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Abstract

Recent years have witnessed the fast develop-
ment of the emerging topic of Graph Learning
based Recommender Systems (GLRS). GLRS em-
ploy advanced graph learning approaches to model
users’ preferences and intentions as well as items’
characteristics for recommendations. Differently
from other RS approaches, including content-based
filtering and collaborative filtering, GLRS are built
on graphs where the important objects, e.g., users,
items, and attributes, are either explicitly or im-
plicitly connected. With the rapid development of
graph learning techniques, exploring and exploiting
homogeneous or heterogeneous relations in graphs
are a promising direction for building more ef-
fective RS. In this paper, we provide a system-
atic review of GLRS, by discussing how they ex-
tract important knowledge from graph-based repre-
sentations to improve the accuracy, reliability and
explainability of the recommendations. First, we
characterize and formalize GLRS, and then sum-
marize and categorize the key challenges and main
progress in this novel research area.

1 Introduction
Recommender Systems (RS) are one of the most popular and
important applications of Artificial Intelligence (AI). They
have been widely adopted to help the users of many popu-
lar content sharing and e-Commerce web sites to more easily
find relevant content, products or services. Meanwhile, Graph
Learning (GL), which relates to machine learning applied to
graph structure data, is an emerging technique of AI which is
rapidly developing and has shown its great capability in re-
cent years [Wu et al., 2021]. In fact, by benefiting from these
capabilities to learn relational data, an emerging RS paradigm
built on GL, i.e., Graph Learning based Recommender Sys-
tems (GLRS), has been proposed and studied extensively in
the last few years [Guo et al., 2020]. In this paper we offer
a systematic review of the challenges and progresses in this
emerging area.
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Figure 1: The demonstration of graph learning based recommender
systems

Motivation: why graph learning for RS?
Most of the data in RS has essentially a graph structure.
In the real world, most of the objects around us are explic-
itly or implicitly connected with each other; in other words,
we are living in a world of graphs. Such characteristic is even
more obvious in RS where the objects here considered includ-
ing users, items, attributes, context, are tightly connected with
each other and influence each other via various relations [Hu
et al., 2014], as shown in Figure 1. In practice, various kinds
of graphs arise from the data used by RS, and they can signif-
icantly contribute to the quality of the recommendations.

Graph learning has the capability to learn complex rela-
tions. As one of the most promising machine learning tech-
niques, GL has shown great potential in deriving knowledge
embedded in different kinds of graphs. Specifically, many GL
techniques, such as random walk and graph neural networks,
have been developed to learn the particular type of relations
modeled by graphs, and have demonstrated to be quite effec-
tive [Wu et al., 2021]. Consequently, employing GL to model
various relations in RS is a natural and compelling choice.

Formalization: how does graph learning can help RS?
To date, there is no unified formalization of GLRS. We gen-
erally formalize GLRS from a high-level perspective.

We construct a graph G = {V, E} with the data of an RS
where the objects, e.g., users and items, are represented as
nodes in V and the relations between them, e.g., purchases,
are represented as edges in E . Then, a GLRS model M(Θ) is
constructed and trained to generate optimal recommendation
results R with optimized model parameters Θ that are learned



from the topological and content information of G. Formally,

R = arg max
Θ

f(M(Θ)|G). (1)

Depending on the specific recommendation data and sce-
narios, the graph G and the recommendation target R can
be defined in various forms, e.g., G can be homogeneous se-
quences or heterogeneous networks while R can be predicted
ratings or ranking over items. The objective function f can
be the maximum utility [Wang et al., 2019f] or the maximum
probability to form links between nodes [Verma et al., 2019].

Contributions. The main contributions of this work are
summarized below:
• We systematically analyze the key challenges presented

by various GLRS graphs and categorize them from a data
driven perspective, providing a useful view to better under-
stand the important characteristics of GLRS.

• We summarize the current research progress in GLRS by
systematically categorizing the more technical state-of-the-
art literature.

• We share and discuss some open research directions of
GLRS for giving references to the community.

2 Data Characteristics and Challenges
Different objects are managed by an RS, e.g., users, items,
attributes. All of them are inter-connected with various types
of relations [Hu et al., 2019], e.g., social relations between
users, or interactions between users and items. This results
in different types of graphs that may be considered in an RS.
In this section, we first classify the various types of data used
in RS by considering their source and characteristics. For
each class, we analyze its characteristics, then discuss how to
better represent it with graphs, and finally indicate challenges
that these characteristics pose to building GLRS. A brief sum-
mary of these data types is provided in Table 1.

It is well known that the three key objects managed by an
RS are user, item and user-item interaction (interaction for
short), and thus all the data managed by an RS is related to
them. There are two broad types of data: user-item interac-
tion data, e.g., clicks and ratings of users for items, and side
information data, e.g., users’ profiles and items’ attributes
[Shi et al., 2014]. Depending on whether the temporal or-
der of the interactions is recorded or not, interaction data can
be classified into sequential interaction data and general in-
teraction data. Hence, we classify the data of an RS into three
classes: (1) general interaction data, (2) sequential interac-
tion data, and (3) side information data. Each class can be
further divided into multiple sub-classes (cf. Table 1).

2.1 GLRS Built on General Interaction Data
Interactions between users and items are usually represented
as an interaction matrix, where each row indicates one user
and each column indicates one item. Each entry in the ma-
trix captures an information about the type of occurred in-
teraction. Depending on the interaction type, the interac-
tion data can be divided into the explicit (i.e., users’ ratings
on items) and the implicit (e.g., click, view) [Zhang et al.,
2019b]. Then, the recommendation task based on this general

interaction data is usually formulated as a matrix completion
task [Zhang and Chen, 2020].

An interaction matrix can be naturally represented as a
user-item bipartite graph [Zha et al., 2001]. In this graph,
the user nodes and the item nodes constitute the two “parts”
respectively, while the interactions are represented as edges
connecting two nodes in different parts. Furthermore, an ex-
plicit interaction matrix can be represented as a weighted bi-
partite graph where each edge is labeled with a weight to in-
dicate the rating value. An implicit interaction matrix can be
represented as an unweighted bipartite graph where en edge
indicates a implicit interaction. Hence, from this graph based
perspective, the recommendation task is converted to link pre-
diction on the RS bipartite graph [Li and Chen, 2013].

The advantage of building a GLRS on a bipartite graph is
obvious. Since most users often interacted with only a small
proportion of the large amount of items, matrix completion
methods generally face data sparsity related and cold-start
problems as discussed in [Jamali and Ester, 2009]. A bipar-
tite graph based approach mitigates these issues by enabling
the information propagating widely among nodes to enrich
the information of those users and items with less interac-
tions [Wu et al., 2020b]. However, it is challenging how to
effectively and efficiently propagate the information between
users or items. This is particularly challenging in a bipar-
tite graph since no direct links exist between users or items,
and thus the information should be propagated via multi-hop
neighbour nodes. For instance, to propagate some informa-
tion from user u1 to a similar user u2 one needs to first prop-
agate it to a bridge item v1 connecting both users, and then to
u2 from v1.

While targeting this challenge, a variety of GLRS ap-
proaches have been developed. For weighted bipartite graphs,
there are mainly graph auto-encoder (e.g., graph convolu-
tional matrix completion [Berg et al., 2017]), Graph Convolu-
tional Networks (GCN) (e.g., multi-graph convolutional neu-
ral networks [Monti et al., 2017], stacked and reconstructed
GCN [Zhang et al., 2019a]), and Graph SAmple and aggre-
GatE (GraphSage) (e.g., inductive graph-based matrix com-
pletion [Zhang and Chen, 2020]). For unweighted bipartite
graphs, there are mainly random walk (e.g., RecWalk [Niko-
lakopoulos and Karypis, 2019]), graph embedding (e.g.,
high-order proximity for implicit recommendation [Yang et
al., 2018], collaborative similarity embedding [Chen et al.,
2019]), GCN (e.g., spectral collaborative filtering [Zheng et
al., 2018], lightGCN [He et al., 2020], low-pass collabora-
tive filter [Yu and Qin, 2020], multi-behavior GCN [Jin et al.,
2020]), and GraphSage (e.g., neural graph collaborative fil-
tering [Zheng et al., 2018]). The gist of these approaches will
be discussed in Section 3.

2.2 GLRS Built on Sequential Interaction Data
A sequential interaction data set is a collection of sequences
of user-item interactions (e.g., click, purchase) registered dur-
ing a given time period, and ordered by their time stamp. Ac-
cording to the number of interaction types included in a se-
quence, a sequential interaction data set can be divided into
single-type interaction data set where only one type of inter-
actions is included, and multi-type interaction data set where



Table 1: A summary of data in RS, the representing graph, and the corresponding GLRS approach

Data Class Data Subclass Representing Graph Representative Approach Category

General interaction
Explicit interaction Weighted bipartite graph Graph auto-encoder[1], GCN[2], GraphSage[3]

Implicit interaction Unweighted bipartite graph Random walk[4], graph embedding[5], GCN[6], GraphSage[7]

Sequential interaction
Single-type interactions Directed homogeneous graph GGNN[8], GraphSage[9], GAT[10]

Multi-type interactions Directed heterogeneous graph GraphSage[11]

Side information

Attribute information Heterogeneous graph Graph embedding[12], GAT[13]

Social information Homogeneous graph Random walk[14], graph embedding[15], GAT[16]

External knowledge Tree or heterogeneous graph Graph embedding[17], GCN[18]

[1][Berg et al., 2017];[2][Monti et al., 2017];[3][Zhang and Chen, 2020];[4][Nikolakopoulos and Karypis, 2019];[5][Chen et al., 2019];[6][He et al., 2020];[7][Zheng et al., 2018];[8][Wu et al., 2019b];[9][Ma et al., 2020]
[10][Qiu et al., 2019];[11][Wang et al., 2020b];[12][Shi et al., 2018];[13][Wang et al., 2019f];[14][Jamali and Ester, 2009];[15][Wen et al., 2018];[16][Fan et al., 2019];[17][Gao et al., 2019];[18][Wang et al., 2019b]

multiple types of interactions are included. Multi-type inter-
actions like view, click and purchase co-happening in one se-
quence are very common in practice [Wang et al., 2020b]. For
a given user u, a single-type interaction sequence is usually
recorded as a sequence of interacted with items (denoted as
v), e.g., {v1, ..., vn}, while a multi-type interaction sequence
is recorded as a sequence of 〈interaction type, item〉 pairs,
e.g., {click v1, click v2, ..., purchase vn}. An RS built on
sequential interaction data is formalized as a Sequential Rec-
ommender System (SRS) which takes a sequence of historical
interactions as input to predict the possible next interaction(s)
[Quadrana et al., 2018; Wang et al., 2019e].

A sequential interaction data set can be represented as a
directed graph where each interaction sequence corresponds
to one path in the graph [Wu et al., 2019b]. In each path,
the interactions serve as the nodes and a directed edge be-
tween any adjacent nodes indicates the order of interac-
tions. In a multi-type interaction sequence, each element is a
〈interaction type, item〉 pair, which results in a compound
node composed of two parts. Note that in some cases one
user may have multiple identical interactions happening in a
sequence (e.g., click the same items multiple times), resulting
in a path consisting of one or more loops [Wu et al., 2019b].

The advantages of building SRS on directed graph lies in
the strong capability of graph learning to represent and model
even the most complicated transitions in a sequence of in-
teractions. There are usually complicated transitions which
deviate from simple one-way consecutive time series pat-
terns [Wang et al., 2020a] over sequential interactions, espe-
cially when there are multiple identical interactions in one se-
quence [Wu et al., 2019b]. Such transitions can be well repre-
sented by the multi-direction connections in a graph and well
learned by the information aggregation from neighbour nodes
of different directions in graph learning [Wu et al., 2019b;
Xu et al., 2019]. However, building SRS on a directed graph
is still challenging. In particular it is critical how to con-
struct a graph to effectively represent the sequential inter-
action data with minimal information loss, and how to prop-
agate information on the graph to effectively model even the
most complicated transitions.

While targeting these challenges, various SRS have been
built based on graph learning. Most of the studied approaches
focus on single-type interaction data, including Gated Graph
Neural Networks (GGNN) (e.g., session-based recommenda-
tion with GNN [Wu et al., 2019b] and graph contextualized
self-attention networks [Xu et al., 2019]), GraphSage (e.g.,

memory augmented GNN [Ma et al., 2020]), and Graph AT-
tention networks (GAT) (e.g., full graph neural network [Qiu
et al., 2019]). Limited approaches for multi-type interac-
tion data include GraphSage (e.g., multi-relational GNN for
session-based prediction [Wang et al., 2020b]).

2.3 GLRS Incorporating Side Information Data
Interaction data is often sparse [Hu et al., 2019], thus is not
sufficient for correctly capturing the users’ preferences and
item characteristics. Hence, various types of side informa-
tion, e.g., attribute information and social information, have
been used to alleviate such an issue. In this section, we dis-
cuss three main types of side information: (1) attribute infor-
mation, (2) social information, and (3) external knowledge.

GLRS Incorporating Attribute Information
Attribute information mainly includes user attributes (e.g.,
gender, age), and item attributes (e.g., category, price) [Wang
et al., 2017; Han et al., 2018]. A user (item) attribute data set
is usually recorded as a user (item) information table where
each row indicates one user (item) and each column is one at-
tribute. Attribute information is often combined with general
or sequential interaction data to perform recommendations.
Given a data set, the combination of interaction data and at-
tribute data naturally results in a heterogeneous graph. In
such a graph, three types of nodes, i.e., user node, item node
and attribute value node, and at least two types of edges exist.
Specifically, in the combination of general interaction data
and attribute data, in addition to user-item edges (cf. Sec.
2.1), there are user (or item)-attribute value edge represent-
ing the relations between user (or item) and attributes. In
the combination of sequential interaction data and attribute
data, in addition to the directed interaction-interaction edges
(cf. Sec. 2.2), there are also item-attribute value edges. Con-
sequently, the recommendation task here becomes the pre-
diction of the interactions by learning the complex relations
embedded in the above mentioned heterogeneous graph.

Heterogeneous graphs combine two different types of in-
formation, i.e., interaction information and attribute informa-
tion, hence enabling information propagation among differ-
ent types of nodes, and better coping with the mentioned data
sparsity problem. However, it is challenging to selectively
aggregate those useful attribute information to improve the
recommendation performance.

GLRS targeting such a challenge include (heteroge-
neous) graph embedding (e.g., entity2rec [Palumbo et al.,



2017] based on node2vec, heterogeneous preference embed-
ding [Chen et al., 2016] and heterogeneous network embed-
ding for recommendation [Shi et al., 2018]), and GAT (e.g.,
knowledge graph attention network [Wang et al., 2019f]).

GLRS Incorporating Social Information
Social information relates to the commonly existing social
relations between users. A particular type of social relation
among the users in a data set naturally forms a homogeneous
social graph where each user corresponds to a node and each
social link (e.g., friend relation) between two users corre-
sponds to an edge. In an RS, the social graph can be mainly
used for two tasks: (1) social recommendation (recommend-
ing items to users by incorporating social information) [Fan
et al., 2019], and (2) friend recommendation (recommend-
ing users to a given user by predicting the possible social
links) [Huang et al., 2015].

Social recommendation. Social relations enable social in-
fluence diffusion among users [Wu et al., 2020a] and thus
help better understand users’ preferences. The combination
of social information and general or sequential user-item in-
teraction data naturally results in a heterogeneous graph com-
prising two parts. The first is the bipartite graph derived from
the general interaction data (cf. Sec. 2.1) or the directed graph
extracted from the sequential interaction data (cf. Sec. 2.2),
while the second part is the social graph connecting the users.
Obviously, two heterogeneous types of information (i.e., in-
teraction information and social information) are contained in
the graph. Hence, the RS must be able to effectively leverage
this heterogeneous graph to predict the unknown user-item
interactions.

Such an approach helps better understand a user’s prefer-
ence by considering the influence of her neighbours in a so-
cial graph. However, on one hand, it is not clear how many or-
ders of neighbours should be considered to correctly compute
this influence on a given user. On the other hand, different
neighbours usually influence a user to different degrees [Wu
et al., 2020b]. Hence, it is a challenge to appropriately model
the influence of other users to a given user.

Typical approaches targeting this challenge include ran-
dom walk (e.g., Trust-walker [Jamali and Ester, 2009]), graph
embedding [Wen et al., 2018] and GAT (e.g., GraphRec [Fan
et al., 2019] and improved diffusion network [Wu et al.,
2020a]). All these works focus on combining social graph
and general interactions, while limited works combine social
graph and sequential interactions [Song et al., 2019].

Friend recommendation. By using the aforementioned
homogeneous social graph, friend recommendation is per-
formed as a link prediction task on such graph [Yin et al.,
2010]. Specifically, given a target user and the known
social links on the graph, friend recommendation first in-
fers the possible links between other users and the tar-
get user and then recommends those users with high prob-
abilities to link with the target user to her. The main
challenge lies in how to appropriately model the mutual-
influence between users. According to our analysis, ran-
dom walk based approaches [Backstrom and Leskovec, 2011;
Bagci and Karagoz, 2016] are more common in order to ad-

dress this challenge. Other approaches include graph embed-
ding [Verma et al., 2019].

GLRS Incorporating External Knowledge
External knowledge, e.g., item taxonomy and semantic re-
lations between concepts, related to users and items usually
contributes to a deeper understanding of the users’ preference
and item characteristics [Wang et al., 2018a], and ultimately
improving recommendation performance. Such knowledge
is usually represented as a knowledge graph where various
types of objects (e.g., users, movies, movie directors) are
represented as nodes and the relations between them (e.g.,
movie-director relation) are represented as edges [Wang et
al., 2019f]. This graph is often combined with the graph
composed by the general or sequential interaction data, giving
rise to a more complex and heterogeneous graph. There are
mainly two types of external knowledge commonly utilized
in RS: item/user ontology and common knowledge.

GLRS incorporating ontology knowledge. The ontology
of users or items is usually represented as a hierarchical tree-
like graph where the hierarchical relations between users or
items are recorded. A type of commonly utilized ontology
knowledge for recommendations is item taxonomy informa-
tion [Huang et al., 2019]. An example of such a tree graph
is used in Amazon.com, where the category information of
products is used to organize all the items offered by the plat-
form. In that graph, the root node corresponds to the coarsest-
grained category and the leaf nodes represent specific items.

The incorporation of item ontology knowledge enables a
better understanding of the users’ multi-level preferences to-
wards items, and thus helps improving the explainability of
the recommendations [Gao et al., 2019]. However, it remains
a challenge to propagate users’ preferences over items along
the hierarchy tree graph to extract the multi-level preferences.

Representative works targeting such a challenge include
graph embedding based approaches [Wang et al., 2018b;
Gao et al., 2019], aimed at learning more informative item
embedding for general recommendations, and memory net-
work on graphs to learn coarse-grained-preference represen-
tation for sequential recommendations [Huang et al., 2019].

GLRS incorporating common knowledge. Common
knowledge refers to the wide range of relations between the
various entities managed by an RS. It includes, but is not
limited to, general semantic relations between entities (e.g.,
the relations among bread, food, bakery item from Microsoft
Concept Graph1) [Sheu and Li, 2020], and domain-specific
relations between entities (e.g., the relations between movies,
directors, genre) [Gao et al., 2020]. Due to the diversity of
these entities and their relations, common knowledge is usu-
ally represented as a heterogeneous and complex graph where
different types of nodes and edges exist [Guo et al., 2020].

The incorporation of common knowledge benefits the ex-
ploration and exploitation of various external implicit rela-
tions between users and/or items, improving recommendation
performance. However, it remains a challenge to effectively
propagate information between different types of entities via

1https://concept.research.microsoft.com/



different types of links between them, to obtain coherent and
useful information for the recommendations.

Representative works targeting this challenge include
graph embedding methods [Wang et al., 2019c] (especially
meta-path based embedding [Zhao et al., 2017; Sun et al.,
2018; Shi et al., 2018; Wang et al., 2019g]) to wisely learn
the embedding of heterogeneous entities and relations, and
GNN based methods (especially GCN [Wang et al., 2019b]
an GAT [Wang et al., 2019f]) to iteratively aggregate the in-
formation from neighbour nodes.

3 Graph Learning Approaches for RS
In this section, we introduce graph learning based techniques,
which offer solutions to the challenges faced by GLRS, which
were discussed in Section 2. We first provide a technical cat-
egorization of the solutions, and then we discuss the gist of
each solution together with the achieved progresses.

The categorization of the approaches to GLRS is presented
in Figure 2. GLRS are divided into three categories, and some
categories are further divided into sub-categories.

3.1 Random Walk Approach
Random walk based RS have been extensively studied in the
past years and have been widely employed on various types
of graphs (e.g., social graphs, sequence graphs). Generally,
a random walk based RS first let a random walker to walk
on a given graph with a predefined transition probability for
each step, in order to model the implicit preference or inter-
action propagation among users and/or items, and then takes
the probability the walker lands on nodes after certain steps
to rank these candidate nodes for recommendations. Random
walk based RS are particularly suitable for capturing the com-
plex, higher-order and indirect relations among various types
of nodes (e.g., users and items) on the graph, and thus, can
address important challenges for GLRS especially those built
on heterogeneous graphs.

There are different variants of random walk based RS. Be-
sides the basic random walk based RS [Baluja et al., 2008],
random walk with restart based RS [Bagci and Karagoz,
2016; Jiang et al., 2018] is a representative type of several
variants. It sets a constant probability to jump back to the
starting node in each transition and it is generally used in
graphs containing many nodes to avoid leaving the particu-
lar context of the starting node.

Although widely applied, the drawbacks of random walk
based RS are clear: (1) they need to generate ranking scores
on all candidate items at each step for each user, lead-
ing to low efficiency; (2) unlike most of the learning-based
paradigms, they are heuristic-based, lacking model parame-
ters to optimize the recommendation objective.

3.2 Graph Embedding Approach
Graph embedding is an effective technique to analyze the
complex relations embedded on graphs and has been rapidly
developing in recent years. It maps each node into a low-
dimension embedding vector which encodes the graph struc-
ture information. Researchers introduced graph embedding
to model the complex relations between various nodes (e.g.,
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Figure 2: Classifying GLRS approaches from technical perspective

users, items) and they came up with the novel approach of
Graph Embedding based RS (GERS). Depending to the spe-
cific embedding approach that is used, GERS can be divided
into three classes: (1) Graph Factorization based RS (GFRS),
(2) Graph Distributed Representation based RS (GDRRS),
and (3) Graph Neural Embedding based RS (GNERS).

Graph Factorization based RS (GFRS). GFRS first fac-
torizes the inter-node commuting matrix based on meta-path
on the graph in order to obtain the embedding of each node
(e.g., a user or an item), which are then used as input of the
subsequent recommendation task [Wang et al., 2019h]. By
doing so, the complex relations between nodes in the graph
are encoded into the embedding to improve the recommenda-
tions. Due to their capability to handle the heterogeneity of
the nodes, GFRS have been widely applied to capture rela-
tions between different types of nodes, e.g., users and items.
However, although being simple and effective, such models
may easily suffer from the sparsity of the observed data.

Graph Distributed Representation based RS (GDRRS).
Differently from GFRS, GDRRS usually follow Skip-gram
model [Mikolov et al., 2013] in order to learn a distributed
representation of each user or item in a graph. They encode
information about the user or item and its adjacent relations
into a low-dimensional vector [Shi et al., 2018], which is
then used for the subsequent recommendation step. Specif-
ically, GDRRS usually first use random walk to generate a
sequence of nodes that co-occurred in one meta-path and then
employ the skip-gram or similar models to generate node rep-
resentations for recommendations. By exploiting its power-
ful capability to encode the inter-node connections in a graph,
GDRRS are widely applied to both homogeneous and hetero-
geneous graphs for capturing the relations between the ob-
jects managed by the RS [Cen et al., 2019]. GDRRS have
shown their great potential in recent years due to their sim-
plicity, efficiency and efficacy.

Graph Neural Embedding based RS (GNERS). GNERS
utilize neural networks, like Multilayer-perceptron, auto-
encoder, to learn users or items embedding. Neural embed-
ding models are easy to integrated with other downstream
neural recommendation models (e.g., RNN based ones) to
build an end-to-end RS [Han et al., 2018]. To this end, GN-
ERS have been widely applied to a variety of graphs like at-
tributed graphs [Han et al., 2018], interaction combined with
knowledge graphs [Hu et al., 2018; Cen et al., 2019].



3.3 Graph Neural Network Approach
Graph Neural Networks (GNN) apply neural networks tech-
niques on graph data. Leveraging the strength of GNN in
learning informative representations, several RS have used
GNN to address the most important challenges posed by
GLRS. By considering a model perspective, GNN based RS
can be mainly categorized into three classes: (1) Graph AT-
tention network based RS (GATRS), (2) Gated Graph Neural
Network based RS (GGNNRS), and (3) Graph Convolutional
Network (including GraphSage) based RS (GCNRS).
Graph ATtention network based RS (GATRS). Graph
ATtention networks (GAT) introduce attention mechanisms
into GNN to discriminatively learn the different relevance and
influence degree of other users (items) w.r.t. the target user
(item) on a given graph. GATRS are based on GAT for pre-
cisely learning inter-user or item relations. In such a case, the
influence of the more important users or items, w.r.t. a spe-
cific user or item, is emphasized, which is more in line with
the real-world cases and this has been shown to be beneficial
for the recommendations. Due to their good discrimination
capability, GAT are widely used in different kinds of graphs
including social graphs [Fan et al., 2019], item session graphs
[Xu et al., 2019], and knowledge graphs [Wang et al., 2019f].
Gated Graph Neural Network based RS (GGNNRS).
Gated graph neural networks (GGNN) introduce the Gated
Recurrent Unit (GRU) into GNN to learn the optimized node
representations by iteratively absorbing the influence of other
nodes in a graph to comprehensively capture the inter-node
relations. GGNNRS are built on GGNN to learn the user or
item embeddings for recommendations by comprehensively
considering the complex inter-user or inter-item relations.
Due to their capability to capture the complex relations be-
tween nodes, GGNN are widely used to model the complex
transitions between items in a sequence graph for sequen-
tial recommendations [Wu et al., 2019b], or to model the
complex interactions between different categories of fashion
products for fashion recommendations [Cui et al., 2019], and
they have achieved superior recommendation performance.
Graph Convolutional Network based RS (GCNRS).
Graph Convolutional Networks (GCN) generally learn how
to iteratively aggregate feature information from local graph
neighbor nodes by leveraging both graph structure and node
feature information. In general, by utilizing the convolution
and pooling operations, GCNs are capable of learning infor-
mative embeddings of users and items by effectively aggre-
gating information from their neighborhoods in graphs. GC-
NRS are built on GCN to learn the user or item embeddings in
a graph while exploiting both the complex relations between
users or/and items and their own content information for rec-
ommendations [Ying et al., 2018]. Thanks to the powerful
feature extraction and learning capability, particularly their
strength in combining the graph structure and node content
information, GCN are widely applied to a variety of graphs in
RS to build GCNRS and are demonstrated to be very effec-
tive. For instance, GCN are used for influence diffusion on
social graphs in social recommendations [Wu et al., 2019a],
for mining the hidden user-item connection information on
user-item interaction graphs, for alleviating the data sparsity

problemn in collaborative filtering [Wang et al., 2019a], and
for capturing inter-item relatedness by mining their associ-
ated attributes on knowledge graphs [Wang et al., 2019b].

4 GLRS Algorithms and Datasets
The source code of most of the representative GLRS algo-
rithms is publicly accessible. In Table 2, to facilitate the ac-
cess for empirical analysis, we summarize source codes of
algorithms for GLRS which take various input data and use
different learning approaches for different learning tasks. The
listed algorithms are carefully selected and are commonly
used as baselines in existing work.

In addition to algorithms, datasets are another important
part for empirical analysis of GLRS approaches. In order to
facilitate the empirical analysis of the surveyed algorithms, in
Table 3 we also list public and real-world datasets with differ-
ent characteristics from various domains. These datasets are
commonly used for evaluating GLRS algorithms.

5 Open Research Directions
GLRS are fast developing. Although substantial results have
been achieved, some challenges still remain. By matching
the demonstrated challenges to the research progress already
achieved, we have identified some open research directions.

Self-evolutionary RS with dynamic-graph learning. In
real-world RS, users, items and the interactions between
them, keep evolving over time [Wang et al., 2019d]. This
originates graphs with dynamic topology, and such dynamics
could have direct impacts on the user and requirement mod-
eling, causing even a clear change of recommendation results
over time. However, this issue is still underestimated in exist-
ing GLRS. Therefore, it is a promising future research direc-
tion to design self-evolutionary RS over dynamic graphs.

Explainable RS with causal graph learning. Causal in-
ference is a major technique used to discover the causal rela-
tions between objects or actions. Although some progress has
been achieved in explainable RS, we are is still far away from
achieving a complete understanding of the reasons and in-
tents behind user choice behaviours, which is a critical step to
make reliable and explainable recommendations [Zhang and
Chen, 2018]. To this end, it is another promising direction to
construct explainable RS with causal graph learning.

Cross-domain RS with multiplex graph learning. In re-
ality, the data and interactions for recommendation could be
derived from multiple domains, including various sources,
systems, and modalities [Zhu et al., 2019]. These are inter-
correlated and must collaboratively contribute to the recom-
mendations [Zhu et al., 2021]. Consequently, the interactions
in cross-domain RS can be represented by multiplex networks
where nodes may or may not be interconnected with other
nodes in other layers. As a result, the new generation cross-
domain RS potentially works with multiplex graph learning.

High-efficiency online RS with large-scale graph learning.
An inevitable issue in real RS is the scale of data, which is
often large and leads to high cost in terms of both time and
space. This issue is even more important in GLRS since the



Table 2: A list of representative open-source GLRS algorithms 2

Algorithm Input Data Learning Task Learning Approach Venue Link

GC-MC[1] Explicit interaction Rating prediction Graph auto-encoder KDD’2018 DL https://github.com/riannevdberg/gc-mc

MGCNN[2] Explicit interaction Rating prediction GCN NIPS’2017 https://github.com/fmonti/mgcnn

IGMC[3] Explicit interaction Rating prediction GraphSage ICLR’2020 https://github.com/muhanzhang/IGMC

RecWalk[4] Implicit interaction Click prediction Random walk WSDM ’2019 https://github.com/nikolakopoulos/RecWalk

PinSage[5] Implicit interaction Click prediction GraphSage KDD’2018 https://github.com/yoonjong12/pinsage

CSE[6] Implicit interaction Click prediction Graph embedding WWW’2019 https://github.com/cnclabs/proNet-core

LightGCN[7] Implicit interaction Click prediction GCN SIGIR’2020 https://github.com/kuandeng/LightGCN

SpectralCF[8] Implicit interaction Click prediction GraphSage RecSys’2018 https://github.com/lzheng21/SpectralCF

SR-GNN[9] Single-type sequential interaction Next-item prediction GGNN AAAI’2019 https://github.com/CRIPAC-DIG/SR-GNN

MA-GNN[10] Single-type sequential interaction Next-item prediction GraphSage AAAI’2020 https://github.com/cynricfu/MAGNN

FGNN[11] Single-type sequential interaction Next-item prediction GAT CIKM’2019 https://github.com/RuihongQiu/FGNN

MGNN-SPred[12] Multi-type sequential interaction Next-item prediction GraphSage WWW’2020 https://github.com/Autumn945/MGNN-SPred

HERec[13] Explicit interaction + Attribute information Rating prediction Graph embedding TKDE’2018 https://github.com/librahu/HERec

KGAT[14] Implicit interaction + Attribute information Click prediction GAT KDD’2019 https://github.com/xiangwang1223/

TrustWalker[15] Explicit interaction + Trust relation Rating prediction Random walk KDD’2009 https://github.com/Antili/TrustWalker

GraphRec[16] Explicit interaction + Social relation Rating prediction GAT WWW’2019 https://github.com/wenqifan03/GraphRec-WWW19

KGNN-LS[17] Implicit interaction + External knowledge Click prediction GAT KDD’2019 https://github.com/hwwang55/KGNN-LS

[1][Berg et al., 2017];[2][Monti et al., 2017];[3][Zhang and Chen, 2020];[4][Nikolakopoulos and Karypis, 2019];[5][Ying et al., 2018]; [6][Chen et al., 2019];[7][He et al., 2020];[8][Zheng et al., 2018];[9][Wu et al., 2019b];
[10][Ma et al., 2020];[11][Qiu et al., 2019];[12][Wang et al., 2020b];[13][Shi et al., 2018];[14][Wang et al., 2019f];[15][Jamali and Ester, 2009];[16][Fan et al., 2019];[17][Wang et al., 2019b]

2. More up-to-date resource on GLRS can be found at: https://github.com/shoujin88/graph-learning-based-recommender-systems-GLRS-.

Table 3: A list of commonly used and publicly accessible real-world datasets for GLRS

Dataset Domain Information Included # Interactions Reference Link

MovieLens-1M Movie Explicit interaction 1,000,209 [Zheng et al., 2018] https://grouplens.org/datasets/

HetRec Movie Explicit interaction 855,598 [Zheng et al., 2018] https://grouplens.org/datasets/

Amazon instant video Video Explicit interaction 583,933 [Zheng et al., 2018] http://jmcauley.ucsd.edu/data/amazon/

Gowalla POI Implicit interaction 1,027,370 [He et al., 2020] http://snap.stanford.edu/data/loc-gowalla.html

Yelp 2018 POI Implicit interaction 1,561,406 [He et al., 2020] https://www.yelp.com/dataset

Amazon-book E-commerce Implicit interaction 2,984,108 [He et al., 2020] https://github.com/uchidalab/book-dataset

Yoochoose 1/4 E-commerce Stream of clicks 8,326,407 [Wu et al., 2019b] http://2015.recsyschallenge.com/challege.html

Diginetica E-commerce Stream of clicks 982,961 [Wu et al., 2019b] https://competitions.codalab.org/competitions/11161

Book-crossing Book Ratings and attribute information 1,000,000 [Wang et al., 2019b] http://www2.informatik.uni-freiburg.de/∼cziegler/BX/

Last.FM Music Implicit interaction, social and tag 92,834 [Wang et al., 2019b] https://grouplens.org/datasets/hetrec-2011/

Epinions E-commerce Rating, trust relation 764,352 [Fan et al., 2019] http://alchemy.cs.washington.edu/data/epinions/

Ciao E-commerce Rating, trust relation 283,319 [Fan et al., 2019] https://www.cse.msu.edu/∼tangjili/datasetcode/truststudy.htm

Amazon-toys and games E-commerce Implicit interaction 167,597 [Gao et al., 2019] http://jmcauley.ucsd.edu/data/amazon

Amazon-digital music Music Implicit interaction 64,706 [Gao et al., 2019] http://jmcauley.ucsd.edu/data/amazon

graph structure data is usually even larger and requires more
time and space to be processed, let alone to perform complex
machine learning techniques on it to generate recommenda-
tions. Therefore, it is necessary to study more efficient algo-
rithms to speed up large-scale online processing and learning
to keep updating model to generate timely recommendations.

6 Conclusions
As one of the most important applications of Artificial Intelli-
gence (AI), Recommender Systems (RS) can be found nearly
at every corner of our daily lives. Graph Learning (GL), as
one of the most promising AI techniques, has shown a great
capability to learn the complex relations among the various
objects managed by an RS. This has launched a totally new

RS paradigm: Graph Learning based Recommender Systems
(GLRS), which is of great potential to be the next-generation
of RS. It is our hope that this review has provided a compre-
hensive and self contained overview of the recent progress,
challenges as well as future research directions in GLRS to
both the academia and industry.
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