al. 2018; Hallander 

et al. 2013; Weber et al. 2019). Experiments (Belnoue et al. 2018) are costly because a 

large number of process, material and geometric parameters are involved in composite 

manufacturing. For example, when studying the micro-level mechanisms for wrinkle 

formation during hot drape forming of a C-shaped part, Farnand et al. (2017) showed that 

forming temperature, consolidation pressure and forming rate were important 

contributors to the fibre misalignment, leading to out-of-plane wrinkling. Moreover, the 

wrinkling behaviour has been reported to be influenced by the friction between the two 

sliding prepreg surfaces of noncured composite prepreg materials from a meso-level 

perspective. Therefore, many efforts have been made at different resolution levels to 

characterize inter-ply friction as a function of various parameters including volume 

fracture of fibres, fibre stiffness and the type of toughener (Larberg & Åkermo 2011). In 

a later experimental study, Larberg & Åkermo (2014) showed that stacking sequences 

could influence the deformation behaviour of multi-layered unidirectional thermoset 

prepreg during the sheet forming process significantly. Similarly, Johnson et al. (2019) 

also agreed that stacking sequence could potentially be the cause of defect generation and 

then suggested the most compatible stack arrangement together with application rates and 

favourable temperatures to minimise defect forming during automated production 

processes.  

In previous works related to the wrinkling of viscoelastic composites, less 

attention has been given to the viscoelastic nature of the plies and the relaxation of the 

generated residual stresses during composites curing. Due to many parameters required 

for specific testing processes, predictive modelling to improve the understanding of 
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design engineers about the wrinkling phenomena has become of paramount importance 

in the past two decades (Boisse, Hamila & Madeo 2016). Various process models have 

been developed by researchers to accelerate the insertion of different composites by 

simulating the behaviour of composite parts during their manufacturing process (Amini 

Niaki et al. 2019; Niaki et al. 2018). However, only a few of these models are able to 

capture the development of wrinkles accurately. The simplified model of Dodwell, Butler 

& Hunt (2014) was employed to determine parametric influences such as bending 

stiffness of single uncured ply, part thickness and tool radius on wrinkle wavelength and 

critical limb length during the forming process. Only the elastic buckling mechanisms 

coupled with geometric consolidation were considered and therefore the viscoelastic 

nature of the polymer composite and its effect, especially at the early stage of cure, were 

not well-investigated. Only recently, Alshahrani & Hojjati (2017c) proposed a theoretical 

model for predicting the bending behaviour of woven fabric under conditions relevant to 

forming process. Besides, a new bending test that provides sufficient control of loading 

rates and processing temperatures, as well as viscoelastic considerations, was also 

established for prediction of the parameters and validation of the proposed model 

(Alshahrani & Hojjati 2017b). However, their predictive model which is based on the 

principle of time-temperature superposition still overestimated the measured bending 

moment. Also, the test method was almost impossible in high temperature conditions 

(over 120oC) due to dependence on a non-contact heater facility. 

To reduce the number of manufacturing trials, predictive finite element (FE) 

models for simulating wrinkle formation and its effect have been developed by several 

researchers. Linear buckling analysis of laminated plates under combined biaxial and 

shear loading was conducted numerically by Nali, Carrera & Lecca (2011). Two-

dimensional plate modelling was considered and materials were assumed isotropic, 

orthotropic and anisotropic, alternately. Various plate finite element models were 

analysed to identify the most appropriate model for each class of buckling problem. 

However, the study focused on only cured (solid) laminates. On the contrary, the 

predictive numerical models of Belnoue et al. (2018)  have proven the potential to capture 

effectively the wrinkle formation during consolidation. Nevertheless, specific attention is 

given to thick L- and C-sections and influences of different boundary conditions. Some 

other numerical studies on the influence of wrinkles on compressive strength were 

performed by simulating embedded fibre wrinkle defects before proceeding numerical 
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analyses of structural performance (Lemanski & Sutcliffe 2012; Mukhopadhyay, Jones 

& Hallett 2015; Xie et al. 2018). At present, FE models that can predict wrinkle formation 

effectively during the composite manufacturing while considering the true viscoelastic 

nature of composites are still in high demand and of interest to composite manufacturers.  

2.4. Bending behaviour of woven composites during forming processes 

Advanced composite materials have increasing use in structural applications for 

aerospace, automotive, and marine industries thanks to their exceptional properties like 

higher specific stiffness and strength, as well as ability for net shape manufacturing 

(Farnand et al. 2017). Woven-reinforced composites are preferred due to their improved 

ability to produce complex shapes (Naik 1994). However, formation of process-induced 

defects such as wrinkles poses obstacles to fully exploiting the potential of advanced 

composites (Hallander, Sjölander & Åkermo 2015). Typically, aerospace industry 

process specifications limit the degree of defects for certification purposes. For instance, 

when it comes to wrinkles, the length and out-of-plane height of the wrinkles are kept 

within well-defined limits to minimise their influence on the mechanical performance of 

the end-part. Wrinkle development is facilitated during the forming process of complex 

composite components such as stringers by out-of-plane bending as well as in-plane shear 

deformations (Long 2005; Margossian, Bel & Hinterhoelzl 2015). As such, accurate 

prediction of in-plane and out-of-plane characteristics of an uncured laminate, as well as 

inter-ply slippage (Alshahrani & Hojjati 2017a) during the composite forming is highly 

desirable to optimize the forming process of composites and mitigate wrinkle formation. 

Although several studies on the bending properties of cured prepreg materials have been 

published, efficient numerical modelling of large viscoelastic composites remains a 

significant challenge in the composite manufacturing industry. Given that the high-

fidelity simulation of viscoelastic behaviour of large composite parts during forming 

process takes significant set-up and computational time, industry often relies on trial-and-

error experimental methods instead of simulation. This highlights the need for developing 

efficient simulation methods. This study focuses on predicting the bending behaviour of 

woven composites using an efficient multi-scale modelling approach as a first step 

towards developing a fast and comprehensive multi-scale framework for viscoelastic 

analysis of woven composites during cure. 
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2.4.1. Bending properties of uncured thin laminates 

Bending properties of uncured thin laminates are known to significantly affect the 

occurrence of wrinkles, particularly in determining the shape of wrinkles (Alshahrani & 

Hojjati 2017a; Belnoue et al. 2018; Boisse et al. 2018; Huang et al. 2020; Liang et al. 

2014). For example, increasing the bending rigidity of the laminate leads to an increase 

in the size of the wrinkles (Boisse et al. 2011). Numerous experimental studies 

(Alshahrani & Hojjati 2017b; Bilbao et al. 2009; Liang et al. 2014; Martin, Bhattacharyya 

& Collins 1995; Wang, Long & Clifford 2009) have been conducted in the recent decade 

to characterise the out-of-plane bending behaviour of prepregs. To eliminate time-

consuming and costly measurement trials, various researchers have developed numerical 

models for the composite forming process. Forming simulations for composite fabrics 

were carried out under the membrane hypothesis (Larberg & Åkermo 2014; Skordos, 

Monroy Aceves & Sutcliffe 2007), i.e., neglecting the bending stiffness. For example, 

Larberg & Åkermo (2014) developed a methodology for modelling the in-plane 

deformations of unidirectional (UD) prepregs. Both in-plane shear and inter-ply friction 

were considered in the forming model of stacked thermoset UD prepregs in Larberg & 

Åkermo (2014). Subsequently, it was shown that bending stiffness has a substantial 

influence in determining the magnitude and intensity of wrinkles (Boisse et al. 2018). 

Other studies (Alshahrani & Hojjati 2017a, 2017c; Haanappel & Akkerman 2014) 

suggested that the final desired shapes after forming of composite prepregs are 

determined by the complex interaction of intra-ply shear (including longitudinal and 

transverse intra-ply shearing), inter-ply slippage and out-of-plane bending. Numerous 

efforts have been made to incorporate such diverse deformation mechanisms into the 

composite forming model to accurately predict wrinkle evolution during the forming 

process. To capture such complex mechanisms, some researchers (Alshahrani 2020; 

Alshahrani & Hojjati 2017a; Hallander et al. 2013) have employed Aniform Finite 

Element (FE) software with shell elements to model the viscoelastic bending behaviour 

of composite plies under conditions relevant to the forming process. It is worth noting 

that the Aniform shell is a combination of a membrane element (LTR3D) and a Discrete 

Kirchhoff Triangle (DKT) element, which potentially can capture both in- and out-of-

plane properties. However, time-consuming characterisation tests are required to 

determine the material parameters for a suitable constitutive model. For instance, the bias 

extension test was conducted and simulated in Aniform in order to obtain the fitted 
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parameters for the membrane elements (Alshahrani & Hojjati 2017a; Farnand et al. 2017). 

Furthermore, despite the fact that a plate or shell theory can provide kinematics for points 

in the thickness, kinematics in the thickness of textile reinforcements is very specific, 

especially for thick textile reinforcements, due to relative slippage (Boisse et al. 2018).  

Accuracy of 3D predictive tools highly depends on the input properties. For a 

reliable forming simulation, the properties of the uncured material must be accurately 

represented in the finite element models. As a result, significant research has concentrated 

on characterizing three types of rigidity that can be used as inputs to wrinkling 

simulations: tensile, in-plane shear, and bending (Alshahrani 2020; Boisse et al. 2011; 

Haanappel et al. 2014; Long 2005). For this purpose, mechanical tests such as biaxial 

tests for tensile stiffness, picture-frame and bias-extension tests for in-plane shear 

stiffness and bending tests have been performed. The bias-extension test, which is a 

substitute for the picture-frame test, is intended to introduce pure shear into the material. 

As the in-plane shear behaviour is considered to be the most dominant deformation 

mechanism during forming process, finite element models have been developed using 

material models calibrated with bias-extension tests for in-plane shear stiffness 

(Alshahrani 2020; Alshahrani & Hojjati 2017a; Haanappel et al. 2014; Larberg & Åkermo 

2014; Sjölander, Hallander & Åkermo 2016). Thereafter, the calibrated fibre stiffness 

values of uncured composites are retrieved from the measured shear data and used as 

inputs to the corresponding FE simulations of the bias extension tests. These fitted values 

for bias-extension simulations on specific composite prepregs available in the literature 

are summarized in Table 2.1. While Larberg & Åkermo (2014) conducted bias-extension 

tests on cross-plied UD thermoset prepregs (T700/M21 and HTS/977-2), Haanappel et al. 

(2014) applied bias-extension experiments for a woven glass fibre reinforcement 

(8HS/PPS). Bias-extension testing on multi-layer stack UD prepreg materials containing 

either HT (High Tenacity) fibre or IM (Intermediate Modulus) fibre and same matrix was 

considered by Sjölander, Hallander & Åkermo (2016). In recent studies conducted by 

(Alshahrani 2020; Alshahrani & Hojjati 2017a), using such a bias-extension test, the in-

plane shear properties of 5HS satin weave impregnated with Cycom 5320 at forming 

conditions were characterized over a range of processing temperatures. The bias-

extension response and simulation fit lead to a prediction of fibre stiffness as shown in 

Table 2.1. However, it should be noted that the value of the fibre stiffness was reduced 

compared to the real value reported in the data sheets to obtain a more stable simulation 
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without a comprehensive investigation (Alshahrani 2020; Larberg & Åkermo 2014; 

Sjölander, Hallander & Åkermo 2016). 

Bending tests have been widely used in the literature to assess ply bending 

stiffness for out-of-plane behaviour. Unlike cured composites, uncured prepregs may 

simultaneously promote mechanisms such as intra-ply slippages between fibres and local 

micro-buckling of fibres during bending since the resin is not stiff enough to prevent their 

occurrence (Belnoue et al. 2018; Boisse et al. 2018). The combined deformations result 

in the composite prepregs having an apparent lower bending rigidity than conventional 

solid materials. Therefore, the bending properties have been investigated experimentally 

and characterized separately from the in-plane properties (tensile and compressive 

moduli) by (Alshahrani & Hojjati 2017a; Sjölander, Hallander & Åkermo 2016). 

(Alshahrani & Hojjati 2017a; Sjölander, Hallander & Åkermo 2016) carried out 

cantilever bending tests and later calibrated the bending properties of a single ply using 

replication of the bending simulations. While Sjölander, Hallander & Åkermo (2016) 

used an orthotropic elastic model to simulate the bending stiffness in the fibre direction 

and transverse to the fibre direction, Alshahrani & Hojjati (2017a) employed an isotropic 

viscoelastic material model for the out-of-plane bending elements. Table 2.1 lists the 

input parameters for the out-of-plane material properties based on the cantilever bending 

experiments. Similarly, Belnoue et al. (2018) adapted the cantilever test proposed by 

Liang et al. (2014) for capturing bending behaviour of a thermoplastic based prepreg at 

different temperatures. By measuring the bending stiffness in the fibre direction of an 

uncured prepreg ply (IMA-M21), material characteristic (i.e. Young’s modulus along the 

fibre direction) was derived from the beam theory (see Table 2.1) and used as an input 

for the FE consolidation model. Dörr et al. (2017), on the other hand, used a dynamic 

rheometer within a thermal chamber, rather than the more typically used static cantilever, 

to characterize the bending properties of a single ply of unidirectional (UD) reinforced 

PA6-CF tape. A constant parameter was used for the spring element in the viscoelastic 

material model to fit the bending characterization curve. 

 As discussed previously, the bending properties of an uncured prepreg were 

modelled separately from its in-plane properties using specific material models for the 

fibre and matrix (Alshahrani 2017; Sjölander, Hallander & Åkermo 2016). However, 

other researchers (Dangora, Mitchell & Sherwood 2015; Yu et al. 2005) have attempted 
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to relate bending stiffness to axial moduli (i.e. compressive and tensile modulus) using a 

hybrid model. Contrary to traditional isotropic materials, it is hypothesised that fibrous 

materials can exhibit significantly varied responses in tension and compression (Dangora, 

Mitchell & Sherwood 2015). While fibre is extremely strong and stiff under tension, it 

will buckle with extremely modest compressive stresses. As a result, the bending stiffness 

of fibrous materials cannot be obtained directly from the tensile modulus; it must be 

measured through experiments (Dangora et al. 2016). For instance, the vertical cantilever 

method was used to analyse the bending behaviour of a cross-ply thermoplastic lamina, 

Dyneema HB80 (Ultra-High Molecular Weight Polyethylene fibres embedded in a 

polyurethane matrix (DSM 2014), at elevated temperature (up to 120oC). A tensile test 

was also conducted to measure the apparent elastic modulus of such thermoplastic 

composites as a function of temperature. Subsequently, the obtained tensile modulus and 

bending stiffness were used to calculate an effective compressive modulus following an 

equation proposed by Dangora, Mitchell & Sherwood (2015) for implementation into the 

finite element model. Similarly, Yu et al. (2005) introduced an asymmetric axial modulus 

to calculate bending rigidity from the in-plane stiffness (i.e. tensile and compressive 

rigidities). The asymmetric axial modulus, defined as the ratio of compressive modulus 

to tensile modulus, was determined by conducting a cantilever deflection test in the warp 

and weft directions and then implemented into the FE software through a user material 

subroutine (Abaqus UMAT) for simulation of three-dimensional bending deformation. 

Alshahrani & Hojjati (2017c) derived an expression for the equivalent bending stiffness 

as a function of compressive, tensile and relaxation modulus. The compressive modulus 

of prepreg was calculated by the slope of the stress-strain curve of an elastic region in a 

buckling test, while the tensile modulus was provided by the supplier. A generalised 

Maxwell model was applied to fit the stress-relaxation response measured from the 

cantilever bending test, and parameters for the relaxation modulus were consequently 

obtained. The computed in-plane properties of the prepreg samples used as input 

parameters for FE bending models are listed in Table 2.1.  

Considering experimental studies on uncured composites, it is apparent that 

accurate prediction of the mechanical properties of composites under bending is quite 

challenging. According to the extensive literature review conducted in this chapter, it was 

found that regardless of the fibre type (i.e. carbon or glass fibre), fabric architecture (i.e. 

UD or woven fabrics) or impregnated resin, a low value of around 1 GPa, downscaled 
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from a real value for the fibre stiffness (e.g., 200 GPa for carbon fibre), is commonly used 

in most numerical models (Alshahrani 2020; Alshahrani & Hojjati 2017a; Haanappel et 

al. 2014; Larberg & Åkermo 2014). However, this low value has not been justified clearly 

in the literature (Sjölander, Hallander & Åkermo 2016). Moreover, bending properties at 

elevated temperatures were estimated based on an educated guess (Haanappel et al. 2014). 

Hence, a better understanding of the mechanical properties of uncured composites under 

bending is crucial for successful forming simulations. This is accomplished using a multi-

scale modelling framework that incorporates analyses at different scales and is 

accomplished in a general-purpose finite element code, Abaqus. Due to the limitation of 

Abaqus built-in viscoelastic model to isotropic materials, an orthotropic viscoelastic 

constitutive model implemented as a UMAT (Malek 2014; Zobeiry et al. 2016) is 

considered. Using this material model, the influence of ply anisotropy on the bending 

behaviour is investigated. 

Table 2.1: List of experimental studies on deformation of uncured composites and 
calibrated material properties for the corresponding FE simulations. 

Fibre 
modulus 
(E1) in 
MPa 

Material Test Temperature Loading rate Reference 

1000 

Cross-plied UD 
thermoset 
prepregs Bias 

extension 

 

40 mm/min 
(Larberg & 
Åkermo 
2014) T700/M21  85oC 

HTS/977-2 70oC 

1000 

Carbon 
UD/PEEK Torsion bar 390oC 25, 100, 400 

mm/min 

(Haanappel et 
al. 2014) 
 Glass 8HS/PPS Bias 

extension  310oC 

1000 for 
HT fibres 
and 1200 
for IM 
fibres 

Stacked UD 
prepreg with 
the same epoxy 
matrix and 
- HT carbon 
fibres 
- IM carbon 
fibres 

Bias 
extension  

70oC 0.05 
mm/min 

(Sjölander, 
Hallander & 
Åkermo 
2016) 

100 a Bending 

1000 5HS satin 
weave (6 k 

Bias 
extension  70oC 20 mm/min 
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275b 
carbon fibre 
tows with 
Cycom 5320) 

Bending 
(Alshahrani 
& Hojjati 
2017a) 

1200 
5HS satin 
weave (6 k 
carbon fibre 
tows with 
Cycom 5320) 

Bias 
extension Room 

temperature 20 mm/min (Alshahrani 
2020) 

580b Bending 

125b PA6-CF UD-
Tape  

Rheometer 
bending 260oC  (Dörr et al. 

2017) 

735 - 
40000c IMA-M21 Bending 110oC - 30oC  (Belnoue et 

al. 2018) 

14000 - 
44000d 

Dyneema 
HB80 Tensile 120oC - 20oC 102 mm/min (Dangora et 

al. 2016) 

0.015e 
Glass/PP 
commingled 
plain weave 

Bending   (Yu et al. 
2005) 

150 - 200f 
for 
weft/warp 

5HS satin 
weave (6 k 
carbon fibre 
tows with 
Cycom 5320) 

Buckling Room 
temperature 

180 mm/min 
(Alshahrani 
& Hojjati 
2017c) 600 - 700g 

for 
weft/warp 

Bending 70oC 

Note: a Bending stiffness in the fibre direction used in the orthotropic elastic model for out-of-
plane properties. 
b Isotropic Hooke modulus represents an elastic spring in the viscoelastic material model for the 
out-of-plane bending elements. 
c Young’s modulus of the prepreg sheet in the fibre direction against temperature. 
d Tensile modulus of Dyneema HB80 in the fibre direction against temperature. 
e Asymmetric factor 
f Compressive modulus of the prepreg samples 
g Unrelaxed modulus of the prepreg samples under bending at forming conditions 
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Chapter 3. Research methodology  

In the present research, the multi-scale method originally developed by Malek 

(2014) implemented which is here for determining the wrinkling during consolidation of 

thermoset composites. The proposed multi-scale approach ensures high efficiency when 

analysing the behaviour of large composite structures in practice or in applications where 

time-dependent (viscoelastic) response (i.e. in process modelling) is of interest. Accuracy 

requirement was also examined for new composites with directional dependent 

(orthotropic) properties (Malek 2014). 

 The approach consists of two key resolution scales, known as micro-scale and 

macro-scale (see Fig. 3.1). Note that the macro-scale is the scale at which the structural 

response is of interest. At lower scales such as the micro and meso levels, the effective 

viscoelastic properties of a unidirectional RVE or  RUC of the woven fabric reinforced 

composites are determined using analytical models developed by Malek (2014) and Naik 

(1994). The obtained effective mechanical characteristics at small-scale contexts are 

subsequently used as inputs for structural analysis at the macro-scale. The following 

sections describe the methodology in detail. 

In Malek (2014), the author focused on developing analytical micromechanics 

equations for predicting accurately the effective viscoelastic properties of the solid 

unidirectional (UD) circular fibre composites. In this thesis, the accuracy of these 

equations in determining the effective properties of uncured/cured UD composites with 

given inputs for component properties (i.e. fibre and resin) under a certain loading 

condition (i.e compression) is examined. The obtained predictions are compared with 

with data measured available in the literature. A meso-scale considering the weaving 

pattern has been included into the multi-scale modelling approach to estimate the 

effective properties of fabric. Unlike previous studies, the viscoelastic contribution of 

resin as well as fibre stiffnesses under different loading conditions and fabric architecture 

(for woven composites) are taken into account. The obtained effective properties have 

been validated wherever experimental tests are available in the literature. At the macro-

scale, the wrinkling analyses (i.e. buckling and bending) during the early stage of cure 

have been verified and validated with analytical and experimental results using the 

obtained effective mechanical characteristics at small-scale provided as inputs. 
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Figure 3.1: Schematic of the multi-scale modelling framework for viscoelastic 
modelling of orthotropic composites (Adopted from Malek (2014)) 

3.1. Micro- and meso-scale model 

The effective viscoelastic characteristics of orthotropic composites are first 

modelled in the multi-scale analysis of viscoelastic composites. At the micro-scale, the 

analytical micromechanics equations described in Malek (2014) serve to to predict the 

effective elastic and viscoelastic properties of the solid unidirectional (UD) composites 

with a specific fibre volume fraction (Vf) (see Fig. 2.1). The effective properties obtained 

from the micromechanics model are then used to estimate the effective properties of the 

fabric at the meso-scale. The fabric is composed of two sets of interlacing, mutually 

orthogonal (warp and weft) yarns. The chosen weave type in this study is a 5-harness 

satin (5HS) (see Fig. 1.4c), which has advantages over plain and twill weaves in terms of 

drapability and conformity over complex shapes (Alshahrani & Hojjati 2017b). Based on 

the pattern in the woven fabric, a small RUC which is adequate to represent the fabric 

architecture is isolated. Details of geometric modelling of 2-D 5-harness satin weave 

composite along with discretisation technique of yarns within RUC and calculation of 3D 

effective stiffnesses are presented here, which is based on the work reported in Naik 

(1994). The analytical procedure was implemented in MATLAB. The obtained effective 
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mechanical characteristics at small-scale contexts are subsequently used as inputs for 

structural analysis at the macro-scale. 

3.1.1. Micro-mechanical modelling of UD composites 

As reviewed in Chapter 2, CCA (Hashin & Rosen 1964) and GSC (Christensen & 

Lo 1979) models are employed at the micro-scale to calculate the longitudinal and 

transverse elastic properties respectively of the UD composites. Note that the method has 

already been evaluated and compared with the numerical approach in Malek (2014). In 

this thesis, the accuracy of these equations in determining the effective properties of UD 

composites with given parameter inputs for component properties (i.e. fibre and resin) is 

examined by comparing the obtained predictions with data measured available in the 

literature. Moreover, such micromechanics models are used as a tool to obtain the 

mechanical properties of UD composites that would be input parameters for the structural 

analysis at the macro-scale. 

Micromechanical models are used to combine the elastic mechanical properties 

of the fibre and the unrelaxed and relaxed properties of the polymer. Due to the 

viscoelastic characteristic of the resin, the combined composite also exhibits viscoelastic 

behaviour. The viscoelastic properties would be obtained by simply assuming the 

viscoelastic behaviour of the resulting composite as similar to the viscoelastic behaviour 

of the resin constituent. It means that the relaxation time and weight factors describing 

the viscoelastic response of the resin and the corresponding composite are assumed to be 

the same. 

3.1.2. Analytical procedure for predicting elastic engineering constants of woven 

composites at the meso-scale  

At the meso-scale, an easy but accurate geometric modelling and analysis 

procedure for 5HS satin weave composite developed by Naik (1994) is employed. Firstly, 

a three dimensional preform architecture of such a fabric reinforcement composite has to 

be described properly. Based on the pattern of the woven composite, a RUC is represented 

for the preform architecture. Detail of the geometric modelling technique of 5HS satin 

weave is demonstrated in section 3.1.2.1. Later, the 3D effective stiffnesses for the woven 

composite are determined in section 3.1.2.2. This is done by dividing each yarn in the 
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RUC into discrete yarn slices with specific material characteristics, spatial direction and 

volume fraction of each yarn slice obtained from the previous step. 

3.1.2.1. Geometric modelling of 5HS satin weave 

In the first step, the effective properties obtained from the micromechanics model 

for UD prepregs or yarns at the micro-scale are used to estimate the effective properties 

of the fabric at the meso-scale. The RUC for the 2-D, 5-harness satin (5HS) weave is 

presented in Fig. 3.2a. The sectional view (section A-A) illustrates the undulations of a 

warp yarn over one and under four weft yarns. 

The 5HS satin weave composite is commonly described by quantities including 

yarn spacing, a, yarn filament count, n, yarn packing density, pd, filament diameter, df 

and overall fibre volume fraction, Vf . The projected length, Lp was a equation of the yarn 

spacing, a, and defined by Lp = 5 × a (see Fig. 3.2a). The volume filled with  the ten yarns 

within the RUC was calculated by 10 × A × Lp in which A was the yarn cross-sectional 

area. By assuming that A was constant along the yarn length and same for both the warp 

and the weft yarns, the volume of the RUC was Lp × Lp × H, where H stood for the RUC 

thickness. Provided with such known quantities, unknown quantities such as yarn 

thickness, t,  yarn cross-sectional area, A, can be calculated using equations written as 

follows:  

𝑉𝑓 =
2𝑝𝑑𝐴

𝐻𝑎
, (3.1) 

𝐴 =
𝜋𝑑𝑓

2𝑛

4𝑝𝑑
, 

(3.2) 

The yarn thickness, t, was determined from the RUC thickness, H, by t = H/2. By 

assuming there was no gap between adjacent, the yarn width, w, was then computed by 

w = a.  

The undulations were centred at cross-over points (COP) where a yarn crosses 

over or under another yarn (see Fig. 3.2a). For the 5-harness satin weave, by looking at 

Fig. 3.2a from the bottom, the warp yarns in the first and fourth rows had three COPs 

while the warp yarns in the second, third and fifth rows had two COPs. In every 

undulating part, it was assumed that the yarn centreline path followed a sinusoidal 



 

43 

 

expression. The sine function had its origin at the COP and was formulated using the 

vertical shift, Vs, and the undulating length, Lu. For instance, the undulation, Zc, at each 

COP was given by: 

𝑍𝑐 = ±
𝑉𝑠
2
𝑠𝑖𝑛 (

𝜋𝑋𝑐
𝐿𝑢
), (3.3) 

where Xc was a distance from the corresponding COP in the warp yarn direction (see Fig. 

3.2a). The vertical shift, Vs in Eq. (3.3) was equal to the thickness, t, of the yarns. A 

negative sign in Eq. (3.3) was used to define the undulation at the central COP for the 

warp yarn shown in section A-A (see Fig. 3.2a). Conversely, at the COPs located on the 

RUC edges for the same warp yarn, a positive sign was used in Eq. (3.3). Similarly, the 

undulation path for the other warp yarn in the RUC was defined with the relevant sign 

and sine wave portion at each COP. The undulations in the weft yarns were also depicted 

using Eq. (3.3) in which Xc was measured along the weft yarn direction. The parameter, 

Lu, was calculated by assuming that the cross-sectional shape of the yarns (see in Fig. 

3.2b) was composed of a central flat portion of thickness, t, and two sinusoidal lenticular 

end portions. It was considered that the curved portions of the yarn cross-section followed 

the sine form of Eq. (3.3). Hence, the width of the curved portion of the yarn cross-section 

was equal to Lu/2. The cross-sectional area, A, was consequently given by: 

𝐴 = 𝑤𝑡 − 𝐿𝑢𝑉𝑠 (1 −
2

𝜋
), (3.4) 

By combining Eqs. (3.2) and (3.4), the unknown parameter, Lu, was withdrawn. 

The total length of the straight portions, Lst, of each yarn was as follows:  

𝐿𝑠𝑡 = 5𝑎 − 2𝐿𝑢 , (3.5) 

In short, using Eqs. 3.3 – 3.5, geometry parameters necessary for the description 

of 5HS satin weave such as the yarn cross-sectional area, yarn thickness and yarn paths 

could be determined with a given knowledge of the yarn filament counts, yarn packing 

density, yarn spacing, filament diameter and overall fibre volume fraction. Furthermore, 

the undulation in the yarns is commonly represented by its crimp angle (see Fig. 3.2b). 

The crimp angle, θc, was given by: 
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tan(𝜃𝑐) = |(
𝑑𝑍𝑐
𝑑𝑋𝑐

)
𝑋𝑐=0

|, 
(3.6) 

where θc is commonly in a range of θmin and π/2 with θmin calculated by the constraint w 

≥ Lu. 

 

 

(b) 

 
(a) (c) 

Figure 3.2: (a) The RUC geometry and notation for a 5-harness satin weave 
composite; (b)Yarn cross-sectional shape (c) Orientation angles 

3.1.2.2. Discretisation technique of yarns and determination of three-dimensional 

effective stiffnesses 

Having described the woven architecture, overall composite properties would be 

calculated by dividing yarns within the RUC into discrete slices. The straight parts of 

each yarn path, Lst were considered as a sole slice. Meanwhile the undulating parts, Lu 

were discretised into equal straight slices, n, perpendicular to its in-plane and the XY-

plane as seen in Fig. 3.2c. The reason for this was to approximate the undulating, 

sinusoidal yarn path to n straight yarn slices with equal volume of A × Lu/n. 

The spatial coordinate of each yarn slice was specified by the in-plane angle, θ 

and the out-of-plane, β as shown in Fig. 3.2c. It can be seen that θ is made with the X-
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axis while β is made with the X-Y plane. As the woven architecture is composed of 

interlacing, mutually orthogonal (warp and weft) yarns, the angle θ was either 0 for warp 

yarns or 90 degrees for weft yarns. The angle β was determined for each yarn slice by 

differentiating the sine function mentioned above for the undulating yarn centerline path. 

Therefore, the straight portions of the yarn path had β = 0. 

In summary, every yarn within the RUC was approximated by straight yarn slices 

with known quantities such as volumes and orientation angles (i.e. θ and β). The volume 

filled with the resin in the RUC was subsequently calculated by subtracting the total 

volume filled with all the yarn slices from the volume of the RUC. It should be noted that 

the interstitial resin had orientation angles equal to zero as it was modelled as an isotropic 

material slice. 

As a result, the effective stiffness matrix [Ceff] of the RUC was expressed as a 

function of the yarn slice stiffness matrices (including resin), transformation matrices and 

volume fractions as (Naik 1994): 

       ( )=
=

N

m
mm

T
mmeff TCTVC

1
' , 

(3.7) 

The transformation matrix [Tm] is defined in Appendix A.3. The 6 × 6 stiffness 

matrix [C’]m describes the 3D relationship between stress and strain of the mth yarn slice. 

Each yarn slice is considered to be a transversely isotropic material which requires five 

independent material constants (E11, E22, G12, ν12, and ν23, subscript 1 refers to the 

longitudinal fibre orientation) to describe the [C’]m matrix. Such engineering material 

constants had been estimated using micromechanics equations (Malek 2014) from known 

constituent properties such an fibre properties, matrix properties and the yarn packing 

density pd (or yarn fibre volume fraction). Additionally, a mesh convergence study was 

conducted to decide the relevant number of yarn slices, n, in the undulating parts of the 

yarns, necessary for the convergence of the overall stiffness values [Ceff]. It was found 

that the minimum value of n equal to 12 could result in an unchanged overall stiffness 

matrix (Naik 1994). The overall stiffness matrix [Ceff] would be inverted to acquire the 

overall compliance matrix [Seff] for a later determination of overall moduli and 

Poisson’ratios. 
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3.2. Macro-scale (structural) modelling of viscoelastic composites 

While the woven fabrics are discrete on the micro-scale, woven composites are 

assumed to be uniform and continuous at the macro-scale to simplify the computations 

and improve the efficiency of the analysis. The macro-scale analysis of woven fabrics is 

mainly conducted to simulate the overall structural behaviour of the prepreg/fabric with 

the input parameters obtained from micro-scale and meso-scale analyses. Both analytical 

and numerical methods are considered to be part of the macro-scale analysis. The 

analytical approach involves simple mathematical equations for predicting specific 

structural behaviour of an isotropic elastic beam under a small displacement. In the 

numerical approach, the finite element method is used to predict the bending moment-

curvature relationship of both elastic and viscoelastic composite plates at various loading 

rates.  

 The composite plate is first assumed to behave as a viscoelastic isotropic solid 

and modelled using the Abaqus built-in viscoelastic constitutive model which is based on 

the integral form (IF) of viscoelasticity. As applying Abaqus viscoelastic model is limited 

to isotropic materials, a more versatile orthotropic viscoelastic constitutive model (based 

on a differential form of viscoelasticity – DF) developed and implemented as a UMAT 

by researchers (Malek 2014; Zobeiry et al. 2016) is then employed to elucidate the effect 

of ply anisotropy on the structural responses of uncured prepregs/5-harness satin weave 

plates. 

3.2.1. Numerical approach using Abaqus built-in viscoelastic model (IF) 

To define the viscoelastic behaviour of an isotropic material in Abaqus, an 

instantaneous elastic modulus is needed to represent the rate-independent elasticity of the 

material behaviour. The effective relaxation moduli are obtained by multiplying the 

instantaneous moduli with the dimensionless effective relaxation functions as given 

below (Section 22.7.1 in Abaqus Analysis User’s Guide) (Abaqus 2013a): 

 
𝐺(𝑡) = 𝐺𝑜 [1 −∑𝑔𝑖 (1 − 𝑒𝑥𝑝 (−

𝑡

𝜏𝑖
))

𝑁

𝑖=1

], (3.8) 
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𝐾(𝑡) = 𝐾𝑜 [1 −∑𝑘𝑖 (1 − 𝑒𝑥𝑝 (−

𝑡

𝜏𝑖
))

𝑁

𝑖=1

], (3.9) 

where t is time, and Go and Ko are the instantaneous glassy (unrelaxed) shear and bulk 

moduli determined from the instantaneous elastic moduli, Eo, and Poisson’s ratio, υo: 

𝐺𝑜 =
𝐸𝑜

2(1 + 𝜈𝑜)
, (3.10) 

𝐾𝑜 =
𝐸𝑜

3(1 − 2𝜈𝑜)
, (3.11) 

The characteristic parameters of the Prony laws, gi and ki are the weight factors 

given by: 

𝑔𝑖 =
𝐺𝑖
𝐺𝑜
, (3.12)  

𝑘𝑖 =
𝐾𝑖
𝐾𝑜
, (3.13) 

where Gi and Ki are the shear and bulk moduli corresponding to the specific relaxation 

time (τi) and N is the number of Maxwell units. 

3.2.2. Numerical approach using orthotropic viscoelastic user material model 

(UMAT) 

 A recently developed user material subroutine (UMAT) based on the differential 

form (DF) of viscoelasticity is employed to simulate the time-dependent behaviour of 

orthotropic laminates. The DF approach and its implementation in Abaqus are briefly 

described in Appendices A.2 and A.3 respectively.  The DF subroutine has been coded in 

FORTRAN and then implemented through UMAT subroutine. The DF code is capable 

of modelling the viscoelastic behaviour of isotropic, transversely isotropic (Zobeiry et al. 

2016) and orthotropic (Malek 2014) composite material in 3D. Therefore, the effect of 

ply anisotropy on the buckling behaviour of the viscoelastic composite material can be 

studied rigorously. 
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Based on the DF of viscoelasticity, the relaxation functions G(t) and K(t) of an 

isotropic viscoelastic solid are defined individually in terms of a series of exponentials 

known as the Prony series: 

𝐺(𝑡) = 𝐺∞ +∑𝐺𝑖𝑒
−𝑡
𝜏𝑖 ,

𝑁

𝑖=1

 (3.14)  

𝐾(𝑡) = 𝐾∞ +∑𝐾𝑖𝑒
−𝑡
𝜏𝑖 ,

𝑁

𝑖=1

 (3.15) 

in which 𝐺∞ and 𝐾∞ define the long-term shear and bulk moduli (relaxed), respectively. 

Comparing Eqs. 3.8 - 3.9 to Eqs. 3.14 – 3.15 respectively, the relaxed moduli can be 

described as:  

𝐺∞ = 𝐺𝑜 (1 −∑𝑔𝑖

𝑁

𝑖=1

), (3.16)  

𝐾∞ = 𝐾𝑜 (1 −∑𝑘𝑖

𝑁

𝑖=1

), (3.17) 

For orthotropic viscoelastic solids, the above equations can be generalised as 

described in Malek (2014) and Zobeiry et al. (2016) for each component of the stiffness 

matrix. The generalised formulations were reported in the PhD thesis by Malek (2014). 

Using the generalised form of DF of viscoelasticity, the orthotropic behaviour of 

composite laminates is investigated numerically in this study and the results are compared 

with experimental data reported in the literature. 
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Chapter 4. Buckling analysis of multilayered elastic beams with soft and rigid 

interfaces 

4.1. Introduction 

 As a first step in providing a better understanding of wrinkle formation, the 

buckling behaviour of solid laminated beams under compressive loads are examined 

using various analytical and numerical approaches. Two types of models are created by 

either using composite layup option available in Abaqus or physically modelling layers 

before assigning material properties as shown in Fig. 4.1. The purpose is to examine the 

capability of commercial numerical tools available to design engineers, i.e. composite 

editor in Abaqus, in simulating the buckling behaviour of layered systems separated by 

relatively soft viscoelastic layers occurring in manufacturing of a range of laminated 

composite products.  

 

Figure 4.1: Two types of analysis model employed for this study. 

In this chapter, predictions of these models are compared with analytical models 

to verify the proposed modelling approach. Two analytical approaches such as eigenvalue 

and large deformation analyses are conducted. A new model based on the hypothesis that 

the resin stiffness dominates the longitudinal compressive strength is also created and 

shown in Chapter 5. Later, the viscoelastic properties of the resin are included in a macro-

scale model by replacing previously assumed elastic inputs for the resin. The effective 
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properties of the composite would be obtained by using the viscoelastic micromechanical 

model proposed by Malek, Vaziri & Poursartip (2018). The estimated composite 

properties are used in the macro-scale FE simulations. 

4.2. Method 

Three-dimensional multilayered beams are modelled using two approaches; (i) 

layup composite editor for 3D solid composite elements and (ii) physical modelling of 

individual layers (with 3D solid elements) and interfaces within Abaqus environment. 

Each model is composed of N = 48 identical stiff layers which are separated by N - 1 soft 

interfaces similar to reference (Dodwell 2015). The thicknesses of a single layer (ply), tp, 

and an interface, ti, are 0.2 mm and 0.01 mm, respectively, thereby the total thickness of 

the multilayered beam is T = Ntp + (N – 1) ti. The generated multilayered beam is 50 mm 

of length and 1 mm width (h). For verification purposes, both materials are initially 

assumed to be homogeneous and isotropic. While Ep and υp, the material properties of the 

layers, are kept unchanged and equal to 100 GPa and 0.2, respectively, Ei takes a range 

of values which define the material properties of the interfaces. Identical Poison’s ratio is 

used for plies and interfaces (i.e. 𝜈𝑝 = 𝜈𝑖).  

Using the first approach, the composite characteristic is defined by a composite 

layup tool in the property module of Abaqus CAE as demonstrated in Fig. 4.2. In the 

second approach, the beam geometry is partitioned into physical layers (thickness of 0.2 

mm) separated by distinct interfaces (thickness of 0.01 mm) before they are meshed and 

the material properties are assigned. 

Figure 4.2: Composite layup   

To verify the model, the deformation behaviour of multilayered cantilever beams 

with a range of interface stiffness under a vertical displacement is examined (Case I). 

Results are compared with a simple beam bending equation to highlight the need for more 
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sophisticated elements or approaches in this area. Then, the critical buckling loads and 

the first mode shapes of flat laminates with soft interfaces are compared with those with 

stiff ones (Case II). The critical buckling loads are presented and compared with Euler 

buckling estimates. In both cases, the effect of ply anisotropy on the buckling behaviour 

of laminates with soft and stiff interfaces is investigated. 

4.3. Multilayered cantilever beam under bending (Case I) 

A 1 × 10.07 × 50 mm multilayered cantilever beam is modelled using a 20-node 

quadratic brick element with reduced integration element (C3D20R) and mesh size of 0.2 

mm. The elastic behaviour of this beam is first examined using the PML approach. While 

one end of the beam is fixed, a vertical displacement equal to Δ = 0.2 mm is applied to 

the other end. Both the layers and interfaces are assumed to be isotropic in Case I. The 

force, P, at the free edge corresponding to the vertical displacement of 0.2 mm is obtained 

from finite element analysis and compared with the one calculated from the Euler – 

Bernoulli beam bending theory (i.e. ignoring shear deflection) (Bauchau & Craig 2009): 

∆=
𝑃𝐿3

3𝐸𝐼
, (4.1) 

where EI is the flexural rigidity of the cantilever beam section. EI is obtained by assuming 

the layers fully bonded or no interaction between layers which provides a lower bound as 

demonstrated in Table 4.1. Four cases corresponding to four different values of Ei 

(interface modulus) are considered; starting at the same stiffness of ply modulus Ep (100 

GPa) and reducing by a factor of 10 for the other three subsequent cases. 
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Table 4.1: Comparisons between current FE predictions,  Dodwell (2015)’s FE results, 
and the analytical model based on Euler-Bernoulli kinematics (Eq. 4.1) for a 
multilayered cantilever beam (Case I). 

Ei (GPa) 
P (kN) 

PMLFE (Present) FE (Dodwell) Lower bound  Upper bound 

1  10+2 4.485  10-2 4.500  10-2 

1.6  10-5 

4.617  10-2 

1  10+0 3.769  10-2 3.800  10-2 4.412  10-2 

1  10-2 3.085  10-3 3.000  10-3 4.410  10-2 

1  10-4 3.745  10-5 3.700  10-5 4.410  10-2 
 

Table 4.1 highlights a good agreement between results from the present finite 

element analysis with Dodwell’s FE model for all four cases and analytical upper bound 

when Ei equals Ep, 100 GPa; lower bound when Ei is very soft (1 kPa). It should be noted 

that only the bending deformation is considered in Eq. (4.1). When Ei = Ep = 100 GPa, 

the contribution of shear deformation is negligible and the multilayered cantilever 

deforms as a solid isotropic beam based on the assumptions of Eq. (4.1). In the subsequent 

circumstances with soft interfaces, however, due to severe shear deformations at the 

interfaces, the layers are more likely to bend more independently, decreasing the apparent 

flexural stiffness of the entire beam. 

To better understand the role of ply anisotropy on the overall beam rigidity, three 

more cases with transversely isotropic layers are considered. The elastic constants of such 

layers are listed in Table 4.2. 

Table 4.2: Input properties of the transversely isotropic plies. 

Properties Value Unit 

E1p 100 GPa 

E2p 8 GPa 

G12p 3.98 GPa 

G23p 2.86 GPa 

υ12p 0.26 -* 

υ23p 0.4 -* 

Note: * indicates non-dimensional 
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Figure 4.3: The role of interface stiffness and ply anisotropy on the multilayered 

cantilever beam rigidity. 
 

Fig. 4.3 highlights the role of interface stiffness for isotropic and transversely 

isotropic laminates. As the interface becomes soft (Ei = 0.01 GPa), the beam flexural 

rigidity is significantly reduced irrespective of the ply orthotropic nature. In other words, 

the soft interface dominates the bending response (e.g. uncured prepregs and laminates 

during cure). However, the beam bending behaviour is dominated by the engineering 

constants of the plies when the interface is stiff (1 GPa < Ei < 100 GPa). In other words, 

we could assume that plies are almost perfectly bonded when the interface is relatively 

stiff (cured laminates). 

4.4. Flat laminate under compressive load (Case II) 

The buckling behaviour of a flat laminate (10.07 × 1 × 50 mm) is considered here 

using two different approaches; Abaqus built-in composite editor (CE) and physically 

modelling layers (PML). Similar cases are also considered with transversely isotropic 

material properties to understand the role of ply anisotropy on the laminate buckling 

response. 
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4.4.1. Two pinned ends 

First, the laminate is pin supported and a uniform axial pressure on the free end 

face is applied. Such a simple buckling scenario is considered because there is an existing 

analytical solution for verification purposes. The FE results using eigenvalue analyses for 

both approaches mentioned above along with Euler predictions are summarized in Fig. 

4.4. Five interface properties, Ei, ranging from 100 kPa to 100 GPa, equal to constant Ep, 

are also introduced to investigate the influence of interface stiffness on the overall 

buckling behaviours. 

As seen in Fig. 4.4, results from CE analyses increase slightly as the interface 

becomes more rigid. With PML models, critical buckling loads reduce significantly in 

comparison especially when the interfaces are much softer than the plies (Ei ≤ 1 MPa). 

PML results are between Euler predictions and when the interfaces are very soft, the 

results approach the lower bound. 

The shapes of buckled beams with stiff interfaces (Ei = 100 GPa) are plotted in 

Fig. 4.5 and 4.6 for CE and PML models respectively. Both mode shapes are identical 

and buckle in y-plane. However, only PML analysis can capture buckling deformation 

when the interfaces are very soft (Fig. 4.7). The laminate bends in x-plane, meaning that 

the layers buckle as N independent beams. The critical buckling stress is therefore 

dropped significantly, as shown in Fig. 4.4. 

 
Figure 4.4: Comparisons of FE results with Euler predictions for isotropic plies (Ep= 100 

GPa) bonded with a range of interfaces. 
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Figure 4.5: Buckling mode shape for flat laminates with stiff interfaces (Ei = 100 GPa) 
using PML approach. The beam cross section is depicted on the right side. 

 

 

 

Figure 4.6: Buckling mode shape for flat laminates with stiff interfaces (Ei = 100 GPa) 
using Abaqus CE. The laminate layup is depicted on the right side for clarity. 
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Figure 4.7: Buckling mode shape for flat laminates with soft interfaces (Ei = 100 
kPa) using PML approach. 

Similar to Case I, the effect of ply anisotropy on the buckling behaviour of 

laminates is investigated by using PML models and results are presented in Fig. 4.8. Two 

different transversely isotropic properties listed in Table 4.2 and 4.3 are used for 

comparison. When the transverse Young’s modulus and shear moduli are still high (Table 

4.2) their effects on the buckling response are negligible (Fig. 4.8). Results also 

demonstrate the less significant effect of ply anisotropy compared to the interface 

stiffness. The interface stiffness (or the presence of resin rich areas between the plies) 

dominates the buckling response of flat laminates similar to their bending response 

presented in Case I. During composite processing, the resin modulus may decrease quite 

significantly. This could lead to formation of wrinkles (buckled plies) under much lower 

compressive loads which needs to be captured accurately. 

Table 4.3: Input properties of the transversely isotropic plies. 

Properties Value Unit 
E1p 100 GPa 

E2p 0.8 GPa 
G12p 0.398 GPa 
G23p 0.286 GPa 
υ12p 0.26 -* 
υ23p 0.4 -* 

Note: * indicates non-dimensional 
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Figure 4.8: The influence of ply elastic constants on the buckling response of flat 
laminates using PML approach. 

4.4.2. Four fixed edges 

To look at the role of manufacturing constraints, an additional boundary condition 

is applied for the two remaining edges of the laminate beam. It is to prevent plies from 

moving in the plane perpendicular to the compressive load direction, so that plies can 

buckle internally. Table 4.4 lists preliminary finite element results for beams with a range 

of interface properties. The four cases correspond to four values of starting with the same 

stiffness of ply modulus Ep = 100 GPa and reducing by a factor of 10 for subsequent 

cases.  

Table 4.4: Comparisons of FE results between composite element models and models 
layered physically – Ep = 100 GPa for all cases 

  Laminate 1 Laminate 2 Laminate 3 Laminate 4 Unit 

Ei  0.1 1 10 100 GPa 

(Pcr)CE 46420 46441 46650 48739 N 

(Pcr)PML 6975.8 19152 39494 48698 N 

For the beams modelled using Abaqus composite editor (CE), results show that as 

the interface becomes more rigid, the critical buckling load increases only slightly (see 

Table 4.4). In contrast, the critical buckling load reduces more than 6 times as the elastic 
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modulus of the interfaces are reduced by a factor 1000 (compare Laminate 1 and 

Laminate 4) for PML analyses. When the interface and ply modulus are identical (100 

GPa), the minimum critical loads obtained using both approaches (CE and PML) are 

almost the same. As shown in Fig. 4.9, the composite laminate is buckled into seven half 

waves in the longitudinal direction for the stiff interface (Ei = 100 GPa). Similar mode 

shape is observed using PML approach for stiff interface as depicted in Fig. 4.10 (red 

line). However, the predicted critical buckling load (Table 4.4) and first mode shape of 

laminates with PML become quite different from those modelled using Abaqus CE as the 

interfaces become soft. It is more likely that the soft interfaces dominate the overall 

buckling of the multilayered beams which cannot be captured with CE models. When the 

stiffness of the interfaces decreases, the internal buckling wavelength rises as seen in Fig. 

4.10. 

 
Figure 4.9: Magnitude displacement (in mm) at critical buckling load – Composite 

element model – Ei = 100 GPa. 
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Figure 4.10:  Internal buckling wavelength along the beam length – Physically modelling 

layers. 

4.5. Summary and conclusions 

The buckling analysis of multilayered composite beams using two different 

approaches was conducted. The performance of Abaqus built-in composite editor was 

compared with physically modelling the individual plies and interfaces using solid 

elements. Results show that Abaqus built-in composite element (CE) is only capable of 

estimating the composite critical buckling load when the mismatch between layers (plies) 

and the interface elastic modulus is relatively low. When the interfaces are soft (e.g. at 

the early stage of cure), a significant difference was demonstrated between finite element 

results obtained from the composite editor and the physically layered model. Therefore, 

alternative approaches or elements are required for simulating the deformation of 

laminates during composite processing accurately. It was demonstrated that by physically 

modelling the thin interfaces between plies, the significant reduction of critical buckling 

loads could be captured for laminates bonded with soft interfaces.  

The proposed approach is an initial step towards implementing an orthotropic 

viscoelastic model for multi-scale process modelling of laminated composites with 

complex microstructures in subsequent chapters.  
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Chapter 5. Buckling behaviour of laminated viscoelastic composites under axial 

loads 

5.1. Introduction 

This chapter considers the viscoelastic nature of the resin during the 

manufacturing process in the multi-scale modelling approach. The effective properties of 

the composites obtained from viscoelastic micromechanical models instead of assumed 

elastic inputs for the resin properties as in Chapter 4 are used in the macro-scale FE model. 

The orthotropic viscoelastic properties of the laminate are considered by incorporating 

the fibre-bed elastic properties into the micromechanics equations to estimate the 

effective viscoelastic properties of the uncured prepreg. 

At macro-scale, a more versatile orthotropic viscoelastic constitutive model based 

on differential form (DF) of viscoelasticity implemented as a user material subroutine 

(UMAT) compared to using Abaqus built-in viscoelastic model (IF) is employed. This 

helps to elucidate the effect of ply anisotropy on the buckling response of 

uncured/partially cured unidirectional (UD) laminates. The numerically viscoelastic 

modelling approach described in Chapter 3 was used to determine the critical buckling 

load of both cured elastic and uncured viscoelastic laminated composite under various 

loading rates. The analytical approach involving simple mathematical equations for 

estimating the buckling loads in thin elastic plates is provided in the following section for 

verification purpose. The details of the FE buckling model and its validation by 

comparing to experimental data available in the literature are also presented in this 

chapter. Using the numerical model, the influence of various parameters including 

loading rates, the instantaneous elastic modulus, and in particular the effects of the ply 

anisotropy on the buckling behaviour of composite laminates are analysed. It has been 

found that unlike cured composites, the compressive stiffness of uncured prepregs is 

mainly dominated by the resin modulus rather than the fibre modulus. Additionally, it is 

shown that the waviness of fibres (fibre-bed effect) which stiffens the prepreg’s transverse 

and shear properties increases its compressive stiffness slightly while the waviness effect 

on the post buckling stiffness is relatively significant. 
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5.2. Method 

To simulate the buckling response of viscoelastic composites and to study 

rigorously the role of various parameters on the onset of wrinkle formation, the behaviour 

of flat unidirectional laminates under axial loads are modelled both analytically and 

numerically. The analytical approach involves simple mathematical equations for 

predicting the buckling loads in thin plates. For the numerical approach, finite element 

method is used to estimate the critical buckling load of uncured viscoelastic laminated 

composite under various loading rates. 

 For viscoelastic modelling, the composite laminate could be assumed to behave 

as a viscoelastic solid with perfect bonding between the layers using the Abaqus built-in 

viscoelastic constitutive model which is based on the integral form (IF) of viscoelasticity. 

As the application of Abaqus viscoelastic model is limited to isotropic materials, a more 

versatile orthotropic viscoelastic constitutive model (based on differential form of 

viscoelasticity – DF) that has been developed and implemented as a UMAT by 

researchers at the University of British Columbia (Malek 2014; Zobeiry et al. 2016) is 

also employed to elucidate the effect of ply anisotropy on the buckling response of 

uncured unidirectional laminates. The detail of these two viscoelastic approaches was 

demonstrated in Chapter 3. 

The axial compression behaviour of thin laminates with end supports and 

unsupported sides may be treated similar to the columns under axial loads. Using this 

very basic approach, the critical buckling load (Pcr) of a linear isotropic laminate can be 

approximately estimated using the Euler buckling theory (Timoshenko & Gere 1961):  

 𝑃𝑐𝑟 =
𝜋2𝐸𝐼

(𝐾𝐿)2
,      (5.1) 

where E is the elastic modulus of the isotropic material, I is the minimum area moment 

of inertia of the rectangular cross section, L is unsupported length of column and K is the 

effective length factor depending on the end constraints. As the slenderness ratio of the 

laminates in this study is high (i.e. 192.5), Euler buckling may be considered here. 

To obtain more accurate prediction, the critical buckling stress can be determined 

with the plate buckling theory (Rees 2009) as follows: 
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 𝜎𝑐𝑟 =
𝜋2𝐸

(𝐿𝑒/𝑘)2
,          (5.2) 

in which  𝑘2 = 𝑡2/12 and t is the thickness of the laminate. The equivalent length, Le, for 

fixed ends is defined as: 

 𝐿𝑒 = (𝑎/2)(1 − 𝜐
2)1/2, (5.3) 

where a and υ are the total length of the plate and the material Poisson’s ratio, 

respectively. 

5.3. Model verification 

Although the compaction and the bending behaviour of thin laminates which may 

lead to wrinkling during viscous composite forming have been investigated in the 

literature, the buckling behaviour of uncured laminates has not been investigated 

comprehensively with validated numerical tools. To illustrate the importance of buckling 

response of laminates at the early stage of cure, the behaviour of linearly isotropic and 

then transversely isotropic flat laminates with a range of stiffness values representing the 

uncured and cured composites are considered first. A buckling model, which has shown 

some advantages over other methods such as 3-point bending test (Wang, Long & 

Clifford 2009), is employed.  For verification purposes, the numerical results for isotropic 

laminates are compared to the analytical model predictions. 

5.3.1. Geometry and input parameters 

For verification and validation purposes, a rectangular geometry with the 

dimensions similar to the experiments of Wang, Long & Clifford (2009) is selected.  

Three rectangular unidirectional (UD) prepreg plies (0o/0o/0o) are considered as a simple 

case to minimize the number of variables. According to Wang, Long & Clifford (2009), 

such a three thin ply model can allow elimination of the deformation under self-weight. 

The geometry is partitioned in Abaqus environment before the material properties are 

assigned, as illustrated in Fig. 5.1 (right side). The total length of two clamped ends is 25 

mm and the tested region is 50 × 50 mm as in the test set-up of  Wang, Long & Clifford 

(2009). According to Wang, Long & Clifford (2009), the purpose of the long clamps 
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mounted carefully on the specimen was to protect the fibre from any misalignment which 

can lead to defects at the early stage of forming process. The thickness of each UD prepreg 

is 0.3 mm and the fibre orientation is parallel to the compressive load as shown in Fig. 

5.1 (left side). All translations were restricted on one of the transverse edges, while the 

other transverse side was considered to be free of in-plane displacement in the loaded 

direction. A uniform axial displacement along this transverse edge was applied in the load 

increment scheme. Since the specimen was mounted in the aluminium clamps, an 

additional restraint against vertical displacement at the clamped regions was included in 

the present FE model, as shown in Fig. 5.1 (left side). 

Prior to investigating the effect of loading rates on the time-dependent behaviour 

of prepregs, the material is assumed to behave as an isotropic elastic solid first. Then, the 

material is changed to a transversely isotropic one to represent the behaviour of UD 

composite laminates. The material input parameters for the cured laminate are taken from 

Wang et al. (2009) and summarized in Table 5.1. The elastic modulus along the Y-axis, 

is the laminate’s stiffness in its longitudinal direction E1, as depicted in Fig. 5.1. The 

proposed input values were based on the information provided by Hexcel Company for 

the cured composite laminate. It should be noted that the uncured properties have not 

been reported and some assumptions need to be made for uncured prepregs as described 

in Section 5.3. 
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Figure 5.1: Detail of the 3D model under axial displacement 
 (According to Wang, Long & Clifford (2009)) 

Table 5.1: Input properties according to Wang, Long & Clifford (2009) for the cured 
sample 

Properties Value Unit 

E1 160 GPa 

E2 8 GPa 

G12 3.98 GPa 

G23 2.86 GPa 

υ12 0.26 -* 

υ23 0.4 -* 

Note: * indicates non-dimensional 

5.3.2. FE analysis 

The laminate was modelled using 20-noded solid C3D20R elements in Abaqus 

environment. A 1.25 × 1.25 × 0.3 mm mesh, as shown in Fig. 5.2, is maintained evenly 

for the whole laminate. Both eigenvalue buckling and large deformation analysis (Riks 

method) were used in predicting the critical buckling loads. The former corresponds to 

an ideal elastic buckling analysis and the latter is a more accurate approach since it 

involves a static structural analysis with large deflection formulations. Displacement is 
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gradually applied in this analysis to search for the ultimate strength at which the structure 

becomes unstable. Therefore, the eigenvalue buckling analysis often yields quick results 

which would be a good indication for the latter sensitive large deformation analysis. In 

addition, the post-buckled performance of the structure, which is of the primary interest 

to us as matrix resin dominates the deformation of uncured prepreg, can be captured using 

deflection controlled loading analysis.  

For the FE analysis, initial time step equal 1  10-4 was selected with automatic 

time increment option turned on in the Step module of Abaqus. The initial time increment 

is small enough to track the correct buckling behaviour and the selected automatic time 

increment ensures that Abaqus can get a converged solution. Prior to performing the FE 

analysis for transversely isotropic behaviour, linearly isotropic material is assumed first 

to verify the buckling response under uniaxial compression as mentioned in previous 

section.  

A detailed mesh sensitivity analysis is also conducted in this study (see Fig. 5.3). 

A mesh refinement is performed through the thickness of the ply (1.25 × 1.25 × 0.15 mm, 

see Fig. 5.3b) as well as along the laminate longitudinal direction (see Fig. 5.3c & 5.3d). 

The meshes give similar results in terms of deformed shape and Mises stress distribution. 

The results are provided in Table 5.2.  Based on the mesh convergence study, the 1.25 × 

1.25 × 0.3 mm mesh was selected for the case studies considered in this study. 

Table 5.3 highlights a good agreement between results from the present finite 

element analyses with the theoretical predictions for the assumed linearly isotropic case 

(E = E1 = 160 GPa, ν = 0.26) for cured laminates. The agreement between eigenvalue 

analysis and Riks method results in terms of buckled mode shape (Fig. 5.4) and critical 

loads (Table 5.3) verifies the accuracy of the geometry, applied loads and boundary 

conditions. The FE procedure for capturing the buckling behaviour of the flat elastic 

laminate has already been described in details elsewhere  (Le et al. 2019). Although in Le 

et al. (2019), the focus has been on understanding the behaviour of multilayered elastic 

beams with soft interfaces under compressive loads, the same FE model is employed to 

compare the results of the two approaches for wrinkle formation.  

To consider the effect of the anisotropic ply on the buckling response, the 

transversely isotropic behaviour is assumed as shown in Table 5.1. It is noted that the 
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strength of the laminate under compressive loads reduces significantly as the transverse 

and shear modulus are included in the analysis model (Table 5.3).  

Table 5.3 highlights relatively good agreement between results from the present 

finite element analyses with the theoretical prediction for an assumed linearly isotropic 

case (E = E1 = 160 GPa, ν = 0.26). However, significant discrepancies are noted between 

the two for the transversely isotropic case. In addition, the similarity between eigenvalue 

analysis and Riks method in terms of buckled mode shape (Fig. 5.2) and FE solutions 

(Table 5.3) is also presented. These two good correlations verify the nonlinear buckling 

analysis in terms of mesh size, time increment input and boundary conditions. 

 
Figure 5.2: FE mesh of the buckled laminated composite under axial loading 

Table 5.2: Mesh convergence study results 

 Mesh 1 Mesh 2 Mesh 3 Mesh 4 

Number of Elements 7,200 14,400 2,592 16,200 

Number of Nodes 37,107 66,813 13,627 82,657 

Critical buckling load (N) 8,480 8,467 8,481 8,476 

User Time (hour) 4 11 1.5 13 
Mesh: Num in Y × num in X × num in Z (see XYZ coordinate in Fig. 5.2) 
Mesh 1: 60 × 40 × 3        Mesh 3: 36 × 24 × 3 
Mesh 2: 60 × 40 × 6        Mesh 4: 90 × 60 × 3 
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(a) (b)

  (c) (d)

Figure 5.3: Comparison of deformed shape and Mises effective stress (in MPa) at 
ultimate state for cured isotropic laminates with different mesh sizes: (a) Mesh 1 (b) 

Mesh 2 (c) Mesh 3 (d) Mesh 4 under uniform axial displacement.
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(a) (b) 
Figure 5.4: Comparison of the deformed shape (mode shape 1) obtained from the 

eigenvalue for the cured composite assuming: (a) isotropic (b) transversely 
isotropic material behaviour under uniform axial displacement. 

Table 5.3: Comparisons of critical buckling loads between theoretical result and 
eigenvalue and large deformation analyses for the cured composite assuming isotropic 
and transversely isotropic input parameters. 

Material property 

Critical buckling load Pcr (N) 

Theory1 Theory2 Eigenvalue 
analysis 

Large 
deformation 

analysis 

Isotropic 
(E = E1 = 160 GPa) 7675 8231 

8357 8480 

Transversely isotropic 
(E2 = 8 GPa) 6152 6164 

               Note: 1 Equation (5.1); 2 Equation (5.2)  

5.4. Model validation and comparison with experiments 

To capture the buckling responses of viscoelastic composites, two different forms 

of viscoelasticity may be employed; the integral form (IF) available in Abaqus built-in 

and the differential form (DF) as described in Chapter 3. It should be noted that since the 

unidirectional (UD) plies are transversely isotropic, the general orthotropic viscoelastic 

constitutive model can be employed to investigate the effect of ply anisotropy on the 

buckling behaviours during composite forming. Table 5.5 provides a list summary of 

simulations that are conducted using IF and DF approaches in this section. 
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5.4.1. Isotropic viscoelastic material 

Using Abaqus built-in viscoelastic material model, the material input parameters 

can be defined in two steps. The selected initial properties for a partially cured resin are 

the instantaneous Young moduli, Eo, and Poisson’s ratio, υo with 80 MPa and 0.495, 

respectively. Then, viscoelastic properties are described using Prony series constants. 

Two different viscoelastic materials are considered; Case 2a is modelled using IF of 

viscoelasticity with a single-term Prony series (provided in Section 3.1.1 in Abaqus 

Benchmarks Guide) (Abaqus 2013b), where in Eq. (3.14), N = 1; gi = 0.901001 and τi = 

0.9899, and Case 3a, with twelve different relaxations (12 terms in the Prony’s series) 

that are listed in Table 5.4 is considered to depict the role of viscoelastic parameters. The 

Prony series constants including the relaxation times (τi) and weight factors (wi) 

corresponding to MTM45-1 epoxy measured by Thorpe (2012) are selected for Case 3a 

as such properties are missing in literature for Hexcel M21 epoxy resin. It should be noted 

that the Hexcel T800S/M21 UD prepreg has been used in the experiments of  Wang, Long 

& Clifford (2009) which have been employed here for validation purposes. The bulk 

modulus, K, is assumed to be independent of time (ki = 0) and equal to 2.667 GPa, in an 

acceptable range measured by Nawab et al. (2012). It should be noted that the isotropic 

elastic case (Case 1) result with the same properties as the resin unrelaxed modulus is 

provided in the figures for the comparison purpose. 

Viscoelastic analysis with four loading rates at 4.4, 10, 100 and 300 mm/min (as 

in the experiments of in Wang, Long & Clifford (2009) are considered to demonstrate the 

role of loading rate. To maintain a uniform displacement of 1 mm over all cases, the time 

increment is calculated and assigned accordingly corresponding to the desired speed. The 

Nlgeom is turned on to allow the large deformation and displacements. The increment 

size starts at 1 10-3 se for the lowest speed (4.4 mm/min) and is adjusted for the faster 

rates. Lower time increments were found to lead to much longer computational times at 

the cost of negligible change of the end results. 
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Table 5.4: Prony series parameters for MTM45-1 epoxy as reported in Thorpe (2012)  

Maxwell 
Element (i) wi τi (s) 

1 3.44181  10-1 1.00  10-2 

2 1.14728  10-1 1.00  10-1 

3 1.33849  10-1 1.00  100 

4 1.52970  10-1 1.00  101 

5 1.33849  10-1 1.00  102 

6 0.95606  10-1 1.00  103 

7 0.19121  10-1 1.00  104 

8 0.3824  10-2 1.00  105 

9 0.1338  10-2 1.00  106 

10 0.382  10-3 1.00  107 

11 0.96  10-4 1.00  108 

12 0.38  10-4 1.00  109 
 

Table 5.5: Summary of case studies considered in Section 5.3. 

Case Material 

Number 
of 

Prony 
series 

Resin properties (MPa) Viscoelastic  
Material model 

E∞ Eo G∞ Go K ν IF DF 

1 Isotropic  
elastic resin N/A 8.00  101 8.00  101    0.495 ✓  

2a 

Isotropic 
viscoelastic 

resin 

1 7.92  100 8.00  101 2.65 100 2.68  101 2.67  103 0.495 
✓  

2b  
✓ 

3a 
12 1.46  10-3 8.00  101 4.87  10-4 2.68  101  0.495 

✓  

3b  
✓ 

4 
Orthotropic 
viscoelastic 
composite 

12 1.46  10-3 8.00  101 4.87  10-4 2.68  101  0.495  
✓ 

Fig. 5.5 shows the effect of loading rates on the buckling behaviour of a simple 

isotropic viscoelastic (resin) material using Abaqus built-in (IF, Case 2a). The axial 

compressive stiffness of the laminated composites increases as the loading rate increases. 

The initial slope of the load-displacement curve for viscoelastic laminates tends to 

approach the slope of isotropic elastic laminate (Case 1) by increasing the loading rate as 

expected from viscoelastic theory. In other words, when a fixed displacement is applied 
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faster to the viscoelastic material (300 mm/min), its buckling response is almost similar 

to the elastic material.  

Using the DF of viscoelasticity (Zobeiry et al. 2016), the relaxation shear modulus 

of the simple isotropic material, G(t), is defined by  G(t) = 2.649+ 24.107exp(-t/0.9899) MPa 

while K is constant and equal to 2.667 GPa. Fig. 5.6 presents a comparison of FE results, 

Case 2a vs Case 2b, conducted using IF and DF approaches, respectively for two 

representative cases.  

 Discrepancies between the two models especially at the slowest rate (4.4 

mm/min) are apparent. However, similar trend of the initial slope of load-displacement 

curve approaching the slope of the isotropic elastic laminate is still captured. Small 

discrepancies between the two modelling approaches have also been reported in Zobeiry 

et al. (2016) for a single element. These two approaches exhibit different convergence 

rates under different loading rates based on the assumptions considered in their 

formulations.  

To investigate the effect of various relaxation times on the buckling behaviours 

of the viscoelastic composite using IF and DF, one more case is considered and referred 

to as Case 3b in the chapter. Twelve Prony series constants listed in Table 5.4 are used to 

describe the viscoelastic resin material. The relaxation shear modulus of twelve terms 

Prony series material is expressed using Eq. (3.14) as 𝐺(𝑡) = 0.0005 +

∑ 𝐺𝑖𝑒
−𝑡

𝜏𝑖12
𝑖=1 , where values of Gi are summarized in Table 5.6. Fig. 5.7 compares IF with 

DF in terms of the influence of different Prony series constants on the buckling response. 

The IF of viscoelasticity shows a significant drop in buckling load and different relaxation 

trend after reaching peak load as the twelve terms of Prony series parameters (Thorpe 

2012) are considered (Case 3a vs Case 2a) (see Fig. 5.7). 

In addition to buckling behaviour of laminates under compression, their stress 

relaxation behaviour under tension are examined to assess the discrepancy between the 

IF and DF approaches. For this purpose, a displacement of 1mm is applied and the stress 

values are monitored as the laminate is relaxed. Simulations are conducted with and 

without large deformation feature of Abaqus and results are provided in Fig. 5.8. It is 

interesting to note that both approaches provide exactly the same initial stiffness and 

relaxation curves under small deformations regardless of the number of Prony series that 

are being used. However, under the large deformation assumption the results are quite 
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different. The discrepancy between two approaches becomes larger in the case study with 

twelve-term Prony series assumed (see Fig. 5.8b). As it is noted in Abaqus 

documentation, the Abaqus built-in model (IF) is not suggested for problems involving 

large deformations. According to the case studies conducted in Zobeiry et al (2016), it is 

believed that the DF of viscoelasticity is more robust under complex 3D loadings 

scenarios due to less assumptions that are made in the DF formulation. Therefore, 

experiments are suggested to validate the accuracy of DF approach in analysing large-

deformation problems. 

 
Figure 5.5: Effect of loading rate on force vs displacement relationship using IF (Case 

2a). The resin viscoelastic properties are taken from Section 3.1.1 in Abaqus 
Benchmarks Guide. The material properties are listed in Table 5.5. 
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Figure 5.6: Comparison between IF (Case 2a) and DF (Case 2b) approaches for two 
presentative cases. The viscoelastic properties of the resin are provided in Section 

3.1.1 in Abaqus Benchmarks Guide. 

Table 5.6: The shear moduli Gi associated with the specific relaxation time, τi used for 
Case 3b. 

Maxwell 
Element (i) Gi (MPa) τi (s) 

1 9.20886 1.00  10-2 

2 3.06965 1.00  10-1 

3 3.58124 1.00  100 

4 4.09284 1.00  101 

5 3.58124 1.00  102 

6 2.55802 1.00  103 

7 0.51160 1.00  104 

8 0.10231 1.00  105 

9 0.03580 1.00  106 

10 0.01022 1.00  107 

11 0.00256 1.00  108 

12 0.00102 1.00  109 
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Figure 5.7: Effect of Prony series constants on force vs displacement relationship using 
IF (Case 2a and 3a) and DF (Case 2b and 3b) viscoelastic model compare to isotropic 

model (Case 1). The same loading rate of 4.4 mm/min has been used in all cases. 
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Figure 5.8: Stress relaxation response under tensile load calculated using: (a) a single-

term Prony series (b) twelve-term Prony series. 
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In addition to the loading rate and Prony series parameters effects, the effect of 

instantaneous elastic modulus, Eo, on the buckling behaviour is also considered using 

Abaqus built-in material model. Such effect is shown in Fig. 5.9. While keeping the 

loading rate unchanged (10 mm/min), two additional cases with ten times higher Eo are 

shown. The higher the value of Eo, the higher the buckling load is as can be noted in Fig. 

5.9. It is interesting to highlight that the three buckling loads are reached at nearly the 

same displacement. 

5.4.2. Orthotropic viscoelastic material 

As shown previously in Section 5.2, the anisotropic nature of composites may 

affect the buckling load of the composite laminates. Therefore, in this section, the 

laminate orthotropic viscoelastic properties are considered by incorporating the fibre-bed 

elastic properties into the micromechanics equations to estimate the effective viscoelastic 

properties of the uncured prepreg. The mechanical properties of the resin, fibre and fibre-

bed that have been used for validation purpose are listed in Table 5.7. The fibre-bed 

properties are taken from the effective elastic properties of a dry prepreg estimated in 

 
Figure 5.9: Effect of Eo on the buckling behaviour of the isotropic viscoelastic 

laminates using IF. The resin viscoelastic properties are taken from Section 3.1.1 in 
Abaqus Benchmarks Guide (Case 2a) at rate of 10 mm/min. 
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Malek et al. (2018) The resin viscoelastic properties are kept unchanged to better 

understand the effect of fibre-bed on the buckling response of composite laminates and 

comparison purposes. Prony series constants for MTM45-1 (Thorpe 2012) are assumed 

for validating the model against the experimental data reported in Wang et al. (2009) The 

fibre properties assumed by Johnston et al. (2001) are used here. As noted in the previous 

section, the resin modulus dominates the buckling behaviour. Hence, the longitudinal 

elastic modulus of the fibre and fibre-bed in compression are assumed to be equal to the 

unrelaxed modulus of the resin (80 MPa). As it will be discussed later, such assumption 

for compression seems to be realistic due to the very low buckling load of a single fibre. 

Table 5.7: Material properties of fibre, resin and fibre bed used in the buckling 
simulation of composite laminates. 

Property Fibre  Resin  Fibre bed  Unit 

E1  8.00  101 8.00  101 8.00  101 MPa 

E2  1.72  102  1.12  10-1 MPa 

E3 1.72  102  1.12  10-1 MPa 

G12 2.76  104  1.13  10-1 MPa 

G13 2.76  104  1.13  10-1 MPa 

G23 6.88  101  0.43  10-1 MPa 

υ12 2.00  10-1 4.95  10-1 7.12  10-2 -* 

υ13 2.00  10-1  7.12  10-2 -* 

υ23 2.50  10-1  3.00  10-1 -* 
 

Note: * indicates non-dimensional 

Summary of simulation results for the elastic and viscoelastic composite laminate 

and the experimental data is provided in Fig. 5.10. Case 4 represents the orthotropic 

viscoelastic laminate. The composite effective viscoelastic properties are determined by 

using analytical micromechanics equations following the approach presented in Malek 

(2014) and Malek et al. (2018). It is noted that the fibre-bed elastic constants will be added 

to the resin relaxed modulus to obtain the modified resin properties which are later 

combined with fibre properties in the micromechanics equations. 
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The DF approach for modelling the response of orthotropic viscoelastic 

composites developed by Malek et al. (2018)  requires the components of the relaxation 

matrix. These values could be defined by the Prony series expansions as given below:  

 
𝐸(𝑡) = 𝐸𝑟 + (𝐸𝑢 − 𝐸𝑟)∑𝑤𝑖

12

𝑖=1

𝑒
(−

𝑡
𝜏𝑖
)
, (5.4) 

where Er and Eu are the relaxed and unrelaxed Young’s modulus, respectively. Parameters 

wi and τi are presented in Table 5.4. Table 5.8 and 5.9 provides the relaxed and unrelaxed 

values and the Prony series parameters corresponding to each component respectively. 

Table 5.8: Relaxed and unrelaxed values of components of the composite relaxation 
matrix. 

Component 𝐶𝑖𝑗
𝑟 (MPa) 𝐶𝑖𝑗

𝑢(MPa) 

C11 64.10 196.10 

C22 0.30 297.40 

C33 0.30 297.40 

C44 0.30 214.00 

C55 0.30 214.00 

C66 0.30 92.00 

C12 0.10 165.60 

C13 0.10 165.60 

C23 0.10 205.70 
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Table 5.9: Prony series parameters for each component of the relaxation matrix of the 
composite material obtained from micromechanics equations following the approach 
presented in Malek (2014). 

i w11 w22 w33 w44 w55 w66 w12 w13 w23 

1 45.432 102.256 102.256 73.551 73.551 31.561 56.962 56.962 70.764 

2 15.144 34.086 34.086 24.517 24.517 10.521 18.987 18.987 23.588 

3 17.668 39.767 39.767 28.604 28.604 12.274 22.152 22.152 27.519 

4 20.192 45.447 45.447 32.690 32.690 14.027 25.317 25.317 31.451 

5 17.668 39.767 39.767 28.604 28.604 12.274 22.152 22.152 27.519 

6 12.620 28.405 28.405 20.431 20.431 8.767 15.823 15.823 19.657 

7 2.524 5.681 5.681 4.086 4.086 1.753 3.165 3.165 3.931 

8 0.505 1.136 1.136 0.817 0.817 0.351 0.633 0.633 0.786 

9 0.177 0.398 0.398 0.286 0.286 0.123 0.221 0.221 0.275 

10 0.050 0.113 0.113 0.082 0.082 0.035 0.063 0.063 0.079 

11 0.013 0.028 0.028 0.020 0.020 0.009 0.016 0.016 0.020 

12 0.005 0.011 0.011 0.008 0.008 0.004 0.006 0.006 0.008 
 

 

 

Figure 5.10: Effect of ply anisotropy on the buckling response of viscoelastic 
composites. Various resin viscoelastic properties are assumed as listed in Table 5.5 

and the same loading rate of 4.4 mm/min is considered for all cases. 

Fig. 5.10 compares the assumed isotropic viscoelastic behaviours using the IF and 

DF approaches (Case 3a and Case 3b, respectively) with Case 4 under the same loading 
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rate (4.4 mm/min). Case 1 along with experimental data for Hexcel T800S/M21 UD 

prepreg measured by Wang et al. (2009) are also added in the figure for comparison and 

validation purposes. It should be emphasised that the uncured prepreg properties have not 

been measured by Wang et al. (2009) and therefore assumptions have been made in this 

chapter based on available data in the literature for MTM45-1 prepregs to highlight the 

importance of such missing characterisation data. Reviewing the datasheets for M21 and 

MTM45-1 epoxy resin reveals that MTM45-1 resin is more viscous than M21 resin at the 

same temperature. Therefore, the discrepancy between the experimental data and 

numerical predictions may be attributed to the difference between the rheological 

characteristics of MTM45-1 and M21 epoxy resins. 

A parametric study was conducted to illustrate the effect of resin properties on the 

post buckling response. Three sets of case studies were considered for this purpose. The 

viscoelastic parameters of the resin varied in each case study (see Table 5.10) while Prony 

series remained constant (as listed in Table 5.4). The results of parametric case studies 

are provied in Fig. 5.11. In each case, the effect of relaxation times and weight factors on 

the post buckling response of uncured laminates were investigated separately. However, 

their effects found to be negligible compared to Eo and E∞. 

Table 5.10: Parametric case studies conducted for determining the effect of resin 
properties on the post buckling response of uncured laminates. 
 

Case Eo (MPa) E∞ (MPa) 

Case 5 (80  200) 1.46  10-3 

Case 6 80 1.46  10-3 - 10 

Case 7 100 - 165 10 - 30 

Fig. 5.11a shows that Eo significantly affects both the peak value and the post 

buckling response of uncured viscoelastic laminates, while the effect of E∞ is shown to 

be quite negligible in Fig. 5.11b. E∞ only affects the post buckling behaviour at very large 

displacements. Higher values of Eo and E∞ may suggest a better match with experimental 

data at lower displacements as shown in Fig. 5.11c while the discrepancies between model 

predictions and test data at large displacements may be associated with the fibre-bed 

effect due to large deformations at higher displacements or simply an experimental error. 
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(a) 

 
(b) 

 
(c) 

Figure 5.11: Results of parametric studies: Effect of (a) increasing Eo (Case 5), (b) 
increasing E∞ (Case 6) and (c) higher Eo and E∞ (Case 7) on the buckling behaviour of 

the uncured orthotropic viscoelastic laminates using DF. The resin viscoelastic 
properties are provided in Table 5.4 (wi and τi) and Table 5.10 (Eo and E∞). The loading 

rate is 4.4 mm/min in all cases. 



 

82 

 

By comparing the simulation results with those of the Wang et al. (2009)’s 

experiment, we may postulate that unlike cured solid composites, the compressive 

stiffness of uncured prepregs is mainly dominated by the resin modulus even in the 

presence of the fibres and not the fibre modulus. This could be due to the very small 

buckling load that each single fibre can carry. Assuming that each fibre has dimensions 

of d = 4e-6m, L = 100d and Ef = 200 GPa, using the simple Euler buckling equation, the 

buckling load of each carbon fibre is estimated to be 0.00015 N which is very low. In 

other words, the fibres easily buckle and the iso-strain assumption for estimating the 

effective longitudinal modulus of the composite “in compression” is not valid anymore. 

However, the fibre-bed still improves the shear and transverse modulus of the composite 

and increases the relaxed composite modulus (𝐸𝑐𝑟) compared to the neat resin. The peak 

load increase in the buckling response of uncured prepreg (Case 4) compared to the 

uncured resin (Case 3) could be explained due to such stiffening effect of the fibre-bed in 

the transverse direction. Hence, measuring the degree of cure and characterising the 

viscoelastic properties of the resin before conducting similar experiments to Wang, Long 

& Clifford (2009) could improve our understanding of the buckling response of 

uncured/partially cured prepregs. 

5.5. Summary and conclusions 

The buckling response of orthotropic viscoelastic composite laminates are 

analysed numerically using a DF of viscoelasticity proposed for orthotropic composites. 

It is found that the longitudinal compressive stiffness of the plies affects both the slope 

and the buckling load while the laminate transverse properties affect the post beak load-

displacement behaviour more significantly. Due to the very low buckling load of carbon 

fibres, the uncured laminate response is found to be more dominated by the resin 

viscoelastic properties. The fibre-bed is believed to stiffen the transverse and shear 

properties and therefore increasing the compressive stiffness slightly while increasing the 

post buckling/wrinkling more significantly. 

In terms of the loading rate, the axial compressive stiffness of the laminated 

composites increased by increasing the loading rate. The initial slope of load-

displacement curve for viscoelastic laminates tends to approach the slope of isotropic 

elastic laminate by increasing the loading rate. In other words, when the displacement is 

applied faster to viscoelastic laminates (300 mm/min), their buckling response behaviour 
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is almost similar to the elastic laminates. The observed trend is in accordance with the 

viscoelastic theory and in contrast to the experimental data in the literature.  

Published data on the viscoelastic properties of commercial resin systems and 

uncured prepregs used in advanced composites are quite limited. Currently, literature is 

mainly focused on both developing robust experimental methods to measure such 

properties (in addition to bending stiffness and inter-ply friction) as well as simulation 

capabilities to account for all such complexities. The focus of this work is on developing 

a simulation framework using limited experimental data in the literature to demonstrate 

the importance of such properties. The simulation framework developed here will allow 

for implementation of proper resin viscoelastic properties. As the viscoelastic properties 

of uncured prepreg samples were not measured by Wang, Long & Clifford (2009), 

assumptions are made in this chapter to predict those properties with micromechanics 

equations (Malek 2014) based on available data on the viscoelastic properties of another 

commonly used thermoset resin (MTM45-1). Reviewing the datasheets for M21 and 

MTM45-1 reveals that the MTM45-1 resin is more viscous than M21 resin at the same 

temperature. Therefore, discrepancies (maximum compressive forces and the shape of the 

load-displacement curves) between the experimental data and numerical predictions 

could be attributed to the lower viscosity of the MTM45-1 resin. Conducting further 

experiments on uncured and partially cured laminates with different thicknesses is 

suggested to better understand the discrepancy reported between the numerical 

predictions and the experimental data. 
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Chapter 6. Bending behviour of viscoelatic woven composite plates 

6.1. Introduction 

Given that out-of-plane bending is well known as an important deformation 

mechanism that governs the wrinkle formation during composite manifacturing, this 

chapter investigates the out-of-plane bending response of cured and uncured viscoelastic 

composite laminates at different loading rates to gain a better understanding of the fibre 

waviness and wrinkling evolution during the forming process of advanced composites. 

This is accomplished by the implementation of a three-dimensional (3D) multi-scale 

modelling framework that incorporates analyses at different scales (micro-, meso- and 

macro-scale). 

The multi-scale modelling approach that is used in this study was introduced in 

general in Chapter 3. Combining analytical equations at smaller scales with the DF form 

of viscoelasticity at macro-scale, a rapid method for estimating the effect of various 

parameters on wrinkle formation has been developed. The detail of the multi-scale 

framework for a specific problem (i.e. bending behaviour of uncured woven composites) 

is described in Section 6.2. The numerical model is validated by comparing the bending 

behaviour of thin viscoelastic composites with experimental data reported in the 

literature. The influence of various parameters including fibre stiffness, ply anisotropy, 

resin properties, and loading rates on the bending behaviour of composites are analysed. 

The agreement between the numerical predictions and the experimental data highlights 

the potential of the proposed multi-scale modelling framework to predict the behaviour 

of viscoelastic composite with a variety of yarn architectures efficiently. Further 

experimental investigations into the viscoelastic characteristics of woven composites at 

the micro- and meso-scale are advised to ascertain the limitations and validity range of 

the predictions.  

6.2. Method 

The viscoelastic behaviour of cantilever plates subjected to tip displacements can 

be modelled employing the multi-scale approach introduced in Malek (2014) for 

orthotropic composites, as described in Fig. 6.1. Although such a method has been 

introduced in Chapter 3, a more detail of the technique applied for a specific problem (i.e. 

bending behaviour of cantilever woven plates) is presented here. In addition, for 
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verification purpose, an analytical method at the macro-scale involving simple 

mathematical equations for calculating the deflection curve and moment vs curvature 

relation of an assumed isotropic elastic beam under a small displacement is also 

demonstrated.

At lower scales (i.e., micro and meso) analytical models including 

micromechanics equations developed by Malek (2014) and Naik (1994) are used to 

predict the effective mechanical properties of a RUC of the woven fabric. Such effective 

properties are consequently used as input parameters for structural analysis at the macro-

scale. The following subsections describe the methodology in details.

(a)

(b)

Figure 6.1: (a) Schematic of the multi-scale modelling approach for bending behaviour 
of 5-harness satin weave composites from micro-scale to macro-scale; (b) Flow chart 

depicting the analytical and numerical models utilized in the multi-scale analysis.

6.2.1. Micro- and meso-scale properties

At the micro-scale, the analytical micromechanics equations described in Malek 

(2014) are used to predict the effective viscoelastic properties of the solid unidirectional 
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circular fibre composites with a specific fibre volume fraction (Vf)  (see Fig. 6.1a). The 

effective properties obtained from the micromechanics model are then used to estimate 

the effective properties of the fabric at the meso-scale. The fabric is composed of two sets 

of interlacing, mutually orthogonal (warp and weft) yarns. The selected weave type in 

this study is a 5-harness satin (see Fig. 6.1a), which has advantages over plain and twill 

weaves in terms of drapability and conformity over complex shapes (Alshahrani & Hojjati 

2017b). The periodicity of the repeating pattern in the woven fabric can be used to 

separate a small RUC which is adequate to represent the fabric architecture. Details of 

geometric modelling of 5-harness satin weave composite along with discretisation 

technique of yarns within RUC and calculation of 3D effective properties were described 

in Naik (1994). The analytical procedure was implemented in MATLAB for this study. 

Once the effective meso-scale properties of the composite are determined, they are 

employed directly in the structural analysis at the macro-scale. 

6.2.2. Macro-scale analysis 

While the woven fabrics are discrete on the micro-scale, woven composites are 

assumed to be uniform and continuous at the macro-scale to simplify computations and 

improve the efficiency of the analysis. The macro-scale analysis of woven fabrics is 

mainly conducted to simulate the overall bending behaviour of the fabric using the micro- 

and meso-scale input parameters. To gain a deeper understanding of the deformation 

mechanisms, an analytical method is employed as an alternative to the numerical method 

in the macro-scale analysis. The analytical method at the macro-scale involves simple 

mathematical equations for predicting the deflection curve and moment vs curvature 

relation of an isotropic “elastic beam” under a small displacement. The numerical (finite 

element) method is then used to predict the bending moment-curvature relation of both 

“elastic” and “viscoelastic” composite plates at various loading rates. The elastic results 

are compared with analytical method predictions for verification purposes. 

For the viscoelastic analysis, the composite plate is first assumed to behave as a 

viscoelastic isotropic solid and modelled using the Abaqus built-in viscoelastic 

constitutive model which is based on the integral form (IF) of viscoelasticity. As the 

application of Abaqus viscoelastic model is limited to isotropic materials, a more versatile 

orthotropic viscoelastic constitutive model (based on a differential form of viscoelasticity 

– DF) that has been developed and implemented as a UMAT (Malek 2014; Zobeiry et al. 
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2016) is then employed to elucidate the effect of ply anisotropy on the bending response 

of uncured 5-harness satin weave plates. 

6.2.2.1. Analytical method 

To estimate the bending behaviour of isotropic plates, simple mathematical 

equations for calculating the deflection of isotropic elastic beams are considered first. The 

beam dimensions and loads are selected based on the bending test conducted in 

(Alshahrani & Hojjati 2017b). The beam with dimensions of 10 mm in width, 0.55 mm 

in thickness and 150 mm in length has an overhang and therefore may be treated as a 

cantilever beam subjected to a load F acting at the free end (see Fig. 6.2a). The y and z-

axis are defined as the distance along the axis of the undeformed beam and the vertical 

deflection of the beam, respectively (see Fig. 6.2b). For linearly elastic materials, 

moment-curvature relationship may be determined from the condition that the moment 

resultant of the bending stresses is equal to the bending moment M acting at the cross-

section (Gere & Goodno 2009)  as given by: 

EI
M

==



1

, 
(6.1) 

in which κ is the curvature, ρ is the radius of curvature of the deformed shape and EI is 

the flexural rigidity of the beam. It should be noted that an additional deflection term due 

to the shear deformation in the form of a mutual sliding of adjacent cross-sections along 

each other may be considered (Timoshenko 1940). However, as a result of the very thin 

section of the cantilever beam (see Fig. 6.2a), the bending due to shear can be shown to 

be negligible compared to the bending of plies based on a detailed numerical simulation. 

For this purpose, a separate FE analysis was conducted on plies bonded with very soft 

interfaces to capture sliding of adjacent plies. Results suggested that the effect of shear 

deformation is less than 0.5% for the dimensions of the selected beam. In other words, 

bending has shown to be the dominating deformation mechanism in this test.  

The exact expression for the curvature at any point along the curve is given by: 
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Combining Eq. (6.2) with Eq. (6.1), the deflection and the bending moment 

relation along the beam can be expressed as: 

EI
M

dy
dz

dy
zd
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)(1

, 

(6.3) 

Since we are limiting to the elastic deformation and assuming that the slope of the 

elastic beam is small, the (dz/dy)2
 term will be small and so can be neglected. This leads 

to a much simpler differential equation defining the deflection of the beam: 

EI
M

dy
zd
=2

2

, 
(6.4) 

The bending moment at a cross-section distance y from the fixed support is 

obtained from the free body diagram as M = FL – F(y) where L is the length of the 

cantilever beam. By substituting the expression for the bending moment into the 

differential equation (Eq. 6.4):  

 FyFL
dy

zdEI −=2

2

, 
(6.5) 

This equation can be integrated to obtain the slope and deflection of the beam. 

The constant of integration may be evaluated from the conditions that the deflection of 

the beam and slope of the deflection curve at the fixed support are equal to zero. Finally, 

the equation for the deflection curve is:  

)
62

()(
2 yL

EI
Fyyz −= , 

(6.6) 
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Assuming that the cantilever beam AB subjected to a tip displacement of 10 mm 

(𝛿𝐵 = 10 𝑚𝑚) (see Fig. 6.2), the force required to achieve this displacement can be 

obtained as: 

3

3
L

EIF B= , (6.7) 

Therefore, the resulting bending moment M at any point along the beam can be 

calculated using Eq. (6.5). Lastly, the obtained moments at each point can be plotted 

against the corresponding curvature values. 

6.2.2.2. Numerical method 

Based on the review of bending modulus of uncured prepreg samples shown in 

Table 2.1, the cantilever beam is roughly assumed to be linearly isotropic elastic with 

Young’ modulus and Poisson’s ratio equal to 500 MPa and 0.2, respectively. It was 

restrained from all displacements in a length of 30 mm as it was gripped along this 

distance (Alshahrani & Hojjati 2017b). The beam was modelled in Abaqus using 20-

noded solid quadratic brick element with reduced integration (C3D20R). Number of 

elements in width, length and thickness directions are 6, 50 and 2 respectively. Based on 

the convergence study similar to the one conducted in Le et al. (2021), the 1.67 mm  2 

mm  0.275 mm mesh was selected and maintained uniformly for the whole beam. 

Because Euler-Bernoulli beam theory is limited to small displacements, the free end of 

(a) (b) (c) 

Figure 6.2: Bending of a cantilever beam: (a) beam with load; (b) deflection curve; (c) 
cross-section of beam showing the x-axis as the neutral axis of the cross-section 
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the cantilever beam is displaced by 10 mm. Indeed, the maximum deflection (δB = 10 

mm) (see Fig. 6.2b) is less than 10 % of the free span length (120 mm) which meets the 

requirement of a small deformation problem. It is also noted that the loading point is 4 

mm from the free end of the beam as suggested in Alshahrani & Hojjati (2017b). The 

load value required to achieve a certain tip displacement noted in the experiment is used 

to calculate the bending moment along the length of the beam. Through capturing the 

bending curve corresponding to the maximum displacement reached (see Fig. 6.3a), 

deflection profile z(y) is fitted using a proper polynomial function. The expression for the 

curvature is subsequently calculated as an equation of the second derivative of z with 

respect to y according to Euler-Bernoulli’s law for small deformation. 

 (a) 

 

 (b) 

Figure 6.3: (a) Bending profile with tip displacement of 10 mm 
(b) Bending moment – curvature relation in the isotropic elastic beam (E = 500 MPa, υ = 0.2) 

The above macro-scale analysis was only conducted to verify the 3D model for 

bending assuming isotropic elastic properties. For isotropic viscoelastic analysis, 

viscoelastic input properties are needed. In terms of the viscoelastic analysis of an 

orthotropic composite, a user material subroutine (UMAT) based on the differential form 

(DF) of viscoelasticity is employed. The reader is referred to Subsections 3.2.1 and 3.2.2 

for a comprehensive review. 
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6.3. Results and model validation 

Due to the lack of experimental data for uncured woven composites at the micro- 

and meso-scale, it is difficult to determine the accuracy level of the modelling framework 

at smaller scales. Therefore, two separate analyses on elastic and viscoelastic materials 

are conducted based on available input parameters. First, the effective elastic 

characteristics of cured UD and woven composites are estimated and compared with the 

experimental data available in the literature. For this purpose, analytical micromechanics 

equations presented in (Malek 2014; Naik 1994) are employed to estimate the mechanical 

elastic properties of the cured UD (AS4/8552) and 5HS woven (AS4/3501-6) thermoset 

composites. Results are compared with the experimental data provided in Ersoy et al. 

(2010) and (Naik 1994) for model validation at the micro- and meso-scale, respectively. 

For macro-scale model validation, the viscoelastic bending responses of woven prepregs 

composing 5HS fibres impregnated with an epoxy resin (Cycom 5320) are simulated 

separately based on limited  experimental data for uncured woven composites; bending 

curves at different loading rates  are compared with the experimental data reported in 

Alshahrani & Hojjati (2017b) 

6.3.1. Elastic material 

6.3.1.1. Micro-scale results 

At the micro-scale, the effective elastic properties of the solid UD composites are 

predicted using the analytical micromechanics equations described in Malek (2014). The 

properties of the constituent materials, i.e. the fibres and cured resin (listed in Table 6.1) 

are selected based on available experimental data for a specific fully cured composite 

(AS4/8552) in literature (Ersoy et al. 2010). The moduli of AS4/8552 were also predicted 

by Ersoy et al. (2010) using an analytical approach based on the Self Consistent Field 

Micromechanics (SCFM) and Finite Element Based Micromechanics (FEBM) and 

presented in Table 6.2 for further comparisons. Additionally, in order to gain a better 

understanding of how thermoset resins and their composites develop their properties 

during cure, the composite properties of the resin in its uncured form are examined using 

micromechanics equations (Malek 2014). The current predictions are compared to those 

of two conventional methods described in Ersoy et al. (2010). It should be noted that the 

elastic modulus of the uncured resin is assumed equal to 30 MPa (Table 6.1) as the authors 
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(Ersoy et al. 2010) only mentioned that the elastic modulus before vitrification is 

generally rubber-like modulus of the order of a few MPa. 

Table 6.1: Constituent material properties used for cured and uncured UD thermoset 
composite according to Ersoy et al. (2010). 

Vf = 0.574     

Property 
Fibre Resin (8552) 

Unit 
AS4 Uncured* Cured 

E1 228 0.03 4.67 GPa 

E2 = E3  17.20   GPa 

G12 = G13 27.60 0.010 1.70 GPa 

G23 5.73   GPa 

ν12 = ν13 0.2 0.499 0.37 - 

ν23 0.5   - 
 

Note:  * For uncured resin, Young's modulus is assumed to equal to 30 MPa as the authors only 
mentioned that the elastic modulus before vitrification is generally rubber-like modulus of the 
order of a few MPa. 

Table 6.2 demonstrates a good agreement between the present results for the cured 

composite and the experimentally measured values reported by Ersoy et al. (2010). Based 

on the assumption for missing data on uncured resin, the present calculations using the 

micromechanics equations (Malek 2014) for the uncured composite are very close to the 

one predicted by FEBM (Ersoy et al. 2010). Additionally, FEBM was found to be a better 

method than SCFM in predicting the composite elastic properties when the reinforcement 

and matrix moduli differ significantly. In other words, the micromechanics model 

described in Malek (2014) has been validated for determining the effective elastic 

characteristics of cured UD circular fibre composites. Nevertheless, the effective 

properties of uncured composites have not been determined experimentally by Ersoy et 

al. (2010). Hence, model validation at the micro-scale cannot be extended to uncured 

composites. 
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6.3.1.2. Meso-scale properties 

The effective elastic properties of the UD composites obtained from the 

micromechanics model can be used to estimate the effective elastic properties of the 

woven fabrics at the meso-scale considering the yarns’ arrangement. As the overall 

stiffness of the cured woven composites are reported in the literature for certain yarns and 

resins (see Table 6.3), the meso-scale model can be validated separately from the micro-

scale model and for a specific woven composite characterized thoroughly by Naik (1994).  

The meso-scale analysis involves discretely modelling the yarn architecture 

within a RUC (see Fig. 6.1). The woven composite is specified by known quantities such 

as filament diameter, yarn filament count, yarn packing density pd, yarn spacing and 

overall fibre volume fraction. By assuming the same value of yarn architecture as 

described in Naik (1994), the unknown quantities such as yarn thickness, yarn cross-

sectional areas, yarn crimp angle and yarn undulating paths which are required for a 

discrete yarn can be determined. Then, each yarn is discretised again into yarn slices. 

Finally, the three-dimensional effective properties are computed using the material 

properties (see Table 6.3), spatial orientation and volume fraction of each yarn slice in a 

volume averaging technique. The computed stiffnesses for the woven composites were 

Table 6.2: Comparison of the UD composite material properties obtained by the present 
analysis (Malek 2014) and data available in the literature (Ersoy et al. (2010). 
 

Property Unit 
SCFM FEBM Measured Present  

Uncured Cured Uncured Cured Cured Uncured Cured 

E11 MPa 131,000 133,000 132,200 134,000 135,000 130,890 133,100 

E22 = E33 MPa 122 9,130 165 9,480 9,500 146.2 9,626 

G12 = G13 MPa 41.1 5,210 44.3 5,490 4,900 36.94 5,202 

G23 MPa 37.2 3,210 41.6 3,272 4,900 36.71 3,139 

ν12 = ν13 - 0.327 0.272 0.346 0.271 0.300 0.327 0.267 

ν23 - 0.639 0.465 0.982 0.448 0.450 0.991 0.534 
 

Notes: The 1-axis is along the fibre direction, the 2-axis is perpendicular to the fibres but in the plane 
of the lamina and the 3-axis is the out-of-plane direction. 
SCFM: Self Consistent Field Micromechanics (Ersoy et al. 2010).     
FEBM: Finite Element Based Micromechanics (Ersoy et al. 2010).     
Measured: Supplied by AIRBUS UK except for G23; G23 is measured by Ersoy et al. 2010 (no data for 
uncured state). 
Present: Based on micromechanical equations (Malek 2014).    
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found to be unchanged for a minimum number of yarn slices, n,  equal to 12 in a 

convergence study investigated by Naik (1994), a value of n = 12 was applied for all the 

analyses in this study.  The analytical procedure for the effective elastic properties of the 

RUC is implemented in MATLAB and results are compared with experimental data in 

Table 6.4. Table 6.4 also includes results obtained from 3D finite element analysis and 

analytical technique using TEXCAD presented in Naik (1994). It can be seen that the 

predicted elastic constants of 5-harness satin (5HS) weave composite agree well with data 

provided in Naik (1994).  

Table 6.3: Yarn and resin properties used in validation model for woven composite 
properties according to Naik (1994). 

Material E11 
GPa 

E22 = E33  
GPa 

G12 
GPa ν12 ν23 

Yarn 144.8 11.73 5.52 0.23 0.3 

Resin 3.45 3.45 1.28 0.35 0.35 
 

Table 6.4: Comparison of results for cured woven composites. 

Laminate type Approach 
Exx, Eyy Ezz Gxz, Gyz Gxy νxz, νyz νxy 

GPa GPa GPa GPa     

5-harness 
satin weave 

TEXCADa 66.33 11.51 4.93 4.89 0.342 0.034 

FEMa 65.99 11.38 5.03 4.96 0.320 0.030 

Testa 69.43 - - 5.24 - 0.060 

Present 65.45 11.77 4.73 4.89 0.337 0.035 
 

Notes: aApproaches are presented in Naik (1994) 
                 xy-plane  is the plane of woven fabric     
  

6.3.2. Viscoelastic material 

As described at the beginning of Subsection 6.3, there exist gaps in the literature 

regarding the micro- and meso-scale characterisation of uncured woven composites. 

From an industry perspective, determining nine engineering constants for full 

characterization of orthotropic woven composites is extremely challenging. Hence, it is 

almost impossible to validate the accuracy of the modelling framework for estimating the 

properties of uncured composites at the smaller scales (i.e. micro- and meso-scale). 
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Considering the importance of bending properties of uncured plies on wrinkle formation, 

the macro-scale simulation results are presented and the viscoelastic modelling approach 

is validated separately based on available data on the bending behaviour of a specific 

woven composite loaded at different rates. A plate geometry with dimensions similar to 

the experiments of Alshahrani & Hojjati (2017b) is selected for this purpose (Fig. 6.4). 

The total length of the sample is 150 mm with an un-gripped length of 120 mm. The 

cross-sectional area of the sheet is 50 mm wide by 0.55 mm thick. Mesh type, mesh size 

and boundary conditions are similar to the bending verification model described in the 

previous section.  

As the analysis of the bending behaviour during the composite forming process 

requires high curvature to accurately simulate the process, a tip displacement of 50 mm 

is applied (Fig. 6.5). It is also noted that the position of applied displacement is located 4 

mm from the free end to avoid generating any tensile stresses on the sample during 

bending (Alshahrani & Hojjati 2017b). This distance is then excluded from the total 

length of the sample in bending moment calculations. As the deflection curve of the sheet 

has large slopes, the large deformation cannot be neglected in the expression of the 

curvature. Hence, the exact expression for curvature (Eq. 6.2) is used. 

Prior to investigating the effect of loading rates on the time-dependent behaviour 

of uncured prepregs, the material is assumed to behave as an isotropic elastic solid. The 

material is then changed to orthotropic viscoelastic to represent the behaviour of textile 

composites. Unlike continuous materials such as sheet metal or cured solid composites, 

uncured textile sheets have a very low bending stiffness due to the possible relative 

movement of reinforcing fibres. According to (Boisse et al. 2011), the plate theory 

relation between the tensile and the bending stiffness is no longer valid for uncured 

samples. In the previous work of the authors, Le et al. (2021), the compressive stiffness 

of uncured prepregs was found to be mainly dominated by the resin modulus even in the 

presence of the fibres. The effect of fibres was found negligible on the compressive 

modulus of uncured composites due to their very small buckling load at the micro-scale. 

Therefore, for modelling purposes, the uncured composite plate in Fig. 6.2c is assumed 

to be composed of two different materials with two distinct moduli (Et and Ec). The left-

hand side of the plate is assumed to be under compression with E1 = Ec = 200 MPa while 

the right-hand side is under tension with E2 = Et = 60 GPa based on literature data. The 
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compressive modulus (Ec) has been estimated from the slope of stress-strain curve in the 

elastic region of the buckling test conducted by Alshahrani & Hojjati (2017c) (see Table 

2.1). In the lack of experimental data on tensile properties of uncured composites, Et is 

estimated to be 60 GPa based on a micro- and meso-scale analyses considering the fibre 

modulus of 200 GPa and yarn fibre volume fraction and overall volume fraction for the 

woven unit cell of 0.6 and 0.5 respectively. Knowing Et, Ec, and the material cross-

section, the position of the neutral axis (the x-axis) (see Fig. 6.2c) has been determined 

from the assumption that the resultant axial force acting on the cross-section is zero. This 

simple analysis enables us to estimate the effective bending stiffness of the uncured 

prepreg (Ebend or Ee) by converting the composite plate (Ec, Et) into an equivalent plate 

made of only one material with Ee. The approach is known as the transformed-section 

method given by the following equation (Gere & Goodno 2009): 

EIIEIE =+ 2211 , (6.8) 

in which Ic and It are the moments of inertia about the neutral axis (the x-axis) of the 

cross-sectional areas of two distinct materials, Ec and Et respectively. I is the moment of 

inertia about the neutral axis of the homogeneous cross-section assumed with an effective 

bending modulus (Ee). Using Eq. 6.8, Ee becomes 700 MPa for an assumed homogeneous 

isotropic elastic cross-section. As perfect bonding has been assumed between the plies in 

this simple analysis, two more cases with Et and Ec assigned to the entire plate sections 

are also considered to get the upper and lower bounds; only the lower bound is shown in 

Fig. 6.6 for clarity.  Fig. 6.6 shows the lower bound of bending curve for the isotropic 

elastic plate with compressive modulus assumed for the entire cross-sections. The case 

with the effective bending modulus (Ee = 700 MPa) gives the same result as the case using 

biaxial elastic moduli for the cross-section under compression and tension during 

bending. Experimental data conducted by (Alshahrani & Hojjati 2017b) for 5HS prepregs 

in warp direction are also presented in Fig. 6.6 for comparison purpose. 

A mesh sensitivity analysis is also conducted in this study. The results have been 

summarized in Table 6.5. Similar results with maximum difference of ~1% in terms of 

deformed shape as well as the required force (F) to bend the laminate to tip displacement 

of 50 mm were noted. Based on the conducted convergence study, the 1.92 mm × 2 mm 

× 0.275 mm mesh (Mesh 2) was selected for subsequent cases. 
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Figure 6.4: Detail of the 3D model under bending
(According to Alshahrani & Hojjati (2017b))

Figure 6.5: Deformed sample at tip displacement of 50 mm (U3 in mm)
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Figure 6.6: Bending moment versus curvature based on isotropic elastic material assumption. 

Table 6.5: Mesh convergence study results (isotropic elastic case (E = 700 MPa, ν = 
0.4)). 

  Mesh 1 Mesh 2 Mesh 3 Mesh 4 

Number of Elements 2,401 3,901 8,209 16,417 

Number of Nodes 13,846 22,264 46,350 80,086 

Force F (N) 6.754 × 10-02 6.751 × 10-02 6.746 × 10-02 6.736 × 10-02 

Simulation time (sec) 167 285 655 1867 

 

Mesh: Num in X × num in Y × num in Z (see XYZ coordinate in Fig. 6.4) 
Mesh 1: 20 × 60 × 2          Mesh 3: 36 × 114 × 2         

                           Mesh 2: 26 × 72 × 2          Mesh 4: 36 × 114 × 4 

As the anisotropic nature of woven composites may affect the deformation 

behaviours during forming (Le et al. 2021), the orthotropic viscoelastic properties are 

considered in the bending behaviour. It should be emphasised, the fibre-bed, i.e. the slight 

waviness of the fibres in composites, has been considered to play a significant part in 

carrying the load in the transverse orientation at the early stage of cure (Malek, Vaziri & 

Poursartip 2018). Therefore, the fibre-bed elastic properties are incorporated into the 

micromechanics equations (Malek 2014) at micro-scale to estimate the effective 

viscoelastic properties of the uncured UD prepreg before using such properties as input 
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parameters for the meso-scale model (Naik 1994). The mechanical properties of the resin, 

fibre and fibre-bed that have been used for viscoelastic analysis at micro-scale are listed 

in Table 6.6 for composites assumed under compression (Table 6.6a), tension (Table 

6.6b) and bending (Table 6.6c), respectively.  

Table 6.6a: Input material properties of fibre, resin and fibre bed used in the bending 
simulation of textile prepregs. The compressive properties have been assigned to the 
bending model. 

Vf = 0.600         

Property Unit Fibre1 
Resin2 

Fibre bed3 Relaxed Unrelaxed 

E1 GPa 8.00  10-2 3.00  10-6 1.65  10-1 8.00  10-2 

E2 = E3  GPa 1.72  10-1 3.00  10-6 1.65  10-1 1.12  10-4 

G12 = G13 GPa 27.60 1.00  10-6 5.52  10-2 1.13  10-4 

G23 GPa 0.07 1.00  10-6 5.52  10-2 4.49  10-5 

ν12 = ν13 - 0.2 0.495 0.495   

ν23 - 0.25 0.495 0.495 0.250 
 

Notes: 1 Taken from  (Johnston, Vaziri & Poursartip 2001) except E1, E2 (compressive moduli); 
compressive moduli, E1, E2 are selected according to Le et al. (2021) 

                  2 Resin properties are taken from (Niaki et al. 2018) 
                  3 Taken from (Malek, Vaziri & Poursartip 2018) except E1 (compressive modulus); compressive 

modulus, E1, is selected according to Le et al. (2021) 
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Table 6.6b: Input material properties of fibre, resin and fibre bed used in the bending 
simulation of textile prepregs. The tensile properties have been assigned to the bending 
model. 

Vf = 0.600         

Property Unit Fibre1 
Resin2 

Fibre bed3 
Relaxed Unrelaxed 

E1 GPa 2.10  102 3.00  10-6 1.65  10-1 2.10  102 

E2 = E3  GPa 1.72  101 3.00  10-6 1.65  10-1 1.12  10-4 

G12 = G13 GPa 27.60 1.00  10-6 5.52  10-2 1.13  10-4 

G23 GPa 6.88 1.00  10-6 5.52  10-2 4.49  10-5 

ν12 = ν13 - 0.2 0.495 0.495   

ν23 - 0.25 0.495 0.495 0.250 
 

Notes: 1 Taken from  Johnston, Vaziri & Poursartip (2001)  
                  2 Resin properties are taken from Niaki et al. (2018) 
                  3 Taken from Malek, Vaziri & Poursartip (2018) 
Table 6.6c: Input material properties of fibre, resin and fibre bed used in the bending 
simulation of textile prepregs. The effective bending properties have been assigned to 
the model. 

Vf = 0.600         

Property Unit Fibre1 
Resin2 

Fibre bed3 Relaxed Unrelaxed 

E1 GPa 1.50  100 3.00  10-6 1.65  10-1 1.50  100 

E2 = E3  GPa 1.72  10-1 3.00  10-6 1.65  10-1 1.12  10-4 

G12 = G13 GPa 27.60 1.00  10-6 5.52  10-2 1.13  10-4 

G23 GPa 0.07 1.00  10-6 5.52  10-2 4.49  10-5 

ν12 = ν13 - 0.2 0.495 0.495   

ν23 - 0.25 0.495 0.495 0.250 
 

Notes:   1 Taken from  (Johnston, Vaziri & Poursartip 2001) except E1, E2; E1, E2 are selected following 
the comprehensive review in the literature (see Table 2.1) 
  2 Resin properties are taken from (Niaki et al. 2018) 
 3 Taken from (Malek, Vaziri & Poursartip 2018) except E1; E1 is selected following the 
comprehensive review in the literature (see Table 2.1) 

 

The fibre-bed properties are derived from the effective elastic properties of a dry 

prepreg estimated in Malek, Vaziri & Poursartip (2018). Due to the lack of data on the 

properties of uncured resin (Alshahrani & Hojjati 2017b), assumptions have been made 
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in this research based on available data in the literature (Niaki et al. 2018; Thorpe 2012). 

The resin viscoelastic properties are kept unchanged to better understand the effect of 

fibre-bed on the bending response of composite plates and comparison purposes. Prony 

series constants for MTM45-1 (Thorpe 2012) listed in Table 6.9 are assumed for 

validating the model against the experimental data reported in (Alshahrani & Hojjati 

2017b). The fibre properties reported in Johnston, Vaziri & Poursartip (2001) are used 

here, except the stiffness in the fibre direction. The longitudinal elastic modulus of the 

fibre and fibre-bed in compression (see Table 6.6a) are assumed to be equal to 80 MPa 

due to the very low buckling load of a single fibre demonstrated in Le et al. (2021). Under 

tension, the same properties as in Johnston, Vaziri & Poursartip (2001)  (i.e. 210 GPa) 

(see Table 6.6b) are assumed. However, a low value for fibre Young’s modulus (1.5 GPa, 

see Table 6.6c) according to the review conducted in previous section (see Table 2.1) for 

uncured composites under bending. The effective viscoelastic characteristics of UD 

composites at micro-scale are determined by using analytical micromechanics equations 

following the approach presented in (Malek 2014; Malek et al. 2018). It is noted that the 

fibre-bed elastic constants will be added to the resin relaxed modulus to obtain the 

modified resin properties which are later combined with fibre properties in the 

micromechanics equations. Table 6.7a, Table 6.7b and Table 6.7c demonstrate the 

predictions for UD composites under compression, tension and bending assumptions, 

respectively. 

Table 6.7a: Micro-scale predictions of UD mechanical properties using 
micromechanics equations with fibre-bed effect (Malek 2014) under compressive load. 

Properties 
of UD Unit 

Present  

Relaxed Unrelaxed 

E11 MPa 64.03 110.8 

E22 = E33  MPa 1.689 169.1 

G12 = G13 MPa 0.456 219.6 

G23 MPa 0.443 63.02 

ν12 = ν13 - 0.316 0.340 

ν23 - 0.905 0.341 
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Table 6.7b: Micro-scale predictions of UD mechanical properties using 
micromechanics equations with fibre-bed effect (Malek 2014) under tensile load. 

Properties 
of UD Unit 

Present  

Relaxed Unrelaxed 

E11 GPa 168.0 168.0 

E22 = E33  MPa 1.707 830.5 

G12 = G13 MPa 0.456 219.6 

G23 MPa 0.446 213.2 

ν12 = ν13 - 0.316 0.318 

ν23 - 0.913 0.947 
 

 

Table 6.7c: Micro-scale predictions of UD mechanical properties using 
micromechanics equations with fibre-bed effect (Malek 2014) under bending load. 

Properties 
of UD Unit 

Present  

Relaxed Unrelaxed 

E11 MPa 1,200 1,246 

E22 = E33  MPa 1.693 193.2 

G12 = G13 MPa 0.456 219.6 

G23 MPa 0.443 63.02 

ν12 = ν13 - 0.316 0.346 

ν23 - 0.909 0.523 
 

At meso-scale, the mechanical viscoelastic constants for 5-harness satin weave 

composites are predicted using the analytical model developed by (Naik 1994) and shown 

in Table 6.8. The analytical technique implemented in MATLAB is similar to the one 

described in the elastic section. A specific MATLAB script has been created for this 

purpose. Due to the missing data on the yarn architecture, most of the known quantities 

for a specified weave composite are taken from Naik (1994). For example, Alshahrani & 

Hojjati (2017b) only provided information about the used prepreg such as the 6 k yarn 

size (k – one thousand filaments) and the thickness of the single uncured prepreg (0.55 

mm). Inputs for constituents’ properties such as resin and yarn properties of a RUC are 

taken from Table 6.6 and Table 6.7. The estimated mechanical properties of 5-harness 
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satin weave composites provided in Table 6.8a, Table 6.8b and Table 6.8c correspond to 

the inputs from Table 6.7a, Table 6.7b and Table 6.7c, respectively. 

Table 6.8a: Meso-scale predictions of 5HS prepreg mechanical properties under 
compression using the analytical technique of Naik (1994). 

Laminate type Material 
Exx, Eyy Ezz Gxz, Gyz Gxy νxz, νyz νxy 

MPa MPa MPa MPa     

5HS 

Relaxed 
resin 24.10 5.80 7.08  10-1 3.79  10-1 0.798 0.002 

Unrelaxed 
resin 190.70 248.90 118.60 187.10 0.360 0.578 

 

 

Table 6.8b: Meso-scale predictions of 5HS prepreg mechanical properties under 
tension using the analytical technique of Naik (1994). 

Laminate type Material 
Exx, Eyy Ezz Gxz, Gyz Gxy νxz, νyz νxy 

GPa GPa GPa GPa     

5HS 

Relaxed 
resin 57.26 0.02 0.039 3.80  10-4 0.870 1.68  10-4 

Unrelaxed 
resin 58.94 6.66 1.055 0.192 0.849 0.003 

 

 

Table 6.8c: Meso-scale predictions of 5HS prepreg mechanical properties under 
bending using the analytical technique of Naik (1994). 

Laminate type Material 
Exx, Eyy Ezz Gxz, Gyz Gxy νxz, νyz νxy 

MPa MPa MPa MPa     

5HS 

Relaxed 
resin 412.60 8.40 5.10 3.80  10-1 0.800 2.94  10-4 

Unrelaxed 
resin 680.20 394.10 126.20 187.20 0.676 0.212 

 

It is worth mentioning that based on micro- and meso-scale analyses with the 

assumption of longitudinal fibre modulus (E1) of 80 MPa (see Table 6.6a) and 210 GPa 

(see Table 6.6b) for uncured composites under compression and tension respectively, the 

in-plane properties of unrelaxed prepreg 5HS (Exx) are estimated to be 190 MPa (see 
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Table 6.8a) and 58 GPa (see Table 6.8b). Such values agree well with the predicted 

compressive modulus (Ec = 200 MPa) and tensile modulus (Et = 60 GPa) of the isotropic 

elastic composite plate described earlier (see Section 6.2.2 and Fig. 6.6). A similar 

analysis using the transformed-section method (Eq. 6.8) may be applied to estimated the 

effective bending stiffness of the uncured prepreg. It is interesting that the computed value 

of 680 MPa matches the unrelaxed modulus of prepreg 5HS (see Table 6.8c) obtained 

from micro- and meso-scale analyses considering the longitudinal fibre modulus (E1) of 

1.5 GPa. 

Table 6.9: Prony series parameters for MTM45-1 epoxy as reported in Thorpe’s thesis 
(Thorpe 2012).  

Maxwell 
Element (i) wi τi (s) 

1 3.44181  10-1 1  10-2 

2 1.14728  10-1 1  10-1 

3 1.33849  10-1 1  100 

4 1.52970  10-1 1  101 

5 1.33849  10-1 1  102 

6 0.95606  10-1 1  103 

7 0.19121  10-1 1  104 

8 0.3824  10-2 1  105 

9 0.1338  10-2 1  106 

10 0.382  10-3 1  107 

11 0.96  10-4 1  108 

12 0.38  10-4 1  109 
 

The DF approach for modelling the response of orthotropic viscoelastic 

composites developed by Malek et al. (2018)  requires the components of the relaxation 

matrix. These values could be defined by the Prony series expansions as given below.  

 
𝐸(𝑡) = 𝐸𝑟 + (𝐸𝑢 − 𝐸𝑟)∑𝑤𝑖

12

𝑖=1

𝑒
(−

𝑡
𝜏𝑖
) (6.9) 

where Er and Eu are the relaxed and unrelaxed Young’s modulus, respectively. Parameters 

wi and τi are presented in Table 6.9. The relaxed and unrelaxed values and the Prony series 



 

105 

 

parameters corresponding to each component are then calculated and given in Table 6.10 

and Table 6.11 respectively. 

Table 6.10: Relaxed and unrelaxed values of components of the composite relaxation 
matrix. The effective bending properties have been assigned to the model at micro-
scale. 

Component 𝐶𝑖𝑗
𝑟 (MPa) 𝐶𝑖𝑗

𝑢(MPa) 

C11 629.6 1757.2 

C22 629.6 1757.2 

C33 17.6 1212.3 

C44 0.8 375.0 

C55 19.7 258.2 

C66 19.7 258.2 

C12 5.0 1039.8 

C13 25.1 1041.7 

C23 25.1 1041.7 
 

Table 6.11: Prony series parameters for each component of the relaxation matrix of the 
composite material obtained from micromechanics equations following the approach 
presented in Malek et al. (2018). The effective bending properties have been assigned 
to the model at micro-scale. 

i w11 w22 w33 w44 w55 w66 w12 w13 w23 

1 388.098 388.098 411.193 128.793 82.087 82.087 356.158 349.894 349.894 

2 129.367 129.367 137.066 42.931 27.363 27.363 118.721 116.632 116.632 

3 150.928 150.928 159.909 50.086 31.923 31.923 138.507 136.071 136.071 

4 172.489 172.489 182.753 57.241 36.483 36.483 158.293 155.509 155.509 

5 150.928 150.928 159.909 50.086 31.923 31.923 138.507 136.071 136.071 

6 107.805 107.805 114.220 35.776 22.802 22.802 98.933 97.193 97.193 

7 21.561 21.561 22.844 7.155 4.560 4.560 19.786 19.438 19.438 

8 4.312 4.312 4.569 1.431 0.912 0.912 3.957 3.887 3.887 

9 1.509 1.509 1.599 0.501 0.319 0.319 1.385 1.360 1.360 

10 0.431 0.431 0.456 0.143 0.091 0.091 0.395 0.388 0.388 

11 0.108 0.108 0.114 0.036 0.023 0.023 0.099 0.097 0.097 

12 0.043 0.043 0.046 0.014 0.009 0.009 0.040 0.039 0.039 
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Fig. 6.7 compares the orthotropic viscoelastic behaviours of 5HS prepregs made 

of different assumed values of fibre stiffness using UMAT with experimental data 

conducted by Alshahrani & Hojjati (2017b) in warp directions. It is noted that when the 

longitudinal fibre modulus is assumed to be 1.5 GPa, the obtained bending behaviour of 

its composites plate agrees very well with the test data reported in Alshahrani & Hojjati 

(2017b). It is interesting that the predicted uncured in-plane properties of the 5HS prepreg 

according to the assumed fibre stiffness of 1.5 GPa is 680 MPa (see Table 6.8c). This 

value is in a good correlation with the predicted parameter extracted from averaged 

relaxation curves conducted by Alshahrani & Hojjati (2017c) (see Table 2.1). Also, such 

effective bending stiffness can be computed from the in-plane properties of uncured 

prepreg under compression and tension using the transformed-method via Eq. 6.8, i.e. 

190 MPa (see Table 6.8a) and 58 GPa (see Table 6.8b) for compressive and tensile 

moduli, respectively. Hence, the low value for the fibre bending stiffness should be 

attributed to the low compressive modulus of the uncured composites which is dominated 

by the resin viscoelastic properties for prepregs under bending. Moreover, such a low 

value of the longitudinal fibre modulus considered here (1.5 GPa) is consistent with 

previous findings in the literature (see Table 2.1). To better understand the effect of fibre 

modulus, another bending curve with the assumption of entire section having fibres with 

E1 = 80 MPa (compression modulus) at micro-scale is added to Fig. 6.7. 

To demonstrate the effect of loading rate on the bending behaviours of 5HS 

prepreg, macro-scale viscoelastic analysis using UMAT with three loading rates at 3 

mm/sec, 6 mm/sec and 9 mm/sec as in the experiments conducted by Alshahrani & Hojjati 

(2017b) are also performed. The results are provided in Fig. 6.8. A similar trend in rate-

dependent bending behaviour of both numerical simulations and experimental data can 

be observed; a higher loading rate results in the higher load required to bend the composite 

plates to the desired tip displacement of 50 mm. 
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Figure 6.7: Bending moment versus curvature of uncured 5HS prepreg with different 
values of fibre stiffness (E1). A loading rate of 3 mm/s is considered for all cases.

Figure 6.8: Effect of loading rate on bending moment versus curvature of 5HS 
prepreg. Fibre stiffness is assumed to be E1 = 1.5 GPa in all cases.
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6.4. Discussion

To emphasise the effect of ply anisotropy on the bending response of uncured/ 

partially cured composites during forming, an isotropic viscoelastic case corresponding 

to the validation case discussed above (E1 = 1.5 GPa, see Table 6.6c) is investigated using 

Abaqus built-in viscoelastic material model (IF). The initial properties for uncured or 

partially cured composites are the instantaneous Young’s moduli, Eo, and Poisson’s ratio, 

νo. The instantaneous Young’s moduli is assumed as 680 MPa according to the uncured 

in-plane properties of 5HS composites presented in Table 6.8c. Poisson’s ratio is kept 

unchanged and equal to 0.495. Viscoelastic properties are described using Prony series 

constants listed in Table 6.8. Experimental data conducted by (Alshahrani & Hojjati 

2017b) for 5HS prepregs in warp direction are also shown in Fig. 6.9 for comparison 

purpose. It can be observed that the higher transverse properties due to the presence of 

fibre and fibre-bed effect increase the required loads to reach the specific tip 

displacement.

Figure 6.9: Comparison between IF and DF approaches for the validation case 
(effective fibre modulus E1 = 1.5 GPa). The viscoelastic properties of the resin are 

provided in Table 6.9.
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To investigate the role of resin in viscoelastic bending behaviour, similar cases 

with the same material inputs for fibre stiffness but ignoring resin contribution in micro- 

and meso-scale analyses using micromechanics equations (Malek 2014; Naik 1994) are 

considered. The material properties of UD and 5HS prepreg, as well as dry 5HS according 

to five selected input parameters of fibre stiffness in between 80 MPa to 2000 MPa are 

listed in Table 6.12 for consideration purpose. Fig. 6.10 compares bending moments in 

prepreg and dry 5 HS satin weave sample conducted by Alshahrani & Hojjati (2017b) 

and numerical analyses.  Only two pairs of cases according to assumed fibre modulus of 

1.5 GPa and 500 MPa (see Table 6.12) along with the experimental data are plotted in 

Fig. 6.10 for highlighting the contribution of resin to the bending results. It can be seen 

that the difference between prepreg and dry samples obtained from the experimental study 

(Alshahrani & Hojjati 2017b) is higher than the one predicted by numerical analyses. 

However, it should be emphasised that the uncured resin properties have not been 

provided by Alshahrani & Hojjati (2017b) and therefore assumptions have been made in 

this study based on available data in the literature (Niaki et al. 2018; Thorpe 2012). The 

observed discrepancy in Fig. 6.10 may be attributed to the difference between the real 

rheological characteristics and the assumed values here. Assuming the fibre bending 

stiffness of 500 MPa, the bending behaviour of its dry 5HS composite correlates well with 

the corresponding experimental result. 

Table 6.12: Summary of composite properties for UD and 5HS prepregs, as well as dry 
UD and 5HS according to different values of fibre stiffness, E1. 

E1 
(MPa) 

Prepreg Dry 

E11 (MPa) (UD) Exx, Eyy (MPa) (5HS) E11 (UD) 
(MPa) 

Exx, Eyy 
5HS  

 (MPa) Relaxed Unrelaxed Relaxed Unrelaxed 

2,000 1,600.00 1,645.10 549.10 836.10 1,600.00 549.10 

1,500 1,200.00 1,246.00 412.60 680.20 1,200.00 412.60 

1,000 800.03 846.30 276.10 519.00 800.03 276.10 

500 400.03 446.34 139.50 348.10 400.03 139.50 

80 64.03 110.76 24.10 190.70 64.03 24.10 
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Figure 6.10: Comparision between prepreg and dry 5HS behaviour according to 
different assumed values for fibre stiffness, E1. 
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An efficient multi-scale modelling approach was presented to predict the bending 
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macro-scale simulations, a 3D orthotropic material model implemented as a UMAT 

subroutine in Abaqus software was employed to implicitly account for the complex 

hierarchical nature of woven composites. Consequently, the proposed approach should 

be emphasised as a rapid method for determining the role of viscoelastic parameters and 

the yarns architecture on the out-of-plane bending behaviour essential for predicting 

wrinkle formation in woven composites. 
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for the model.  While several researchers have explored the in-plane shear characteristics 
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shear properties of uncured composites in order to simulate the forming process. As 

demonstrated in this study, in addition to in-plane shear properties, the in-plane Young’s 

moduli of composites in both tension and compression can significantly affect the out-of-

plane response of thin composites. Hence, these properties should be thoroughly 

described in order to accurately predict wrinkle formation during composite 

manufacturing.  

In terms of orthotropic properties, it was demonstrated that the transverse moduli 

associated with the presence of fibre and fibre-bed effect increase the bending stiffness 

of uncured woven composites. Numerical simulations of dry 5HS as well as their prepregs 

were performed. There were minor differences between the numerical analyses results 

and the experimental data presented for dry and uncured samples. Hence, a parametric 

study was conducted to gain a better understanding of the role of viscoelastic resin on the 

bending response. The parametric study demonstrated that the discrepancies between the 

model predictions and test data can be attributed to the assumed viscoelastic 

characteristics of the resin and the compression modulus of prepreg. Characterising the 

viscoelastic properties of uncured Cycom 5320 epoxy resin (similar to MTM45-1 resin 

in the literature) is suggested as a future work that will improve the accuracy of the 

bending simulations. 

Due to the scarcity of published data on the viscoelastic properties of uncured 

composites, assumptions were made in this chapter for estimating the compression and 

tension properties of uncured woven composites using data from the literature. For the 

first time, the numerical results elucidated that the extremely low value for fibre 

longitudinal modulus commonly used in the majority of other models is in fact an 

effective value that implicitly captures the combined effect of low compressive modulus 

and high tensile modulus of uncured composites in bending. Thus, additional 

experimental research on the viscoelastic characteristics of composites at the micro- and 

meso-scale is advised to better understand the formation of wrinkles caused by bending 

during cure.  

A large body of research in the past has shown that the inter-ply slippage is one 

of the most important deformation mechanisms during the process of forming composites, 

particularly for multilayered textile prepregs. Therefore, the inter-ply slippage and its 

effect on the bending properties of thicker composites should be explored more rigorously 
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in the future. Finally, it should be noted that the temperature effect was not considered in 

the chapter. As the temperature is known to be an important parameter during forming, 

studying the variation of resin viscoelastic properties with temperature as well as inter-

ply slippage and their effects on wrinkle formation (using the presented approach) are the 

subjects of our future work. 
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Chapter 7: Bending behaviour of multilayered viscoelastic plates with thin and soft 

interfaces 

7.1. Introduction 

Wrinkle formation during the forming process of laminated composite 

components poses obstacles to fully exploiting the potential of advanced composites. In 

the literature, much attention has been paid to deformation mechanisms behind wrinkle 

formation during consolidation such as in-plane shear, out-of-plane bending and inter-ply 

slippage (Alshahrani & Hojjati 2017a; Long 2005). It is now well-understood that 

bending properties of uncured thin laminates can influence the occurrence of wrinkles 

including the shape, magnitude and intensity of wrinkles (Belnoue et al. 2018). Analysing 

bending and buckling deformations of uncured thermoset composites is crucial to 

understanding contributing mechanisms and underlying physics of the wrinkle formation 

during hot drape forming process of laminated composites (Le et al. 2022; Le et al. 2021). 

In previous Chapter, Le et al. (2022) developed an efficient multi-scale approach for 

viscoelastic analysis of single-ply woven composites under bending. Apart from bending 

stiffness, inter-ply slippage has been also considered as an important deformation 

mechanism during the process of forming composites, particularly for multilayered textile 

composites (Alshahrani & Hojjati 2017a). Therefore, the objective of this chapter is to 

expand the application of the proposed method in previous chapter for the bending 

behaviour of multilayered textile composite separated by relatively soft interfaces. 

Recently, researchers (Alshahrani & Hojjati 2017a) have employed Aniform 

Finite Element (FE) software with shell elements to model the viscoelastic bending 

behaviour of composite plies under conditions relevant to the forming process. Several 

time-consuming characterisation tests (i.e. bias extension test, bending test) are required 

to determine the material parameters for a suitable constitutive model. Unlike previous 

studies, in this study, the influence of various parameters including fibre stiffness, ply 

anisotropy, resin properties, and loading rates on the viscoelastic bending behaviour of 

laminated composites are analysed. The weaving pattern and the stacking sequence of 

plies are considered at the meso-scale while the effect of ply slippage is captured by 

introducing a thin interface layer between the plies at the macro-scale. Section 7.2 

introduces briefly the methodology for simulating the bending behaviour of multilayered 

woven composites using the analytical homogenisation techniques at micro-and meso-
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scale for material properties combined with the DF of viscoelasticity at macro-scale for 

numerical analysis. The details of the FE model and its verification and validation are 

provided in Section 7.3. The capabilities, limitations of the developed model and future 

work as well are summarized and discussed in Section 7.4.  

7.2. Method 

The viscoelastic behaviour of multilayered cantilever plates subjected to tip 

displacements has been modelled using the multi-scale approach introduced in Malek 

(2014) for orthotropic composites, as described with a flow chart in Fig. 7.1. At the micro-

scale, the analytical micromechanics equations described in Malek (2014) are used to 

predict the effective viscoelastic properties of a RVE (see Fig. 7.1) of the solid 

unidirectional circular fibre composites with a specific fibre volume fraction (Vf). The 

fibre and resin viscoelastic properties are required for the input parameters of the micro-

scale model. The fibre-bed elastic properties are also incorporated into the 

micromechanics equations (Malek 2014) as the fibre-bed has been known to play an 

important role in carrying the load in the transverse direction at the early stage of cure. 

 The effective properties obtained from the micromechanics model along with 

fabric architecture are then used to estimate the properties of a RUC of such woven fabric 

at the meso-scale. Details of geometric modelling of 5-harness satin weave composite, 

discretisation technique of yarns within RUC and calculation of 3D effective properties 

were described in Naik (1994). Analytical procedure using MATLAB script to determine 

nine engineering constants for full characterization of orthotropic woven composite has 

been validated in Le et al. (2022) and was presented in previous chapter. Once the 

effective meso-scale properties of the composite are obtained, they are employed directly 

in the structural analysis at the macro-scale. A differential form (DF) of orthotropic 

viscoelasticity implemented as a UMAT is used for structural level (macro-scale) 

simulations. For further details, the reader is referred to Chapter 3.  
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Figure 7.1: Schematic of the multi-scale modelling approach for bending behaviour of 
5-harness satin weave multilayered composites from micro-scale to macro-scale. 

7.3. Macro-scale model 

Dimensions of the bending model are selected based on the bending test of a three-

layer textile composite conducted in Alshahrani & Hojjati (2017a). Each ply has 

dimensions of 50 mm in width (w), 0.55 mm in thickness (t) and an un-gripped length of 

120 mm, out of 150 mm in total length (L). Assuming that each ply is separated by a very 

thin interface, ti = 0.01 mm (see Fig. 7.2). The three-layer cantilever plate is restrained 

from all displacements in a length of 30 mm as it was gripped along this distance 

(Alshahrani & Hojjati 2017a). It is modelled using a 20-node solid quadratic brick 

element with reduced integration elements (C3D20R). For a detailed mesh sensitivity 

analysis, the reader is referred to (Le et al. 2021). Based on a convergence study, a mesh 

size shown in Fig. 7.3 is utilized in this study. As the analysis of the bending behaviour 
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during the forming process requires high curvature to accurately simulate the process, a 

tip displacement of 30 mm is applied (Alshahrani & Hojjati 2017a) (see Fig. 7.4). It is 

noted that such applied displacement is located at a distance of 4 mm from the free end 

to avoid generating any tensile stresses on the sample during bending (Alshahrani & 

Hojjati 2017a). 

 
Figure 7.2: Bending model of a three-layer plate. Each layer is separated by a thin 

interface of 0.01 mm (according to Alshahrani & Hojjati (2017a)) 
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Figure 7.3: FE mesh of the three-layer plate used in this study. Numbers of mesh are 

30 × 75 × 24 in X, Y and Z respectively. 
 

 
Figure 7.4: Deformed sample at tip displacement of 30 mm (U3 in mm) under 

bending. The top end is is restrained from all displacements in a length of 30 mm. 

7.4. Results and model validation 

7.4.1. Elastic material 

Firstly, based on a previous study shown in Chapter 6, the material properties of 

the layers under bending including Ep and υp are kept unchanged and equal to 700 MPa 



 

118 

 

and 0.4 respectively. It is worth noting that such effective bending stiffness could be 

computed from the in-plane properties of uncured prepreg under bending with known 

compressive and tensile moduli using the transformed-method (Le et al. 2022). The 

Young’s modulus of the interface, Ei takes a range of values shown in Table 7.1. Identical 

Poison’s ratio is used for plies and the interface (i.e. υp = υi). The laminated plate has an 

overhang that may be treated as a cantilever wide beam subjected to a uniform 

displacement at the free end. Using Roark's formulas (Warren & Richard 2002) for wide 

beams, the force, F, required to reach the tip displacement of 30 mm is presented in Table 

7. 1. Calculations for the upper and lower bound are obtained by assuming the layers to 

be fully bonded or disconnected. As seen in Table 7.1, the FE result for the homogeneous 

and isotropic case (Ei = Ep) agree very well with the upper bound. This agreement verifies 

the present FE model in terms of mesh size, applied load and boundary conditions. 

Table 7.1: Comparisons between current FE predictions and the analytical model 
(Warren & Richard 2002) 

Ep = 700 MPa, υp = υi = 0.4    
 

Ei (MPa) 
 F (N) 

FE (Isotropic) Upper bound Lower bound 

700 9.372 × 10-1 

9.324 × 10-1 9.993× 10-2 

70 9.335 × 10-1 

7 9.317 × 10-1 

0.7 9.232 × 10-1 

0.07 8.757 × 10-1 
 

To better understand the role of ply anisotropy on the laminate bending response, 

ten more cases with transversely isotropic layers are considered. The elastic constants of 

such layers for two specific sets are listed in Table 7.2. As noted in Fig. 7.5, irrespective 

of very low interface stiffness (e.g. 70 kPa), the effect of shear deformation on the bending 

behaviour is less than 6.5% for the dimensions of the selected multilayered plates. In other 

words, bending is the dominating deformation mechanism in this case study. Also, it 

seems that the ply anisotropy nature affects the bending behaviours of thin laminated 

plates with thin and soft interfaces more considerably than the shear properties. The ply 

anisotropy nature (assumed in Table 7.2) reduces the apparent flexural rigidity of the 

entire plate up to 14 % (see Fig. 7.5). 
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Table 7.2: Input properties of the plies 

Properties Seta Setb Unit 

E1p = E2p 700 700 MPa 

 E3p 136 13.6 MPa 

G12p 40 4.0 MPa 

G13p = G23p 40 4.0 MPa 

υ12p  0.2 0.2 -* 

υ13p = υ23p 0.7 0.7 -* 
 

                                            Notes: The 12-plane is the plane of woven fabric 
                                                        * indicates non-dimensional 

7.4.2. Viscoelastic material 

Recognizing the role of the ply anisotropy nature as mentioned above along with 

the variation of resin viscoelastic characteristics (Thorpe 2012) at the early stage of cure 

that may affect the deformation behaviours, the orthotropic viscoelastic properties are 

considered in the bending behaviour. The mechanical properties of the resin, fibre and 

fibre-bed that have been used for viscoelastic analysis at micro-scale are listed in Table 

7.3 (Le et al. 2022). It should be noted that the low value for fibre bending stiffness (i.e. 

1.5 GPa) could be attributed to the low compressive modulus of the uncured composites 

which is dominated by the resin viscoelastic properties for prepregs under bending (Le et 

al. 2022). Such a low value of the longitudinal fibre modulus considered here (1.5 GPa) 

correlates well with previous findings in the literature (Le et al. 2022). Due to the lack of 

experimental data for uncured resin (i.e. Cycom 5320), Prony series constants for 

MTM45-1 (Thorpe 2012) are assumed for validating the model against the experimental 

data reported in Alshahrani & Hojjati (2017a). Firstly, the fibre-bed elastic properties are 

incorporated into the micromechanics equations (Malek 2014) at micro-scale to estimate 

the effective viscoelastic properties of the uncured UD prepreg. The effective properties 

obtained from the analytical homogenisation at this scale are then used to predict the 

properties of the fabric at the meso-scale (Naik 1994). The estimated mechanical 

viscoelastic constants for 5-harness satin weave composite ply are provided in Table 7.4. 

Similar to previous cases for assumed elastic constants, five interface properties, Ei, 

ranging from 70 kPa to 700 MPa are introduced to investigate the influence of interface 

stiffness on the overall bending behaviours. Fig. 7.5 compares the required loads for the 

multi-layered plates with five different interface properties to reach a tip displacement of 
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30 mm at room temperature using various material models. As seen in Fig. 7.5, the apparent 

flexual rigidities of the entire viscoelastic plates reduce by almost 30% in comparison with 

the corresponding elastic cases while the effect of ply-slippage on the overall bending 

behaviour is still negligible; a similar trend with the remaining material models. 

Table 7.3: Input material properties of fibre, resin and fibre bed used in the bending 
simulation of textile prepregs (Le et al. 2022). 

Vf = 0.600         

Property Unit Fibre 
Resin 

Fibre bed 
Relaxed Unrelaxed 

E1 GPa 1.50  100 3.00  10-6 1.65  10-1 1.50  100 

E2 = E3  GPa 1.72  10-1 3.00  10-6 1.65  10-1 1.12  10-4 

G12 = G13 GPa 27.60 1.00  10-6 5.52  10-2 1.13  10-4 

G23 GPa 0.07 1.00  10-6 5.52  10-2 4.49  10-5 

ν12 = ν13 - 0.2 0.495 0.495   

ν23 - 0.25 0.495 0.495 0.250 
 

Table 7.4: Meso-scale predictions of 5HS prepreg mechanical properties under bending 
using the analytical technique of Naik (1994). 

Laminate type Material 
Exx, Eyy Ezz Gxz, Gyz Gxy νxz, νyz νxy 

MPa MPa MPa MPa     

5HS 

Relaxed 
resin 412.60 8.40 5.10 3.80  10-1 0.800 2.94  10-4 

Unrelaxed 
resin 680.20 394.10 126.20 187.20 0.676 0.212 
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To further consider the capability of capturing the effect of soft interface on the 

bending response using the multi-layered bending model described above, a similar 

model with the length of 80 mm and thickness of 7 layers (compared to the previous 

model of 150 mm in length and 3 layers in thickness) is created. Simultaneously, a variety 

of cases according to five interface properties (Ei) and effect of ply anisotropy (see Table 

7.2) are analyzed. The FE results are shown in Fig. 7.6. It is noted that for such a short 

and thick plate, shear deformation decreases the bending rigidity significantly, especially 

for the case (Ei = 70 kPa) by more than 50% (see Fig. 7.6).  

 
Figure 7.5: The effect of interface properties on the bending loads. Required loads to 
reach a tip displacement of 30 mm at room temperature are compared using various 

material models. Resin viscoelastic properties selected for the orthotropic viscoelastic 
material model are provided in (Thorpe 2012). The model has the length of 150 mm, 

the width of 50 mm and the thickness of 1.67 mm. 



 

122 

 

 
Figure 7.6: The effect of interface properties on the bending loads in a thick laminate. 

Required loads to reach a tip displacement of 30 mm at room temperature are 
compared using various material models. The model has the length of 80 mm, the 

width of 50 mm and the thickness of 3.91 mm. 

As a next step towards validating the proposed model with the bending behaviour 

of different stacking sequences published in the literature, four fabric layups as shown in 

Fig. 7.7 are considered. Note that by employing the analytical technique (Naik 1994) for 

the homogenisation technique at the meso-scale, the stiffnesses in warp and weft direction 

are assumed the same for simplification. Therefore, this study neglects the difference in 

undulation between weft and warp yarns in woven fabric structure as concerned in 

Alshahrani & Hojjati (2017a). The load value required to achieve a tip displacement of 

30 mm is used to calculate the bending moment along the length of the beam. By 

capturing the bending curve corresponding to the maximum displacement reached (see 

Fig. 7.4), deflection profile z(y) is fitted using a proper polynomial function. The 

expression for the curvature is subsequently calculated as 𝜅 = 𝑧′′(𝑦)/(1 +

𝑧(𝑦)′2)3/2(Gere & Goodno 2009). Finally, the moments at each point can be plotted 

against the corresponding curvature values as shown in Fig. 7.8. 

 As can be seen in Fig. 7.8, stacking 1 [0o/0o/0o] with respect to fibre direction 

requires the highest load for the laminated plate to reach the desired displacement. Fig. 

7.8 also presents that rotating ply 2 and ply 3 by 45o (stacking 3) decreases the bending 

stiffness by approximately 15% compared to stacking 1. Stacking 2 and stacking 4 give 
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slight differences from stacking 1 and stacking 3 respectively. It is noted that FE 

simulations of multiple plies under bending are considered at room temperature with a 

speed of 3 mm/s and assumed the interface stiffness of 7 MPa for all cases. Nevertheless, 

the moment against curvature relation captured by the experiment for selected stacking 

sequences (Alshahrani & Hojjati 2017a) was conducted at 70oC only, hence, they are not 

included in Fig. 7.8 for comparison purposes. At room temperature, the maximum 

bending moment for stacking 1 with a speed of 3 mm/s was measured about 55 N.mm in 

Alshahrani & Hojjati (2017a), compared to the present FE prediction of 75 N.mm (see 

Fig. 7.8). This discrepancy can be attributed to the assumed input parameters for the fibre 

bending stiffness, resin viscoelastic characteristics and yarn architecture due to the lack 

of experimental data for material properties at micro- and meso-scale. However, the 

proposed multi-scale approach should be emphasised as a rapid method for estimating the 

effect of various parameters on wrinkle formation. Moreover, it seems quite difficult to 

predict accurately the bending behaviour of uncured laminated prepregs using FE analysis 

as simulation outcome depends strongly on the accurate material inputs at smaller scales 

that may be missing in the literature. The simulation model using Aniform software in 

Alshahrani & Hojjati (2017a) underestimated the maximum bending moment for stacking 

1 at room temperature with different testing rates measured by the experiment. 

 
Figure 7.7: Stacking sequences of three-layer plate (a) Stacking 1 [0o/0o/0o]; (b) 
Stacking 2 [0o/45o/0 o]; (c) Stacking 3 [0o/45o/45o]; (d) Stacking 4 [45o/45o/0 o]. 
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Figure 7.8: Moment vs curvature for all selected stacking sequences at room 

temperature. A loading rate of 3 mm/s is considered and the interface modulus, Ei, is 
assumed 7 MPa for all cases. Resin viscoelastic properties selected for the orthotropic 

viscoelastic material model are provided in (Thorpe 2012). 

7.5. Summary and conclusions 

The viscoelastic bending behaviour of multilayered composite plates with thin 

and soft interfaces was analysed using the efficient multi-scale modelling approach. The 

weaving pattern and the stacking sequence of plies were considered analytically at the 

meso-scale while the effect of ply slippage was captured by introducing a thin interface 

layer between the plies at the macro-scale and implemented using UMAT subroutine in 

Abaqus software. The obtained maximum bending moment for stacking 1 at room 

temperature with a speed of 3 mm/s was compared to the experimentally measured value. 

The discrepancy between the numerical result and the experimental data could be 

attributed to the assumed input parameters for the fibre bending stiffness, resin 

viscoelastic characteristics and yarn architecture due to the lack of experimental data for 

material properties at micro- and meso-scale. Therefore, conducting additional 

experimental research on the viscoelastic characteristics of composites at the small scales 

and introducing the fibre stiffness in weft and warp yarns separately into the FE model in 

our future work will improve the accuracy of the proposed method. 

In terms of employing various material models in analysing the bending behaviour 

of multilayered plates, it should be highlighted the effect of resin viscoelastic 

characteristics on the numerical outcomes. Moreover, the bending response of the 
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uncured prepregs was found to be dominated by their ply bending stiffness rather than 

inter-ply friction. Further investigation on the bending mechanism of thicker laminated 

composites is suggested to ascertain the limitations and validity range of the viscoelastic 

multi-scale model predictions for wrinkle formation in large composite parts. Finally, it 

is noted that the temperature effect was not considered in the chapter. As temperature is 

known to be an important parameter during forming, studying the variation of resin 

viscoelastic properties with temperature and their effect on wrinkle formation is the 

subject of our future work. 
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Chapter 8. Conclusions and recommendations 

8.1. Summary 

The viscoelastic buckling/bending responses of cured and uncured viscoelastic 

composite plates were investigated in this thesis in order to obtain a better understanding 

of the wrinkling behaviour during the forming process. These were accomplished by 

implementing a three-dimensional (3D) multi-scale modelling framework that 

incorporates analyses at different scales (micro-, meso and macro-scale). For material 

level (micro- and meso- scale) simulations, analytical micro- and meso-scale models 

proposed in the literature were investigated for estimating the material properties. 

Meanwhile a differential form (DF) of viscoelasticity implemented as a UMAT was 

employed for structural level (macro-scale) simulations. Combining analytical equations 

at smaller scales with the DF form of viscoelasticity at macro-scale resulted in a rapid 

method for estimating the effect of various parameters on wrinkle formation. Within this 

context, instead of explicitly considering complex mechanisms that may occur 

concurrently during the formation of woven composites, a modified input value at the 

micro-scale based on published experiments may be considered for uncured prepregs.  

 The numerical model was validated by comparing the structural behaviour of thin 

viscoelastic composites (i.e. buckling and bending responses) with experimental data 

reported in the literature. As the built-in viscoelastic model of Abaqus is limited to 

modelling isotropic materials, the DF approach developed for orthotropic composites was 

employed in this study to elucidate the effect of ply anisotropy on the bending response 

of uncured/partially cured composites. The influence of various parameters including 

fibre stiffness, resin properties, yarn’s architecture and loading rates on the buckling and 

bending behaviour of viscoelastic composites were analysed. The good agreement 

between the numerical predictions and the experimental data indicates the potential of the 

proposed multi-scale modelling framework to predict the performance of viscoelastic 

composite with a variety of yarn architectures efficiently.  

Inter-ply slippage has now been recognised as a key mechanism affecting the 

formation of composites with numerous plies, in addition to bending stiffness. To better 

understand the effect of shear deformation and ply slippage on wrinkle formation, this 

thesis focused on the bending behaviour of orthotropic elastic and viscoelastic multi-

layered plates with thin and soft interfaces exhibiting resin-rich inter-ply zones. Under 
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bending loads, predicted load-deflection curves of cantilever prepregs were compared to 

experimental data in the literature. 

8.2. Contributions and Key findings 

The following contributions were made in this work: 

• FE models have been created and validated with experimental data in the literature to 

efficiently predict wrinkle formation in flat laminates at the early stage of cure. 

• The properties of the uncured composites under buckling and bending conditions 

assumed in the FE model for forming simulations have been well justified. 

• A MATLAB script has been created to predict the effective mechanical properties of 

a RUC of the 5HS woven fabric. 

• The effects of ply anisotropy, fibre bed, various fibre architecture and viscoelasticity 

on the buckling/bending responses of laminated composites have been investigated 

comprehensively.  

• Contribution of different deformation mechanisms such as out-of-plane bending and 

inter-ply slippage during composite manufacturing has been explored thoroughly.  

Some of the notable findings are listed below: 

• The interface stiffness (or the presence of resin-rich areas between the plies) dominates 

the buckling and bending responses of flat laminates compared to the effect of ply 

anisotropy for the case study in Chapter 4. 

• Unlike cured composites, the compressive stiffness of uncured prepregs is mainly 

dominated by the resin modulus rather than the fibre modulus due to the very low 

buckling load of carbon fibres. The longitudinal compressive stiffness of the plies 

affects both the slope and the buckling load. 

• The waviness of fibres (fibre-bed effect) which stiffens the prepreg’s transverse and 

shear properties increases its compressive stiffness slightly while the waviness effect 

on the post-buckling stiffness is relatively significant. 

• The axial compressive stiffness of the laminated composites increases by raising the 

loading rate and the initial slope of the load-displacement curve for viscoelastic 

laminates moves nearer to the slope of the isotropic elastic laminate for a higher 

loading rate. 
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• An efficient multi-scale modelling approach was developed to predict the bending 

behaviour of viscoelastic composites under various loading rates. The proposed 

approach should be emphasised as a rapid method for determining the role of fibre 

stiffness, viscoelastic parameters and the yarn’s architecture on the out-of-plane 

bending behaviour essential for predicting wrinkle formation in woven composites. 

• Apart from the viscoelastic shear characteristics of woven composites, the in-plane 

Young’s moduli of uncured UD and woven composites in both tension and 

compression have been found to affect the out-of-plane response of thin composites 

significantly. A low value for fibre Young’s modulus (1.5 GPa) commonly used in 

most numerical models in the literature without clear justification has been 

demonstrated to be the result of low compressive stiffness of uncured prepreg. 

• Comparing IF and DF results, it is demonstrated that the transverse moduli associated 

with the presence of fibre and fibre-bed effect increase the bending stiffness of uncured 

woven composites. 

• The bending response of the uncured multi-layered prepregs was found to be 

dominated by their ply bending stiffness rather than inter-ply friction. Also, by 

employing various material models in analysing the bending behaviour of such plates, 

the effect of resin viscoelastic characteristics on the numerical outcomes should be 

highlighted. 

8.3. Limitations and recommendations for future studies 

• There are discrepancies (maximum compressive forces and the shape of the load-

displacement curves) between the experimental data and numerical predictions. This 

could be attributed to the lower viscosity of the MTM45-1 resin. Conducting 

laboratory experiments on uncured and partially cured laminates of various 

thicknesses is suggested so that the discrepancy reported between the numerical 

predictions and experimental data is better understood. 

• As demonstrated in this study, in addition to in-plane shear properties, the in-plane 

Young’s moduli of composites in both tension and compression can significantly 

affect the out-of-plane response of thin composites. Subsequently, in order to 

accurately predict wrinkle formation during composite manufacture, these properties 

must be thoroughly described. 
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• Characterising the viscoelastic properties of uncured Cycom 5320 epoxy resin (similar 

to MTM45-1 resin in the literature) is suggested as future research that will improve 

the accuracy of the bending simulations. 

• Based on published data, the viscoelastic properties of uncured composite under 

compression and tension were assumed in this study. The complex deformation 

mechanisms that may occur simultaneously during bending of uncured composite 

prepregs were considered implicitly using a low value of fibre stiffness. Thus, 

additional experimental research on the viscoelastic characteristics of composites at 

the micro- and meso-scale is advised to better understand the formation of wrinkles 

caused by bending during cure.  

• Many published studies have stated that the inter-ply slippage is one of the most 

important deformation mechanisms during the process of forming composites, 

particularly for multilayered textile prepregs. As a result, future research on inter-ply 

slippage and its impact on the bending properties of thicker composites should be 

conducted so that this process is better understood.  

• During composite processing, the resin modulus may diminish quite significantly 

under heat. Due to boundary conditions and geometrical constraints, this could result 

in the formation of wrinkles (buckled plies) under significantly lower compressive 

loads. The effect of temperature and degree of cure on resin viscoelastic characteristics 

during forming shall be the focus of our future research. 
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Appendices 

A.1. Transformation matrix used in Eq. (3.7) 

The transformation matrix [T]m in Eq. (3.7) is given by: 

[𝑇]𝑚 =

[
 
 
 
 
 
 
𝑎11
2 𝑎12

2 𝑎13
2 𝑎12𝑎13 𝑎11𝑎13 𝑎11𝑎12

𝑎21
2 𝑎22

2 𝑎23
2 𝑎22𝑎23 𝑎23𝑎21 𝑎21𝑎22

𝑎31
2 𝑎32

2 𝑎33
2 𝑎32𝑎33 𝑎33𝑎31 𝑎31𝑎32

2𝑎21𝑎31 2𝑎32𝑎22 2𝑎23𝑎33 (𝑎22𝑎33 + 𝑎23𝑎32) (𝑎23𝑎31 + 𝑎21𝑎33) (𝑎21𝑎32 + 𝑎22𝑎31)
2𝑎11𝑎31 2𝑎12𝑎32 2𝑎13𝑎33 (𝑎32𝑎13 + 𝑎33𝑎12) (𝑎11𝑎33 + 𝑎13𝑎31) (𝑎31𝑎12 + 𝑎32𝑎11)
2𝑎11𝑎21 2𝑎12𝑎22 2𝑎13𝑎23 (𝑎12𝑎23 + 𝑎13𝑎22) (𝑎13𝑎21 + 𝑎11𝑎23) (𝑎11𝑎22 + 𝑎12𝑎21)]

 
 
 
 
 
 

, 

(A.1) 

in which the 3 × 3, [aij] matrix (i = 1-3, j = 1-3) is expressed as: 

[𝑎𝑖𝑗] = [

𝑐𝑜𝑠( 𝜃) 𝑐𝑜𝑠( 𝛽) 𝑠𝑖𝑛( 𝜃) 𝑐𝑜𝑠( 𝛽) 𝑠𝑖𝑛( 𝛽)
− 𝑠𝑖𝑛( 𝜃) 𝑐𝑜𝑠( 𝜃) 0

− 𝑐𝑜𝑠( 𝜃) 𝑠𝑖𝑛( 𝛽) −𝑠𝑖𝑛( 𝜃) 𝑠𝑖𝑛( 𝛽) 𝑐𝑜𝑠( 𝛽)
], 

(A.2) 

A.2. Differential approach to modelling generally orthotropic materials 

In a general 3-D state of stress, the constitutive equation relating the stress σij and 

the strain εkl for a linear elastic material can be written as follows (Malek 2014): 

 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙, (A.3) 

where Cijkl are components of the material stiffness tensor. Using matrix notation, the 

stiffness tensor can also be written in a 6 × 6 matrix form, denoted by the symbol C  with 

the double underscore indicating matrix quantities and single underscore denoting 

vectors. 

For an isotropic material, the stiffness matrix can be expressed in terms of two 

independent constants (moduli), G and K, representing the shear and bulk behaviour of 

the material. Therefore, the stress-strain relationship can also be written as follows: 
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𝜎 = 𝐺

{
 
 
 
 

 
 
 
 
2

3
(2𝜀11 − 𝜀22 − 𝜀33)

2

3
(2𝜀22 − 𝜀11 − 𝜀33)

2

3
(2𝜀33 − 𝜀11 − 𝜀22)

2𝜀12
2𝜀13
2𝜀23 }

 
 
 
 

 
 
 
 

+ 𝐾

{
 
 

 
 
𝜀11 + 𝜀22 + 𝜀33
𝜀11 + 𝜀22 + 𝜀33
𝜀11 + 𝜀22 + 𝜀33

0
0
0 }

 
 

 
 

, (A.4) 

In other words, the total stress vector for an isotropic material can be decomposed 

into two vectors: 

 𝜎 = 𝜎𝐺 + 𝜎𝐾, (A.5) 

where the vectors G and K represent the shear and bulk components of the total stress 

respectively. In order to describe the behaviour of an elastic, orthotropic material, nine 

constants are needed and the stress-strain relationship can be expressed in terms of these 

nine constants (stiffness matrix components) as follows: 

𝜎 = 𝐶11𝜀𝐶11 + 𝐶22𝜀𝐶22 + 𝐶33𝜀𝐶33 + 𝐶44𝜀𝐶44 + 𝐶55𝜀𝐶55 + 𝐶66𝜀𝐶66 + 𝐶12𝜀𝐶12 + 𝐶13𝜀𝐶13 + 𝐶23𝜀𝐶23, (A.6) 

where the stress tensor has been decomposed into nine tensors each corresponding to a 

stiffness matrix component or a material property, P: 

 𝜎 = 𝜎𝐶11 + 𝜎𝐶22+. . . +𝜎𝐶23 =∑𝜎𝑝,

9

𝑝=1

 (A.7) 

For simplicity, the above equation may also be written in vector form as: 

 

𝜎 =

{
 
 

 
 
𝜎11
𝜎22
𝜎33
𝜎12
𝜎13
𝜎23}

 
 

 
 

= 𝐶11

{
 
 

 
 
𝜀11
0
0
0
0
0 }
 
 

 
 

+ 𝐶22

{
 
 

 
 
0
𝜀22
0
0
0
0 }
 
 

 
 

+ 𝐶33

{
 
 

 
 
0
0
𝜀33
0
0
0 }
 
 

 
 

 

(A.8) 
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+𝐶44

{
 
 

 
 
0
0
0
2𝜀12
0
0 }
 
 

 
 

+ 𝐶55

{
 
 

 
 
0
0
0
0
2𝜀13
0 }
 
 

 
 

+ 𝐶66

{
 
 

 
 
0
0
0
0
0
2𝜀23}

 
 

 
 

 

+𝐶12

{
 
 

 
 
𝜀22
𝜀11
0
0
0
0 }
 
 

 
 

+ 𝐶13

{
 
 

 
 
𝜀33
0
𝜀11
0
0
0 }
 
 

 
 

+ 𝐶23

{
 
 

 
 
0
𝜀33
𝜀22
0
0
0 }
 
 

 
 

, 

For a viscoelastic orthotropic material, similar to the isotropic or transversely 

isotropic case in Zobeiry et al. (2016), a differential equation is employed to relate the 

associated stresses and strains as follows: 

 𝜎
•

𝑃 = 𝑃
𝑢𝜀
•

𝑃 − ∑
1

(𝜏𝑃)𝑖

𝑁
𝑖=1 (𝜎𝑃)𝑖; 𝑃 = 𝐶11, 𝐶22, . . . , 𝐶23, (A.9) 

In deriving the above equation, for each component of the stiffness matrix (e.g. 

C11) a generalized Maxwell model has been employed. For each element i of the 

generalized Maxwell model a governing differential equation can be written as follows: 

 (𝜎
•

𝑃)𝑖 = 𝑃
𝑖𝜀
•

𝑃 −
1

(𝜏𝑃)𝑖
(𝜎𝑃)𝑖; 𝑃 = 𝐶11, 𝐶22, . . . , 𝐶23, (A.10) 

In the above equation, the spring stiffness and time constant of Maxwell element 

i associated with component P of the stiffness matrix are denoted by Pi
 and (τP)i, 

respectively. The unrelaxed values of each component of stiffness matrix denoted by 

superscript u is obtained by summing over all Maxwell elements. Therefore, the 

unrelaxed value of component P is obtained as: 

 𝑃𝑢 = ∑ 𝑃𝑖𝑁
𝑖=1 ; 𝑃 = 𝐶11, 𝐶22, . . . , 𝐶23, (A.11) 

where N is the number of Maxwell elements. 

The overall governing differential equation is obtained by summing over all nine 

stress vectors, therefore the overall governing differential equation can be written as: 
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 𝜎
•
= 𝐶𝑢𝜀

•
−∑∑

1

(𝜏𝑃)𝑖
(𝜎𝑃)𝑖,

𝑁

𝑖=1𝑃

 (A.12) 

A.3. Implementation 

Rewriting Eq. (A.10) at time steps n and n + 1 for element i of the generalized 

Maxwell model, including the free strain εPf (e.g. strain generated due to cure shrinkage 

or thermal expansion) leads to: 

 {
(𝜎
•

𝑃)𝑖
𝑛 = 𝑃𝑖(𝜀

•

𝑃
𝑛 − 𝜀

•

𝑃𝑓
𝑛 ) −

1

(𝜏𝑃)𝑖
𝑛 (𝜎𝑃)𝑖

𝑛

(𝜎
•

𝑃)𝑖
𝑛+1 = 𝑃𝑖(𝜀

•

𝑃
𝑛+1 − 𝜀

•

𝑃𝑓
𝑛+1) −

1

(𝜏𝑃)𝑖
𝑛+1 (𝜎𝑃)𝑖

𝑛+1
, (A.13) 

 As it is described by Zobeiry et al. (2016), using the finite difference method with 

a central difference scheme and rearranging, the stresses in each Maxwell element “i” can be 

calculated as: 

(𝜎𝑃)𝑖
𝑛+1 = (

1−
1

2

𝛥𝑡

(𝜏𝑃)𝑖
𝑛

1+
1

2

𝛥𝑡

(𝜏𝑃)𝑖
𝑛+1

)(𝜎𝑃)𝑖
𝑛 +

𝑃𝑖

(1+
1

2

𝛥𝑡

(𝜏𝑃)𝑖
𝑛+1)

[(𝜀𝑃
𝑛+1 − 𝜀𝑃

𝑛) − (𝜀𝑃𝑓
𝑛+1 − 𝜀𝑃𝑓

𝑛 )], (A.14) 

The total stress vector at time increment (n + 1) can be calculated by summing 

over all Maxwell elements (i = 1, 2, 3, …, N) and material properties P, as follows: 

 𝜎𝑛+1 = ∑ ∑ (𝜎𝑃)𝑖
𝑛+1;𝑁

𝑖=1𝑃 𝑃 = 𝐶11, 𝐶22, . . . , 𝐶23, (A.15) 

Details of the finite element formulation and solution convergence conditions 

could be found in Zobeiry et al. (2016). 
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