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Abstract Recommender systems face longstanding chal-

lenges in gaining users’ trust due to the unreliable in-

formation caused by profile injection or human misbe-

havior. Traditional solutions to those challenges focus

on leveraging users’ social relationships for inferring the

user preference, i.e. recommending items according to

the preference by user’s trusted friends; or adding ran-

dom noise to the input to improve the robustness of

the recommender systems. However, such approaches

cannot defend the real-world noises like fake ratings.

The recommender model is generally built upon all the

user-item interactions, which incorporates the informa-

tion from fake ratings or spammer groups, that neglects

the reliability of the ratings. To address the above chal-

lenges, we propose an adversarial training approach in

this work. In details, our approach includes two compo-
nents: a predictor that infers the user preference; and

a discriminator that enforces cohort rating patterns.

In particular, the predictor applies an encoder-decoder

structure to learn the shared latent information from

sparse users’ ratings and trust relationships; the dis-

criminator enforces the predictor to provide ratings as

coherent with the cohort rating patterns. Our extensive

experiments on three real-world datasets show the ad-

vantages of our approach over several competitive base-

lines.
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1 Introduction

Recommender systems offer an effective way of deliv-

ering information, products, and services to users with

personalized information, which have been proven suc-

cessful in various domains such as online entertainment

and e-commerce [29]. However, users may not trust

the recommender systems due to inaccurate recommen-

dation results. For example, a user may not trust a

stranger’s preference even when they have similar rat-

ing records. Another example is that the system may

recommend an item that is deliberately highly rated by
malicious users.

One traditional solution to the above issues is lever-

aging external trust relationships, which is often called

trust-aware recommendation [19]. Related research di-

verges into memory-based and model-based methods.

The former mainly employ memory-based collabora-

tive filtering methods—they search the trust networks

to obtain the neighbors and then make recommenda-

tions based on those trusted neighbors [17]. For exam-

ple, Jamali and Ester [12] combine TrustWalker [11]

with neighborhood collaborative filtering. They first use

random walks to get the user representation from the

trust network and then perform a probabilistic strat-

egy for selecting items to give recommendation. Simi-

larly, Zhang et al. [31] retrieve the user trust informa-

tion from user feedback and infer the user preference

from the top-k identified friends. Model-based methods

are majorly apply model-based collaborative filtering

methods, such as matrix factorization [28,7], for rec-

ommendation. For example, Zhao et al. [32] incorpo-
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rate the social trust information based on a Bayesian

Personalized Ranking approach. They assume that the

user preference will be affected by their friends, i.e. the

user will also leave high ratings to items preferred by

their friends. Guo et al. [7] integrates the social trust

information with using a SVD++[14] based method.

Both memory-based and model based trust-aware rec-

ommendation methods improve the model performance

by leveraging the explicit or implicit relationship among

users. However, they may fail to consider the reliability

of ratings in determining the trustworthiness of recom-

mender systems.

Another direction towards trust-aware recommen-

dation is to design a robust recommender system that

resists biased or randomized ratings provided by users

in a real-world context. One approach is to insert man-

made noise into the input to force the system to learn

robust parameters of the input so that to improve the

model’s ability in resisting the noise. One example is the

denoising auto-encoder (DAE) [3], which corrupts the

inputs with man-made noises. The work [27] used col-

laborative denoising auto-encoder (CDAE) which shares

similar ideas of DAE. The inputs (ratings) are cor-

rupted by the Gaussian noises and then fed into the

neural nets via an encoder to get a dense representa-

tion. The decoder is trying to map the dense repre-

sentation into the user-item interactions and for rec-

ommendation. Instead of man-made noise, some work

adds adversarial noise to the model. The majority of

this type of work focus on introducing noise in model

configurations to improve the robustness of the model

parameters. For example, He et al. [9] introduced an ad-

ditional objective function in the traditional Bayesian

Personalized Ranking approach to quantify the loss of

a model under perturbations on its parameters. In de-

tails, the adversarial noises are added to the model pa-

rameters; the recommender model is updated by con-

sidering both the training loss and the adversarial loss,

where they minimize the training loss while maximize

the adversarial loss. Yuan et al. [30] mixed adversarial

noise with model parameters and latent user represen-

tations to improve the robustness of the model. Their

training strategy includes two learning steps: first, ob-

tain optimal parameters by a training step; and sec-

ond, minimize the recommendation loss while maximize

the adversarial noise loss. Similar to trust relationship-

aware recommendation approaches, a limitation of the

above proposed noises is that the model cannot defend

the real-world noises like fake ratings.

To the best of our knowledge, few studies have fo-

cused on the robustness issue caused by user misbehav-

iors in rating. In this regard, we embrace the advantages

of adversarial training in simulating biased or malicious

ratings and propose reinforced trust-aware recommen-

dation to harvest the benefits of both social information

and the denoising approach. Our method consists of a

predictor that infers the ratings and a discriminator

that enforces cohort rating patterns on the predicted

ratings. In a nutshell, we make the following contribu-

tions:

– We propose a rating predictor based on an encoder-

decoder structure to learn latent information about

user rating patterns and user social trust networks.

User social trust embedding learned by an attentive

graph neural network can balance the contributions

of user neighbors. The predictor distinguishes from

previous studies in considering not only user’s trust

relationship but also rating quality.

– We introduce a discriminator to learn transferable

patterns in rating behaviors while eliminating user-

specific bias, thereby enforcing consistent rating pat-

terns among different users to lift the robustness of

the model.

– We have tested the proposed model on three real-

world datasets to show its competitive performance

against several baselines. We provide detailed pa-

rameter studies and model discussions.

We will review the related work for social-aware rec-

ommendation and the robustness of the recommender

systems in the following section 2. We further present

our proposed method in section 3 and show the model

performance in section 4. The conclusion and future

works are discussed in section 5.

2 Related work

Traditional recommendation techniques to deal with

the trust issue include the exploitation of social rela-

tions or adding randomly generalized noise to the model

configurations to improve the robustness of the recom-

mender system [2].

Social-aware recommendation approaches utilize the

user trust network to complement the sparse rating

data. This will improve the recommendation perfor-

mance by considering two source of rating informa-

tion: the original user preference and the preference

from the trusted users. Traditional social-aware recom-

mendations include memory-based methods and model-

based methods. The former mainly propose trust prop-

agation methods by leveraging the ratings of friends to

deduce the ratings of a targeted user [26]. The work by

[18] is one of the first works that leverages the social

relationships. The idea is replacing the role of collabo-

rative filtering by trust network. Specifically, the model
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propagates trust information over the social trust net-

work to estimate the weight for the trust link that can

be used in place of the user similarity weight. Jamali

and Ester [12] combine TrustWalker [11] with neigh-

borhood collaborative filtering. They first use random

walks to get the user representation from the trust net-

work and then perform a probabilistic strategy for se-

lecting items to give recommendation. Zhang et al. [31]

retrieve the user trust information from user feedback

and infer the user preference from the top-k identified

friends. Model-based methods largely depend on matrix

factorization. The social relations are generally used to

form the user representation. For example, Wen et al.

[25] use graph embedding approaches for learning learn

the user social trust representation and then combine

the trust representation with user ratings as the input

of matrix factorization. Guo et al. [7] integrates the so-

cial trust information with using a SVD++[14] based

method. Ahn et al. [1] have quantified by how much so-

cial network information can reduce sample complexity,

which provides the theoretical support for integrating

the social trust information. Zhao et al. [32] incorpo-

rate the social trust information based on a Bayesian

Personalized Ranking approach. They assume that the

user preference will be affected by their friends, i.e. the

user will also leave high ratings to items preferred by

their friends.

Another direction is designing robust recommender

systems. A general way is introducing noise to the sys-

tem configurations to improve system performance. By

doing so, the model is forced to learn robust parameters

to improve denoising capability. Traditional methods

include introducing human-made noise. For example,

in the collaborative denoising auto-encoder [27], the in-

put data are corrupted by Gaussian noise before fed

to the neural network. The decoder is trying to map

the dense representation into the user-item interactions

and thus for recommendation. Wang et al.[23] integrate

both recurrent neural networks (RNNs) [15] and de-

noising autoencoders for recommendation. The RNNs

are used for extracting the information from the item

textual description. The whole model is in an autoen-

coder structure, where the RNNs are used as encoder

and decoder layers. The proposed recurrent autoen-

coder can learn both rating information and sequential

information (e.g. textual information) to get the dense

representation. Strub et al. [21] corrupt the inputs by

stacked denoising autoencoders[22]. They also consid-

ered the side information, e.g. user profiles and item

profiles, to enhance the robustness of the model. In the

later researches, some works leverage adversarial noise

to improve the robustness of the model. Wang et al.

[24] propose a generative adversarial model that con-

sists of a generator and a discriminator for recommen-

dation [6]. The generator (predictor) acts as an attacker

to cheat the discriminator by capturing the rating pat-

terns from the users and generating ratings with similar

patterns; the discriminator targets distinguishing the

generated samples from the real ratings. The two mod-

els update step by step by competing with each other,

like playing a minimax game until the generator (pre-

dictor) provides well and stable rating prediction. He et

al. [9] introduced an additional objective function in the

traditional Bayesian Personalized Ranking approach to

quantify the loss of a model under perturbations on its

parameters. In details, the adversarial noises are added

to the model parameters; the recommender model is

updated by considering both the training loss and the

adversarial loss, where they minimize the training loss

while maximize the adversarial loss. Yuan et al. [30]

mixed adversarial noise with model parameters and la-

tent user representations to improve the robustness of

the model. Their training strategy includes two learn-

ing steps: first, obtain optimal parameters by a training

step; and second, minimize the recommendation loss

while maximize the adversarial noise loss.

However, The above two directions of trust-aware

recommender systems do not consider the reliability of

the ratings, i.e., the existence of biased, randomized, or

malicious ratings provided by users. The former social-

aware approaches mostly do not consider the robustness

issues, and the denoising approaches majorly focus on

the parameter robustness. In this paper, we bridge the

advantages of both social-aware recommender systems

and robustness issues for the recommendation with re-

inforcing cohort rating patterns.

3 Methodology

3.1 Overview

In this work, we consider the rating prediction problem

in recommender systems. Our target is predicting users’

ratings on new items based on the user-item rating in-

teractions and social trust relationships. Let R ∈ Rm×n

denotes the user-item rating matrix, where each entry

ru,i represents the rating of user u on item i; m and n

are the numbers of users and items, respectively. We use

Iu to represent the set of items rated by user u and ru
to represent the according ratings. The social network

can be represented by a graph G = (V,E), where V is

a set of m nodes (users), and E denotes directed trust

relations among users. We use T to describe the weight

of E, where tu,v ∈ T indicates the trust degree between

u and v. The trusted users by user u is represented

by Vu, i.e. {tu,v = 1|v ∈ Vu}. The ratings from the
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Fig. 1 Structure of our proposed end-to-end model. The pre-
dictor predicts users’ ratings based on their previous ratings
and trust relationships. The discriminator enforces consistent
predictions regardless of individuals’ behavioral differences in
rating.

trusted users are denoted as {rv|v ∈ Vu}. Thus the rec-

ommender model is trying to predict ru,i for new items

by ru,i ← (ru, rVu
). Figure 1 illustrates the structure of

the proposed model, where we have the recommender

model works as the predictor and a discriminator to

force the cohort rating patterns in the predicted rat-

ings. The predictor first learns the latent representation

of users’ ratings and trust relations and then combines

them into a shared hidden layer that contains users’

latent patterns. It also acts as a generator to simulate

rating patterns of real users. The rating pattern em-

bedding is learned from neural networks, i.e. Hr ← ru;

while the social trust embedding is learned by attentive

graph neural networks [5], i.e. Ht ← {rv|v ∈ Vu}. The

discriminator determines whether the predicted ratings

{r̂u,i|i ∈ Iu} follow the cohort patterns as the meta-

information {ru,i|i ∈ Iu}, thereby providing accurate

and confidential rating prediction. It also detects the

abnormal rating patterns to improve the robustness of

the model. We provide more details about the proposed

model as in the followings.

3.2 Rating Prediction with Correlative Trust

Relationship Fusion

Autoencoder is an unsupervised model that reconstructs

its inputs in the output layer, which has been used in

many recommendation tasks [20]. The encoder-decoder

structure can help with learning the latent preferences

of users according to the user-item interactions and pro-

viding predictions based on the latent preferences. In

this work, we integrate trust information into the layers

to conduct comprehensive recommendations. We first

learn a shared latent representation from two types of

sparse information: users’ previous ratings and ratings

from trust users, i.e. dual autoencoders, and then pre-

dict ratings based on that representation.

3.2.1 Embedding Learning

Here we learn two types of sparse information to get

the latent representation, i.e. social trust embedding

and rating pattern embedding.

The meta representation for the user rating pattern

is simply represented by ru. To infer the rating pattern

embedding, the encoder layer maps the inputs into a

low-dimensional space by neural networks. The simplest

case is using fully connected layers:

Hr = σ(W>e ru + bre) (1)

where We is the weight in encoder layers, bre is the bias

term, and σ is the activation function. The encoder

layer could also be in other forms, such as convolutional

neural network [15], according to the learning tasks.

The meta representation of the social trust relation-

ships is learned from the rating patterns of the trusted

users. Given a set of trusted users Vu, i.e., tu,v = 1 for

v ∈ Vu, where each user has a rating record rv, we em-

ploy an attentive graph neural network [5] for learning

the social trust meta representation su:

su = σ(W>s Σv∈Vuαvrv + bs) (2)

where α represents the contribution of user v, which

could be regarded as attention values; σ stands for the

activation function; Ws and bs are weights and biases.

We will hereby omit explanation of similar notations of

weights and bias for simplicity. Intuitively, the neigh-

bors of user u are not equally contributed to the social

trust representation of users; thus, we utilize the atten-

tion mechanism, i.e. the attention values αv proposed

in equation 2, to balance the social influences. Suppose

user u has strong connections with the neighbors who

has similar tastes, then we learn the attention value for

each user as follows:

βv = σ(W>a f(ru, rv) + ba) (3)

αv =
expβ>v wv

Σv∈Vu
expβ>v wv

(4)

where f(ru, rv) is the correlation function represent-

ing the correlative rating patterns between user u and

trusted user v; wv is a randomly initialized vector that

captures the correlative latent patterns. The correlation
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function evaluates the rating pattern similarity between

the user and the trusted users. It can be in different

forms. For example, the correlation function can be the

concatenation or the difference of two rating lists. We

will discuss the model performance on different correla-

tion functions in the further experiments. Now we have

the social trust meta representation su. Similarly, the

encoder layer will map the meta representation su into

a low-dimensional space by neural networks:

Ht = σ(V >e su + bse) (5)

where Ve stands for the weights.

The two encoder layers works simultaneously. Given

the user history ratings ru and the information of the

trusted users, we get the social trust embedding Ht and

rating pattern embedding Hr by several encoder layers.

3.2.2 Rating Prediction

After several encoder layers, we get more concise repre-

sentations of the rating records as Hr and trust infor-

mation as Hs.

To integrate two sources of information, we sum up

the latent representations Hr and Hs with weights to

form a shared latent representation:

H = γ ·Hr + (1− γ) ·Ht (6)

where γ ∈ [0, 1] is the parameter to control the contri-

bution of the rating information to the shared latent

representation in comparison with social trust infor-

mation. Another way to combine two sources of infor-

mation is concatenating the latent representation, i.e.,

H = [Hr, Ht]. The experimental results showed that

the summing of the two representations performs bet-

ter than the concatenation of the two representations.

We will discuss the performances of such two ways later

in the ablation studies.

Differing from the encoder, the decoder aims to ex-

plain or expand the concise latent representation. Given

the concentrated information about a user’s preferences

embedded in the shared latent representation, we ob-

tain the predicted ratings r̂u by decoding it into a list

of ratings and trust relationship:

r̂u = σ(W>d H + bd). (7)

The performance of the recommendation can be eval-

uated by the loss between the original inputs and the

predictions, i.e., `(r, r̂) and `(t, t̂), where ` is the loss

function.

3.3 Cohort Rating Patterns Enforcement

The predictor works fine alone after training but may

neglect noises in the input, due to the possible diverse

rating distributions from abnormal users in a real-world

context. We design a discriminator to distinguish the

generated ratings r̂ from real ratings and train the model

until the discriminator cannot classify them accurately

[6]. This way, we can enforce cohort rating patterns on

the generated ratings to reduce the adverse impact of

users’ biases, misbehaviors, and low-quality ratings. We

use a multilayer perceptron as the classifier to predict

any type of rating inputs (ru or r̂u), say r∗:

ŷ = D(r∗) = softmax(σ(WT
c r∗ + bc)) (8)

We train the classifier in two steps: discriminating and

generating. In the first step, a discriminator aims to

output y = 0 for any generated rating r̂ and y = 1 for

real ratings r, by minimizing

LD = Er∗∈{r,r̂}[`(y, ŷ)] + λ||Θ||1 (9)

via gradient descent, where Er∗∈{r,r̂}[`(y, ŷ)] is the mean

prediction loss for our generated ratings or the real

ratings, ` is the cross entropy loss function, Θ repre-

sents model parameters, λ is the hyper-parameter, and

||Θ||1 is the regularization item to avoid over-fitting,

where here we use absolute-value norm for regulariza-

tion. Since the generated ratings r̂ are not as sparse as

the real data (the real data is sparse due to the lim-

ited user-item rating records), we multiply them with a

mask vector before feeding them into the discriminator,

where the i-th element will be zero if a user does not

provide a rating to item i.

The generating step trains a predictor to cheat the

discriminator the discriminator aims to output y = 1

for the generated ratings (r̂) by minimizing the gaps

between the predicted labels of generated ratings r̂ and

y = 1, in order to learn a transferable rating patterns.

The loss for the generating step is:

LG = Er∗∈r̂[`(1, D(r∗))] + λ||Θ||1 (10)

The whole process iterates until the discriminator can-

not predict the generated ratings correctly.

Before training the discriminator, we train the pre-

dictor, i.e. our recommender model by minimizing the

rating prediction loss (i.e., mean squared loss `) until

convergence to train an accurate and robust model:

LR = `(r, r̂) + λ||Θ||1 (11)

The overall training process of our method is de-

scribed in algorithm 1, where the model is updated for

u ∈ UTrain. The pseudo code of the testing phase is
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Algorithm 1 Training Phase

Input: A set of training users UTrain, the user rating
records {ru|u ∈ UTrain} and the rating records of their
trusted users {rv|v ∈ Vu}

1: Set initial values for hyper-parameters λ and γ
2: Randomly initialize weights W∗, V∗ and biases b∗
3: while Not done do
4: for u ∈ UTrain do
5: Get rating pattern embedding Hr ← ru by

equation 1
6: Get social trust representation su ← (ru,

{rv|v ∈ Vu}) by equation 2
7: Get social trust embedding Ht ← su by

equation 5
8: Integrate the two representations with

H = γ ·Hr + (1− γ) ·Ht

9: Calculate the prediction ru,i ← H by
equation 7

10: Calculate the adversarial loss LD, LG, and
the recommendation loss LR by equation 9,
10, 11, respectively.

11: end for
12: Update the recommender model by minimizing LR

13: Update the model and discriminator by minimizing
LD and LG

14: end while

Algorithm 2 Testing Phase

Input: A set of testing users UTest, the user rating records
{ru|u ∈ UTest} and the rating records of their trusted
users {rv|v ∈ Vu}

1: Set values for hyper-parameters λ and γ
2: Initialize weights W∗, V∗ and biases b∗ with learned val-

ues
3: for u ∈ UTest do
4: Get rating pattern embedding Hr ← ru by

equation
5: Get social trust representation su ← (ru,

{rv|v ∈ Vu}) by equation 2
6: Get social trust embedding Ht ← su by

equation 5
7: Integrate the two representations with

H = γ ·Hr + (1− γ) ·Ht

8: Get the prediction ru,i ← H by
equation 7

9: end for

showed in algorithm 2. In the actual experimental set-

tings, we update the model with batch of users. Specif-

ically, we update the recommender model and the dis-

criminator asynchronously. The target of our method is

constructing an accurate and robust model; the design

for the cohort rating patterns enforcement will help the

model produce reliable rating predictions. Thus, we up-

date the recommender model with every batch of train-

ing users, and we update the discriminator with every

few batches of training users.

4 Experiments

4.1 Datasets

We evaluate the proposed model on three real-world

datasets: FilmTrust, Epinions and Ciao1. FilmTrust is

a small dataset that consists of 35,497 ratings of 2,071

items from 1,508 users, and 1,853 trust links. The lat-

ter two datasets contain over 100 thousand items from

thousands of users. For Epinions, which is a product

review dataset, there are 469,126 ratings from 37,701

users in 19,627 items. There are about 487,000 trust re-

lationships among users. Ciao consists of 137,187 rat-

ings from 7237 users for 8,819 products, and there are

111,781 trust links.

4.2 Model Setups

Data-preprocessing. First, we filter the missing values

of the dataset. Second, we preprocess the two larger

datasets to make them applicable to our method. The

Epinions and Ciao are two large dataset that contains

over 100 thousand items. Our approach is based on the

user-item interactions, i.e. the rating records for each

user is represented by ru ∈ Rn, where n is the number

of items. The computation cost of our method will be

high if with a large n; besides, using fully connected

layers for encoding the inputs will aggravate such sit-

uation. There are two ways for alleviating the compu-

tation cost: decrease the number of items or use less

complicated model structure (less parameters). Thus,

we filter the dataset with items that with less than 10

rating records, and we use convolutional layers for en-

coding the inputs.

Experimental settings. Our code is implemented with

TensorFlow 2 in Python 3.7 and runs on a Linux server

with NVIDIA TITAN X. The processed datasets will

take about 60MB hard disk space. The default acti-

vation function is Sigmoid function [8]. We have pa-

rameters in model set-ups, encoder-decoder structures,

and hyperparameters. By default, we use 90% of each

dataset for training and others for testing; the batch

size is about 1/10 of the dataset; we use two encoder

layers for encoding the inputs and two decoder layers

for decoding the latent representation; the hyperparam-

eter γ for controlling the contribution of rating pattern

embedding is set as 0.7; the hyperparameter λ, which

is the coefficient for the regularization item, is set as

0.001; the learning rate is 0.001.

1 https://www.librec.net/datasets.html
2 https://www.tensorflow.org/
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(a) Train-test Split Ratio (b) Batch Size (c) Autoencoder Settings

(d) Parameter γ (e) Parameter λ (f) Learning Rate

Fig. 2 Sensitivity to parameter settings.

(a) Train-test Split Ratio (b) Batch Size (c) Autoencoder Settings

(d) Parameter γ (e) Parameter λ (f) Learning Rate

Fig. 3 Model performance during the training process.

4.3 Parameter Studies

We have three types of parameters for setting up the

model: the data set-up parameters, the encoder-decoder

structure settings, and the hyperparameters. In this

section, we study on the performance of our proposed

model with different settings on the FilmTrust dataset.

We will show the results under different settings and

different learning epochs. The results are under two

evaluation metrics: Mean Absolute Error (MAE) and

Root-Mean Squared Error (RMSE).

– MAE: 1
mΣ

m
u=1

1
nΣ

n
i=1|ru,i − r̂u,i|

– RMSE:
√

1
mΣ

m
u=1

1
nΣ

n
i=1(ru,i − r̂u,i)2

A lower value indicates better model performance.

Data set-up parameters include the train-test

split ratio and batch size. Default settings for these pa-

rameters are 0.9 (for training dataset), and the batch

size is about 1/10 of the training dataset. Figure 2 (a)-
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(b) show the overall model performance on different set-

tings. The results suggest a larger training set improves

the model performance; and the model with a moder-

ate batch size, rather than the extreme settings of the

batch size (e.g., 1/100 or 1/5), delivers the best perfor-

mance. Figure 3 (a)-(b) show the model performance

during the training process. We could see that a larger

training set also improves the stability of the model,

where the model performs best when training ratio is

0.95. According to figure 3 (b), the model performance

fluctuates with a small batch size while converges slowly

with a large batch size.

Encoder-decoder structure setting. We com-

pare the models under different settings regarding the

number of encoder/decoder layers (1, 2, 3) and the

number of neural nodes (1/20 to 1/2 of the dimension

of inputs) in the hidden layers. We show results of mod-

els with one, two, and three layers, and we use ’+’, ’-’

to indicate higher (e.g. 1/10 to 1/20 of the dimension

of inputs) or lower dimensions (e.g. 1/2 to 1/10 of the

dimension of inputs) of layer nodes. Our experimental

results (Figure 2 (c)) reveal that adding more layers

to the encoder or the decoder delivers better perfor-

mance, due to the sparsity and high dimensionality of

the datasets. The two-layer structure delivers very sim-

ilar results as the three-layer structure, though the per-

formance slightly fluctuates for a three-layer structure

under high dimensionality. Smaller dimensions of layer

nodes generally result in better performance, given the

same number of layers (except for one layer). The fig-

ure 3 (c) also suggests that it is hard for the model

to learn effective patterns with only one neural layer,

and a three layers encoder with lower dimensionality

provides most stable prediction.

Hyperparameters. Figure 2(d)-(f) show the per-

formance over the hyperparameters (γ, λ) and learning

rate. γ controls the weight for user rating patterns in

comparison with user social trust embedding. Our ex-

periment on γ reveals that bias in user preference may

lead to better performance of our model. Besides, using

only one source information (ratings or trust relations)

delivers inferior results, indicating there exist hidden

relationships between users, rating behaviors, and their

trust relationship. According to figure 3 (d), we could

also observe that using only one source information will

aggravate the over-fitting issue. So a median value of γ

provides better and stable performance for the recom-

mendation. λ is the regularization coefficient. Accord-

ing to both figure 2 (e) and 3 (e), a small value of λ

(between 0.0001 and 0.00001) provides best and reliable

results, while a larger value (e.g. over 0.001) or a near

zero value will lead to a bad model performance. As

for the learning rate, it is reasonable to set the learning

rate to a moderate value because large values tend to

make the convergence difficult while smaller values may

slow down the learning. Here, the value 0.001 provides

the best performance.

4.4 Comparison Results

We compare the proposed model with several baseline

algorithms, including TrustMF [28], SoReg [16] and So-

cialMF [13]. These methods use matrix-factorization

based methods and combining social information into

user embedding. Besides, considering the popularity of

deep learning in the recent recommendation research,

we compare three recent deep learning-based methods

for comparison, which are NeuMF [10], DeepSoR [4],

and GraphRec [5].

– TrustMF: constructs a trust network and maps the

users into truster space and trustee space. Each user

has feature vectors in the trust networks, and the

representation for each user is affected by the trusted

users. Then collaborative filtering method is used for

recommendation.

– SoReg: employs social trust networks to get regular-

ization terms for controlling the matrix factorization

objective function.

– SocialMF: also considers the matrix factorization

methods, where they incorporates the user social in-

formation for forming the user representation. The

prediction is based on the user representation and

item representation.

– NeuMF: is a matrix factorization model with neural

network architecture.

– DeepSoR: forms user representation from social net-

works and use probabilistic matrix factorization for

rating prediction.

– GraphRec: models two graphs, i.e., the user-user so-

cial graph and the user-item graph, with graph neu-

ral networks; the rating prediction is based on the

concatenation of item representation and user rep-

resentation.

The above comparison methods all consider the so-

cial relationships for recommendation, while they are

mostly based on matrix factorization algorithms. The

GraphRec method is similar to our work that they use

graph neural networks to infer the user trust embed-

ding from the social relationships; but it ignores the

reliability of the user ratings. We reuse the default pa-

rameters or the presented results from the original pa-

pers for comparison. Table 1 shows the experimental re-

sults, where the last row stands for the performance of

our model. We can see that both matrix-factorization
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Table 1 Comparison Results

Methods
FilmTrust Ciao Epinions

MAE RMSE MAE RMSE MAE RMSE

TrustMF 0.631 0.810 0.769 1.048 0.939 1.167
SoReg 0.668 0.875 0.861 1.085 0.932 1.232
SocialMF 0.638 0.837 0.827 1.050 0.825 1.070
NeuMF 0.655 0.867 0.806 1.062 0.907 1.148
DeepSoR 0.648 0.853 0.774 1.032 0.838 1.097
GraphRec 0.633 0.819 0.739 0.939 0.817 1.063
Ours 0.622 0.805 0.748 0.976 0.815 1.054

based methods and deep learning-based methods use

users’ latent preferences for recommendation while in

different ways. Both methods achieved similar perfor-

mance on the small FilmTrust dataset. Deep learning-

based methods perform better on the Ciao and Epin-

ions datasets, which are much larger than FilmTrust.

This can be attributed to the stronger capability of

deep neural networks in capturing complex relation-

ships among input. Due to the ascendant ability in

handling complex graph structures, GraphRec performs

better than our model in dataset Ciao, which has a

higher density of social links and user-item ratings. Over-

all, our model performs consistently well on three datasets

and outperforms a series of comparison methods, which

shows the effectiveness of our proposed attentive graph-

ical user trust relationship learning and the adversar-

ial training strategy. We will discuss the details about

these modules in the following sections.

4.5 Ablation Studies

In this section, we carry out a series of ablation stud-

ies to show the effectiveness of leveraging both of the

trust information and the robustness of recommender

systems, i.e. our attentive graphical learning for user

trust representation and the adversarial training strat-

egy for updating the recommender model. Besides, we

discuss the model performance with different settings of

the correlation function, which is designed to balance

the neighbors’ contributions to the user social trust rep-

resentation. We perform the studies on the FilmTrust

dataset.

4.5.1 Impact of Social Trust Information

We tested two methods to combine the latent represen-

tations of the rating and trust information. The first

method concatenates representations of rating and trust

data for each user; the second sums up the representa-

tions with different weight settings (as introduced in

our method). According to the results listed in Table 2,

Table 2 Impact of Social Trust Information

Settings MAE RMSE

Concatenation 0.722 0.965
Sum, γ = 0 (without rating info) 0.627 0.816
Sum, γ = 0.3 0.631 0.798
Sum, γ = 0.5 0.628 0.816
Sum, γ = 0.7 0.626 0.815
Sum, γ = 1 (without social info) 0.635 0.822

the second method exhibited better prediction perfor-

mance in our experiments.

The reason may lie in that our designs of user social

trust embedding share similar data structures with user

rating pattern embedding. The sum up way keeps more

structural information than simply concatenation. Be-

sides, we tested the model performance with different

settings of parameter γ, which controls the weights for

user rating pattern embedding when summed up with

user social trust embedding. γ = 0 and γ = 1 indi-

cate the cases that model is trained without and solely

based on user rating history, respectively. We could ob-

serve that the combination of user social trust embed-

ding and the rating pattern embedding performs better

than a single perspective of embedding. Interestingly,

the model performs well with only the user social trust

embedding, confirming our assumption that users share

similar tastes with their neighbors.

4.5.2 Impact of Adversarial Training

To validate the discriminator’s effectiveness in enforce

cohort rating patterns among the real and generated

ratings, we compare the ratings generated by our pro-

posed model and those generated solely by the predic-

tor (without adversarial training). Figure 4 shows the

model performance and the distribution of the ratings.

First, we can see that the model with adversarial train-

ing consistently outperforms the model with solely the

predictor. Second, compared with ratings generated by

the sole predictor, the predicted ratings with adversar-



10 M. Dong et al.

ial training tend to fall into different ranges for different

items with similar patterns as real ratings.

4.5.3 Impact of Correlation Function

The correlation function f(ru, rv) defines the relation-

ship between a user and its neighbors to learn the neigh-

bors’ contributions to the user’s social trust embedding.

Intuitively, users with high consistency in history rat-

ing records may share similar tastes. We compare the

following correlation functions:

– Cosine similarity: f(ru, rv) = ru·rv
||ru||||rv||

– Concatenation: f(ru, rv) = [ru, rv]

– Difference: f(ru, rv) = ru − rv
– Dot product: f(ru, rv) = ru · rv
– Equal contribution: f(ru, rv) = 1

Figure 5(a) gives an example of the user social trust rep-

resentation learning with cosine similarity. The cosine

similarity is calculated based on the rating history of

user and her neighbors. We further use the cosine simi-

larity to learn the contribution of rFriend 1 and rFriend 2

to the social trust embedding su with attention mecha-

nism, referring to equation (2) to (4). Figure 5 (b) shows

the results with different settings. The performance of

the equal contribution measure indicates friends are not

equally contributed to the user social trust representa-

tion. Instead, other measures that consider the distance

between the user and her neighbors present well per-

formance. However, the performance of the difference

measure is quite unstable; it may eliminate the infor-

mation when users have the same ratings on the same

items.

5 Conclusion

In this work, we propose a unified reinforced trust-

aware recommendation model that leverages both users’

trust relationships and rating quality to improve the

recommendation performance. The model employs a

predictor based on an encoder-decoder structure to learn

the shared latent information from sparse user ratings

and trust relationships, and a discriminator to enforces

cohort rating patterns on the predicted ratings. We

compare the proposed method with a series of base-

lines and state-of-arts, and discuss the model perfor-

mance under different configuration. The experiments

on three datasets show the model’s competitive perfor-

mance. One limitation of our proposed method is that

the computation cost would be high with larger number

of items. We will address this issue in the future work.
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