
1541-1672 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MIS.2020.2997362, IEEE Intelligent
Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Jointly Modeling Intra- and Inter-transaction
Dependencies with Hierarchical Attentive

Transaction Embeddings for Next-item
Recommendation

Shoujin Wang, Longbing Cao, Senior Member, IEEE, Liang Hu, Shlomo Berkovsky,
Xiaoshui Huang, Lin Xiao, Wenpeng Lu

Abstract—A transaction-based recommender system (TBRS) aims to predict the next item by modeling dependencies in transactional
data. Generally, two kinds of dependencies considered are intra-transaction dependency and inter-transaction dependency. Most
existing TBRSs recommend next item by only modeling the intra-transaction dependency within the current transaction while ignoring
inter-transaction dependency with recent transactions that may also affect the next item. However, as not all recent transactions are
relevant to the current and next items, the relevant ones should be identified and prioritized. In this paper, we propose a novel
hierarchical attentive transaction embedding (HATE) model to tackle these issues. Specifically, a two-level attention mechanism
integrates both item embedding and transaction embedding to build an attentive context representation that incorporates both intra-
and inter-transaction dependencies. With the learned context representation, HATE then recommends the next item. Experimental
evaluations on two real-world transaction datasets show that HATE significantly outperforms the state-of-the-art methods in terms of
recommendation accuracy.
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1 INTRODUCTION

G IVEN a transactional context, which consists of a set of
recent transactions together with several existing items in

the current transaction, a transaction-based recommender system
(TBRS) aims to predict the next item that a user is likely to choose.
It is usually formalized as a transaction-based next-item recom-
mendation problem. The set of recent transactions is treated as
the inter-transaction context while the already-chosen items in the
current transaction form the intra-transaction context. Generally
speaking, the main challenge of next-item recommendations is to
comprehensively capture the complex coupling relationships and
interactions [1] embedded in the transactional data. In this work,
we focus on dependency, which can be categorized into the intra-
transaction dependency between the intra-transaction context and
the target items and the inter-transaction dependency between the
inter-transaction context and the current transaction.

In the transactional data example shown in Fig. 1, a user has
two recent transactions t1 and t2 and the current transaction t3.
We consider item milk from t3 as the target to recommend and all
other prior transaction information as the corresponding context.
Existing transaction-based next-item recommender systems (RSs)
may suggest salad by only considering the intra-transaction items
apple and orange in t3, which may not be accurate as salad was
just bought in t2. Moreover, from the intra-transaction perspective,
the choice of milk may depend much more on bread than on
apple and orange. In such a case, a TBRS should be able to
pay more attention to bread when modeling intra-transaction
dependency. From the inter-transaction perspective, milk may
also be influenced by cake and egg bought in t1 but less related
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Fig. 1: Example of shopping transactions. Thicker lines and darker
circles indicate stronger dependencies and the items more relevant to
milk, while cIa(cIe) represents the intra (inter)-transaction context.

to t2. This indicates that a good TBRS should not only take t1
and t2 into account but also concentrate much more on t1. This
example shows the importance of inter-transaction dependency
and the significance of discriminating the contribution scales of
different items and transactions according to their relevance to the
next chosen item.

Different approaches have been proposed to model the transac-
tion dependencies for next-item recommendations. Pattern-based
RSs predict the next item by using mined frequent patterns.
Although easy to implement, the “support” constraint filters out
many infrequent but interesting items and thus lead to information
loss. Markov chain (MC) is an alternative way, but it only captures
the first-order dependency between items [2]. To capture higher
order dependency in sequential data, recurrent neural networks
(RNN) have been successfully applied [3]. But the high computa-
tional cost caused by their complex structure prevents application
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to large data. Moreover, both MC and RNN assume a rigid order
of items and thus the next choice is assumed to depend more on
the recent items. Therefore, those truly relevant contextual items
may not be paid enough attention to. To address such issues,
researchers have incorporated the attention mechanism into RNN
[4] or embedding model [5]. However, all these approaches only
capture intra-transaction dependency while ignoring the rich inter-
transaction one, which may impact the next item, especially for
periodic transactions. Although a variety of efforts have been
made to incorporate the cross-transaction dependency with a
hierarchical network structure, they either partly ignored the inter-
transaction transition relations by simply merging all historical
transactions together to form one long-term set [6], or brought
false dependency by modelling all historical transactions as a
rigidly-ordered sequence [7], which may not always be the real-
world case. Instead, not all recent transactions relate to the next
choice, a priority should be given to those truly-related ones.

This paper addresses the above issues by proposing a novel
hierarchical attentive transaction embedding (HATE) model.
HATE first builds an attentive embedding for each transaction
by emphasizing the relevant items in it and then builds attentive
inter-transaction context embedding by highlighting those recent
transactions more related to the current transaction and the next
choice without rigid order assumption both within and between
transactions. Simultaneously, an attentive intra-transaction context
embedding is built on the items chosen in the current transaction.
Finally, a hybrid context representation is achieved by combining
both inter- and intra-transaction context embedding for the next-
item prediction.

Considering the large number of items in real-world data, it
turns out to be practical to incorporate the attention mechanism
into a shallow network in building a concise but powerful structure
for attentive context representation learning. As a result, the
proposed model is capable of capturing both intra- and inter-
transaction dependency attentively and the resultant context rep-
resentation is more informative to predict the next item. Our vali-
dation on two real-world transaction datasets shows the necessity
of combining the inter-transaction dependency with the attention
mechanism. Accordingly, major contributions include:

• A hierarchical attentive transaction embedding model
is proposed to learn the context representation for
transaction-based item recommendations by attentively
capturing both intra- and inter-transaction dependencies.

• A shallow and wide network is designed for efficiently
learning the context representation over a large number of
items and transactions.

In summary, our model relaxes the rigid order assumption
both over items within a transaction and over transactions, which
matches the real-word cases better. Empirical evaluation shows
that (1) HATE outperforms the state-of-the-art TBRSs on real-
world datasets by around 5%; (2) the incorporation of inter-
transaction context or attention mechanism achieves at least 10%
accuracy improvement.

2 RELATED WORK

Rule- and pattern-based RSs are well-studied recommendation
approaches [8]. To capture the transition between a sequence of
songs, [9] discovered sequential patterns for next-song recommen-
dations. Although being simple and effective, these methods often

lose infrequent items [10]. More importantly, they only capture
the co-occurrence relationships within transactions while ignoring
the available inter-transaction dependency.

Markov chain (MC) models offer another way to model inter-
item transitions. Personalized Markov Embedding (PME) gener-
ates the embeddings of users and items in an Euclidean space for
next-song recommendations [11]. Recently, to learn users’ per-
sonalized sequential check-in information, a personalized ranking
metric embedding method (PRME) was proposed for next POI
recommendations [12]. Both PME and PRME are first-order MC
models while the higher-order dependencies are ignored and the
rigid order assumption over data may not always be realistic. More
importantly, they are limited to the intra-transaction relations only,
neglecting the inter-transaction dependency, which may lead to
unreliable recommendations.

Recently, heuristics-based nearest neighbor (KNN) model was
employed for session-based recommendations. Both item-based
KNN [13] and session-based KNN [14] are proposed to model
the intra- and inter-session dependencies respectively. Generally,
it is good at capturing the natural co-occurrence based relations
between items and the similarity relations between sessions.
However, they lose the sequential dependencies over items and
sessions and they treat all items or sessions equally important.
Therefore, they cannot effectively emphasize those important
items or transactions for next item recommendations.

RNN is a good choice to capture the higher-order dependency
in TBRSs. Gated recurrent unit (GRU)-based RNN was proposed
to capture long term dependency within [3], [15] or between trans-
actions [16] , while hierarchical RNN [17] models were developed
to capture the sequential dependency both within and between
transactions. All these approaches model the intra- or inter-
transaction dependencies with a rigid order assumption, which
may violate the real-world case since the transaction behaviours
usually involve uncertainty and do not always follow a rigid order.

Recently, some researchers have introduced attention mech-
anisms into recommender systems to emphasize relevant and
important information. Specifically, [4] incorporated attention
mechanism into RNN to highlight those more important time-steps
when modeling intra-transaction dependencies, while [6] proposed
a hierarchical attention model to emphasize the relevant items
from both the current short-term set and the historical long-term
set. However, they still can not well capture the comprehensive
intra- and inter-transaction dependencies in most real-world cases
where both the order within and between transactions are relaxed
rather than rigid. To substantially address such issue, we propose
a hierarchical attentive transaction embedding model to learn a
context representation by attentively capturing both intra- and
inter-transaction dependencies for next-item recommendations.

3 PROBLEM STATEMENT

Given a transaction dataset, let T = {t1, t2...t|T |} be the set
of all transactions, such that each transaction t = {i1, i2...i|t|}
consists of a subset of items and is associated with a given
user and a specified timestamp, where |T | denotes the number
of transactions in T . All the items occurring in all transactions
constitute the whole item set I = {i1, i2...i|I|}. Note that the
items in a transaction t may not have a rigid order.

Given a target item is ∈ tj(j 6= 1), all other items in tj form
the intra-transaction context cIa = tj\is. The recent transactions
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Fig. 2: The HATE architecture: It first learns item embedding, then integrates the embedding into intra-transaction context embedding or
transaction embedding on which inter-transaction context embedding is learned. Both intra- and inter-transaction embedding is fed into the
output layer for target item prediction. AIa(AIe) represents the intra- and inter-transaction attention model.

from the same user that happened before tj form the inter-
transaction context cIe = {t1, t2...tj−1}. cIa and cIe together
constitute the transactional context c = {cIa, cIe}. Given the
context c, HATE is trained as a probabilistic classifier that learns to
predict a conditional probability distribution P (is|c). Therefore,
TBRS aims to rank all candidate items in terms of their conditional
probability over the given context.

4 MODELING AND LEARNING

4.1 The HATE Model
As shown in Figure 2, the proposed HATE model consists of two
main parts: the transactional context embedding part at the bottom
and the prediction part (output layer) at the top. The embedding
part contains two modules: inter-transaction context embedding
and intra-transaction context embedding.

4.1.1 Inter-transaction Context Embedding
Item embedding. For a given contextual item il from a transaction
t, we create an embedding mechanism to map its ID number
to an informative and low-dimensional vector representation in
the item embedding layer, where a K-dimensional real-valued
vector hl ∈ RK is used to represent item il. The input weight
matrix W1 ∈ RK×|I| is used to fully connect the input-layer
and item embedding-layer. Note that actually the lth column of
W1 encodes item il to a real-valued embedding hl as below.
Several different mapping approaches including logistic function
have been tried to map item ID to its embedding and the following
way is found to achieve the best performance in our case.

hl = W1
:,l (1)

Attentive transaction embedding. When the embeddings
of all the items in transaction t are ready, we can obtain the
embedding et ∈ RK of contextual transaction t by integrating
the embeddings of all items in t using the attention mechanism.
Specifically, the attentive transaction embedding is built as a
weighted sum of hl:

et =
∑
il∈t

αslhl, s.t.
∑
il∈t

αsl = 1 (2)

where αsl is the integration weight of contextual item il w.r.t. the
target item is, indicating the contribution scale of il to the choice
of is. In our model, to better capture the different contribution

scales of contextual items, we develop an attention layer to learn
the integration weights automatically and effectively. Compared
with assigning the weights manually under certain assumptions,
e.g., order assumption, or directly learning the weights without
the attention mechanism, our method not only works more flex-
ibly without assumptions but also emphasizes those important
items and reduces the interference from irrelevant ones. Next, we
demonstrate how the intra-transaction attention model achieves
this goal.

Intra-transaction attention. Similar to most attention mod-
els, we use a softmax layer to learn the weights of different
contextual items w.r.t the target item. In this way, items that are
more relevant to the target item are given larger weights, and vice
versa. The input of softmax is the transformation of each item’s
embedding:

αsl =
exp(σ(hl))∑
iv∈t exp(σ(hv))

(3)

σ(hl) = wαThl (4)

where wα is an item-level context vector shared by all contextual
items, which can be seen as a high level representation of a
fixed query “which item is relevant to the target item?” over
all the contextual items The vector is randomly initialized and
jointly learned during the training stage. As wα serves as a
weight vector connecting the item embedding layer to the intra-
transaction attention model, we denote it as an intra-transaction
attention weight, to be consistent with input and output weights.
Essentially, the importance of each item il is achieved by first
calculating the similarity between its embedding hl and the item
level context vector wα and then normalizing it into an importance
weight αsl through a softmax function.

Attentive inter-transaction context embedding. Inter-
transaction context embedding is built on top of the embedings of
transactions included in the inter-transaction context. Specifically,
the inter-transaction context embedding is computed as a weighted
sum of transaction embeddings:

eIe =
∑
tx∈cIe

βsxetx , s.t.
∑
tx∈cIe

βsx = 1 (5)

where βsx is the integration weight of transaction tx from the
inter-transaction context cIe for the target item is. It indicates
the relevance degree of tx to the current transaction, i.e., intra-
transaction context cIa, by modeling the interaction between tx
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and cIa in the inter-transaction attention modelAIe. More relevant
to the current transaction, tx will be more influential on the choice
of is, therefore βsx essentially implies the contribution scale of
transaction tx to the choice of the target item is.

Inter-transaction attention. Differently from the intra-
transaction attention model, except for the transactions from inter-
transaction context, we take the intra-transaction context as an
additional input to model the interaction between transactions as
indicated in Figure 2. We first use a matrix to model the inter-
actions between each inter-transaction and the intra-transaction
context, and then import the product of inter-transaction embed-
ding, interaction matrix and intra-transaction context embedding
into the attention model.

βsx =
exp(%(etx))∑

tf∈cIe
exp(%(etf ))

(6)

%(etx) = eTtxW
βeIa (7)

where Wβ is a transaction-level interaction matrix shared by
all the contextual transactions. It can be regarded as a high
level representation of a query “which transaction in the inter-
transaction context is relevant to the current one?”. This matrix
is randomly initialized and jointly learned during the training
process. We refer it to as the inter-transaction attention weight. eIa
is the embedding of intra-transaction context and its calculation
will be given shortly.

4.1.2 Intra-transaction Context Embedding
Given an intra-transaction context cIa consisting of multiple
chosen items in the current transaction, we first get the embedding
of each item with the aforementioned item embedding. Then
we integrate these embeddings attentively to build the intra-
transaction context embedding.

eIa =
∑
iz∈cIa

αszhz, s.t.
∑
iz∈cIa

αsz = 1 (8)

where hz is the embedding of an intra-transaction context item iz
and is calculated using Equation (1) while αsz is the integration
weight calculated using Equations (3) and (4).

4.1.3 Target Item Prediction
Once the embeddings of both intra- and inter-transaction contexts
are ready, we feed them into the output layer for the target item
prediction, as shown in the upper part of Figure 2. Here the output
weight matrix W2 ∈ R|I|×K and W3 ∈ R|I|×K are used to fully
connect the intra- and inter-transaction context embeddings to the
output layer. Specifically, given the context embeddings and the
weights, a score indicating the possibility of the choice of a target
item is under the context c is computed using:

Sis(c) = W2
s,:eIe +W3

s,:eIa (9)

where W2
s,: denotes the sth row of W2 and Sis(c) quantifies the

relevance of the target item is w.r.t. the given context c. Therefore,
the conditional probability distribution PΘ(is|c) is defined with
the commonly used softmax function:

PΘ(is|c) =
exp(Sis(c))

Z(c)
(10)

where Z(c) =
∑
i∈I exp(Si(c)) is the normalization constant

and Θ = {W1,wα,Wβ ,W2,W3} includes the model param-
eters. Therefore, a probabilistic classifier modeled by the proposed
HATE model is obtained to predict the target item and accordingly
recommend the next item.

4.2 Parameter Learning and Item Prediction
We now discuss how to learn the model parameters and predict
the next item using the trained model in this section.

A probabilistic classifier is built over the transaction data d =
〈c, ic〉, where c is the input context and ic is the observed output
conditional on c. Given a training dataset D = {〈c, ic〉}, the joint
probability distribution is obtained by:

PΘ(D) ∝
∏
d∈D

PΘ(ic|c) (11)

Therefore, the model parameters Θ can be learned by maximizing
the conditional log-likelihood (cf. Equation. (10)):

LΘ =
∑
d∈D

logPΘ(ic|c) (12)

Note that the evaluation of LΘ and its corresponding gradient
computation involve the normalization term Z(c), the computa-
tion of which is time consuming as it sums exp(Sic(c)) over all
the items for each training instance. The commonly used noise-
contrastive estimation (NCE) technique [18] is adopted here to
enhance the training efficiency. NCE uses a binary classifier to
distinguish samples from the data distribution from those with a
known noise distribution to avoid the high computation cost when
computing the normalization constant of the softmax.

Once the model parameters Θ have been learned, HATE is
ready to compute predictions and thus generate next-item recom-
mendations. Specifically, given an arbitrary transactional context
which contains both intra- and inter-transaction contexts indicating
prior transaction data of a user, the probabilities of choosing next
candidate items are calculated according to Equation (10), and a
ranking reflecting the priority of the candidate items is achieved.

5 EXPERIMENTS AND EVALUATION

5.1 Experimental Setup
5.1.1 Dataset Preparation
We evaluate our proposed method on two real-world grocery
store transaction datasets: a public dataset Dunnhumby1 and a
proprietary Australian national supermarket (ANS) dataset [19].
Dunnhumby includes transaction records of around 2,500 house-
holds shopping frequently at multiple stores of the same retailer
over two years. ANS contains transaction records of about 1,000
customers, collected by an Australian national supermarket chain
within a period of one year.

First, a sequence of transactions is extracted for every user
and then a sliding window is used to cut each user’s transactions
sequence into multiple triple-transaction units. For each unit, we
consider the first two transactions as the inter-transaction context
cIe and the last one as the current transaction. Our selection
is data-drive and is explained by the most frequently observed
transaction pattern of three transactions per week in the shopping
cycle. Each time one item from the current transaction is picked
up as the target item is and all others are considered as the intra-
transaction context cIa. We do this because the order information
over items within transactions is not provided and thus we relax
the rigid order assumption. As a result, the training and test
instances are built in the format of d = 〈c, ic〉(c = {cIe, cIa})
as illustrated in the previous section. Finally, we randomly select
20% of transactions that occurred in the last 30 days as the test
set and leave the remainder for training. The characteristics of the
datasets are shown in Table 1.

1. http://www.dunnhumby.com/sourcefiles
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TABLE 1: Statistics of experimental datasets

Statistics Dunnhumby ANS

#Transactions 65,001 99,987
#Items 10,292 11,996
Avg. Transaction Length 12.15 10.81
#Training Sequence of Trans. 149,606 258,561
#Training Instances 402,739 703,062
#Test Sequence of Trans. 7,874 13,608
#Test Instances 21,205 36,933

5.1.2 Comparison Methods and Metrics
We use the following methods as the evaluation baselines.

• PBRS: A typical pattern-based recommender which uses
mined frequent patterns to generate recommendations
[20].

• FPMC: A model that factorizes the personalized transition
matrix between items with pairwise interactions for next-
basket recommendation [21].

• PRME: A personalized ranking metric embedding model
(PRME) for next POI recommendations with a Markov chain
framework [12].

• GRU4Rec: A typical session-based RS built on RNN. It mod-
els the session sequence using a GRU-based RNN framework
[3].

• SWIWO: A shallow wide-in-wide-out network embedding
model for session-based RSs [22].

• NCSF: An RNN-based neural architecture to model both
intra- and inter-context for next item prediction [16].

• SHAN: A two-layer hierarchical attention network to learn
both users’ long- and short-term preferences for next item
prediction [6].

• ATE: A model similar to HATE that only utilizes the intra-
transaction context. This assesses the contribution of the inter-
transaction context.

• HTE: A model similar to HATE that replaces the inter-
transaction attention module with a fully-connected layer.
This assesses the effect of the inter-transaction attention
module.

Two common accuracy metrics are used in the evaluation.

• REC@K: measures the recall of the top-K ranked items
in the recommendation list. We choose K ∈ {10, 50}
as users are usually interested only in top items. Specif-
ically, for N top-K recommendations, the corresponding
REC@K is calculated:

REC@K =
1

N

N∑
j=1

|Rj ∩ isj | (13)

where Rj and isj are the jth recommendation list and the
corresponding true next item respectively.

• MRR: measures the mean reciprocal rank of the predictive
position of the true target item.

5.2 Performance Evaluation

5.2.1 Accuracy Evaluation
Table 2 and Table 3 show the obtained REC@10, REC@50 and
MRR on two real-world transaction datasets. We empirically set
the minimum support to 0.02 on both datasets in PBRS. The
information loss caused by filtering out infrequent items leads
to poor performance. To achieve the best performance, we set
the factor number to 10 for FPMC which performs not good

TABLE 2: Accuracy comparisons on Dunnhumby

Model REC@10 REC@50 MRR

PBRS 0.0817 0.0901 0.0421
FPMC 0.0333 0.0711 0.0317
PRME 0.0757 0.0912 0.0613
GRU4Rec 0.2018 0.3002 0.1216
SWOWI 0.2469 0.3379 0.1139
NCSF 0.2769 0.3828 0.1284
SHAN 0.2908 0.4308 0.1346

HATE 0.3012 0.4513 0.1421
ATE 0.2752 0.3754 0.1250
HTE 0.2752 0.4000 0.1218

TABLE 3: Accuracy comparisons on ANS

Model REC@10 REC@50 MRR

PBRS 0.0572 0.0765 0.0410
FPMC 0.0310 0.0555 0.0292
PRME 0.0611 0.0800 0.0522
GRU4Rec 0.1405 0.2951 0.0755
SWOWI 0.1400 0.3015 0.0805
NCSF 0.1501 0.3250 0.0895
SHAN 0.1616 0.3396 0.0932

HATE 0.1756 0.3515 0.0993
ATE 0.1542 0.2254 0.0805
HTE 0.1756 0.2755 0.0874

on both datasets, mainly caused by the data sparsity. Due to the
large numbers of transactions and items but limited interactions
between them, quite large but very sparse item transition matrices
are constructed to train this MF model. Following [12], the
embedding dimension is set to 60 for PRME. As a first-order
MC model, PRME is easy to lose information by learning the
transition probability over the successive item instead of the
whole context. In addition, the rigid order assumption set by
these models may not always match the real world purchasing
events. GRU4Rec achieves much better performance compared to
the above three methods by benefiting from its deep structure.
Building a flexible embedding on the whole context, SWIWO
is able to capture the complex intra-transaction dependency for
better recommendations. A common drawback of all these models
is that they are all limited to the intra-transaction dependency. In
contrast, NCSF performs better by incorporating inter-transaction
dependency for next-item prediction. However, it assumes a rigid
order assumption over historical transactions by employing RNN,
which may not be the case. SHAN attentively incorporate inter-
transaction dependencies and performs even better. But it breaks
down the structures of long-term transactions and put all of their
items into one pool, which may loss the intra- and inter-transaction
dependencies embedded in long-term transactions and thus reduce
the recommendation performance.

For our HATE model, the embedding dimension and the batch
size are empirically set to 50 and 30 respectively on both datasets.
Adagrad with an initial learning rate of 0.5 is applied to train the
model. By attentively learning the hierarchical dependencies em-
bedded in the inter-transaction context and then attentively com-
bining it together the intra-transaction dependency for next-item
prediction, HATE outperforms the best baseline SHAN by 4.64%
and 6.24% in average on Dunnhumby and ANS respectively,
which validates the advantage of our model. In particular, the
enhanced 10% performance of HATE compared to ATE and HTE
demonstrates the significance of incorporating inter-transaction
context and attention mechanism respectively. Particularly, the
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hierarchical attention mechanism helps to emphasize those truly
relevant items and transactions when modeling dependency. Note
that a minority of true target items are ranked very high in our
recommendation lists while some others are ranked very low,
leading that even the MRR is larger than 0.1 (cf. Table 2) but
the REC@10 is not so high as expected.

5.2.2 The Effect of Number of Incorporated Inter Transac-
tions

Generally speaking, a long inter-transaction context which con-
tains more recent transactions is more likely to include transac-
tions irrelevant to the current transaction and the next-item choice.
As a result, it is harder to identify and emphasize those truly
relevant transactions in a long context. To show the advantage of
attention mechanism in handling long contexts, we test the effect
of the number of incorporated inter-transactions on a subset of
Dunnhumby by selecting users with at least 6 transactions. Each
time a different number of recent transactions is considered as
the inter-transaction context. Figure 3 shows that HATE gains
larger margins compared with others when incorporating more
transactions, which demonstrates its ability to emphasize the rele-
vant transactions in longer inter-transaction contexts. We compare
here HATE and other three approaches because only these four
approaches can incorporate inter-transaction context.
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Fig. 3: HATE gains larger margins when incorporating more inter-
transactions.

6 CONCLUSIONS

This work proposes a hierarchical attentive transaction embedding
model HATE - a shallow and wide neural network for transaction
embedding. By incorporating both current transaction and recent
transactions, HATE is able to capture both intra- and inter-
transaction dependencies and build a more informative context
representation. In addition, the incorporation of hierarchical at-
tention models allows us to emphasize items and transactions
particularly relevant to the next-item choice when building the
attentive representation, leading to better recommendation. Em-
pirical validation on two real-world transaction datasets shows the
superiority of HATE over several state-of-the-art approaches. We
will explore the applications of HATE to other problems, e.g.,
document analysis and multimedia recommendations, and will
learn more complex couplings and interactions in transactions.
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